pq3etsec.c revision 1.38 1 /* $NetBSD: pq3etsec.c,v 1.38 2018/12/22 13:11:37 maxv Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #include "opt_inet.h"
38 #include "opt_mpc85xx.h"
39 #include "opt_multiprocessor.h"
40 #include "opt_net_mpsafe.h"
41
42 #include <sys/cdefs.h>
43
44 __KERNEL_RCSID(0, "$NetBSD: pq3etsec.c,v 1.38 2018/12/22 13:11:37 maxv Exp $");
45
46 #include <sys/param.h>
47 #include <sys/cpu.h>
48 #include <sys/device.h>
49 #include <sys/mbuf.h>
50 #include <sys/ioctl.h>
51 #include <sys/intr.h>
52 #include <sys/bus.h>
53 #include <sys/kernel.h>
54 #include <sys/kmem.h>
55 #include <sys/proc.h>
56 #include <sys/atomic.h>
57 #include <sys/callout.h>
58 #include <sys/sysctl.h>
59
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_ether.h>
63 #include <net/if_media.h>
64
65 #include <dev/mii/miivar.h>
66
67 #include <net/bpf.h>
68
69 #ifdef INET
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/ip.h>
73 #include <netinet/in_offload.h>
74 #endif /* INET */
75 #ifdef INET6
76 #include <netinet6/in6.h>
77 #include <netinet/ip6.h>
78 #endif
79 #include <netinet6/in6_offload.h>
80
81 #include <powerpc/spr.h>
82 #include <powerpc/booke/spr.h>
83
84 #include <powerpc/booke/cpuvar.h>
85 #include <powerpc/booke/e500var.h>
86 #include <powerpc/booke/e500reg.h>
87 #include <powerpc/booke/etsecreg.h>
88
89 #define M_HASFCB M_LINK2 /* tx packet has FCB prepended */
90
91 #define ETSEC_MAXTXMBUFS 30
92 #define ETSEC_NTXSEGS 30
93 #define ETSEC_MAXRXMBUFS 511
94 #define ETSEC_MINRXMBUFS 32
95 #define ETSEC_NRXSEGS 1
96
97 #define IFCAP_RCTRL_IPCSEN IFCAP_CSUM_IPv4_Rx
98 #define IFCAP_RCTRL_TUCSEN (IFCAP_CSUM_TCPv4_Rx\
99 |IFCAP_CSUM_UDPv4_Rx\
100 |IFCAP_CSUM_TCPv6_Rx\
101 |IFCAP_CSUM_UDPv6_Rx)
102
103 #define IFCAP_TCTRL_IPCSEN IFCAP_CSUM_IPv4_Tx
104 #define IFCAP_TCTRL_TUCSEN (IFCAP_CSUM_TCPv4_Tx\
105 |IFCAP_CSUM_UDPv4_Tx\
106 |IFCAP_CSUM_TCPv6_Tx\
107 |IFCAP_CSUM_UDPv6_Tx)
108
109 #define IFCAP_ETSEC (IFCAP_RCTRL_IPCSEN|IFCAP_RCTRL_TUCSEN\
110 |IFCAP_TCTRL_IPCSEN|IFCAP_TCTRL_TUCSEN)
111
112 #define M_CSUM_IP (M_CSUM_CIP|M_CSUM_CTU)
113 #define M_CSUM_IP6 (M_CSUM_TCPv6|M_CSUM_UDPv6)
114 #define M_CSUM_TUP (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
115 #define M_CSUM_UDP (M_CSUM_UDPv4|M_CSUM_UDPv6)
116 #define M_CSUM_IP4 (M_CSUM_IPv4|M_CSUM_UDPv4|M_CSUM_TCPv4)
117 #define M_CSUM_CIP (M_CSUM_IPv4)
118 #define M_CSUM_CTU (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
119
120 struct pq3etsec_txqueue {
121 bus_dmamap_t txq_descmap;
122 volatile struct txbd *txq_consumer;
123 volatile struct txbd *txq_producer;
124 volatile struct txbd *txq_first;
125 volatile struct txbd *txq_last;
126 struct ifqueue txq_mbufs;
127 struct mbuf *txq_next;
128 #ifdef ETSEC_DEBUG
129 struct mbuf *txq_lmbufs[512];
130 #endif
131 uint32_t txq_qmask;
132 uint32_t txq_free;
133 uint32_t txq_threshold;
134 uint32_t txq_lastintr;
135 bus_size_t txq_reg_tbase;
136 bus_dma_segment_t txq_descmap_seg;
137 };
138
139 struct pq3etsec_rxqueue {
140 bus_dmamap_t rxq_descmap;
141 volatile struct rxbd *rxq_consumer;
142 volatile struct rxbd *rxq_producer;
143 volatile struct rxbd *rxq_first;
144 volatile struct rxbd *rxq_last;
145 struct mbuf *rxq_mhead;
146 struct mbuf **rxq_mtail;
147 struct mbuf *rxq_mconsumer;
148 #ifdef ETSEC_DEBUG
149 struct mbuf *rxq_mbufs[512];
150 #endif
151 uint32_t rxq_qmask;
152 uint32_t rxq_inuse;
153 uint32_t rxq_threshold;
154 bus_size_t rxq_reg_rbase;
155 bus_size_t rxq_reg_rbptr;
156 bus_dma_segment_t rxq_descmap_seg;
157 };
158
159 struct pq3etsec_mapcache {
160 u_int dmc_nmaps;
161 u_int dmc_maxseg;
162 u_int dmc_maxmaps;
163 u_int dmc_maxmapsize;
164 bus_dmamap_t dmc_maps[0];
165 };
166
167 struct pq3etsec_softc {
168 device_t sc_dev;
169 device_t sc_mdio_dev;
170 struct ethercom sc_ec;
171 #define sc_if sc_ec.ec_if
172 struct mii_data sc_mii;
173 bus_space_tag_t sc_bst;
174 bus_space_handle_t sc_bsh;
175 bus_space_handle_t sc_mdio_bsh;
176 bus_dma_tag_t sc_dmat;
177 int sc_phy_addr;
178 prop_dictionary_t sc_intrmap;
179 uint32_t sc_intrmask;
180
181 uint32_t sc_soft_flags;
182 #define SOFT_RESET 0x0001
183 #define SOFT_RXINTR 0x0010
184 #define SOFT_RXBSY 0x0020
185 #define SOFT_TXINTR 0x0100
186 #define SOFT_TXERROR 0x0200
187
188 struct pq3etsec_txqueue sc_txq;
189 struct pq3etsec_rxqueue sc_rxq;
190 uint32_t sc_txerrors;
191 uint32_t sc_rxerrors;
192
193 size_t sc_rx_adjlen;
194
195 /*
196 * Copies of various ETSEC registers.
197 */
198 uint32_t sc_imask;
199 uint32_t sc_maccfg1;
200 uint32_t sc_maccfg2;
201 uint32_t sc_maxfrm;
202 uint32_t sc_ecntrl;
203 uint32_t sc_dmactrl;
204 uint32_t sc_macstnaddr1;
205 uint32_t sc_macstnaddr2;
206 uint32_t sc_tctrl;
207 uint32_t sc_rctrl;
208 uint32_t sc_gaddr[16];
209 uint64_t sc_macaddrs[15];
210
211 void *sc_tx_ih;
212 void *sc_rx_ih;
213 void *sc_error_ih;
214 void *sc_soft_ih;
215
216 kmutex_t *sc_lock;
217 kmutex_t *sc_hwlock;
218
219 struct evcnt sc_ev_tx_stall;
220 struct evcnt sc_ev_tx_intr;
221 struct evcnt sc_ev_rx_stall;
222 struct evcnt sc_ev_rx_intr;
223 struct evcnt sc_ev_error_intr;
224 struct evcnt sc_ev_soft_intr;
225 struct evcnt sc_ev_tx_pause;
226 struct evcnt sc_ev_rx_pause;
227 struct evcnt sc_ev_mii_ticks;
228
229 struct callout sc_mii_callout;
230 uint64_t sc_mii_last_tick;
231
232 struct ifqueue sc_rx_bufcache;
233 struct pq3etsec_mapcache *sc_rx_mapcache;
234 struct pq3etsec_mapcache *sc_tx_mapcache;
235
236 /* Interrupt Coalescing parameters */
237 int sc_ic_rx_time;
238 int sc_ic_rx_count;
239 int sc_ic_tx_time;
240 int sc_ic_tx_count;
241 };
242
243 #define ETSEC_IC_RX_ENABLED(sc) \
244 ((sc)->sc_ic_rx_time != 0 && (sc)->sc_ic_rx_count != 0)
245 #define ETSEC_IC_TX_ENABLED(sc) \
246 ((sc)->sc_ic_tx_time != 0 && (sc)->sc_ic_tx_count != 0)
247
248 struct pq3mdio_softc {
249 device_t mdio_dev;
250
251 kmutex_t *mdio_lock;
252
253 bus_space_tag_t mdio_bst;
254 bus_space_handle_t mdio_bsh;
255 };
256
257 static int pq3etsec_match(device_t, cfdata_t, void *);
258 static void pq3etsec_attach(device_t, device_t, void *);
259
260 static int pq3mdio_match(device_t, cfdata_t, void *);
261 static void pq3mdio_attach(device_t, device_t, void *);
262
263 static void pq3etsec_ifstart(struct ifnet *);
264 static void pq3etsec_ifwatchdog(struct ifnet *);
265 static int pq3etsec_ifinit(struct ifnet *);
266 static void pq3etsec_ifstop(struct ifnet *, int);
267 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
268
269 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
270 struct pq3etsec_mapcache **, size_t, size_t, size_t);
271 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
272 struct pq3etsec_mapcache *);
273 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
274 struct pq3etsec_mapcache *);
275 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
276 struct pq3etsec_mapcache *, bus_dmamap_t);
277
278 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
279 struct pq3etsec_txqueue *, u_int);
280 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
281 struct pq3etsec_txqueue *);
282 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
283 struct pq3etsec_txqueue *);
284 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
285 struct pq3etsec_txqueue *);
286 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
287 struct pq3etsec_txqueue *, struct mbuf *m);
288 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
289 struct pq3etsec_txqueue *);
290
291 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
292 struct pq3etsec_rxqueue *, u_int);
293 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
294 struct pq3etsec_rxqueue *);
295 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
296 struct pq3etsec_rxqueue *, bool);
297 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
298 struct pq3etsec_rxqueue *);
299
300 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
301
302 static void pq3etsec_mii_tick(void *);
