pq3etsec.c revision 1.27 1 /* $NetBSD: pq3etsec.c,v 1.27 2016/06/10 13:27:12 ozaki-r Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #include "opt_inet.h"
38 #include "opt_mpc85xx.h"
39 #include "opt_multiprocessor.h"
40 #include "opt_net_mpsafe.h"
41
42 #include <sys/cdefs.h>
43
44 __KERNEL_RCSID(0, "$NetBSD: pq3etsec.c,v 1.27 2016/06/10 13:27:12 ozaki-r Exp $");
45
46 #include <sys/param.h>
47 #include <sys/cpu.h>
48 #include <sys/device.h>
49 #include <sys/mbuf.h>
50 #include <sys/ioctl.h>
51 #include <sys/intr.h>
52 #include <sys/bus.h>
53 #include <sys/kernel.h>
54 #include <sys/kmem.h>
55 #include <sys/proc.h>
56 #include <sys/atomic.h>
57 #include <sys/callout.h>
58 #include <sys/sysctl.h>
59
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_ether.h>
63 #include <net/if_media.h>
64
65 #include <dev/mii/miivar.h>
66
67 #include <net/bpf.h>
68
69 #ifdef INET
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/ip.h>
73 #include <netinet/in_offload.h>
74 #endif /* INET */
75 #ifdef INET6
76 #include <netinet6/in6.h>
77 #include <netinet/ip6.h>
78 #endif
79 #include <netinet6/in6_offload.h>
80
81 #include <powerpc/spr.h>
82 #include <powerpc/booke/spr.h>
83
84 #include <powerpc/booke/cpuvar.h>
85 #include <powerpc/booke/e500var.h>
86 #include <powerpc/booke/e500reg.h>
87 #include <powerpc/booke/etsecreg.h>
88
89 #define M_HASFCB M_LINK2 /* tx packet has FCB prepended */
90
91 #define ETSEC_MAXTXMBUFS 30
92 #define ETSEC_NTXSEGS 30
93 #define ETSEC_MAXRXMBUFS 511
94 #define ETSEC_MINRXMBUFS 32
95 #define ETSEC_NRXSEGS 1
96
97 #define IFCAP_RCTRL_IPCSEN IFCAP_CSUM_IPv4_Rx
98 #define IFCAP_RCTRL_TUCSEN (IFCAP_CSUM_TCPv4_Rx\
99 |IFCAP_CSUM_UDPv4_Rx\
100 |IFCAP_CSUM_TCPv6_Rx\
101 |IFCAP_CSUM_UDPv6_Rx)
102
103 #define IFCAP_TCTRL_IPCSEN IFCAP_CSUM_IPv4_Tx
104 #define IFCAP_TCTRL_TUCSEN (IFCAP_CSUM_TCPv4_Tx\
105 |IFCAP_CSUM_UDPv4_Tx\
106 |IFCAP_CSUM_TCPv6_Tx\
107 |IFCAP_CSUM_UDPv6_Tx)
108
109 #define IFCAP_ETSEC (IFCAP_RCTRL_IPCSEN|IFCAP_RCTRL_TUCSEN\
110 |IFCAP_TCTRL_IPCSEN|IFCAP_TCTRL_TUCSEN)
111
112 #define M_CSUM_IP (M_CSUM_CIP|M_CSUM_CTU)
113 #define M_CSUM_IP6 (M_CSUM_TCPv6|M_CSUM_UDPv6)
114 #define M_CSUM_TUP (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
115 #define M_CSUM_UDP (M_CSUM_UDPv4|M_CSUM_UDPv6)
116 #define M_CSUM_IP4 (M_CSUM_IPv4|M_CSUM_UDPv4|M_CSUM_TCPv4)
117 #define M_CSUM_CIP (M_CSUM_IPv4)
118 #define M_CSUM_CTU (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
119
120 struct pq3etsec_txqueue {
121 bus_dmamap_t txq_descmap;
122 volatile struct txbd *txq_consumer;
123 volatile struct txbd *txq_producer;
124 volatile struct txbd *txq_first;
125 volatile struct txbd *txq_last;
126 struct ifqueue txq_mbufs;
127 struct mbuf *txq_next;
128 #ifdef ETSEC_DEBUG
129 struct mbuf *txq_lmbufs[512];
130 #endif
131 uint32_t txq_qmask;
132 uint32_t txq_free;
133 uint32_t txq_threshold;
134 uint32_t txq_lastintr;
135 bus_size_t txq_reg_tbase;
136 bus_dma_segment_t txq_descmap_seg;
137 };
138
139 struct pq3etsec_rxqueue {
140 bus_dmamap_t rxq_descmap;
141 volatile struct rxbd *rxq_consumer;
142 volatile struct rxbd *rxq_producer;
143 volatile struct rxbd *rxq_first;
144 volatile struct rxbd *rxq_last;
145 struct mbuf *rxq_mhead;
146 struct mbuf **rxq_mtail;
147 struct mbuf *rxq_mconsumer;
148 #ifdef ETSEC_DEBUG
149 struct mbuf *rxq_mbufs[512];
150 #endif
151 uint32_t rxq_qmask;
152 uint32_t rxq_inuse;
153 uint32_t rxq_threshold;
154 bus_size_t rxq_reg_rbase;
155 bus_size_t rxq_reg_rbptr;
156 bus_dma_segment_t rxq_descmap_seg;
157 };
158
159 struct pq3etsec_mapcache {
160 u_int dmc_nmaps;
161 u_int dmc_maxseg;
162 u_int dmc_maxmaps;
163 u_int dmc_maxmapsize;
164 bus_dmamap_t dmc_maps[0];
165 };
166
167 struct pq3etsec_softc {
168 device_t sc_dev;
169 device_t sc_mdio_dev;
170 struct ethercom sc_ec;
171 #define sc_if sc_ec.ec_if
172 struct mii_data sc_mii;
173 bus_space_tag_t sc_bst;
174 bus_space_handle_t sc_bsh;
175 bus_space_handle_t sc_mdio_bsh;
176 bus_dma_tag_t sc_dmat;
177 int sc_phy_addr;
178 prop_dictionary_t sc_intrmap;
179 uint32_t sc_intrmask;
180
181 uint32_t sc_soft_flags;
182 #define SOFT_RESET 0x0001
183 #define SOFT_RXINTR 0x0010
184 #define SOFT_RXBSY 0x0020
185 #define SOFT_TXINTR 0x0100
186 #define SOFT_TXERROR 0x0200
187
188 struct pq3etsec_txqueue sc_txq;
189 struct pq3etsec_rxqueue sc_rxq;
190 uint32_t sc_txerrors;
191 uint32_t sc_rxerrors;
192
193 size_t sc_rx_adjlen;
194
195 /*
196 * Copies of various ETSEC registers.
197 */
198 uint32_t sc_imask;
199 uint32_t sc_maccfg1;
200 uint32_t sc_maccfg2;
201 uint32_t sc_maxfrm;
202 uint32_t sc_ecntrl;
203 uint32_t sc_dmactrl;
204 uint32_t sc_macstnaddr1;
205 uint32_t sc_macstnaddr2;
206 uint32_t sc_tctrl;
207 uint32_t sc_rctrl;
208 uint32_t sc_gaddr[16];
209 uint64_t sc_macaddrs[15];
210
211 void *sc_tx_ih;
212 void *sc_rx_ih;
213 void *sc_error_ih;
214 void *sc_soft_ih;
215
216 kmutex_t *sc_lock;
217 kmutex_t *sc_hwlock;
218
219 struct evcnt sc_ev_tx_stall;
220 struct evcnt sc_ev_tx_intr;
221 struct evcnt sc_ev_rx_stall;
222 struct evcnt sc_ev_rx_intr;
223 struct evcnt sc_ev_error_intr;
224 struct evcnt sc_ev_soft_intr;
225 struct evcnt sc_ev_tx_pause;
226 struct evcnt sc_ev_rx_pause;
227 struct evcnt sc_ev_mii_ticks;
228
229 struct callout sc_mii_callout;
230 uint64_t sc_mii_last_tick;
231
232 struct ifqueue sc_rx_bufcache;
233 struct pq3etsec_mapcache *sc_rx_mapcache;
234 struct pq3etsec_mapcache *sc_tx_mapcache;
235
236 /* Interrupt Coalescing parameters */
237 int sc_ic_rx_time;
238 int sc_ic_rx_count;
239 int sc_ic_tx_time;
240 int sc_ic_tx_count;
241 };
242
243 #define ETSEC_IC_RX_ENABLED(sc) \
244 ((sc)->sc_ic_rx_time != 0 && (sc)->sc_ic_rx_count != 0)
245 #define ETSEC_IC_TX_ENABLED(sc) \
246 ((sc)->sc_ic_tx_time != 0 && (sc)->sc_ic_tx_count != 0)
247
248 struct pq3mdio_softc {
249 device_t mdio_dev;
250
251 kmutex_t *mdio_lock;
252
253 bus_space_tag_t mdio_bst;
254 bus_space_handle_t mdio_bsh;
255 };
256
257 static int pq3etsec_match(device_t, cfdata_t, void *);
258 static void pq3etsec_attach(device_t, device_t, void *);
259
260 static int pq3mdio_match(device_t, cfdata_t, void *);
261 static void pq3mdio_attach(device_t, device_t, void *);
262
263 static void pq3etsec_ifstart(struct ifnet *);
264 static void pq3etsec_ifwatchdog(struct ifnet *);
265 static int pq3etsec_ifinit(struct ifnet *);
266 static void pq3etsec_ifstop(struct ifnet *, int);
267 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
268
269 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
270 struct pq3etsec_mapcache **, size_t, size_t, size_t);
271 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
272 struct pq3etsec_mapcache *);
273 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
274 struct pq3etsec_mapcache *);
275 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
276 struct pq3etsec_mapcache *, bus_dmamap_t);
277
278 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
279 struct pq3etsec_txqueue *, u_int);
280 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
281 struct pq3etsec_txqueue *);
282 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
283 struct pq3etsec_txqueue *);
284 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
285 struct pq3etsec_txqueue *);
286 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
287 struct pq3etsec_txqueue *, struct mbuf *m);
288 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
289 struct pq3etsec_txqueue *);
290
291 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
292 struct pq3etsec_rxqueue *, u_int);
293 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
294 struct pq3etsec_rxqueue *);
295 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
296 struct pq3etsec_rxqueue *, bool);
297 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
298 struct pq3etsec_rxqueue *);
299
300 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
301
302 static void pq3etsec_mii_tick(void *);
303 static int pq3etsec_rx_intr(void *);
304 static int pq3etsec_tx_intr(void *);
305 static int pq3etsec_error_intr(void *);
306 static void pq3etsec_soft_intr(void *);
307
308 static void pq3etsec_set_ic_rx(struct pq3etsec_softc *);
309 static void pq3etsec_set_ic_tx(struct pq3etsec_softc *);
310
311 static void pq3etsec_sysctl_setup(struct sysctllog **, struct pq3etsec_softc *);
312
313 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
314 pq3etsec_match, pq3etsec_attach, NULL, NULL);
315
316 CFATTACH_DECL_NEW(pq3mdio_tsec, sizeof(struct pq3mdio_softc),
317 pq3mdio_match, pq3mdio_attach, NULL, NULL);
318
319 CFATTACH_DECL_NEW(pq3mdio_cpunode, sizeof(struct pq3mdio_softc),
320 pq3mdio_match, pq3mdio_attach, NULL, NULL);
321
322 static inline uint32_t
323 etsec_mdio_read(struct pq3mdio_softc *mdio, bus_size_t off)
324 {
325 return bus_space_read_4(mdio->mdio_bst, mdio->mdio_bsh, off);
326 }
327
328 static inline void
329 etsec_mdio_write(struct pq3mdio_softc *mdio, bus_size_t off, uint32_t data)
330 {
331 bus_space_write_4(mdio->mdio_bst, mdio->mdio_bsh, off, data);
332 }
333
334 static inline uint32_t
335 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
336 {
337 return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
338 }
339
340 static int
341 pq3mdio_find(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
342 {
343 return strcmp(cf->cf_name, "mdio") == 0;
344 }
345
346 static int
347 pq3mdio_match(device_t parent, cfdata_t cf, void *aux)
348 {
349 const uint16_t svr = (mfspr(SPR_SVR) & ~0x80000) >> 16;
350 const bool p1025_p = (svr == (SVR_P1025v1 >> 16)
351 || svr == (SVR_P1016v1 >> 16));
352
353 if (device_is_a(parent, "cpunode")) {
354 if (!p1025_p
355 || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
356 return 0;
357
358 return 1;
359 }
360
361 if (device_is_a(parent, "tsec")) {
362 if (p1025_p
363 || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
364 return 0;
365
366 return 1;
367 }
368
369 return 0;
370 }
371
372 static void
373 pq3mdio_attach(device_t parent, device_t self, void *aux)
374 {
375 struct pq3mdio_softc * const mdio = device_private(self);
376 struct cpunode_attach_args * const cna = aux;
377 struct cpunode_locators * const cnl = &cna->cna_locs;
378
379 mdio->mdio_dev = self;
380 mdio->mdio_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
381
382 if (device_is_a(parent, "cpunode")) {
383 struct cpunode_softc * const psc = device_private(parent);
384 psc->sc_children |= cna->cna_childmask;
385
386 mdio->mdio_bst = cna->cna_memt;
387 if (bus_space_map(mdio->mdio_bst, cnl->cnl_addr,
388 cnl->cnl_size, 0, &mdio->mdio_bsh) != 0) {
389 aprint_error(": error mapping registers @ %#x\n",
390 cnl->cnl_addr);
391 return;
392 }
393 } else {
394 struct pq3etsec_softc * const sc = device_private(parent);
395
396 KASSERT(device_is_a(parent, "tsec"));
397 KASSERTMSG(cnl->cnl_addr == ETSEC1_BASE
398 || cnl->cnl_addr == ETSEC2_BASE
399 || cnl->cnl_addr == ETSEC3_BASE
400 || cnl->cnl_addr == ETSEC4_BASE,
401 "unknown tsec addr %x", cnl->cnl_addr);
402
403 mdio->mdio_bst = sc->sc_bst;
404 mdio->mdio_bsh = sc->sc_bsh;
405 }
406
407 aprint_normal("\n");
408 }
409
410 static int
411 pq3mdio_mii_readreg(device_t self, int phy, int reg)
412 {
413 struct pq3mdio_softc * const mdio = device_private(self);
414 uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
415
416 mutex_enter(mdio->mdio_lock);
417
418 etsec_mdio_write(mdio, MIIMADD,
419 __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
420
421 etsec_mdio_write(mdio, MIIMCOM, 0); /* clear any past bits */
422 etsec_mdio_write(mdio, MIIMCOM, MIIMCOM_READ);
423
424 while (etsec_mdio_read(mdio, MIIMIND) != 0) {
425 delay(1);
426 }
427 int data = etsec_mdio_read(mdio, MIIMSTAT);
428
429 if (miimcom == MIIMCOM_SCAN)
430 etsec_mdio_write(mdio, MIIMCOM, miimcom);
431
432 #if 0
433 aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
434 __func__, phy, reg, data);
435 #endif
436 mutex_exit(mdio->mdio_lock);
437 return data;
438 }
439
440 static void
441 pq3mdio_mii_writereg(device_t self, int phy, int reg, int data)
442 {
443 struct pq3mdio_softc * const mdio = device_private(self);
444 uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
445
446 #if 0
447 aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
448 __func__, phy, reg, data);
449 #endif
450
451 mutex_enter(mdio->mdio_lock);
452
453 etsec_mdio_write(mdio, MIIMADD,
454 __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
455 etsec_mdio_write(mdio, MIIMCOM, 0); /* clear any past bits */
456 etsec_mdio_write(mdio, MIIMCON, data);
457
458 int timo = 1000; /* 1ms */
459 while ((etsec_mdio_read(mdio, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
460 delay(1);
461 }
462
463 if (miimcom == MIIMCOM_SCAN)
464 etsec_mdio_write(mdio, MIIMCOM, miimcom);
465
466 mutex_exit(mdio->mdio_lock);
467 }
468
469 static inline void
470 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
471 {
472 bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
473 }
474
475 static void
476 pq3etsec_mii_statchg(struct ifnet *ifp)
477 {
478 struct pq3etsec_softc * const sc = ifp->if_softc;
479 struct mii_data * const mii = &sc->sc_mii;
480
481 uint32_t maccfg1 = sc->sc_maccfg1;
482 uint32_t maccfg2 = sc->sc_maccfg2;
483 uint32_t ecntrl = sc->sc_ecntrl;
484
485 maccfg1 &= ~(MACCFG1_TX_FLOW|MACCFG1_RX_FLOW);
486 maccfg2 &= ~(MACCFG2_IFMODE|MACCFG2_FD);
487
488 if (sc->sc_mii.mii_media_active & IFM_FDX) {
489 maccfg2 |= MACCFG2_FD;
490 }
491
492 /*
493 * Now deal with the flow control bits.
494 */
495 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
496 && (mii->mii_media_active & IFM_ETH_FMASK)) {
497 if (mii->mii_media_active & IFM_ETH_RXPAUSE)
498 maccfg1 |= MACCFG1_RX_FLOW;
499 if (mii->mii_media_active & IFM_ETH_TXPAUSE)
500 maccfg1 |= MACCFG1_TX_FLOW;
501 }
502
503 /*
504 * Now deal with the speed.
505 */
506 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
507 maccfg2 |= MACCFG2_IFMODE_GMII;
508 } else {
509 maccfg2 |= MACCFG2_IFMODE_MII;
510 ecntrl &= ~ECNTRL_R100M;
511 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
512 ecntrl |= ECNTRL_R100M;
513 }
514 }
515
516 /*
517 * If things are different, re-init things.
518 */
519 if (maccfg1 != sc->sc_maccfg1
520 || maccfg2 != sc->sc_maccfg2
521 || ecntrl != sc->sc_ecntrl) {
522 if (sc->sc_if.if_flags & IFF_RUNNING)
523 atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
524 sc->sc_maccfg1 = maccfg1;
525 sc->sc_maccfg2 = maccfg2;
526 sc->sc_ecntrl = ecntrl;
527 }
528 }
529
530 #if 0
531 static void
532 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
533 {
534 struct pq3etsec_softc * const sc = ifp->if_softc;
535
536 mii_pollstat(&sc->sc_mii);
537 ether_mediastatus(ifp, ifmr);
538 ifmr->ifm_status = sc->sc_mii.mii_media_status;
539 ifmr->ifm_active = sc->sc_mii.mii_media_active;
540 }
541
542 static int
543 pq3etsec_mediachange(struct ifnet *ifp)
544 {
545 struct pq3etsec_softc * const sc = ifp->if_softc;
546
547 if ((ifp->if_flags & IFF_UP) == 0)
548 return 0;
549
550 int rv = mii_mediachg(&sc->sc_mii);
551 return (rv == ENXIO) ? 0 : rv;
552 }
553 #endif
554
555 static int
556 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
557 {
558
559 if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
560 return 0;
561
562 return 1;
563 }
564
565 static void
566 pq3etsec_attach(device_t parent, device_t self, void *aux)
567 {
568 struct cpunode_softc * const psc = device_private(parent);
569 struct pq3etsec_softc * const sc = device_private(self);
570 struct cpunode_attach_args * const cna = aux;
571 struct cpunode_locators * const cnl = &cna->cna_locs;
572 cfdata_t cf = device_cfdata(self);
573 int error;
574
575 psc->sc_children |= cna->cna_childmask;
576 sc->sc_dev = self;
577 sc->sc_bst = cna->cna_memt;
578 sc->sc_dmat = &booke_bus_dma_tag;
579
580 /*
581 * Pull out the mdio bus and phy we are supposed to use.
582 */
583 const int mdio = cf->cf_loc[CPUNODECF_MDIO];
584 const int phy = cf->cf_loc[CPUNODECF_PHY];
585 if (mdio != CPUNODECF_MDIO_DEFAULT)
586 aprint_normal(" mdio %d", mdio);
587
588 /*
589 * See if the phy is in the config file...
590 */
591 if (phy != CPUNODECF_PHY_DEFAULT) {
592 sc->sc_phy_addr = phy;
593 } else {
594 unsigned char prop_name[20];
595 snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
596 cnl->cnl_instance);
597 sc->sc_phy_addr = board_info_get_number(prop_name);
598 }
599 if (sc->sc_phy_addr != MII_PHY_ANY)
600 aprint_normal(" phy %d", sc->sc_phy_addr);
601
602 error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
603 &sc->sc_bsh);
604 if (error) {
605 aprint_error(": error mapping registers: %d\n", error);
606 return;
607 }
608
609 /*
610 * Assume firmware has aready set the mac address and fetch it
611 * before we reinit it.