303 static int pq3etsec_rx_intr(void *);
304 static int pq3etsec_tx_intr(void *);
305 static int pq3etsec_error_intr(void *);
306 static void pq3etsec_soft_intr(void *);
307
308 static void pq3etsec_set_ic_rx(struct pq3etsec_softc *);
309 static void pq3etsec_set_ic_tx(struct pq3etsec_softc *);
310
311 static void pq3etsec_sysctl_setup(struct sysctllog **, struct pq3etsec_softc *);
312
313 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
314 pq3etsec_match, pq3etsec_attach, NULL, NULL);
315
316 CFATTACH_DECL_NEW(pq3mdio_tsec, sizeof(struct pq3mdio_softc),
317 pq3mdio_match, pq3mdio_attach, NULL, NULL);
318
319 CFATTACH_DECL_NEW(pq3mdio_cpunode, sizeof(struct pq3mdio_softc),
320 pq3mdio_match, pq3mdio_attach, NULL, NULL);
321
322 static inline uint32_t
323 etsec_mdio_read(struct pq3mdio_softc *mdio, bus_size_t off)
324 {
325 return bus_space_read_4(mdio->mdio_bst, mdio->mdio_bsh, off);
326 }
327
328 static inline void
329 etsec_mdio_write(struct pq3mdio_softc *mdio, bus_size_t off, uint32_t data)
330 {
331 bus_space_write_4(mdio->mdio_bst, mdio->mdio_bsh, off, data);
332 }
333
334 static inline uint32_t
335 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
336 {
337 return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
338 }
339
340 static int
341 pq3mdio_find(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
342 {
343 return strcmp(cf->cf_name, "mdio") == 0;
344 }
345
346 static int
347 pq3mdio_match(device_t parent, cfdata_t cf, void *aux)
348 {
349 const uint16_t svr = (mfspr(SPR_SVR) & ~0x80000) >> 16;
350 const bool p1025_p = (svr == (SVR_P1025v1 >> 16)
351 || svr == (SVR_P1016v1 >> 16));
352
353 if (device_is_a(parent, "cpunode")) {
354 if (!p1025_p
355 || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
356 return 0;
357
358 return 1;
359 }
360
361 if (device_is_a(parent, "tsec")) {
362 if (p1025_p
363 || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
364 return 0;
365
366 return 1;
367 }
368
369 return 0;
370 }
371
372 static void
373 pq3mdio_attach(device_t parent, device_t self, void *aux)
374 {
375 struct pq3mdio_softc * const mdio = device_private(self);
376 struct cpunode_attach_args * const cna = aux;
377 struct cpunode_locators * const cnl = &cna->cna_locs;
378
379 mdio->mdio_dev = self;
380 mdio->mdio_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
381
382 if (device_is_a(parent, "cpunode")) {
383 struct cpunode_softc * const psc = device_private(parent);
384 psc->sc_children |= cna->cna_childmask;
385
386 mdio->mdio_bst = cna->cna_memt;
387 if (bus_space_map(mdio->mdio_bst, cnl->cnl_addr,
388 cnl->cnl_size, 0, &mdio->mdio_bsh) != 0) {
389 aprint_error(": error mapping registers @ %#x\n",
390 cnl->cnl_addr);
391 return;
392 }
393 } else {
394 struct pq3etsec_softc * const sc = device_private(parent);
395
396 KASSERT(device_is_a(parent, "tsec"));
397 KASSERTMSG(cnl->cnl_addr == ETSEC1_BASE
398 || cnl->cnl_addr == ETSEC2_BASE
399 || cnl->cnl_addr == ETSEC3_BASE
400 || cnl->cnl_addr == ETSEC4_BASE,
401 "unknown tsec addr %x", cnl->cnl_addr);
402
403 mdio->mdio_bst = sc->sc_bst;
404 mdio->mdio_bsh = sc->sc_bsh;
405 }
406
407 aprint_normal("\n");
408 }
409
410 static int
411 pq3mdio_mii_readreg(device_t self, int phy, int reg)
412 {
413 struct pq3mdio_softc * const mdio = device_private(self);
414 uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
415
416 mutex_enter(mdio->mdio_lock);
417
418 etsec_mdio_write(mdio, MIIMADD,
419 __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
420
421 etsec_mdio_write(mdio, MIIMCOM, 0); /* clear any past bits */
422 etsec_mdio_write(mdio, MIIMCOM, MIIMCOM_READ);
423
424 while (etsec_mdio_read(mdio, MIIMIND) != 0) {
425 delay(1);
426 }
427 int data = etsec_mdio_read(mdio, MIIMSTAT);
428
429 if (miimcom == MIIMCOM_SCAN)
430 etsec_mdio_write(mdio, MIIMCOM, miimcom);
431
432 #if 0
433 aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
434 __func__, phy, reg, data);
435 #endif
436 mutex_exit(mdio->mdio_lock);
437 return data;
438 }
439
440 static void
441 pq3mdio_mii_writereg(device_t self, int phy, int reg, int data)
442 {
443 struct pq3mdio_softc * const mdio = device_private(self);
444 uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
445
446 #if 0
447 aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
448 __func__, phy, reg, data);
449 #endif
450
451 mutex_enter(mdio->mdio_lock);
452
453 etsec_mdio_write(mdio, MIIMADD,
454 __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
455 etsec_mdio_write(mdio, MIIMCOM, 0); /* clear any past bits */
456 etsec_mdio_write(mdio, MIIMCON, data);
457
458 int timo = 1000; /* 1ms */
459 while ((etsec_mdio_read(mdio, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
460 delay(1);
461 }
462
463 if (miimcom == MIIMCOM_SCAN)
464 etsec_mdio_write(mdio, MIIMCOM, miimcom);
465
466 mutex_exit(mdio->mdio_lock);
467 }
468
469 static inline void
470 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
471 {
472 bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
473 }
474
475 static void
476 pq3etsec_mii_statchg(struct ifnet *ifp)
477 {
478 struct pq3etsec_softc * const sc = ifp->if_softc;
479 struct mii_data * const mii = &sc->sc_mii;
480
481 uint32_t maccfg1 = sc->sc_maccfg1;
482 uint32_t maccfg2 = sc->sc_maccfg2;
483 uint32_t ecntrl = sc->sc_ecntrl;
484
485 maccfg1 &= ~(MACCFG1_TX_FLOW|MACCFG1_RX_FLOW);
486 maccfg2 &= ~(MACCFG2_IFMODE|MACCFG2_FD);
487
488 if (sc->sc_mii.mii_media_active & IFM_FDX) {
489 maccfg2 |= MACCFG2_FD;
490 }
491
492 /*
493 * Now deal with the flow control bits.
494 */
495 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
496 && (mii->mii_media_active & IFM_ETH_FMASK)) {
497 if (mii->mii_media_active & IFM_ETH_RXPAUSE)
498 maccfg1 |= MACCFG1_RX_FLOW;
499 if (mii->mii_media_active & IFM_ETH_TXPAUSE)
500 maccfg1 |= MACCFG1_TX_FLOW;
501 }
502
503 /*
504 * Now deal with the speed.
505 */
506 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
507 maccfg2 |= MACCFG2_IFMODE_GMII;
508 } else {
509 maccfg2 |= MACCFG2_IFMODE_MII;
510 ecntrl &= ~ECNTRL_R100M;
511 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
512 ecntrl |= ECNTRL_R100M;
513 }
514 }
515
516 /*
517 * If things are different, re-init things.
518 */
519 if (maccfg1 != sc->sc_maccfg1
520 || maccfg2 != sc->sc_maccfg2
521 || ecntrl != sc->sc_ecntrl) {
522 if (sc->sc_if.if_flags & IFF_RUNNING)
523 atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
524 sc->sc_maccfg1 = maccfg1;
525 sc->sc_maccfg2 = maccfg2;
526 sc->sc_ecntrl = ecntrl;
527 }
528 }
529
530 #if 0
531 static void
532 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
533 {
534 struct pq3etsec_softc * const sc = ifp->if_softc;
535
536 mii_pollstat(&sc->sc_mii);
537 ether_mediastatus(ifp, ifmr);
538 ifmr->ifm_status = sc->sc_mii.mii_media_status;
539 ifmr->ifm_active = sc->sc_mii.mii_media_active;
540 }
541
542 static int
543 pq3etsec_mediachange(struct ifnet *ifp)
544 {
545 struct pq3etsec_softc * const sc = ifp->if_softc;
546
547 if ((ifp->if_flags & IFF_UP) == 0)
548 return 0;
549
550 int rv = mii_mediachg(&sc->sc_mii);
551 return (rv == ENXIO) ? 0 : rv;
552 }
553 #endif
554
555 static int
556 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
557 {
558
559 if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
560 return 0;
561
562 return 1;
563 }
564
565 static void
566 pq3etsec_attach(device_t parent, device_t self, void *aux)
567 {
568 struct cpunode_softc * const psc = device_private(parent);
569 struct pq3etsec_softc * const sc = device_private(self);
570 struct cpunode_attach_args * const cna = aux;
571 struct cpunode_locators * const cnl = &cna->cna_locs;
572 cfdata_t cf = device_cfdata(self);
573 int error;
574
575 psc->sc_children |= cna->cna_childmask;
576 sc->sc_dev = self;
577 sc->sc_bst = cna->cna_memt;
578 sc->sc_dmat = &booke_bus_dma_tag;
579
580 /*
581 * Pull out the mdio bus and phy we are supposed to use.