612 */
613 sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
614 sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
615 sc->sc_rctrl = RCTRL_DEFAULT;
616 sc->sc_ecntrl = etsec_read(sc, ECNTRL);
617 sc->sc_maccfg1 = etsec_read(sc, MACCFG1);
618 sc->sc_maccfg2 = etsec_read(sc, MACCFG2) | MACCFG2_DEFAULT;
619
620 if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
621 size_t len;
622 const uint8_t *mac_addr =
623 board_info_get_data("tsec-mac-addr-base", &len);
624 KASSERT(len == ETHER_ADDR_LEN);
625 sc->sc_macstnaddr2 =
626 (mac_addr[1] << 24)
627 | (mac_addr[0] << 16);
628 sc->sc_macstnaddr1 =
629 ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
630 | (mac_addr[4] << 16)
631 | (mac_addr[3] << 8)
632 | (mac_addr[2] << 0);
633 #if 0
634 aprint_error(": mac-address unknown\n");
635 return;
636 #endif
637 }
638
639 sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
640 sc->sc_hwlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_VM);
641
642 callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
643 callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
644
645 /* Disable interrupts */
646 etsec_write(sc, IMASK, 0);
647
648 error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
649 if (error) {
650 aprint_error(": failed to init rxq: %d\n", error);
651 return;
652 }
653
654 error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
655 if (error) {
656 aprint_error(": failed to init txq: %d\n", error);
657 return;
658 }
659
660 error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
661 ETSEC_MAXRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
662 if (error) {
663 aprint_error(": failed to allocate rx dmamaps: %d\n", error);
664 return;
665 }
666
667 error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
668 ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
669 if (error) {
670 aprint_error(": failed to allocate tx dmamaps: %d\n", error);
671 return;
672 }
673
674 sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
675 pq3etsec_tx_intr, sc);
676 if (sc->sc_tx_ih == NULL) {
677 aprint_error(": failed to establish tx interrupt: %d\n",
678 cnl->cnl_intrs[0]);
679 return;
680 }
681
682 sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
683 pq3etsec_rx_intr, sc);
684 if (sc->sc_rx_ih == NULL) {
685 aprint_error(": failed to establish rx interrupt: %d\n",
686 cnl->cnl_intrs[1]);
687 return;
688 }
689
690 sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
691 pq3etsec_error_intr, sc);
692 if (sc->sc_error_ih == NULL) {
693 aprint_error(": failed to establish error interrupt: %d\n",
694 cnl->cnl_intrs[2]);
695 return;
696 }
697
698 int softint_flags = SOFTINT_NET;
699 #if !defined(MULTIPROCESSOR) || defined(NET_MPSAFE)
700 softint_flags |= SOFTINT_MPSAFE;
701 #endif /* !MULTIPROCESSOR || NET_MPSAFE */
702 sc->sc_soft_ih = softint_establish(softint_flags,
703 pq3etsec_soft_intr, sc);
704 if (sc->sc_soft_ih == NULL) {
705 aprint_error(": failed to establish soft interrupt\n");
706 return;
707 }
708
709 /*
710 * If there was no MDIO
711 */
712 if (mdio == CPUNODECF_MDIO_DEFAULT) {
713 aprint_normal("\n");
714 cfdata_t mdio_cf = config_search_ia(pq3mdio_find, self, NULL, cna);
715 if (mdio_cf != NULL) {
716 sc->sc_mdio_dev = config_attach(self, mdio_cf, cna, NULL);
717 }
718 } else {
719 sc->sc_mdio_dev = device_find_by_driver_unit("mdio", mdio);
720 if (sc->sc_mdio_dev == NULL) {
721 aprint_error(": failed to locate mdio device\n");
722 return;
723 }
724 aprint_normal("\n");
725 }
726
727 etsec_write(sc, ATTR, ATTR_DEFAULT);
728 etsec_write(sc, ATTRELI, ATTRELI_DEFAULT);
729
730 /* Enable interrupt coalesing */
731 sc->sc_ic_rx_time = 768;
732 sc->sc_ic_rx_count = 16;
733 sc->sc_ic_tx_time = 768;
734 sc->sc_ic_tx_count = 16;
735 pq3etsec_set_ic_rx(sc);
736 pq3etsec_set_ic_tx(sc);
737 pq3etsec_sysctl_setup(NULL, sc);
738
739 char enaddr[ETHER_ADDR_LEN] = {
740 [0] = sc->sc_macstnaddr2 >> 16,
741 [1] = sc->sc_macstnaddr2 >> 24,
742 [2] = sc->sc_macstnaddr1 >> 0,
743 [3] = sc->sc_macstnaddr1 >> 8,
744 [4] = sc->sc_macstnaddr1 >> 16,
745 [5] = sc->sc_macstnaddr1 >> 24,
746 };
747 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
748 ether_sprintf(enaddr));
749
750 const char * const xname = device_xname(sc->sc_dev);
751 struct ethercom * const ec = &sc->sc_ec;
752 struct ifnet * const ifp = &ec->ec_if;
753
754 ec->ec_mii = &sc->sc_mii;
755
756 sc->sc_mii.mii_ifp = ifp;
757 sc->sc_mii.mii_readreg = pq3mdio_mii_readreg;
758 sc->sc_mii.mii_writereg = pq3mdio_mii_writereg;
759 sc->sc_mii.mii_statchg = pq3etsec_mii_statchg;
760
761 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
762 ether_mediastatus);
763
764 if (sc->sc_mdio_dev != NULL && sc->sc_phy_addr < 32) {
765 mii_attach(sc->sc_mdio_dev, &sc->sc_mii, 0xffffffff,
766 sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
767
768 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
769 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
770 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
771 } else {
772 callout_schedule(&sc->sc_mii_callout, hz);
773 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
774 }
775 } else {
776 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
777 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX);
778 }
779
780 ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
781 | ETHERCAP_JUMBO_MTU;
782
783 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
784 ifp->if_softc = sc;
785 ifp->if_capabilities = IFCAP_ETSEC;
786 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
787 ifp->if_ioctl = pq3etsec_ifioctl;
788 ifp->if_start = pq3etsec_ifstart;
789 ifp->if_watchdog = pq3etsec_ifwatchdog;
790 ifp->if_init = pq3etsec_ifinit;
791 ifp->if_stop = pq3etsec_ifstop;
792 IFQ_SET_READY(&ifp->if_snd);
793
794 pq3etsec_ifstop(ifp, true);
795
796 /*
797 * Attach the interface.
798 */
799 if_initialize(ifp);
800 ether_ifattach(ifp, enaddr);
801 if_register(ifp);
802
803 evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
804 NULL, xname, "rx stall");
805 evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
806 NULL, xname, "tx stall");
807 evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
808 NULL, xname, "tx intr");
809 evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
810 NULL, xname, "rx intr");
811 evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
812 NULL, xname, "error intr");
813 evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
814 NULL, xname, "soft intr");
815 evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
816 NULL, xname, "tx pause");
817 evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
818 NULL, xname, "rx pause");
819 evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
820 NULL, xname, "mii ticks");
821 }
822
823 static uint64_t
824 pq3etsec_macaddr_create(const uint8_t *lladdr)
825 {
826 uint64_t macaddr = 0;
827
828 lladdr += ETHER_ADDR_LEN;
829 for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
830 macaddr = (macaddr << 8) | *--lladdr;
831 }
832 return macaddr << 16;
833 }
834
835 static int
836 pq3etsec_ifinit(struct ifnet *ifp)
837 {
838 struct pq3etsec_softc * const sc = ifp->if_softc;
839 int error = 0;
840
841 sc->sc_maxfrm = max(ifp->if_mtu + 32, MCLBYTES);
842 if (ifp->if_mtu > ETHERMTU_JUMBO)
843 return error;
844
845 KASSERT(ifp->if_flags & IFF_UP);
846
847 /*
848 * Stop the interface (steps 1 to 4 in the Soft Reset and
849 * Reconfigurating Procedure.
850 */
851 pq3etsec_ifstop(ifp, 0);
852
853 /*
854 * If our frame size has changed (or it's our first time through)
855 * destroy the existing transmit mapcache.
856 */
857 if (sc->sc_tx_mapcache != NULL
858 && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
859 pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
860 sc->sc_tx_mapcache = NULL;
861 }
862
863 if (sc->sc_tx_mapcache == NULL) {
864 error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
865 ETSEC_MAXTXMBUFS, sc->sc_maxfrm, ETSEC_NTXSEGS);
866 if (error)
867 return error;
868 }
869
870 sc->sc_ev_mii_ticks.ev_count++;
871 mii_tick(&sc->sc_mii);
872
873 if (ifp->if_flags & IFF_PROMISC) {
874 sc->sc_rctrl |= RCTRL_PROM;
875 } else {
876 sc->sc_rctrl &= ~RCTRL_PROM;
877 }
878
879 uint32_t rctrl_prsdep = 0;
880 sc->sc_rctrl &= ~(RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP);
881 if (VLAN_ATTACHED(&sc->sc_ec)) {
882 sc->sc_rctrl |= RCTRL_VLEX;
883 rctrl_prsdep = RCTRL_PRSDEP_L2;
884 }
885 if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
886 sc->sc_rctrl |= RCTRL_IPCSEN;
887 rctrl_prsdep = RCTRL_PRSDEP_L3;
888 }
889 if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
890 sc->sc_rctrl |= RCTRL_TUCSEN;
891 rctrl_prsdep = RCTRL_PRSDEP_L4;
892 }
893 sc->sc_rctrl |= rctrl_prsdep;
894 #if 0
895 if (sc->sc_rctrl & (RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP))
896 aprint_normal_dev(sc->sc_dev,
897 "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
898 sc->sc_rctrl,
899 __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
900 __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
901 __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
902 __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
903 #endif
904
905 sc->sc_tctrl &= ~(TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS);
906 if (VLAN_ATTACHED(&sc->sc_ec)) /* is this really true */
907 sc->sc_tctrl |= TCTRL_VLINS;
908 if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
909 sc->sc_tctrl |= TCTRL_IPCSEN;
910 if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
911 sc->sc_tctrl |= TCTRL_TUCSEN;
912 #if 0
913 if (sc->sc_tctrl & (TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS))
914 aprint_normal_dev(sc->sc_dev,
915 "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
916 sc->sc_tctrl,
917 __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
918 __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
919 __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
920 #endif
921
922 sc->sc_maccfg1 &= ~(MACCFG1_TX_EN|MACCFG1_RX_EN);
923
924 const uint64_t macstnaddr =
925 pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
926
927 sc->sc_imask = IEVENT_DPE;
928
929 /* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
930 pq3etsec_rxq_reset(sc, &sc->sc_rxq);
931 pq3etsec_rxq_produce(sc, &sc->sc_rxq); /* fill with rx buffers */
932
933 /* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
934 pq3etsec_txq_reset(sc, &sc->sc_txq);
935
936 /* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
937 KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
938 etsec_write(sc, MAXFRM, sc->sc_maxfrm);
939 etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
940 etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >> 0));
941 etsec_write(sc, MACCFG1, sc->sc_maccfg1);
942 etsec_write(sc, MACCFG2, sc->sc_maccfg2);
943 etsec_write(sc, ECNTRL, sc->sc_ecntrl);
944
945 /* 8. Setup group address hash table (GADDR0-GADDR15) */
946 pq3etsec_mc_setup(sc);
947
948 /* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
949 etsec_write(sc, MRBLR, MCLBYTES);
950
951 /* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
952 sc->sc_dmactrl |= DMACTRL_DEFAULT;
953 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
954
955 /* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
956 etsec_write(sc, TQUEUE, TQUEUE_EN0);
957 sc->sc_imask |= IEVENT_TXF|IEVENT_TXE|IEVENT_TXC;
958
959 etsec_write(sc, TCTRL, sc->sc_tctrl); /* for TOE stuff */
960
961 /* 12. Enable receive queues in RQUEUE, */
962 etsec_write(sc, RQUEUE, RQUEUE_EN0|RQUEUE_EX0);
963 sc->sc_imask |= IEVENT_RXF|IEVENT_BSY|IEVENT_RXC;
964
965 /* and optionally set TOE functionality in RCTRL. */
966 etsec_write(sc, RCTRL, sc->sc_rctrl);
967 sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
968 if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
969 sc->sc_rx_adjlen += sizeof(struct rxfcb);
970
971 /* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
972 etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
973
974 /* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
975 etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
976
977 /* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
978 sc->sc_dmactrl &= ~(DMACTRL_GRS|DMACTRL_GTS);
979 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
980
981 /* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
982 etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
983 etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
984
985 sc->sc_soft_flags = 0;
986
987 etsec_write(sc, IMASK, sc->sc_imask);
988
989 ifp->if_flags |= IFF_RUNNING;
990
991 return error;
992 }
993
994 static void
995 pq3etsec_ifstop(struct ifnet *ifp, int disable)
996 {
997 struct pq3etsec_softc * const sc = ifp->if_softc;
998
999 KASSERT(!cpu_intr_p());
1000 const uint32_t imask_gsc_mask = IEVENT_GTSC|IEVENT_GRSC;
1001 /*
1002 * Clear the GTSC and GRSC from the interrupt mask until
1003 * we are ready for them. Then clear them from IEVENT,
1004 * request the graceful shutdown, and then enable the
1005 * GTSC and GRSC bits in the mask. This should cause the
1006 * error interrupt to fire which will issue a wakeup to
1007 * allow us to resume.