582 */
583 const int mdio = cf->cf_loc[CPUNODECF_MDIO];
584 const int phy = cf->cf_loc[CPUNODECF_PHY];
585 if (mdio != CPUNODECF_MDIO_DEFAULT)
586 aprint_normal(" mdio %d", mdio);
587
588 /*
589 * See if the phy is in the config file...
590 */
591 if (phy != CPUNODECF_PHY_DEFAULT) {
592 sc->sc_phy_addr = phy;
593 } else {
594 unsigned char prop_name[20];
595 snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
596 cnl->cnl_instance);
597 sc->sc_phy_addr = board_info_get_number(prop_name);
598 }
599 if (sc->sc_phy_addr != MII_PHY_ANY)
600 aprint_normal(" phy %d", sc->sc_phy_addr);
601
602 error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
603 &sc->sc_bsh);
604 if (error) {
605 aprint_error(": error mapping registers: %d\n", error);
606 return;
607 }
608
609 /*
610 * Assume firmware has aready set the mac address and fetch it
611 * before we reinit it.
612 */
613 sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
614 sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
615 sc->sc_rctrl = RCTRL_DEFAULT;
616 sc->sc_ecntrl = etsec_read(sc, ECNTRL);
617 sc->sc_maccfg1 = etsec_read(sc, MACCFG1);
618 sc->sc_maccfg2 = etsec_read(sc, MACCFG2) | MACCFG2_DEFAULT;
619
620 if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
621 size_t len;
622 const uint8_t *mac_addr =
623 board_info_get_data("tsec-mac-addr-base", &len);
624 KASSERT(len == ETHER_ADDR_LEN);
625 sc->sc_macstnaddr2 =
626 (mac_addr[1] << 24)
627 | (mac_addr[0] << 16);
628 sc->sc_macstnaddr1 =
629 ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
630 | (mac_addr[4] << 16)
631 | (mac_addr[3] << 8)
632 | (mac_addr[2] << 0);
633 #if 0
634 aprint_error(": mac-address unknown\n");
635 return;
636 #endif
637 }
638
639 sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
640 sc->sc_hwlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_VM);
641
642 callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
643 callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
644
645 /* Disable interrupts */
646 etsec_write(sc, IMASK, 0);
647
648 error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
649 if (error) {
650 aprint_error(": failed to init rxq: %d\n", error);
651 goto fail_1;
652 }
653
654 error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
655 if (error) {
656 aprint_error(": failed to init txq: %d\n", error);
657 goto fail_2;
658 }
659
660 error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
661 ETSEC_MAXRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
662 if (error) {
663 aprint_error(": failed to allocate rx dmamaps: %d\n", error);
664 goto fail_3;
665 }
666
667 error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
668 ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
669 if (error) {
670 aprint_error(": failed to allocate tx dmamaps: %d\n", error);
671 goto fail_4;
672 }
673
674 sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
675 pq3etsec_tx_intr, sc);
676 if (sc->sc_tx_ih == NULL) {
677 aprint_error(": failed to establish tx interrupt: %d\n",
678 cnl->cnl_intrs[0]);
679 goto fail_5;
680 }
681
682 sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
683 pq3etsec_rx_intr, sc);
684 if (sc->sc_rx_ih == NULL) {
685 aprint_error(": failed to establish rx interrupt: %d\n",
686 cnl->cnl_intrs[1]);
687 goto fail_6;
688 }
689
690 sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
691 pq3etsec_error_intr, sc);
692 if (sc->sc_error_ih == NULL) {
693 aprint_error(": failed to establish error interrupt: %d\n",
694 cnl->cnl_intrs[2]);
695 goto fail_7;
696 }
697
698 int softint_flags = SOFTINT_NET;
699 #if !defined(MULTIPROCESSOR) || defined(NET_MPSAFE)
700 softint_flags |= SOFTINT_MPSAFE;
701 #endif /* !MULTIPROCESSOR || NET_MPSAFE */
702 sc->sc_soft_ih = softint_establish(softint_flags,
703 pq3etsec_soft_intr, sc);
704 if (sc->sc_soft_ih == NULL) {
705 aprint_error(": failed to establish soft interrupt\n");
706 goto fail_8;
707 }
708
709 /*
710 * If there was no MDIO
711 */
712 if (mdio == CPUNODECF_MDIO_DEFAULT) {
713 aprint_normal("\n");
714 cfdata_t mdio_cf = config_search_ia(pq3mdio_find, self, NULL, cna);
715 if (mdio_cf != NULL) {
716 sc->sc_mdio_dev = config_attach(self, mdio_cf, cna, NULL);
717 }
718 } else {
719 sc->sc_mdio_dev = device_find_by_driver_unit("mdio", mdio);
720 if (sc->sc_mdio_dev == NULL) {
721 aprint_error(": failed to locate mdio device\n");
722 goto fail_9;
723 }
724 aprint_normal("\n");
725 }
726
727 etsec_write(sc, ATTR, ATTR_DEFAULT);
728 etsec_write(sc, ATTRELI, ATTRELI_DEFAULT);
729
730 /* Enable interrupt coalesing */
731 sc->sc_ic_rx_time = 768;
732 sc->sc_ic_rx_count = 16;
733 sc->sc_ic_tx_time = 768;
734 sc->sc_ic_tx_count = 16;
735 pq3etsec_set_ic_rx(sc);
736 pq3etsec_set_ic_tx(sc);
737
738 char enaddr[ETHER_ADDR_LEN] = {
739 [0] = sc->sc_macstnaddr2 >> 16,
740 [1] = sc->sc_macstnaddr2 >> 24,
741 [2] = sc->sc_macstnaddr1 >> 0,
742 [3] = sc->sc_macstnaddr1 >> 8,
743 [4] = sc->sc_macstnaddr1 >> 16,
744 [5] = sc->sc_macstnaddr1 >> 24,
745 };
746 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
747 ether_sprintf(enaddr));
748
749 const char * const xname = device_xname(sc->sc_dev);
750 struct ethercom * const ec = &sc->sc_ec;
751 struct ifnet * const ifp = &ec->ec_if;
752
753 ec->ec_mii = &sc->sc_mii;
754
755 sc->sc_mii.mii_ifp = ifp;
756 sc->sc_mii.mii_readreg = pq3mdio_mii_readreg;
757 sc->sc_mii.mii_writereg = pq3mdio_mii_writereg;
758 sc->sc_mii.mii_statchg = pq3etsec_mii_statchg;
759
760 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
761 ether_mediastatus);
762
763 if (sc->sc_mdio_dev != NULL && sc->sc_phy_addr < 32) {
764 mii_attach(sc->sc_mdio_dev, &sc->sc_mii, 0xffffffff,
765 sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
766
767 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
768 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
769 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
770 } else {
771 callout_schedule(&sc->sc_mii_callout, hz);
772 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
773 }
774 } else {
775 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
776 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX);
777 }
778
779 ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
780 | ETHERCAP_JUMBO_MTU;
781
782 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
783 ifp->if_softc = sc;
784 ifp->if_capabilities = IFCAP_ETSEC;
785 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
786 ifp->if_ioctl = pq3etsec_ifioctl;
787 ifp->if_start = pq3etsec_ifstart;
788 ifp->if_watchdog = pq3etsec_ifwatchdog;
789 ifp->if_init = pq3etsec_ifinit;
790 ifp->if_stop = pq3etsec_ifstop;
791 IFQ_SET_READY(&ifp->if_snd);
792
793 /*
794 * Attach the interface.
795 */
796 error = if_initialize(ifp);
797 if (error != 0) {
798 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
799 error);
800 goto fail_10;
801 }
802 pq3etsec_sysctl_setup(NULL, sc);
803 ether_ifattach(ifp, enaddr);
804 if_register(ifp);
805
806 pq3etsec_ifstop(ifp, true);
807
808 evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
809 NULL, xname, "rx stall");
810 evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
811 NULL, xname, "tx stall");
812 evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
813 NULL, xname, "tx intr");
814 evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
815 NULL, xname, "rx intr");
816 evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
817 NULL, xname, "error intr");
818 evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
819 NULL, xname, "soft intr");
820 evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
821 NULL, xname, "tx pause");
822 evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
823 NULL, xname, "rx pause");
824 evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
825 NULL, xname, "mii ticks");
826 return;
827
828 fail_10:
829 ifmedia_removeall(&sc->sc_mii.mii_media);
830 mii_detach(&sc->sc_mii, sc->sc_phy_addr, MII_OFFSET_ANY);
831 fail_9:
832 softint_disestablish(sc->sc_soft_ih);
833 fail_8:
834 intr_disestablish(sc->sc_error_ih);
835 fail_7:
836 intr_disestablish(sc->sc_rx_ih);
837 fail_6:
838 intr_disestablish(sc->sc_tx_ih);
839 fail_5:
840 pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
841 fail_4:
842 pq3etsec_mapcache_destroy(sc, sc->sc_rx_mapcache);
843 fail_3:
844 #if 0 /* notyet */
845 pq3etsec_txq_detach(sc);
846 #endif
847 fail_2:
848 #if 0 /* notyet */
849 pq3etsec_rxq_detach(sc);
850 #endif
851 fail_1:
852 callout_destroy(&sc->sc_mii_callout);
853 mutex_obj_free(sc->sc_lock);
854 mutex_obj_free(sc->sc_hwlock);
855 bus_space_unmap(sc->sc_bst, sc->sc_bsh, cnl->cnl_size);
856 }
857
858 static uint64_t
859 pq3etsec_macaddr_create(const uint8_t *lladdr)
860 {
861 uint64_t macaddr = 0;
862
863 lladdr += ETHER_ADDR_LEN;
864 for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
865 macaddr = (macaddr << 8) | *--lladdr;
866 }
867 return macaddr << 16;
868 }
869
870 static int
871 pq3etsec_ifinit(struct ifnet *ifp)
872 {
873 struct pq3etsec_softc * const sc = ifp->if_softc;
874 int error = 0;
875
876 sc->sc_maxfrm = uimax(ifp->if_mtu + 32, MCLBYTES);
877 if (ifp->if_mtu > ETHERMTU_JUMBO)
878 return error;
879
880 KASSERT(ifp->if_flags & IFF_UP);
881
882 /*
883 * Stop the interface (steps 1 to 4 in the Soft Reset and
884 * Reconfigurating Procedure.
885 */
886 pq3etsec_ifstop(ifp, 0);
887
888 /*
889 * If our frame size has changed (or it's our first time through)
890 * destroy the existing transmit mapcache.
891 */
892 if (sc->sc_tx_mapcache != NULL
893 && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
894 pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
895 sc->sc_tx_mapcache = NULL;
896 }
897
898 if (sc->sc_tx_mapcache == NULL) {
899 error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
900 ETSEC_MAXTXMBUFS, sc->sc_maxfrm, ETSEC_NTXSEGS);
901 if (error)
902 return error;
903 }
904
905 sc->sc_ev_mii_ticks.ev_count++;
906 mii_tick(&sc->sc_mii);
907
908 if (ifp->if_flags & IFF_PROMISC) {
909 sc->sc_rctrl |= RCTRL_PROM;
910 } else {
911 sc->sc_rctrl &= ~RCTRL_PROM;
912 }
913
914 uint32_t rctrl_prsdep = 0;
915 sc->sc_rctrl &= ~(RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP);
916 if (VLAN_ATTACHED(&sc->sc_ec)) {
917 sc->sc_rctrl |= RCTRL_VLEX;
918 rctrl_prsdep = RCTRL_PRSDEP_L2;
919 }
920 if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
921 sc->sc_rctrl |= RCTRL_IPCSEN;
922 rctrl_prsdep = RCTRL_PRSDEP_L3;
923 }
924 if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
925 sc->sc_rctrl |= RCTRL_TUCSEN;
926 rctrl_prsdep = RCTRL_PRSDEP_L4;
927 }
928 sc->sc_rctrl |= rctrl_prsdep;
929 #if 0
930 if (sc->sc_rctrl & (RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP))
931 aprint_normal_dev(sc->sc_dev,
932 "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
933 sc->sc_rctrl,
934 __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
935 __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
936 __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
937 __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
938 #endif
939
940 sc->sc_tctrl &= ~(TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS);
941 if (VLAN_ATTACHED(&sc->sc_ec)) /* is this really true */
942 sc->sc_tctrl |= TCTRL_VLINS;
943 if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
944 sc->sc_tctrl |= TCTRL_IPCSEN;
945 if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
946 sc->sc_tctrl |= TCTRL_TUCSEN;
947 #if 0
948 if (sc->sc_tctrl & (TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS))
949 aprint_normal_dev(sc->sc_dev,
950 "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
951 sc->sc_tctrl,
952 __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
953 __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
954 __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
955 #endif
956
957 sc->sc_maccfg1 &= ~(MACCFG1_TX_EN|MACCFG1_RX_EN);
958
959 const uint64_t macstnaddr =
960 pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
961
962 sc->sc_imask = IEVENT_DPE;
963
964 /* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
965 pq3etsec_rxq_reset(sc, &sc->sc_rxq);
966 pq3etsec_rxq_produce(sc, &sc->sc_rxq); /* fill with rx buffers */
967
968 /* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
969 pq3etsec_txq_reset(sc, &sc->sc_txq);
970
971 /* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
972 KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
973 etsec_write(sc, MAXFRM, sc->sc_maxfrm);
974 etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
975 etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >> 0));
976 etsec_write(sc, MACCFG1, sc->sc_maccfg1);
977 etsec_write(sc, MACCFG2, sc->sc_maccfg2);
978 etsec_write(sc, ECNTRL, sc->sc_ecntrl);
979
980 /* 8. Setup group address hash table (GADDR0-GADDR15) */
981 pq3etsec_mc_setup(sc);
982
983 /* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
984 etsec_write(sc, MRBLR, MCLBYTES);
985
986 /* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
987 sc->sc_dmactrl |= DMACTRL_DEFAULT;
988 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
989
990 /* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
991 etsec_write(sc, TQUEUE, TQUEUE_EN0);
992 sc->sc_imask |= IEVENT_TXF|IEVENT_TXE|IEVENT_TXC;
993
994 etsec_write(sc, TCTRL, sc->sc_tctrl); /* for TOE stuff */
995
996 /* 12. Enable receive queues in RQUEUE, */
997 etsec_write(sc, RQUEUE, RQUEUE_EN0|RQUEUE_EX0);
998 sc->sc_imask |= IEVENT_RXF|IEVENT_BSY|IEVENT_RXC;
999
1000 /* and optionally set TOE functionality in RCTRL. */
1001 etsec_write(sc, RCTRL, sc->sc_rctrl);
1002 sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
1003 if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
1004 sc->sc_rx_adjlen += sizeof(struct rxfcb);
1005
1006 /* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
1007 etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
1008
1009 /* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
1010 etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
1011
1012 /* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
1013 sc->sc_dmactrl &= ~(DMACTRL_GRS|DMACTRL_GTS);
1014 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1015
1016 /* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
1017 etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
1018 etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
1019
1020 sc->sc_soft_flags = 0;
1021
1022 etsec_write(sc, IMASK, sc->sc_imask);
1023
1024 ifp->if_flags |= IFF_RUNNING;
1025
1026 return error;
1027 }
1028
1029 static void
1030 pq3etsec_ifstop(struct ifnet *ifp, int disable)
1031 {
1032 struct pq3etsec_softc * const sc = ifp->if_softc;
1033
1034 KASSERT(!cpu_intr_p());
1035 const uint32_t imask_gsc_mask = IEVENT_GTSC|IEVENT_GRSC;
1036 /*
1037 * Clear the GTSC and GRSC from the interrupt mask until
1038 * we are ready for them. Then clear them from IEVENT,
1039 * request the graceful shutdown, and then enable the
1040 * GTSC and GRSC bits in the mask. This should cause the
1041 * error interrupt to fire which will issue a wakeup to
1042 * allow us to resume.
1043 */
1044
1045 /*
1046 * 1. Set GRS/GTS bits in DMACTRL register
1047 */
1048 sc->sc_dmactrl |= DMACTRL_GRS|DMACTRL_GTS;
1049 etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
1050 etsec_write(sc, IEVENT, imask_gsc_mask);
1051 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1052
1053 if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN|MACCFG1_RX_EN)) {
1054 /*
1055 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
1056 */
1057 etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
1058
1059 u_int timo = 1000;
1060 uint32_t ievent = etsec_read(sc, IEVENT);
1061 while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
1062 if (--timo == 0) {
1063 aprint_error_dev(sc->sc_dev,
1064 "WARNING: "
1065 "request to stop failed (IEVENT=%#x)\n",
1066 ievent);
1067 break;
1068 }
1069 delay(10);
1070 ievent = etsec_read(sc, IEVENT);
1071 }
1072 }
1073
1074 /*
1075 * Now reset the controller.
1076 *
1077 * 3. Set SOFT_RESET bit in MACCFG1 register
1078 * 4. Clear SOFT_RESET bit in MACCFG1 register
1079 */
1080 etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
1081 etsec_write(sc, MACCFG1, 0);
1082 etsec_write(sc, IMASK, 0);
1083 etsec_write(sc, IEVENT, ~0);
1084 sc->sc_imask = 0;
1085 ifp->if_flags &= ~IFF_RUNNING;
1086
1087 uint32_t tbipa = etsec_read(sc, TBIPA);
1088 if (tbipa == sc->sc_phy_addr) {
1089 aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
1090 etsec_write(sc, TBIPA, 0x1f);
1091 }
1092 uint32_t miimcfg = etsec_read(sc, MIIMCFG);
1093 etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
1094 etsec_write(sc, MIIMCFG, miimcfg);
1095
1096 /*
1097 * Let's consume any remaing transmitted packets. And if we are
1098 * disabling the interface, purge ourselves of any untransmitted
1099 * packets. But don't consume any received packets, just drop them.
1100 * If we aren't disabling the interface, save the mbufs in the
1101 * receive queue for reuse.