1008 */
1009
1010 /*
1011 * 1. Set GRS/GTS bits in DMACTRL register
1012 */
1013 sc->sc_dmactrl |= DMACTRL_GRS|DMACTRL_GTS;
1014 etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
1015 etsec_write(sc, IEVENT, imask_gsc_mask);
1016 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1017
1018 if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN|MACCFG1_RX_EN)) {
1019 /*
1020 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
1021 */
1022 etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
1023
1024 u_int timo = 1000;
1025 uint32_t ievent = etsec_read(sc, IEVENT);
1026 while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
1027 if (--timo == 0) {
1028 aprint_error_dev(sc->sc_dev,
1029 "WARNING: "
1030 "request to stop failed (IEVENT=%#x)\n",
1031 ievent);
1032 break;
1033 }
1034 delay(10);
1035 ievent = etsec_read(sc, IEVENT);
1036 }
1037 }
1038
1039 /*
1040 * Now reset the controller.
1041 *
1042 * 3. Set SOFT_RESET bit in MACCFG1 register
1043 * 4. Clear SOFT_RESET bit in MACCFG1 register
1044 */
1045 etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
1046 etsec_write(sc, MACCFG1, 0);
1047 etsec_write(sc, IMASK, 0);
1048 etsec_write(sc, IEVENT, ~0);
1049 sc->sc_imask = 0;
1050 ifp->if_flags &= ~IFF_RUNNING;
1051
1052 uint32_t tbipa = etsec_read(sc, TBIPA);
1053 if (tbipa == sc->sc_phy_addr) {
1054 aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
1055 etsec_write(sc, TBIPA, 0x1f);
1056 }
1057 uint32_t miimcfg = etsec_read(sc, MIIMCFG);
1058 etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
1059 etsec_write(sc, MIIMCFG, miimcfg);
1060
1061 /*
1062 * Let's consume any remaing transmitted packets. And if we are
1063 * disabling the interface, purge ourselves of any untransmitted
1064 * packets. But don't consume any received packets, just drop them.
1065 * If we aren't disabling the interface, save the mbufs in the
1066 * receive queue for reuse.
1067 */
1068 pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
1069 pq3etsec_txq_consume(sc, &sc->sc_txq);
1070 if (disable) {
1071 pq3etsec_txq_purge(sc, &sc->sc_txq);
1072 IFQ_PURGE(&ifp->if_snd);
1073 }
1074 }
1075
1076 static void
1077 pq3etsec_ifwatchdog(struct ifnet *ifp)
1078 {
1079 }
1080
1081 static void
1082 pq3etsec_mc_setup(
1083 struct pq3etsec_softc *sc)
1084 {
1085 struct ethercom * const ec = &sc->sc_ec;
1086 struct ifnet * const ifp = &sc->sc_if;
1087 struct ether_multi *enm;
1088 struct ether_multistep step;
1089 uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
1090 const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
1091
1092 memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
1093 memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1094
1095 ifp->if_flags &= ~IFF_ALLMULTI;
1096
1097 ETHER_FIRST_MULTI(step, ec, enm);
1098 for (u_int i = 0; enm != NULL; ) {
1099 const char *addr = enm->enm_addrlo;
1100 if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1101 ifp->if_flags |= IFF_ALLMULTI;
1102 memset(gaddr, 0xff, 32 << (crc_shift & 1));
1103 memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1104 break;
1105 }
1106 if ((sc->sc_rctrl & RCTRL_EMEN)
1107 && i < __arraycount(sc->sc_macaddrs)) {
1108 sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
1109 } else {
1110 uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1111 #if 0
1112 printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
1113 ether_sprintf(addr), crc,
1114 crc >> crc_shift,
1115 crc >> (crc_shift + 5),
1116 (crc >> crc_shift) & 31,
1117 1 << (((crc >> crc_shift) & 31) ^ 31));
1118 #endif
1119 /*
1120 * The documentation doesn't completely follow PowerPC
1121 * bit order. The BE crc32 (H) for 01:00:5E:00:00:01
1122 * is 0x7fa32d9b. By empirical testing, the
1123 * corresponding hash bit is word 3, bit 31 (ppc bit
1124 * order). Since 3 << 31 | 31 is 0x7f, we deduce
1125 * H[0:2] selects the register while H[3:7] selects
1126 * the bit (ppc bit order).
1127 */
1128 crc >>= crc_shift;
1129 gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
1130 }
1131 ETHER_NEXT_MULTI(step, enm);
1132 }
1133 for (u_int i = 0; i < 8; i++) {
1134 etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
1135 etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
1136 #if 0
1137 if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
1138 printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
1139 i, IGADDR(i), etsec_read(sc, IGADDR(i)),
1140 i, GADDR(i), etsec_read(sc, GADDR(i)));
1141 #endif
1142 }
1143 for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
1144 uint64_t macaddr = sc->sc_macaddrs[i];
1145 etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
1146 etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >> 0));
1147 #if 0
1148 if (macaddr)
1149 printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
1150 i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
1151 i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
1152 #endif
1153 }
1154 }
1155
1156 static int
1157 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1158 {
1159 struct pq3etsec_softc *sc = ifp->if_softc;
1160 struct ifreq * const ifr = data;
1161 const int s = splnet();
1162 int error;
1163
1164 switch (cmd) {
1165 case SIOCSIFMEDIA:
1166 case SIOCGIFMEDIA:
1167 /* Flow control requires full-duplex mode. */
1168 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1169 (ifr->ifr_media & IFM_FDX) == 0)
1170 ifr->ifr_media &= ~IFM_ETH_FMASK;
1171 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1172 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1173 /* We can do both TXPAUSE and RXPAUSE. */
1174 ifr->ifr_media |=
1175 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1176 }
1177 }
1178 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1179 break;
1180
1181 default:
1182 error = ether_ioctl(ifp, cmd, data);
1183 if (error != ENETRESET)
1184 break;
1185
1186 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1187 error = 0;
1188 if (ifp->if_flags & IFF_RUNNING)
1189 pq3etsec_mc_setup(sc);
1190 break;
1191 }
1192 error = pq3etsec_ifinit(ifp);
1193 break;
1194 }
1195
1196 splx(s);
1197 return error;
1198 }
1199
1200 static void
1201 pq3etsec_rxq_desc_presync(
1202 struct pq3etsec_softc *sc,
1203 struct pq3etsec_rxqueue *rxq,
1204 volatile struct rxbd *rxbd,
1205 size_t count)
1206 {
1207 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1208 (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1209 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1210 }
1211
1212 static void
1213 pq3etsec_rxq_desc_postsync(
1214 struct pq3etsec_softc *sc,
1215 struct pq3etsec_rxqueue *rxq,
1216 volatile struct rxbd *rxbd,
1217 size_t count)
1218 {
1219 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1220 (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1221 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1222 }
1223
1224 static void
1225 pq3etsec_txq_desc_presync(
1226 struct pq3etsec_softc *sc,
1227 struct pq3etsec_txqueue *txq,
1228 volatile struct txbd *txbd,
1229 size_t count)
1230 {
1231 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1232 (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1233 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1234 }
1235
1236 static void
1237 pq3etsec_txq_desc_postsync(
1238 struct pq3etsec_softc *sc,
1239 struct pq3etsec_txqueue *txq,
1240 volatile struct txbd *txbd,
1241 size_t count)
1242 {
1243 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1244 (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1245 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1246 }
1247
1248 static bus_dmamap_t
1249 pq3etsec_mapcache_get(
1250 struct pq3etsec_softc *sc,
1251 struct pq3etsec_mapcache *dmc)
1252 {
1253 KASSERT(dmc->dmc_nmaps > 0);
1254 KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1255 return dmc->dmc_maps[--dmc->dmc_nmaps];
1256 }
1257
1258 static void
1259 pq3etsec_mapcache_put(
1260 struct pq3etsec_softc *sc,
1261 struct pq3etsec_mapcache *dmc,
1262 bus_dmamap_t map)
1263 {
1264 KASSERT(map != NULL);
1265 KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1266 dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1267 }
1268
1269 static void
1270 pq3etsec_mapcache_destroy(
1271 struct pq3etsec_softc *sc,
1272 struct pq3etsec_mapcache *dmc)
1273 {
1274 const size_t dmc_size =
1275 offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1276
1277 for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1278 bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1279 }
1280 kmem_intr_free(dmc, dmc_size);
1281 }
1282
1283 static int
1284 pq3etsec_mapcache_create(
1285 struct pq3etsec_softc *sc,
1286 struct pq3etsec_mapcache **dmc_p,
1287 size_t maxmaps,
1288 size_t maxmapsize,
1289 size_t maxseg)
1290 {
1291 const size_t dmc_size =
1292 offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1293 struct pq3etsec_mapcache * const dmc =
1294 kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
1295
1296 dmc->dmc_maxmaps = maxmaps;
1297 dmc->dmc_nmaps = maxmaps;
1298 dmc->dmc_maxmapsize = maxmapsize;
1299 dmc->dmc_maxseg = maxseg;
1300
1301 for (u_int i = 0; i < maxmaps; i++) {
1302 int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1303 dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1304 BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1305 if (error) {
1306 aprint_error_dev(sc->sc_dev,
1307 "failed to creat dma map cache "
1308 "entry %u of %zu: %d\n",
1309 i, maxmaps, error);
1310 while (i-- > 0) {
1311 bus_dmamap_destroy(sc->sc_dmat,
1312 dmc->dmc_maps[i]);
1313 }
1314 kmem_intr_free(dmc, dmc_size);
1315 return error;
1316 }
1317 KASSERT(dmc->dmc_maps[i] != NULL);
1318 }
1319
1320 *dmc_p = dmc;
1321
1322 return 0;
1323 }
1324
1325 #if 0
1326 static void
1327 pq3etsec_dmamem_free(
1328 bus_dma_tag_t dmat,
1329 size_t map_size,
1330 bus_dma_segment_t *seg,
1331 bus_dmamap_t map,
1332 void *kvap)
1333 {
1334 bus_dmamap_destroy(dmat, map);
1335 bus_dmamem_unmap(dmat, kvap, map_size);
1336 bus_dmamem_free(dmat, seg, 1);
1337 }
1338 #endif
1339
1340 static int
1341 pq3etsec_dmamem_alloc(
1342 bus_dma_tag_t dmat,
1343 size_t map_size,
1344 bus_dma_segment_t *seg,
1345 bus_dmamap_t *map,
1346 void **kvap)
1347 {
1348 int error;
1349 int nseg;
1350
1351 *kvap = NULL;
1352 *map = NULL;
1353
1354 error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1355 seg, 1, &nseg, 0);
1356 if (error)
1357 return error;
1358
1359 KASSERT(nseg == 1);
1360
1361 error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1362 BUS_DMA_COHERENT);
1363 if (error == 0) {
1364 error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1365 map);
1366 if (error == 0) {
1367 error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1368 NULL, 0);
1369 if (error == 0)
1370 return 0;
1371 bus_dmamap_destroy(dmat, *map);
1372 *map = NULL;
1373 }
1374 bus_dmamem_unmap(dmat, *kvap, map_size);
1375 *kvap = NULL;
1376 }
1377 bus_dmamem_free(dmat, seg, nseg);
1378 return 0;
1379 }
1380
1381 static struct mbuf *
1382 pq3etsec_rx_buf_alloc(
1383 struct pq3etsec_softc *sc)
1384 {
1385 struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1386 if (m == NULL) {
1387 printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1388 return NULL;
1389 }
1390 MCLGET(m, M_DONTWAIT);
1391 if ((m->m_flags & M_EXT) == 0) {
1392 printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1393 m_freem(m);
1394 return NULL;
1395 }
1396 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1397
1398 bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1399 if (map == NULL) {
1400 printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1401 m_freem(m);
1402 return NULL;
1403 }
1404 M_SETCTX(m, map);
1405 m->m_len = m->m_pkthdr.len = MCLBYTES;
1406 int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1407 BUS_DMA_READ|BUS_DMA_NOWAIT);
1408 if (error) {
1409 aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1410 error);
1411 M_SETCTX(m, NULL);
1412 m_freem(m);
1413 pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1414 return NULL;
1415 }
1416 KASSERT(map->dm_mapsize == MCLBYTES);
1417 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1418 BUS_DMASYNC_PREREAD);
1419
1420 return m;
1421 }
1422
1423 static void
1424 pq3etsec_rx_map_unload(
1425 struct pq3etsec_softc *sc,
1426 struct mbuf *m)
1427 {
1428 KASSERT(m);
1429 for (; m != NULL; m = m->m_next) {
1430 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1431 KASSERT(map);
1432 KASSERT(map->dm_mapsize == MCLBYTES);
1433 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1434 BUS_DMASYNC_POSTREAD);
1435 bus_dmamap_unload(sc->sc_dmat, map);
1436 pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1437 M_SETCTX(m, NULL);
1438 }
1439 }
1440
1441 static bool
1442 pq3etsec_rxq_produce(
1443 struct pq3etsec_softc *sc,
1444 struct pq3etsec_rxqueue *rxq)
1445 {
1446 volatile struct rxbd *producer = rxq->rxq_producer;
1447 #if 0
1448 size_t inuse = rxq->rxq_inuse;
1449 #endif
1450 while (rxq->rxq_inuse < rxq->rxq_threshold) {
1451 struct mbuf *m;
1452 IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1453 if (m == NULL) {
1454 m = pq3etsec_rx_buf_alloc(sc);
1455 if (m == NULL) {
1456 printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1457 break;
1458 }
1459 }
1460 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1461 KASSERT(map);
1462
1463 #ifdef ETSEC_DEBUG
1464 KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1465 rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1466 #endif
1467
1468 /* rxbd_len is write-only by the ETSEC */
1469 producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1470 membar_producer();
1471 producer->rxbd_flags |= RXBD_E;
1472 if (__predict_false(rxq->rxq_mhead == NULL)) {
1473 KASSERT(producer == rxq->rxq_consumer);
1474 rxq->rxq_mconsumer = m;
1475 }
1476 *rxq->rxq_mtail = m;
1477 rxq->rxq_mtail = &m->m_next;
1478 m->m_len = MCLBYTES;
1479 m->m_next = NULL;
1480 rxq->rxq_inuse++;
1481 if (++producer == rxq->rxq_last) {
1482 membar_producer();
1483 pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1484 rxq->rxq_last - rxq->rxq_producer);
1485 producer = rxq->rxq_producer = rxq->rxq_first;
1486 }
1487 }
1488 if (producer != rxq->rxq_producer) {
1489 membar_producer();
1490 pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1491 producer - rxq->rxq_producer);
1492 rxq->rxq_producer = producer;
1493 }
1494 uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1495 if (qhlt) {
1496 KASSERT(qhlt & rxq->rxq_qmask);
1497 sc->sc_ev_rx_stall.ev_count++;
1498 etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1499 }
1500 #if 0
1501 aprint_normal_dev(sc->sc_dev,
1502 "%s: buffers inuse went from %zu to %zu\n",
1503 __func__, inuse, rxq->rxq_inuse);
1504 #endif
1505 return true;
1506 }
1507
1508 static bool
1509 pq3etsec_rx_offload(
1510 struct pq3etsec_softc *sc,
1511 struct mbuf *m,
1512 const struct rxfcb *fcb)
1513 {
1514 if (fcb->rxfcb_flags & RXFCB_VLN) {
1515 VLAN_INPUT_TAG(&sc->sc_if, m, fcb->rxfcb_vlctl,
1516 m_freem(m); return false);
1517 }
1518 if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1519 || (fcb->rxfcb_flags & (RXFCB_CIP|RXFCB_CTU)) == 0)
1520 return true;
1521 int csum_flags = 0;
1522 if ((fcb->rxfcb_flags & (RXFCB_IP6|RXFCB_CIP)) == RXFCB_CIP) {
1523 csum_flags |= M_CSUM_IPv4;
1524 if (fcb->rxfcb_flags & RXFCB_EIP)
1525 csum_flags |= M_CSUM_IPv4_BAD;
1526 }
1527 if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1528 int ipv_flags;
1529 if (fcb->rxfcb_flags & RXFCB_IP6)
1530 ipv_flags = M_CSUM_TCPv6|M_CSUM_UDPv6;
1531 else
1532 ipv_flags = M_CSUM_TCPv4|M_CSUM_UDPv4;
1533 if (fcb->rxfcb_pro == IPPROTO_TCP) {
1534 csum_flags |= (M_CSUM_TCPv4|M_CSUM_TCPv6) & ipv_flags;
1535 } else {
1536 csum_flags |= (M_CSUM_UDPv4|M_CSUM_UDPv6) & ipv_flags;
1537 }
1538 if (fcb->rxfcb_flags & RXFCB_ETU)
1539 csum_flags |= M_CSUM_TCP_UDP_BAD;
1540 }
1541
1542 m->m_pkthdr.csum_flags = csum_flags;
1543 return true;
1544 }
1545
1546 static void
1547 pq3etsec_rx_input(
1548 struct pq3etsec_softc *sc,
1549 struct mbuf *m,
1550 uint16_t rxbd_flags)
1551 {
1552 struct ifnet * const ifp = &sc->sc_if;
1553
1554 pq3etsec_rx_map_unload(sc, m);
1555
1556 if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1557 struct rxfcb fcb = *mtod(m, struct rxfcb *);
1558 if (!pq3etsec_rx_offload(sc, m, &fcb))
1559 return;
1560 }
1561 m_adj(m, sc->sc_rx_adjlen);
1562
1563 if (rxbd_flags & RXBD_M)
1564 m->m_flags |= M_PROMISC;
1565 if (rxbd_flags & RXBD_BC)
1566 m->m_flags |= M_BCAST;
1567 if (rxbd_flags & RXBD_MC)
1568 m->m_flags |= M_MCAST;
1569 m->m_flags |= M_HASFCS;
1570 m_set_rcvif(m, &sc->sc_if);
1571
1572 ifp->if_ipackets++;
1573 ifp->if_ibytes += m->m_pkthdr.len;
1574
1575 /*
1576 * Let's give it to the network subsystm to deal with.
1577 */
1578 int s = splnet();
1579 bpf_mtap(ifp, m);
1580 if_input(ifp, m);
1581 splx(s);
1582 }
1583
1584 static void
1585 pq3etsec_rxq_consume(
1586 struct pq3etsec_softc *sc,
1587 struct pq3etsec_rxqueue *rxq)
1588 {
1589 struct ifnet * const ifp = &sc->sc_if;
1590 volatile struct rxbd *consumer = rxq->rxq_consumer;
1591 size_t rxconsumed = 0;
1592
1593 etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1594
1595 for (;;) {
1596 if (consumer == rxq->rxq_producer) {
1597 rxq->rxq_consumer = consumer;
1598 rxq->rxq_inuse -= rxconsumed;
1599 KASSERT(rxq->rxq_inuse == 0);
1600 return;
1601 }
1602 pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1603 const uint16_t rxbd_flags = consumer->rxbd_flags;
1604 if (rxbd_flags & RXBD_E) {
1605 rxq->rxq_consumer = consumer;
1606 rxq->rxq_inuse -= rxconsumed;
1607 return;
1608 }
1609 KASSERT(rxq->rxq_mconsumer != NULL);
1610 #ifdef ETSEC_DEBUG
1611 KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1612 #endif
1613 #if 0
1614 printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1615 __func__,
1616 consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1617 mtod(rxq->rxq_mconsumer, int *)[0],
1618 mtod(rxq->rxq_mconsumer, int *)[1],
1619 mtod(rxq->rxq_mconsumer, int *)[2],
1620 mtod(rxq->rxq_mconsumer, int *)[3]);
1621 #endif
1622 /*
1623 * We own this packet again. Clear all flags except wrap.
1624 */
1625 rxconsumed++;
1626 consumer->rxbd_flags = rxbd_flags & (RXBD_W|RXBD_I);
1627
1628 /*
1629 * If this descriptor has the LAST bit set and no errors,
1630 * it's a valid input packet.
1631 */
1632 if ((rxbd_flags & (RXBD_L|RXBD_ERRORS)) == RXBD_L) {
1633 size_t rxbd_len = consumer->rxbd_len;
1634 struct mbuf *m = rxq->rxq_mhead;
1635 struct mbuf *m_last = rxq->rxq_mconsumer;
1636 if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1637 rxq->rxq_mtail = &rxq->rxq_mhead;
1638 rxq->rxq_mconsumer = rxq->rxq_mhead;
1639 m_last->m_next = NULL;
1640 m_last->m_len = rxbd_len & (MCLBYTES - 1);
1641 m->m_pkthdr.len = rxbd_len;
1642 pq3etsec_rx_input(sc, m, rxbd_flags);
1643 } else if (rxbd_flags & RXBD_L) {
1644 KASSERT(rxbd_flags & RXBD_ERRORS);
1645 struct mbuf *m;
1646 /*
1647 * We encountered an error, take the mbufs and add
1648 * then to the rx bufcache so we can reuse them.
1649 */
1650 ifp->if_ierrors++;
1651 for (m = rxq->rxq_mhead;
1652 m != rxq->rxq_mconsumer;
1653 m = m->m_next) {
1654 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1655 }
1656 m = rxq->rxq_mconsumer;
1657 if ((rxq->rxq_mhead = m->m_next) == NULL)
1658 rxq->rxq_mtail = &rxq->rxq_mhead;
1659 rxq->rxq_mconsumer = m->m_next;
1660 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1661 } else {
1662 rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1663 }
1664 #ifdef ETSEC_DEBUG
1665 rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1666 #endif
1667
1668 /*
1669 * Wrap at the last entry!
1670 */
1671 if (rxbd_flags & RXBD_W) {
1672 KASSERT(consumer + 1 == rxq->rxq_last);
1673 consumer = rxq->rxq_first;
1674 } else {
1675 consumer++;
1676 }
1677 #ifdef ETSEC_DEBUG
1678 KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1679 #endif
1680 }
1681 }
1682
1683 static void
1684 pq3etsec_rxq_purge(
1685 struct pq3etsec_softc *sc,
1686 struct pq3etsec_rxqueue *rxq,
1687 bool discard)
1688 {
1689 struct mbuf *m;
1690
1691 if ((m = rxq->rxq_mhead) != NULL) {
1692 #ifdef ETSEC_DEBUG
1693 memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1694 #endif
1695
1696 if (discard) {
1697 pq3etsec_rx_map_unload(sc, m);
1698 m_freem(m);
1699 } else {
1700 while (m != NULL) {
1701 struct mbuf *m0 = m->m_next;
1702 m->m_next = NULL;
1703 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1704 m = m0;
1705 }
1706 }
1707
1708 }
1709
1710 rxq->rxq_mconsumer = NULL;
1711 rxq->rxq_mhead = NULL;
1712 rxq->rxq_mtail = &rxq->rxq_mhead;
1713 rxq->rxq_inuse = 0;
1714 }
1715
1716 static void
1717 pq3etsec_rxq_reset(
1718 struct pq3etsec_softc *sc,
1719 struct pq3etsec_rxqueue *rxq)
1720 {
1721 /*
1722 * sync all the descriptors
1723 */
1724 pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1725 rxq->rxq_last - rxq->rxq_first);
1726
1727 /*
1728 * Make sure we own all descriptors in the ring.