1102 */
1103 pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
1104 pq3etsec_txq_consume(sc, &sc->sc_txq);
1105 if (disable) {
1106 pq3etsec_txq_purge(sc, &sc->sc_txq);
1107 IFQ_PURGE(&ifp->if_snd);
1108 }
1109 }
1110
1111 static void
1112 pq3etsec_ifwatchdog(struct ifnet *ifp)
1113 {
1114 }
1115
1116 static void
1117 pq3etsec_mc_setup(
1118 struct pq3etsec_softc *sc)
1119 {
1120 struct ethercom * const ec = &sc->sc_ec;
1121 struct ifnet * const ifp = &sc->sc_if;
1122 struct ether_multi *enm;
1123 struct ether_multistep step;
1124 uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
1125 const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
1126
1127 memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
1128 memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1129
1130 ifp->if_flags &= ~IFF_ALLMULTI;
1131
1132 ETHER_FIRST_MULTI(step, ec, enm);
1133 for (u_int i = 0; enm != NULL; ) {
1134 const char *addr = enm->enm_addrlo;
1135 if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1136 ifp->if_flags |= IFF_ALLMULTI;
1137 memset(gaddr, 0xff, 32 << (crc_shift & 1));
1138 memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1139 break;
1140 }
1141 if ((sc->sc_rctrl & RCTRL_EMEN)
1142 && i < __arraycount(sc->sc_macaddrs)) {
1143 sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
1144 } else {
1145 uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1146 #if 0
1147 printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
1148 ether_sprintf(addr), crc,
1149 crc >> crc_shift,
1150 crc >> (crc_shift + 5),
1151 (crc >> crc_shift) & 31,
1152 1 << (((crc >> crc_shift) & 31) ^ 31));
1153 #endif
1154 /*
1155 * The documentation doesn't completely follow PowerPC
1156 * bit order. The BE crc32 (H) for 01:00:5E:00:00:01
1157 * is 0x7fa32d9b. By empirical testing, the
1158 * corresponding hash bit is word 3, bit 31 (ppc bit
1159 * order). Since 3 << 31 | 31 is 0x7f, we deduce
1160 * H[0:2] selects the register while H[3:7] selects
1161 * the bit (ppc bit order).
1162 */
1163 crc >>= crc_shift;
1164 gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
1165 }
1166 ETHER_NEXT_MULTI(step, enm);
1167 }
1168 for (u_int i = 0; i < 8; i++) {
1169 etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
1170 etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
1171 #if 0
1172 if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
1173 printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
1174 i, IGADDR(i), etsec_read(sc, IGADDR(i)),
1175 i, GADDR(i), etsec_read(sc, GADDR(i)));
1176 #endif
1177 }
1178 for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
1179 uint64_t macaddr = sc->sc_macaddrs[i];
1180 etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
1181 etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >> 0));
1182 #if 0
1183 if (macaddr)
1184 printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
1185 i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
1186 i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
1187 #endif
1188 }
1189 }
1190
1191 static int
1192 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1193 {
1194 struct pq3etsec_softc *sc = ifp->if_softc;
1195 struct ifreq * const ifr = data;
1196 const int s = splnet();
1197 int error;
1198
1199 switch (cmd) {
1200 case SIOCSIFMEDIA:
1201 case SIOCGIFMEDIA:
1202 /* Flow control requires full-duplex mode. */
1203 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1204 (ifr->ifr_media & IFM_FDX) == 0)
1205 ifr->ifr_media &= ~IFM_ETH_FMASK;
1206 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1207 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1208 /* We can do both TXPAUSE and RXPAUSE. */
1209 ifr->ifr_media |=
1210 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1211 }
1212 }
1213 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1214 break;
1215
1216 default:
1217 error = ether_ioctl(ifp, cmd, data);
1218 if (error != ENETRESET)
1219 break;
1220
1221 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1222 error = 0;
1223 if (ifp->if_flags & IFF_RUNNING)
1224 pq3etsec_mc_setup(sc);
1225 break;
1226 }
1227 error = pq3etsec_ifinit(ifp);
1228 break;
1229 }
1230
1231 splx(s);
1232 return error;
1233 }
1234
1235 static void
1236 pq3etsec_rxq_desc_presync(
1237 struct pq3etsec_softc *sc,
1238 struct pq3etsec_rxqueue *rxq,
1239 volatile struct rxbd *rxbd,
1240 size_t count)
1241 {
1242 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1243 (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1244 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1245 }
1246
1247 static void
1248 pq3etsec_rxq_desc_postsync(
1249 struct pq3etsec_softc *sc,
1250 struct pq3etsec_rxqueue *rxq,
1251 volatile struct rxbd *rxbd,
1252 size_t count)
1253 {
1254 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1255 (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1256 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1257 }
1258
1259 static void
1260 pq3etsec_txq_desc_presync(
1261 struct pq3etsec_softc *sc,
1262 struct pq3etsec_txqueue *txq,
1263 volatile struct txbd *txbd,
1264 size_t count)
1265 {
1266 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1267 (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1268 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1269 }
1270
1271 static void
1272 pq3etsec_txq_desc_postsync(
1273 struct pq3etsec_softc *sc,
1274 struct pq3etsec_txqueue *txq,
1275 volatile struct txbd *txbd,
1276 size_t count)
1277 {
1278 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1279 (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1280 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1281 }
1282
1283 static bus_dmamap_t
1284 pq3etsec_mapcache_get(
1285 struct pq3etsec_softc *sc,
1286 struct pq3etsec_mapcache *dmc)
1287 {
1288 KASSERT(dmc->dmc_nmaps > 0);
1289 KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1290 return dmc->dmc_maps[--dmc->dmc_nmaps];
1291 }
1292
1293 static void
1294 pq3etsec_mapcache_put(
1295 struct pq3etsec_softc *sc,
1296 struct pq3etsec_mapcache *dmc,
1297 bus_dmamap_t map)
1298 {
1299 KASSERT(map != NULL);
1300 KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1301 dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1302 }
1303
1304 static void
1305 pq3etsec_mapcache_destroy(
1306 struct pq3etsec_softc *sc,
1307 struct pq3etsec_mapcache *dmc)
1308 {
1309 const size_t dmc_size =
1310 offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1311
1312 for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1313 bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1314 }
1315 kmem_intr_free(dmc, dmc_size);
1316 }
1317
1318 static int
1319 pq3etsec_mapcache_create(
1320 struct pq3etsec_softc *sc,
1321 struct pq3etsec_mapcache **dmc_p,
1322 size_t maxmaps,
1323 size_t maxmapsize,
1324 size_t maxseg)
1325 {
1326 const size_t dmc_size =
1327 offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1328 struct pq3etsec_mapcache * const dmc =
1329 kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
1330
1331 dmc->dmc_maxmaps = maxmaps;
1332 dmc->dmc_nmaps = maxmaps;
1333 dmc->dmc_maxmapsize = maxmapsize;
1334 dmc->dmc_maxseg = maxseg;
1335
1336 for (u_int i = 0; i < maxmaps; i++) {
1337 int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1338 dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1339 BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1340 if (error) {
1341 aprint_error_dev(sc->sc_dev,
1342 "failed to creat dma map cache "
1343 "entry %u of %zu: %d\n",
1344 i, maxmaps, error);
1345 while (i-- > 0) {
1346 bus_dmamap_destroy(sc->sc_dmat,
1347 dmc->dmc_maps[i]);
1348 }
1349 kmem_intr_free(dmc, dmc_size);
1350 return error;
1351 }
1352 KASSERT(dmc->dmc_maps[i] != NULL);
1353 }
1354
1355 *dmc_p = dmc;
1356
1357 return 0;
1358 }
1359
1360 #if 0
1361 static void
1362 pq3etsec_dmamem_free(
1363 bus_dma_tag_t dmat,
1364 size_t map_size,
1365 bus_dma_segment_t *seg,
1366 bus_dmamap_t map,
1367 void *kvap)
1368 {
1369 bus_dmamap_destroy(dmat, map);
1370 bus_dmamem_unmap(dmat, kvap, map_size);
1371 bus_dmamem_free(dmat, seg, 1);
1372 }
1373 #endif
1374
1375 static int
1376 pq3etsec_dmamem_alloc(
1377 bus_dma_tag_t dmat,
1378 size_t map_size,
1379 bus_dma_segment_t *seg,
1380 bus_dmamap_t *map,
1381 void **kvap)
1382 {
1383 int error;
1384 int nseg;
1385
1386 *kvap = NULL;
1387 *map = NULL;
1388
1389 error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1390 seg, 1, &nseg, 0);
1391 if (error)
1392 return error;
1393
1394 KASSERT(nseg == 1);
1395
1396 error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1397 BUS_DMA_COHERENT);
1398 if (error == 0) {
1399 error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1400 map);
1401 if (error == 0) {
1402 error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1403 NULL, 0);
1404 if (error == 0)
1405 return 0;
1406 bus_dmamap_destroy(dmat, *map);
1407 *map = NULL;
1408 }
1409 bus_dmamem_unmap(dmat, *kvap, map_size);
1410 *kvap = NULL;
1411 }
1412 bus_dmamem_free(dmat, seg, nseg);
1413 return 0;
1414 }
1415
1416 static struct mbuf *
1417 pq3etsec_rx_buf_alloc(
1418 struct pq3etsec_softc *sc)
1419 {
1420 struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1421 if (m == NULL) {
1422 printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1423 return NULL;
1424 }
1425 MCLGET(m, M_DONTWAIT);
1426 if ((m->m_flags & M_EXT) == 0) {
1427 printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1428 m_freem(m);