1729 */
1730 volatile struct rxbd *rxbd;
1731 for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1732 rxbd->rxbd_flags = RXBD_I;
1733 }
1734
1735 /*
1736 * Last descriptor has the wrap flag.
1737 */
1738 rxbd->rxbd_flags = RXBD_W|RXBD_I;
1739
1740 /*
1741 * Reset the producer consumer indexes.
1742 */
1743 rxq->rxq_consumer = rxq->rxq_first;
1744 rxq->rxq_producer = rxq->rxq_first;
1745 rxq->rxq_inuse = 0;
1746 if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1747 rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1748
1749 sc->sc_imask |= IEVENT_RXF|IEVENT_BSY;
1750
1751 /*
1752 * Restart the transmit at the first descriptor
1753 */
1754 etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1755 }
1756
1757 static int
1758 pq3etsec_rxq_attach(
1759 struct pq3etsec_softc *sc,
1760 struct pq3etsec_rxqueue *rxq,
1761 u_int qno)
1762 {
1763 size_t map_size = PAGE_SIZE;
1764 size_t desc_count = map_size / sizeof(struct rxbd);
1765 int error;
1766 void *descs;
1767
1768 error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1769 &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1770 if (error)
1771 return error;
1772
1773 memset(descs, 0, map_size);
1774 rxq->rxq_first = descs;
1775 rxq->rxq_last = rxq->rxq_first + desc_count;
1776 rxq->rxq_consumer = descs;
1777 rxq->rxq_producer = descs;
1778
1779 pq3etsec_rxq_purge(sc, rxq, true);
1780 pq3etsec_rxq_reset(sc, rxq);
1781
1782 rxq->rxq_reg_rbase = RBASEn(qno);
1783 rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1784
1785 return 0;
1786 }
1787
1788 static bool
1789 pq3etsec_txq_active_p(
1790 struct pq3etsec_softc * const sc,
1791 struct pq3etsec_txqueue *txq)
1792 {
1793 return !IF_IS_EMPTY(&txq->txq_mbufs);
1794 }
1795
1796 static bool
1797 pq3etsec_txq_fillable_p(
1798 struct pq3etsec_softc * const sc,
1799 struct pq3etsec_txqueue *txq)
1800 {
1801 return txq->txq_free >= txq->txq_threshold;
1802 }
1803
1804 static int
1805 pq3etsec_txq_attach(
1806 struct pq3etsec_softc *sc,
1807 struct pq3etsec_txqueue *txq,
1808 u_int qno)
1809 {
1810 size_t map_size = PAGE_SIZE;
1811 size_t desc_count = map_size / sizeof(struct txbd);
1812 int error;
1813 void *descs;
1814
1815 error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1816 &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1817 if (error)
1818 return error;
1819
1820 memset(descs, 0, map_size);
1821 txq->txq_first = descs;
1822 txq->txq_last = txq->txq_first + desc_count;
1823 txq->txq_consumer = descs;
1824 txq->txq_producer = descs;
1825
1826 IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1827
1828 txq->txq_reg_tbase = TBASEn(qno);
1829 txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1830
1831 pq3etsec_txq_reset(sc, txq);
1832
1833 return 0;
1834 }
1835
1836 static int
1837 pq3etsec_txq_map_load(
1838 struct pq3etsec_softc *sc,
1839 struct pq3etsec_txqueue *txq,
1840 struct mbuf *m)
1841 {
1842 bus_dmamap_t map;
1843 int error;
1844
1845 map = M_GETCTX(m, bus_dmamap_t);
1846 if (map != NULL)
1847 return 0;
1848
1849 map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1850 if (map == NULL)
1851 return ENOMEM;
1852
1853 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1854 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1855 if (error)
1856 return error;
1857
1858 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1859 BUS_DMASYNC_PREWRITE);
1860 M_SETCTX(m, map);
1861 return 0;
1862 }
1863
1864 static void
1865 pq3etsec_txq_map_unload(
1866 struct pq3etsec_softc *sc,
1867 struct pq3etsec_txqueue *txq,
1868 struct mbuf *m)
1869 {
1870 KASSERT(m);
1871 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1872 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1873 BUS_DMASYNC_POSTWRITE);
1874 bus_dmamap_unload(sc->sc_dmat, map);
1875 pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1876 }
1877
1878 static bool
1879 pq3etsec_txq_produce(
1880 struct pq3etsec_softc *sc,
1881 struct pq3etsec_txqueue *txq,
1882 struct mbuf *m)
1883 {
1884 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1885
1886 if (map->dm_nsegs > txq->txq_free)
1887 return false;
1888
1889 /*
1890 * TCP Offload flag must be set in the first descriptor.
1891 */
1892 volatile struct txbd *producer = txq->txq_producer;
1893 uint16_t last_flags = TXBD_L;
1894 uint16_t first_flags = TXBD_R
1895 | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1896
1897 /*
1898 * If we've produced enough descriptors without consuming any
1899 * we need to ask for an interrupt to reclaim some.
1900 */
1901 txq->txq_lastintr += map->dm_nsegs;
1902 if (ETSEC_IC_TX_ENABLED(sc)
1903 || txq->txq_lastintr >= txq->txq_threshold
1904 || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1905 txq->txq_lastintr = 0;
1906 last_flags |= TXBD_I;
1907 }
1908
1909 #ifdef ETSEC_DEBUG
1910 KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1911 #endif
1912 KASSERT(producer != txq->txq_last);
1913 producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1914 producer->txbd_len = map->dm_segs[0].ds_len;
1915
1916 if (map->dm_nsegs > 1) {
1917 volatile struct txbd *start = producer + 1;
1918 size_t count = map->dm_nsegs - 1;
1919 for (u_int i = 1; i < map->dm_nsegs; i++) {
1920 if (__predict_false(++producer == txq->txq_last)) {
1921 producer = txq->txq_first;
1922 if (start < txq->txq_last) {
1923 pq3etsec_txq_desc_presync(sc, txq,
1924 start, txq->txq_last - start);
1925 count -= txq->txq_last - start;
1926 }
1927 start = txq->txq_first;
1928 }
1929 #ifdef ETSEC_DEBUG
1930 KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1931 #endif
1932 producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1933 producer->txbd_len = map->dm_segs[i].ds_len;
1934 producer->txbd_flags = TXBD_R
1935 | (producer->txbd_flags & TXBD_W)
1936 | (i == map->dm_nsegs - 1 ? last_flags : 0);
1937 #if 0
1938 printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1939 producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1940 #endif
1941 }
1942 pq3etsec_txq_desc_presync(sc, txq, start, count);
1943 } else {
1944 first_flags |= last_flags;
1945 }
1946
1947 membar_producer();
1948 txq->txq_producer->txbd_flags =
1949 first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1950 #if 0
1951 printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1952 txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1953 txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1954 #endif
1955 pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
1956
1957 /*
1958 * Reduce free count by the number of segments we consumed.
1959 */
1960 txq->txq_free -= map->dm_nsegs;
1961 KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1962 KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
1963 KASSERT(producer->txbd_flags & TXBD_L);
1964 #ifdef ETSEC_DEBUG
1965 txq->txq_lmbufs[producer - txq->txq_first] = m;
1966 #endif
1967
1968 #if 0
1969 printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
1970 __func__, m, m->m_pkthdr.len, map->dm_nsegs,
1971 txq->txq_producer - txq->txq_first, producer - txq->txq_first);
1972 #endif
1973
1974 if (++producer == txq->txq_last)
1975 txq->txq_producer = txq->txq_first;
1976 else
1977 txq->txq_producer = producer;
1978 IF_ENQUEUE(&txq->txq_mbufs, m);
1979
1980 /*
1981 * Restart the transmitter.
1982 */
1983 etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT); /* W1C */
1984
1985 return true;
1986 }
1987
1988 static void
1989 pq3etsec_tx_offload(
1990 struct pq3etsec_softc *sc,
1991 struct pq3etsec_txqueue *txq,
1992 struct mbuf **mp)
1993 {
1994 struct mbuf *m = *mp;
1995 u_int csum_flags = m->m_pkthdr.csum_flags;
1996 struct m_tag *vtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m);
1997
1998 KASSERT(m->m_flags & M_PKTHDR);
1999
2000 /*
2001 * Let see if we are doing any offload first.
2002 */
2003 if (csum_flags == 0 && vtag == 0) {
2004 m->m_flags &= ~M_HASFCB;
2005 return;
2006 }
2007
2008 uint16_t flags = 0;
2009 if (csum_flags & M_CSUM_IP) {
2010 flags |= TXFCB_IP
2011 | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
2012 | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
2013 | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
2014 | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
2015 | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
2016 }
2017 if (vtag) {
2018 flags |= TXFCB_VLN;
2019 }
2020 if (flags == 0) {
2021 m->m_flags &= ~M_HASFCB;
2022 return;
2023 }
2024
2025 struct txfcb fcb;
2026 fcb.txfcb_flags = flags;
2027 if (csum_flags & M_CSUM_IPv4)
2028 fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
2029 else
2030 fcb.txfcb_l4os = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
2031 fcb.txfcb_l3os = ETHER_HDR_LEN;
2032 fcb.txfcb_phcs = 0;
2033 fcb.txfcb_vlctl = vtag ? VLAN_TAG_VALUE(vtag) & 0xffff : 0;
2034
2035 #if 0
2036 printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
2037 __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
2038 fcb.txfcb_phcs, fcb.txfcb_vlctl);
2039 #endif
2040
2041 if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
2042 m->m_data -= sizeof(fcb);
2043 m->m_len += sizeof(fcb);
2044 } else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
2045 memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
2046 m->m_data = m->m_pktdat;
2047 m->m_len += sizeof(fcb);
2048 } else {
2049 struct mbuf *mn;
2050 MGET(mn, M_DONTWAIT, m->m_type);
2051 if (mn == NULL) {
2052 if (csum_flags & M_CSUM_IP4) {
2053 #ifdef INET
2054 ip_undefer_csum(m, ETHER_HDR_LEN,
2055 csum_flags & M_CSUM_IP4);
2056 #else
2057 panic("%s: impossible M_CSUM flags %#x",
2058 device_xname(sc->sc_dev), csum_flags);
2059 #endif
2060 } else if (csum_flags & M_CSUM_IP6) {
2061 #ifdef INET6
2062 ip6_undefer_csum(m, ETHER_HDR_LEN,
2063 csum_flags & M_CSUM_IP6);
2064 #else
2065 panic("%s: impossible M_CSUM flags %#x",
2066 device_xname(sc->sc_dev), csum_flags);
2067 #endif
2068 } else if (vtag) {
2069 }
2070
2071 m->m_flags &= ~M_HASFCB;
2072 return;
2073 }
2074
2075 M_MOVE_PKTHDR(mn, m);
2076 mn->m_next = m;
2077 m = mn;
2078 MH_ALIGN(m, sizeof(fcb));
2079 m->m_len = sizeof(fcb);
2080 *mp = m;
2081 }
2082 m->m_pkthdr.len += sizeof(fcb);
2083 m->m_flags |= M_HASFCB;
2084 *mtod(m, struct txfcb *) = fcb;
2085 return;
2086 }
2087
2088 static bool
2089 pq3etsec_txq_enqueue(
2090 struct pq3etsec_softc *sc,
2091 struct pq3etsec_txqueue *txq)
2092 {
2093 for (;;) {
2094 if (IF_QFULL(&txq->txq_mbufs))
2095 return false;
2096 struct mbuf *m = txq->txq_next;
2097 if (m == NULL) {
2098 int s = splnet();
2099 IFQ_DEQUEUE(&sc->sc_if.if_snd, m);
2100 splx(s);
2101 if (m == NULL)
2102 return true;
2103 M_SETCTX(m, NULL);
2104 pq3etsec_tx_offload(sc, txq, &m);
2105 } else {
2106 txq->txq_next = NULL;
2107 }
2108 int error = pq3etsec_txq_map_load(sc, txq, m);
2109 if (error) {
2110 aprint_error_dev(sc->sc_dev,
2111 "discarded packet due to "
2112 "dmamap load failure: %d\n", error);
2113 m_freem(m);
2114 continue;
2115 }
2116 KASSERT(txq->txq_next == NULL);
2117 if (!pq3etsec_txq_produce(sc, txq, m)) {
2118 txq->txq_next = m;
2119 return false;
2120 }
2121 KASSERT(txq->txq_next == NULL);
2122 }
2123 }
2124
2125 static bool
2126 pq3etsec_txq_consume(
2127 struct pq3etsec_softc *sc,
2128 struct pq3etsec_txqueue *txq)
2129 {
2130 struct ifnet * const ifp = &sc->sc_if;
2131 volatile struct txbd *consumer = txq->txq_consumer;
2132 size_t txfree = 0;
2133
2134 #if 0
2135 printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
2136 #endif
2137 etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
2138
2139 for (;;) {
2140 if (consumer == txq->txq_producer) {
2141 txq->txq_consumer = consumer;
2142 txq->txq_free += txfree;
2143 txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2144 #if 0
2145 printf("%s: empty: freed %zu descriptors going form %zu to %zu\n",
2146 __func__, txfree, txq->txq_free - txfree, txq->txq_free);
2147 #endif
2148 KASSERT(txq->txq_lastintr == 0);
2149 KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
2150 return true;
2151 }
2152 pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2153 const uint16_t txbd_flags = consumer->txbd_flags;
2154 if (txbd_flags & TXBD_R) {
2155 txq->txq_consumer = consumer;
2156 txq->txq_free += txfree;
2157 txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2158 #if 0
2159 printf("%s: freed %zu descriptors\n",
2160 __func__, txfree);
2161 #endif
2162 return pq3etsec_txq_fillable_p(sc, txq);
2163 }
2164
2165 /*
2166 * If this is the last descriptor in the chain, get the
2167 * mbuf, free its dmamap, and free the mbuf chain itself.
2168 */
2169 if (txbd_flags & TXBD_L) {
2170 struct mbuf *m;
2171
2172 IF_DEQUEUE(&txq->txq_mbufs, m);
2173 #ifdef ETSEC_DEBUG
2174 KASSERTMSG(
2175 m == txq->txq_lmbufs[consumer-txq->txq_first],
2176 "%s: %p [%u]: flags %#x m (%p) != %p (%p)",
2177 __func__, consumer, consumer - txq->txq_first,
2178 txbd_flags, m,
2179 &txq->txq_lmbufs[consumer-txq->txq_first],
2180 txq->txq_lmbufs[consumer-txq->txq_first]);
2181 #endif
2182 KASSERT(m);
2183 pq3etsec_txq_map_unload(sc, txq, m);
2184 #if 0
2185 printf("%s: mbuf %p: consumed a %u byte packet\n",
2186 __func__, m, m->m_pkthdr.len);
2187 #endif
2188 if (m->m_flags & M_HASFCB)
2189 m_adj(m, sizeof(struct txfcb));
2190 bpf_mtap(ifp, m);
2191 ifp->if_opackets++;
2192 ifp->if_obytes += m->m_pkthdr.len;
2193 if (m->m_flags & M_MCAST)
2194 ifp->if_omcasts++;
2195 if (txbd_flags & TXBD_ERRORS)
2196 ifp->if_oerrors++;
2197 m_freem(m);
2198 #ifdef ETSEC_DEBUG
2199 txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2200 #endif
2201 } else {
2202 #ifdef ETSEC_DEBUG
2203 KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2204 #endif
2205 }
2206
2207 /*
2208 * We own this packet again. Clear all flags except wrap.
2209 */
2210 txfree++;
2211 //consumer->txbd_flags = txbd_flags & TXBD_W;
2212
2213 /*
2214 * Wrap at the last entry!
2215 */
2216 if (txbd_flags & TXBD_W) {
2217 KASSERT(consumer + 1 == txq->txq_last);
2218 consumer = txq->txq_first;
2219 } else {
2220 consumer++;
2221 KASSERT(consumer < txq->txq_last);
2222 }
2223 }
2224 }
2225
2226 static void
2227 pq3etsec_txq_purge(
2228 struct pq3etsec_softc *sc,
2229 struct pq3etsec_txqueue *txq)
2230 {
2231 struct mbuf *m;
2232 KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2233
2234 for (;;) {
2235 IF_DEQUEUE(&txq->txq_mbufs, m);
2236 if (m == NULL)
2237 break;
2238 pq3etsec_txq_map_unload(sc, txq, m);
2239 m_freem(m);
2240 }
2241 if ((m = txq->txq_next) != NULL) {
2242 txq->txq_next = NULL;
2243 pq3etsec_txq_map_unload(sc, txq, m);
2244 m_freem(m);
2245 }
2246 #ifdef ETSEC_DEBUG
2247 memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2248 #endif
2249 }
2250
2251 static void
2252 pq3etsec_txq_reset(
2253 struct pq3etsec_softc *sc,
2254 struct pq3etsec_txqueue *txq)
2255 {
2256 /*
2257 * sync all the descriptors
2258 */
2259 pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2260 txq->txq_last - txq->txq_first);
2261
2262 /*
2263 * Make sure we own all descriptors in the ring.
2264 */
2265 volatile struct txbd *txbd;
2266 for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2267 txbd->txbd_flags = 0;
2268 }
2269
2270 /*
2271 * Last descriptor has the wrap flag.
2272 */
2273 txbd->txbd_flags = TXBD_W;
2274
2275 /*
2276 * Reset the producer consumer indexes.
2277 */
2278 txq->txq_consumer = txq->txq_first;
2279 txq->txq_producer = txq->txq_first;
2280 txq->txq_free = txq->txq_last - txq->txq_first - 1;
2281 txq->txq_threshold = txq->txq_free / 2;
2282 txq->txq_lastintr = 0;
2283
2284 /*
2285 * What do we want to get interrupted on?
2286 */
2287 sc->sc_imask |= IEVENT_TXF|IEVENT_TXE;
2288
2289 /*
2290 * Restart the transmit at the first descriptor
2291 */
2292 etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2293 }
2294
2295 static void
2296 pq3etsec_ifstart(struct ifnet *ifp)
2297 {
2298 struct pq3etsec_softc * const sc = ifp->if_softc;
2299
2300 if (__predict_false((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)) {
2301 return;
2302 }
2303
2304 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2305 softint_schedule(sc->sc_soft_ih);
2306 }
2307
2308 static void
2309 pq3etsec_tx_error(
2310 struct pq3etsec_softc * const sc)
2311 {
2312 struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2313
2314 pq3etsec_txq_consume(sc, txq);
2315
2316 if (pq3etsec_txq_fillable_p(sc, txq))
2317 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2318 if (sc->sc_txerrors & (IEVENT_LC|IEVENT_CRL|IEVENT_XFUN|IEVENT_BABT)) {
2319 } else if (sc->sc_txerrors & IEVENT_EBERR) {
2320 }
2321
2322 if (pq3etsec_txq_active_p(sc, txq))
2323 etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2324 if (!pq3etsec_txq_enqueue(sc, txq)) {
2325 sc->sc_ev_tx_stall.ev_count++;
2326 sc->sc_if.if_flags |= IFF_OACTIVE;
2327 }
2328
2329 sc->sc_txerrors = 0;
2330 }
2331
2332 int
2333 pq3etsec_tx_intr(void *arg)
2334 {
2335 struct pq3etsec_softc * const sc = arg;
2336
2337 mutex_enter(sc->sc_hwlock);
2338
2339 sc->sc_ev_tx_intr.ev_count++;
2340
2341 uint32_t ievent = etsec_read(sc, IEVENT);
2342 ievent &= IEVENT_TXF|IEVENT_TXB;
2343 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2344
2345 #if 0
2346 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2347 __func__, ievent, etsec_read(sc, IMASK));
2348 #endif
2349
2350 if (ievent == 0) {
2351 mutex_exit(sc->sc_hwlock);
2352 return 0;
2353 }
2354
2355 sc->sc_imask &= ~(IEVENT_TXF|IEVENT_TXB);
2356 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2357 etsec_write(sc, IMASK, sc->sc_imask);
2358 softint_schedule(sc->sc_soft_ih);
2359
2360 mutex_exit(sc->sc_hwlock);
2361
2362 return 1;
2363 }
2364
2365 int
2366 pq3etsec_rx_intr(void *arg)
2367 {
2368 struct pq3etsec_softc * const sc = arg;
2369
2370 mutex_enter(sc->sc_hwlock);
2371
2372 sc->sc_ev_rx_intr.ev_count++;
2373
2374 uint32_t ievent = etsec_read(sc, IEVENT);
2375 ievent &= IEVENT_RXF|IEVENT_RXB;
2376 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2377 if (ievent == 0) {
2378 mutex_exit(sc->sc_hwlock);
2379 return 0;
2380 }
2381
2382 #if 0
2383 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2384 #endif
2385
2386 sc->sc_imask &= ~(IEVENT_RXF|IEVENT_RXB);
2387 atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2388 etsec_write(sc, IMASK, sc->sc_imask);
2389 softint_schedule(sc->sc_soft_ih);
2390
2391 mutex_exit(sc->sc_hwlock);
2392
2393 return 1;
2394 }
2395
2396 int
2397 pq3etsec_error_intr(void *arg)
2398 {
2399 struct pq3etsec_softc * const sc = arg;
2400
2401 mutex_enter(sc->sc_hwlock);
2402
2403 sc->sc_ev_error_intr.ev_count++;
2404
2405 for (int rv = 0, soft_flags = 0;; rv = 1) {
2406 uint32_t ievent = etsec_read(sc, IEVENT);
2407 ievent &= ~(IEVENT_RXF|IEVENT_RXB|IEVENT_TXF|IEVENT_TXB);
2408 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2409 if (ievent == 0) {
2410 if (soft_flags) {
2411 atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2412 softint_schedule(sc->sc_soft_ih);
2413 }
2414 mutex_exit(sc->sc_hwlock);
2415 return rv;
2416 }
2417 #if 0
2418 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2419 __func__, ievent, etsec_read(sc, IMASK));
2420 #endif
2421
2422 if (ievent & (IEVENT_GRSC|IEVENT_GTSC)) {
2423 sc->sc_imask &= ~(IEVENT_GRSC|IEVENT_GTSC);
2424 etsec_write(sc, IMASK, sc->sc_imask);
2425 wakeup(sc);
2426 }
2427 if (ievent & (IEVENT_MMRD|IEVENT_MMWR)) {
2428 sc->sc_imask &= ~(IEVENT_MMRD|IEVENT_MMWR);
2429 etsec_write(sc, IMASK, sc->sc_imask);
2430 wakeup(&sc->sc_mii);
2431 }
2432 if (ievent & IEVENT_BSY) {
2433 soft_flags |= SOFT_RXBSY;
2434 sc->sc_imask &= ~IEVENT_BSY;
2435 etsec_write(sc, IMASK, sc->sc_imask);
2436 }
2437 if (ievent & IEVENT_TXE) {
2438 soft_flags |= SOFT_TXERROR;
2439 sc->sc_imask &= ~IEVENT_TXE;
2440 sc->sc_txerrors |= ievent;
2441 }
2442 if (ievent & IEVENT_TXC) {
2443 sc->sc_ev_tx_pause.ev_count++;
2444 }
2445 if (ievent & IEVENT_RXC) {
2446 sc->sc_ev_rx_pause.ev_count++;
2447 }
2448 if (ievent & IEVENT_DPE) {
2449 soft_flags |= SOFT_RESET;
2450 sc->sc_imask &= ~IEVENT_DPE;
2451 etsec_write(sc, IMASK, sc->sc_imask);
2452 }
2453 }
2454 }
2455
2456 void
2457 pq3etsec_soft_intr(void *arg)
2458 {
2459 struct pq3etsec_softc * const sc = arg;
2460 struct ifnet * const ifp = &sc->sc_if;
2461 uint32_t imask = 0;
2462
2463 mutex_enter(sc->sc_lock);
2464
2465 u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2466
2467 sc->sc_ev_soft_intr.ev_count++;
2468
2469 if (soft_flags & SOFT_RESET) {
2470 int s = splnet();
2471 pq3etsec_ifinit(ifp);
2472 splx(s);
2473 soft_flags = 0;
2474 }
2475
2476 if (soft_flags & SOFT_RXBSY) {
2477 struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2478 size_t threshold = 5 * rxq->rxq_threshold / 4;
2479 if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2480 threshold = rxq->rxq_last - rxq->rxq_first - 1;
2481 } else {
2482 imask |= IEVENT_BSY;
2483 }
2484 aprint_normal_dev(sc->sc_dev,
2485 "increasing receive buffers from %zu to %zu\n",
2486 rxq->rxq_threshold, threshold);
2487 rxq->rxq_threshold = threshold;
2488 }
2489
2490 if ((soft_flags & SOFT_TXINTR)
2491 || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2492 /*
2493 * Let's do what we came here for. Consume transmitted
2494 * packets off the the transmit ring.