1429 return NULL;
1430 }
1431 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1432
1433 bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1434 if (map == NULL) {
1435 printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1436 m_freem(m);
1437 return NULL;
1438 }
1439 M_SETCTX(m, map);
1440 m->m_len = m->m_pkthdr.len = MCLBYTES;
1441 int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1442 BUS_DMA_READ|BUS_DMA_NOWAIT);
1443 if (error) {
1444 aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1445 error);
1446 M_SETCTX(m, NULL);
1447 m_freem(m);
1448 pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1449 return NULL;
1450 }
1451 KASSERT(map->dm_mapsize == MCLBYTES);
1452 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1453 BUS_DMASYNC_PREREAD);
1454
1455 return m;
1456 }
1457
1458 static void
1459 pq3etsec_rx_map_unload(
1460 struct pq3etsec_softc *sc,
1461 struct mbuf *m)
1462 {
1463 KASSERT(m);
1464 for (; m != NULL; m = m->m_next) {
1465 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1466 KASSERT(map);
1467 KASSERT(map->dm_mapsize == MCLBYTES);
1468 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1469 BUS_DMASYNC_POSTREAD);
1470 bus_dmamap_unload(sc->sc_dmat, map);
1471 pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1472 M_SETCTX(m, NULL);
1473 }
1474 }
1475
1476 static bool
1477 pq3etsec_rxq_produce(
1478 struct pq3etsec_softc *sc,
1479 struct pq3etsec_rxqueue *rxq)
1480 {
1481 volatile struct rxbd *producer = rxq->rxq_producer;
1482 #if 0
1483 size_t inuse = rxq->rxq_inuse;
1484 #endif
1485 while (rxq->rxq_inuse < rxq->rxq_threshold) {
1486 struct mbuf *m;
1487 IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1488 if (m == NULL) {
1489 m = pq3etsec_rx_buf_alloc(sc);
1490 if (m == NULL) {
1491 printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1492 break;
1493 }
1494 }
1495 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1496 KASSERT(map);
1497
1498 #ifdef ETSEC_DEBUG
1499 KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1500 rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1501 #endif
1502
1503 /* rxbd_len is write-only by the ETSEC */
1504 producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1505 membar_producer();
1506 producer->rxbd_flags |= RXBD_E;
1507 if (__predict_false(rxq->rxq_mhead == NULL)) {
1508 KASSERT(producer == rxq->rxq_consumer);
1509 rxq->rxq_mconsumer = m;
1510 }
1511 *rxq->rxq_mtail = m;
1512 rxq->rxq_mtail = &m->m_next;
1513 m->m_len = MCLBYTES;
1514 m->m_next = NULL;
1515 rxq->rxq_inuse++;
1516 if (++producer == rxq->rxq_last) {
1517 membar_producer();
1518 pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1519 rxq->rxq_last - rxq->rxq_producer);
1520 producer = rxq->rxq_producer = rxq->rxq_first;
1521 }
1522 }
1523 if (producer != rxq->rxq_producer) {
1524 membar_producer();
1525 pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1526 producer - rxq->rxq_producer);
1527 rxq->rxq_producer = producer;
1528 }
1529 uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1530 if (qhlt) {
1531 KASSERT(qhlt & rxq->rxq_qmask);
1532 sc->sc_ev_rx_stall.ev_count++;
1533 etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1534 }
1535 #if 0
1536 aprint_normal_dev(sc->sc_dev,
1537 "%s: buffers inuse went from %zu to %zu\n",
1538 __func__, inuse, rxq->rxq_inuse);
1539 #endif
1540 return true;
1541 }
1542
1543 static bool
1544 pq3etsec_rx_offload(
1545 struct pq3etsec_softc *sc,
1546 struct mbuf *m,
1547 const struct rxfcb *fcb)
1548 {
1549 if (fcb->rxfcb_flags & RXFCB_VLN) {
1550 vlan_set_tag(m, fcb->rxfcb_vlctl);
1551 }
1552 if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1553 || (fcb->rxfcb_flags & (RXFCB_CIP|RXFCB_CTU)) == 0)
1554 return true;
1555 int csum_flags = 0;
1556 if ((fcb->rxfcb_flags & (RXFCB_IP6|RXFCB_CIP)) == RXFCB_CIP) {
1557 csum_flags |= M_CSUM_IPv4;
1558 if (fcb->rxfcb_flags & RXFCB_EIP)
1559 csum_flags |= M_CSUM_IPv4_BAD;
1560 }
1561 if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1562 int ipv_flags;
1563 if (fcb->rxfcb_flags & RXFCB_IP6)
1564 ipv_flags = M_CSUM_TCPv6|M_CSUM_UDPv6;
1565 else
1566 ipv_flags = M_CSUM_TCPv4|M_CSUM_UDPv4;
1567 if (fcb->rxfcb_pro == IPPROTO_TCP) {
1568 csum_flags |= (M_CSUM_TCPv4|M_CSUM_TCPv6) & ipv_flags;
1569 } else {
1570 csum_flags |= (M_CSUM_UDPv4|M_CSUM_UDPv6) & ipv_flags;
1571 }
1572 if (fcb->rxfcb_flags & RXFCB_ETU)
1573 csum_flags |= M_CSUM_TCP_UDP_BAD;
1574 }
1575
1576 m->m_pkthdr.csum_flags = csum_flags;
1577 return true;
1578 }
1579
1580 static void
1581 pq3etsec_rx_input(
1582 struct pq3etsec_softc *sc,
1583 struct mbuf *m,
1584 uint16_t rxbd_flags)
1585 {
1586 struct ifnet * const ifp = &sc->sc_if;
1587
1588 pq3etsec_rx_map_unload(sc, m);
1589
1590 if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1591 struct rxfcb fcb = *mtod(m, struct rxfcb *);
1592 if (!pq3etsec_rx_offload(sc, m, &fcb))
1593 return;
1594 }
1595 m_adj(m, sc->sc_rx_adjlen);
1596
1597 if (rxbd_flags & RXBD_M)
1598 m->m_flags |= M_PROMISC;
1599 if (rxbd_flags & RXBD_BC)
1600 m->m_flags |= M_BCAST;
1601 if (rxbd_flags & RXBD_MC)
1602 m->m_flags |= M_MCAST;
1603 m->m_flags |= M_HASFCS;
1604 m_set_rcvif(m, &sc->sc_if);
1605
1606 ifp->if_ibytes += m->m_pkthdr.len;
1607
1608 /*
1609 * Let's give it to the network subsystm to deal with.
1610 */
1611 int s = splnet();
1612 if_input(ifp, m);
1613 splx(s);
1614 }
1615
1616 static void
1617 pq3etsec_rxq_consume(
1618 struct pq3etsec_softc *sc,
1619 struct pq3etsec_rxqueue *rxq)
1620 {
1621 struct ifnet * const ifp = &sc->sc_if;
1622 volatile struct rxbd *consumer = rxq->rxq_consumer;
1623 size_t rxconsumed = 0;
1624
1625 etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1626
1627 for (;;) {
1628 if (consumer == rxq->rxq_producer) {
1629 rxq->rxq_consumer = consumer;
1630 rxq->rxq_inuse -= rxconsumed;
1631 KASSERT(rxq->rxq_inuse == 0);
1632 return;
1633 }
1634 pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1635 const uint16_t rxbd_flags = consumer->rxbd_flags;
1636 if (rxbd_flags & RXBD_E) {
1637 rxq->rxq_consumer = consumer;
1638 rxq->rxq_inuse -= rxconsumed;
1639 return;
1640 }
1641 KASSERT(rxq->rxq_mconsumer != NULL);
1642 #ifdef ETSEC_DEBUG
1643 KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1644 #endif
1645 #if 0
1646 printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1647 __func__,
1648 consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1649 mtod(rxq->rxq_mconsumer, int *)[0],
1650 mtod(rxq->rxq_mconsumer, int *)[1],
1651 mtod(rxq->rxq_mconsumer, int *)[2],
1652 mtod(rxq->rxq_mconsumer, int *)[3]);
1653 #endif
1654 /*
1655 * We own this packet again. Clear all flags except wrap.
1656 */
1657 rxconsumed++;
1658 consumer->rxbd_flags = rxbd_flags & (RXBD_W|RXBD_I);
1659
1660 /*
1661 * If this descriptor has the LAST bit set and no errors,
1662 * it's a valid input packet.
1663 */
1664 if ((rxbd_flags & (RXBD_L|RXBD_ERRORS)) == RXBD_L) {
1665 size_t rxbd_len = consumer->rxbd_len;
1666 struct mbuf *m = rxq->rxq_mhead;
1667 struct mbuf *m_last = rxq->rxq_mconsumer;
1668 if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1669 rxq->rxq_mtail = &rxq->rxq_mhead;
1670 rxq->rxq_mconsumer = rxq->rxq_mhead;
1671 m_last->m_next = NULL;
1672 m_last->m_len = rxbd_len & (MCLBYTES - 1);
1673 m->m_pkthdr.len = rxbd_len;
1674 pq3etsec_rx_input(sc, m, rxbd_flags);
1675 } else if (rxbd_flags & RXBD_L) {
1676 KASSERT(rxbd_flags & RXBD_ERRORS);
1677 struct mbuf *m;
1678 /*
1679 * We encountered an error, take the mbufs and add
1680 * then to the rx bufcache so we can reuse them.
1681 */
1682 ifp->if_ierrors++;
1683 for (m = rxq->rxq_mhead;
1684 m != rxq->rxq_mconsumer;
1685 m = m->m_next) {
1686 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1687 }
1688 m = rxq->rxq_mconsumer;
1689 if ((rxq->rxq_mhead = m->m_next) == NULL)
1690 rxq->rxq_mtail = &rxq->rxq_mhead;
1691 rxq->rxq_mconsumer = m->m_next;
1692 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1693 } else {
1694 rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1695 }
1696 #ifdef ETSEC_DEBUG
1697 rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1698 #endif
1699
1700 /*
1701 * Wrap at the last entry!
1702 */
1703 if (rxbd_flags & RXBD_W) {
1704 KASSERT(consumer + 1 == rxq->rxq_last);
1705 consumer = rxq->rxq_first;
1706 } else {
1707 consumer++;
1708 }
1709 #ifdef ETSEC_DEBUG
1710 KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1711 #endif
1712 }
1713 }
1714
1715 static void
1716 pq3etsec_rxq_purge(
1717 struct pq3etsec_softc *sc,
1718 struct pq3etsec_rxqueue *rxq,
1719 bool discard)
1720 {
1721 struct mbuf *m;
1722
1723 if ((m = rxq->rxq_mhead) != NULL) {
1724 #ifdef ETSEC_DEBUG
1725 memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1726 #endif
1727
1728 if (discard) {
1729 pq3etsec_rx_map_unload(sc, m);
1730 m_freem(m);
1731 } else {
1732 while (m != NULL) {
1733 struct mbuf *m0 = m->m_next;
1734 m->m_next = NULL;
1735 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1736 m = m0;
1737 }
1738 }
1739
1740 }
1741
1742 rxq->rxq_mconsumer = NULL;
1743 rxq->rxq_mhead = NULL;
1744 rxq->rxq_mtail = &rxq->rxq_mhead;
1745 rxq->rxq_inuse = 0;
1746 }
1747
1748 static void
1749 pq3etsec_rxq_reset(
1750 struct pq3etsec_softc *sc,
1751 struct pq3etsec_rxqueue *rxq)
1752 {
1753 /*
1754 * sync all the descriptors
1755 */
1756 pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1757 rxq->rxq_last - rxq->rxq_first);
1758
1759 /*
1760 * Make sure we own all descriptors in the ring.