2495 */
2496 if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2497 || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2498 sc->sc_ev_tx_stall.ev_count++;
2499 ifp->if_flags |= IFF_OACTIVE;
2500 } else {
2501 ifp->if_flags &= ~IFF_OACTIVE;
2502 }
2503 imask |= IEVENT_TXF;
2504 }
2505
2506 if (soft_flags & (SOFT_RXINTR|SOFT_RXBSY)) {
2507 /*
2508 * Let's consume
2509 */
2510 pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2511 imask |= IEVENT_RXF;
2512 }
2513
2514 if (soft_flags & SOFT_TXERROR) {
2515 pq3etsec_tx_error(sc);
2516 imask |= IEVENT_TXE;
2517 }
2518
2519 if (ifp->if_flags & IFF_RUNNING) {
2520 pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2521 mutex_spin_enter(sc->sc_hwlock);
2522 sc->sc_imask |= imask;
2523 etsec_write(sc, IMASK, sc->sc_imask);
2524 mutex_spin_exit(sc->sc_hwlock);
2525 } else {
2526 KASSERT((soft_flags & SOFT_RXBSY) == 0);
2527 }
2528
2529 mutex_exit(sc->sc_lock);
2530 }
2531
2532 static void
2533 pq3etsec_mii_tick(void *arg)
2534 {
2535 struct pq3etsec_softc * const sc = arg;
2536 mutex_enter(sc->sc_lock);
2537 callout_ack(&sc->sc_mii_callout);
2538 sc->sc_ev_mii_ticks.ev_count++;
2539 #ifdef DEBUG
2540 uint64_t now = mftb();
2541 if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2542 aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2543 __func__, now - sc->sc_mii_last_tick);
2544 callout_stop(&sc->sc_mii_callout);
2545 }
2546 #endif
2547 mii_tick(&sc->sc_mii);
2548 int s = splnet();
2549 if (sc->sc_soft_flags & SOFT_RESET)
2550 softint_schedule(sc->sc_soft_ih);
2551 splx(s);
2552 callout_schedule(&sc->sc_mii_callout, hz);
2553 #ifdef DEBUG
2554 sc->sc_mii_last_tick = now;
2555 #endif
2556 mutex_exit(sc->sc_lock);
2557 }
2558
2559 static void
2560 pq3etsec_set_ic_rx(struct pq3etsec_softc *sc)
2561 {
2562 uint32_t reg;
2563
2564 if (ETSEC_IC_RX_ENABLED(sc)) {
2565 reg = RXIC_ICEN;
2566 reg |= RXIC_ICFT_SET(sc->sc_ic_rx_count);
2567 reg |= RXIC_ICTT_SET(sc->sc_ic_rx_time);
2568 } else {
2569 /* Disable RX interrupt coalescing */
2570 reg = 0;
2571 }
2572
2573 etsec_write(sc, RXIC, reg);
2574 }
2575
2576 static void
2577 pq3etsec_set_ic_tx(struct pq3etsec_softc *sc)
2578 {
2579 uint32_t reg;
2580
2581 if (ETSEC_IC_TX_ENABLED(sc)) {
2582 reg = TXIC_ICEN;
2583 reg |= TXIC_ICFT_SET(sc->sc_ic_tx_count);
2584 reg |= TXIC_ICTT_SET(sc->sc_ic_tx_time);
2585 } else {
2586 /* Disable TX interrupt coalescing */
2587 reg = 0;
2588 }
2589
2590 etsec_write(sc, TXIC, reg);
2591 }
2592
2593 /*
2594 * sysctl
2595 */
2596 static int
2597 pq3etsec_sysctl_ic_time_helper(SYSCTLFN_ARGS, int *valuep)
2598 {
2599 struct sysctlnode node = *rnode;
2600 struct pq3etsec_softc *sc = rnode->sysctl_data;
2601 int value = *valuep;
2602 int error;
2603
2604 node.sysctl_data = &value;
2605 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2606 if (error != 0 || newp == NULL)
2607 return error;
2608
2609 if (value < 0 || value > 65535)
2610 return EINVAL;
2611
2612 mutex_enter(sc->sc_lock);
2613 *valuep = value;
2614 if (valuep == &sc->sc_ic_rx_time)
2615 pq3etsec_set_ic_rx(sc);
2616 else
2617 pq3etsec_set_ic_tx(sc);
2618 mutex_exit(sc->sc_lock);
2619
2620 return 0;
2621 }
2622
2623 static int
2624 pq3etsec_sysctl_ic_count_helper(SYSCTLFN_ARGS, int *valuep)
2625 {
2626 struct sysctlnode node = *rnode;
2627 struct pq3etsec_softc *sc = rnode->sysctl_data;
2628 int value = *valuep;
2629 int error;
2630
2631 node.sysctl_data = &value;
2632 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2633 if (error != 0 || newp == NULL)
2634 return error;
2635
2636 if (value < 0 || value > 255)
2637 return EINVAL;
2638
2639 mutex_enter(sc->sc_lock);
2640 *valuep = value;
2641 if (valuep == &sc->sc_ic_rx_count)
2642 pq3etsec_set_ic_rx(sc);
2643 else
2644 pq3etsec_set_ic_tx(sc);
2645 mutex_exit(sc->sc_lock);
2646
2647 return 0;
2648 }
2649
2650 static int
2651 pq3etsec_sysctl_ic_rx_time_helper(SYSCTLFN_ARGS)
2652 {
2653 struct pq3etsec_softc *sc = rnode->sysctl_data;
2654
2655 return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2656 &sc->sc_ic_rx_time);
2657 }
2658
2659 static int
2660 pq3etsec_sysctl_ic_rx_count_helper(SYSCTLFN_ARGS)
2661 {
2662 struct pq3etsec_softc *sc = rnode->sysctl_data;
2663
2664 return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2665 &sc->sc_ic_rx_count);
2666 }
2667
2668 static int
2669 pq3etsec_sysctl_ic_tx_time_helper(SYSCTLFN_ARGS)
2670 {
2671 struct pq3etsec_softc *sc = rnode->sysctl_data;
2672
2673 return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2674 &sc->sc_ic_tx_time);
2675 }
2676
2677 static int
2678 pq3etsec_sysctl_ic_tx_count_helper(SYSCTLFN_ARGS)
2679 {
2680 struct pq3etsec_softc *sc = rnode->sysctl_data;
2681
2682 return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2683 &sc->sc_ic_tx_count);
2684 }
2685
2686 static void pq3etsec_sysctl_setup(struct sysctllog **clog,
2687 struct pq3etsec_softc *sc)
2688 {
2689 const struct sysctlnode *cnode, *rnode;
2690
2691 if (sysctl_createv(clog, 0, NULL, &rnode,
2692 CTLFLAG_PERMANENT,
2693 CTLTYPE_NODE, device_xname(sc->sc_dev),
2694 SYSCTL_DESCR("TSEC interface"),
2695 NULL, 0, NULL, 0,
2696 CTL_HW, CTL_CREATE, CTL_EOL) != 0)
2697 goto bad;
2698
2699 if (sysctl_createv(clog, 0, &rnode, &rnode,
2700 CTLFLAG_PERMANENT,
2701 CTLTYPE_NODE, "int_coal",
2702 SYSCTL_DESCR("Interrupts coalescing"),
2703 NULL, 0, NULL, 0,
2704 CTL_CREATE, CTL_EOL) != 0)
2705 goto bad;
2706
2707 if (sysctl_createv(clog, 0, &rnode, &cnode,
2708 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2709 CTLTYPE_INT, "rx_time",
2710 SYSCTL_DESCR("RX time threshold (0-65535)"),
2711 pq3etsec_sysctl_ic_rx_time_helper, 0, (void *)sc, 0,
2712 CTL_CREATE, CTL_EOL) != 0)
2713 goto bad;
2714
2715 if (sysctl_createv(clog, 0, &rnode, &cnode,
2716 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2717 CTLTYPE_INT, "rx_count",
2718 SYSCTL_DESCR("RX frame count threshold (0-255)"),
2719 pq3etsec_sysctl_ic_rx_count_helper, 0, (void *)sc, 0,
2720 CTL_CREATE, CTL_EOL) != 0)
2721 goto bad;
2722
2723 if (sysctl_createv(clog, 0, &rnode, &cnode,
2724 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2725 CTLTYPE_INT, "tx_time",
2726 SYSCTL_DESCR("TX time threshold (0-65535)"),
2727 pq3etsec_sysctl_ic_tx_time_helper, 0, (void *)sc, 0,
2728 CTL_CREATE, CTL_EOL) != 0)
2729 goto bad;
2730
2731 if (sysctl_createv(clog, 0, &rnode, &cnode,
2732 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2733 CTLTYPE_INT, "tx_count",
2734 SYSCTL_DESCR("TX frame count threshold (0-255)"),
2735 pq3etsec_sysctl_ic_tx_count_helper, 0, (void *)sc, 0,
2736 CTL_CREATE, CTL_EOL) != 0)
2737 goto bad;
2738
2739 return;
2740
2741 bad:
2742 aprint_error_dev(sc->sc_dev, "could not attach sysctl nodes\n");
2743 }
2744