1761 */
1762 volatile struct rxbd *rxbd;
1763 for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1764 rxbd->rxbd_flags = RXBD_I;
1765 }
1766
1767 /*
1768 * Last descriptor has the wrap flag.
1769 */
1770 rxbd->rxbd_flags = RXBD_W|RXBD_I;
1771
1772 /*
1773 * Reset the producer consumer indexes.
1774 */
1775 rxq->rxq_consumer = rxq->rxq_first;
1776 rxq->rxq_producer = rxq->rxq_first;
1777 rxq->rxq_inuse = 0;
1778 if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1779 rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1780
1781 sc->sc_imask |= IEVENT_RXF|IEVENT_BSY;
1782
1783 /*
1784 * Restart the transmit at the first descriptor
1785 */
1786 etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1787 }
1788
1789 static int
1790 pq3etsec_rxq_attach(
1791 struct pq3etsec_softc *sc,
1792 struct pq3etsec_rxqueue *rxq,
1793 u_int qno)
1794 {
1795 size_t map_size = PAGE_SIZE;
1796 size_t desc_count = map_size / sizeof(struct rxbd);
1797 int error;
1798 void *descs;
1799
1800 error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1801 &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1802 if (error)
1803 return error;
1804
1805 memset(descs, 0, map_size);
1806 rxq->rxq_first = descs;
1807 rxq->rxq_last = rxq->rxq_first + desc_count;
1808 rxq->rxq_consumer = descs;
1809 rxq->rxq_producer = descs;
1810
1811 pq3etsec_rxq_purge(sc, rxq, true);
1812 pq3etsec_rxq_reset(sc, rxq);
1813
1814 rxq->rxq_reg_rbase = RBASEn(qno);
1815 rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1816
1817 return 0;
1818 }
1819
1820 static bool
1821 pq3etsec_txq_active_p(
1822 struct pq3etsec_softc * const sc,
1823 struct pq3etsec_txqueue *txq)
1824 {
1825 return !IF_IS_EMPTY(&txq->txq_mbufs);
1826 }
1827
1828 static bool
1829 pq3etsec_txq_fillable_p(
1830 struct pq3etsec_softc * const sc,
1831 struct pq3etsec_txqueue *txq)
1832 {
1833 return txq->txq_free >= txq->txq_threshold;
1834 }
1835
1836 static int
1837 pq3etsec_txq_attach(
1838 struct pq3etsec_softc *sc,
1839 struct pq3etsec_txqueue *txq,
1840 u_int qno)
1841 {
1842 size_t map_size = PAGE_SIZE;
1843 size_t desc_count = map_size / sizeof(struct txbd);
1844 int error;
1845 void *descs;
1846
1847 error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1848 &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1849 if (error)
1850 return error;
1851
1852 memset(descs, 0, map_size);
1853 txq->txq_first = descs;
1854 txq->txq_last = txq->txq_first + desc_count;
1855 txq->txq_consumer = descs;
1856 txq->txq_producer = descs;
1857
1858 IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1859
1860 txq->txq_reg_tbase = TBASEn(qno);
1861 txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1862
1863 pq3etsec_txq_reset(sc, txq);
1864
1865 return 0;
1866 }
1867
1868 static int
1869 pq3etsec_txq_map_load(
1870 struct pq3etsec_softc *sc,
1871 struct pq3etsec_txqueue *txq,
1872 struct mbuf *m)
1873 {
1874 bus_dmamap_t map;
1875 int error;
1876
1877 map = M_GETCTX(m, bus_dmamap_t);
1878 if (map != NULL)
1879 return 0;
1880
1881 map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1882 if (map == NULL)
1883 return ENOMEM;
1884
1885 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1886 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1887 if (error)
1888 return error;
1889
1890 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1891 BUS_DMASYNC_PREWRITE);
1892 M_SETCTX(m, map);
1893 return 0;
1894 }
1895
1896 static void
1897 pq3etsec_txq_map_unload(
1898 struct pq3etsec_softc *sc,
1899 struct pq3etsec_txqueue *txq,
1900 struct mbuf *m)
1901 {
1902 KASSERT(m);
1903 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1904 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1905 BUS_DMASYNC_POSTWRITE);
1906 bus_dmamap_unload(sc->sc_dmat, map);
1907 pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1908 }
1909
1910 static bool
1911 pq3etsec_txq_produce(
1912 struct pq3etsec_softc *sc,
1913 struct pq3etsec_txqueue *txq,
1914 struct mbuf *m)
1915 {
1916 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1917
1918 if (map->dm_nsegs > txq->txq_free)
1919 return false;
1920
1921 /*
1922 * TCP Offload flag must be set in the first descriptor.
1923 */
1924 volatile struct txbd *producer = txq->txq_producer;
1925 uint16_t last_flags = TXBD_L;
1926 uint16_t first_flags = TXBD_R
1927 | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1928
1929 /*
1930 * If we've produced enough descriptors without consuming any
1931 * we need to ask for an interrupt to reclaim some.
1932 */
1933 txq->txq_lastintr += map->dm_nsegs;
1934 if (ETSEC_IC_TX_ENABLED(sc)
1935 || txq->txq_lastintr >= txq->txq_threshold
1936 || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1937 txq->txq_lastintr = 0;
1938 last_flags |= TXBD_I;
1939 }
1940
1941 #ifdef ETSEC_DEBUG
1942 KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1943 #endif
1944 KASSERT(producer != txq->txq_last);
1945 producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1946 producer->txbd_len = map->dm_segs[0].ds_len;
1947
1948 if (map->dm_nsegs > 1) {
1949 volatile struct txbd *start = producer + 1;
1950 size_t count = map->dm_nsegs - 1;
1951 for (u_int i = 1; i < map->dm_nsegs; i++) {
1952 if (__predict_false(++producer == txq->txq_last)) {
1953 producer = txq->txq_first;
1954 if (start < txq->txq_last) {
1955 pq3etsec_txq_desc_presync(sc, txq,
1956 start, txq->txq_last - start);
1957 count -= txq->txq_last - start;
1958 }
1959 start = txq->txq_first;
1960 }
1961 #ifdef ETSEC_DEBUG
1962 KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1963 #endif
1964 producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1965 producer->txbd_len = map->dm_segs[i].ds_len;
1966 producer->txbd_flags = TXBD_R
1967 | (producer->txbd_flags & TXBD_W)
1968 | (i == map->dm_nsegs - 1 ? last_flags : 0);
1969 #if 0
1970 printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1971 producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1972 #endif
1973 }
1974 pq3etsec_txq_desc_presync(sc, txq, start, count);
1975 } else {
1976 first_flags |= last_flags;
1977 }
1978
1979 membar_producer();
1980 txq->txq_producer->txbd_flags =
1981 first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1982 #if 0
1983 printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1984 txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1985 txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1986 #endif
1987 pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
1988
1989 /*
1990 * Reduce free count by the number of segments we consumed.
1991 */
1992 txq->txq_free -= map->dm_nsegs;
1993 KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1994 KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
1995 KASSERT(producer->txbd_flags & TXBD_L);
1996 #ifdef ETSEC_DEBUG
1997 txq->txq_lmbufs[producer - txq->txq_first] = m;
1998 #endif
1999
2000 #if 0
2001 printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
2002 __func__, m, m->m_pkthdr.len, map->dm_nsegs,
2003 txq->txq_producer - txq->txq_first, producer - txq->txq_first);
2004 #endif
2005
2006 if (++producer == txq->txq_last)
2007 txq->txq_producer = txq->txq_first;
2008 else
2009 txq->txq_producer = producer;
2010 IF_ENQUEUE(&txq->txq_mbufs, m);
2011
2012 /*
2013 * Restart the transmitter.
2014 */
2015 etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT); /* W1C */
2016
2017 return true;
2018 }
2019
2020 static void
2021 pq3etsec_tx_offload(
2022 struct pq3etsec_softc *sc,
2023 struct pq3etsec_txqueue *txq,
2024 struct mbuf **mp)
2025 {
2026 struct mbuf *m = *mp;
2027 u_int csum_flags = m->m_pkthdr.csum_flags;
2028 bool have_vtag;
2029 uint16_t vtag;
2030
2031 KASSERT(m->m_flags & M_PKTHDR);
2032
2033 have_vtag = vlan_has_tag(m);
2034 vtag = (have_vtag) ? vlan_get_tag(m) : 0;
2035
2036 /*
2037 * Let see if we are doing any offload first.
2038 */
2039 if (csum_flags == 0 && !have_vtag) {
2040 m->m_flags &= ~M_HASFCB;
2041 return;
2042 }
2043
2044 uint16_t flags = 0;
2045 if (csum_flags & M_CSUM_IP) {
2046 flags |= TXFCB_IP
2047 | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
2048 | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
2049 | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
2050 | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
2051 | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
2052 }
2053 if (have_vtag) {
2054 flags |= TXFCB_VLN;
2055 }
2056 if (flags == 0) {
2057 m->m_flags &= ~M_HASFCB;
2058 return;
2059 }
2060
2061 struct txfcb fcb;
2062 fcb.txfcb_flags = flags;
2063 if (csum_flags & M_CSUM_IPv4)
2064 fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
2065 else
2066 fcb.txfcb_l4os = M_CSUM_DATA_IPv6_IPHL(m->m_pkthdr.csum_data);
2067 fcb.txfcb_l3os = ETHER_HDR_LEN;
2068 fcb.txfcb_phcs = 0;
2069 fcb.txfcb_vlctl = vtag;
2070
2071 #if 0
2072 printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
2073 __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
2074 fcb.txfcb_phcs, fcb.txfcb_vlctl);
2075 #endif
2076
2077 if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
2078 m->m_data -= sizeof(fcb);
2079 m->m_len += sizeof(fcb);
2080 } else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
2081 memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
2082 m->m_data = m->m_pktdat;
2083 m->m_len += sizeof(fcb);
2084 } else {
2085 struct mbuf *mn;
2086 MGET(mn, M_DONTWAIT, m->m_type);
2087 if (mn == NULL) {
2088 if (csum_flags & M_CSUM_IP4) {
2089 #ifdef INET
2090 in_undefer_cksum(m, ETHER_HDR_LEN,
2091 csum_flags & M_CSUM_IP4);
2092 #else
2093 panic("%s: impossible M_CSUM flags %#x",
2094 device_xname(sc->sc_dev), csum_flags);
2095 #endif
2096 } else if (csum_flags & M_CSUM_IP6) {
2097 #ifdef INET6
2098 in6_undefer_cksum(m, ETHER_HDR_LEN,
2099 csum_flags & M_CSUM_IP6);
2100 #else
2101 panic("%s: impossible M_CSUM flags %#x",
2102 device_xname(sc->sc_dev), csum_flags);
2103 #endif
2104 }
2105
2106 m->m_flags &= ~M_HASFCB;
2107 return;
2108 }
2109
2110 m_move_pkthdr(mn, m);
2111 mn->m_next = m;
2112 m = mn;
2113 MH_ALIGN(m, sizeof(fcb));
2114 m->m_len = sizeof(fcb);
2115 *mp = m;
2116 }
2117 m->m_pkthdr.len += sizeof(fcb);
2118 m->m_flags |= M_HASFCB;
2119 *mtod(m, struct txfcb *) = fcb;
2120 return;
2121 }
2122
2123 static bool
2124 pq3etsec_txq_enqueue(
2125 struct pq3etsec_softc *sc,
2126 struct pq3etsec_txqueue *txq)
2127 {
2128 for (;;) {
2129 if (IF_QFULL(&txq->txq_mbufs))
2130 return false;
2131 struct mbuf *m = txq->txq_next;
2132 if (m == NULL) {
2133 int s = splnet();
2134 IFQ_DEQUEUE(&sc->sc_if.if_snd, m);
2135 splx(s);
2136 if (m == NULL)
2137 return true;
2138 M_SETCTX(m, NULL);
2139 pq3etsec_tx_offload(sc, txq, &m);
2140 } else {
2141 txq->txq_next = NULL;
2142 }
2143 int error = pq3etsec_txq_map_load(sc, txq, m);
2144 if (error) {
2145 aprint_error_dev(sc->sc_dev,
2146 "discarded packet due to "
2147 "dmamap load failure: %d\n", error);
2148 m_freem(m);
2149 continue;
2150 }
2151 KASSERT(txq->txq_next == NULL);
2152 if (!pq3etsec_txq_produce(sc, txq, m)) {
2153 txq->txq_next = m;
2154 return false;
2155 }
2156 KASSERT(txq->txq_next == NULL);
2157 }
2158 }
2159
2160 static bool
2161 pq3etsec_txq_consume(
2162 struct pq3etsec_softc *sc,
2163 struct pq3etsec_txqueue *txq)
2164 {
2165 struct ifnet * const ifp = &sc->sc_if;
2166 volatile struct txbd *consumer = txq->txq_consumer;
2167 size_t txfree = 0;
2168
2169 #if 0
2170 printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
2171 #endif
2172 etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
2173
2174 for (;;) {
2175 if (consumer == txq->txq_producer) {
2176 txq->txq_consumer = consumer;
2177 txq->txq_free += txfree;
2178 txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
2179 #if 0
2180 printf("%s: empty: freed %zu descriptors going form %zu to %zu\n",
2181 __func__, txfree, txq->txq_free - txfree, txq->txq_free);
2182 #endif
2183 KASSERT(txq->txq_lastintr == 0);
2184 KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
2185 return true;
2186 }
2187 pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2188 const uint16_t txbd_flags = consumer->txbd_flags;
2189 if (txbd_flags & TXBD_R) {
2190 txq->txq_consumer = consumer;
2191 txq->txq_free += txfree;
2192 txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
2193 #if 0
2194 printf("%s: freed %zu descriptors\n",
2195 __func__, txfree);
2196 #endif
2197 return pq3etsec_txq_fillable_p(sc, txq);
2198 }
2199
2200 /*
2201 * If this is the last descriptor in the chain, get the
2202 * mbuf, free its dmamap, and free the mbuf chain itself.
2203 */
2204 if (txbd_flags & TXBD_L) {
2205 struct mbuf *m;
2206
2207 IF_DEQUEUE(&txq->txq_mbufs, m);
2208 #ifdef ETSEC_DEBUG
2209 KASSERTMSG(
2210 m == txq->txq_lmbufs[consumer-txq->txq_first],
2211 "%s: %p [%u]: flags %#x m (%p) != %p (%p)",
2212 __func__, consumer, consumer - txq->txq_first,
2213 txbd_flags, m,
2214 &txq->txq_lmbufs[consumer-txq->txq_first],
2215 txq->txq_lmbufs[consumer-txq->txq_first]);
2216 #endif
2217 KASSERT(m);
2218 pq3etsec_txq_map_unload(sc, txq, m);
2219 #if 0
2220 printf("%s: mbuf %p: consumed a %u byte packet\n",
2221 __func__, m, m->m_pkthdr.len);
2222 #endif
2223 if (m->m_flags & M_HASFCB)
2224 m_adj(m, sizeof(struct txfcb));
2225 bpf_mtap(ifp, m, BPF_D_OUT);
2226 ifp->if_opackets++;
2227 ifp->if_obytes += m->m_pkthdr.len;
2228 if (m->m_flags & M_MCAST)
2229 ifp->if_omcasts++;
2230 if (txbd_flags & TXBD_ERRORS)
2231 ifp->if_oerrors++;
2232 m_freem(m);
2233 #ifdef ETSEC_DEBUG
2234 txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2235 #endif
2236 } else {
2237 #ifdef ETSEC_DEBUG
2238 KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2239 #endif
2240 }
2241
2242 /*
2243 * We own this packet again. Clear all flags except wrap.
2244 */
2245 txfree++;
2246 //consumer->txbd_flags = txbd_flags & TXBD_W;
2247
2248 /*
2249 * Wrap at the last entry!
2250 */
2251 if (txbd_flags & TXBD_W) {
2252 KASSERT(consumer + 1 == txq->txq_last);
2253 consumer = txq->txq_first;
2254 } else {
2255 consumer++;
2256 KASSERT(consumer < txq->txq_last);
2257 }
2258 }
2259 }
2260
2261 static void
2262 pq3etsec_txq_purge(
2263 struct pq3etsec_softc *sc,
2264 struct pq3etsec_txqueue *txq)
2265 {
2266 struct mbuf *m;
2267 KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2268
2269 for (;;) {
2270 IF_DEQUEUE(&txq->txq_mbufs, m);
2271 if (m == NULL)
2272 break;
2273 pq3etsec_txq_map_unload(sc, txq, m);
2274 m_freem(m);
2275 }
2276 if ((m = txq->txq_next) != NULL) {
2277 txq->txq_next = NULL;
2278 pq3etsec_txq_map_unload(sc, txq, m);
2279 m_freem(m);
2280 }
2281 #ifdef ETSEC_DEBUG
2282 memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2283 #endif
2284 }
2285
2286 static void
2287 pq3etsec_txq_reset(
2288 struct pq3etsec_softc *sc,
2289 struct pq3etsec_txqueue *txq)
2290 {
2291 /*
2292 * sync all the descriptors
2293 */
2294 pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2295 txq->txq_last - txq->txq_first);
2296
2297 /*
2298 * Make sure we own all descriptors in the ring.
2299 */
2300 volatile struct txbd *txbd;
2301 for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2302 txbd->txbd_flags = 0;
2303 }
2304
2305 /*
2306 * Last descriptor has the wrap flag.
2307 */
2308 txbd->txbd_flags = TXBD_W;
2309
2310 /*
2311 * Reset the producer consumer indexes.
2312 */
2313 txq->txq_consumer = txq->txq_first;
2314 txq->txq_producer = txq->txq_first;
2315 txq->txq_free = txq->txq_last - txq->txq_first - 1;
2316 txq->txq_threshold = txq->txq_free / 2;
2317 txq->txq_lastintr = 0;
2318
2319 /*
2320 * What do we want to get interrupted on?
2321 */
2322 sc->sc_imask |= IEVENT_TXF|IEVENT_TXE;
2323
2324 /*
2325 * Restart the transmit at the first descriptor
2326 */
2327 etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2328 }
2329
2330 static void
2331 pq3etsec_ifstart(struct ifnet *ifp)
2332 {
2333 struct pq3etsec_softc * const sc = ifp->if_softc;
2334
2335 if (__predict_false((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)) {
2336 return;
2337 }
2338
2339 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2340 softint_schedule(sc->sc_soft_ih);
2341 }
2342
2343 static void
2344 pq3etsec_tx_error(
2345 struct pq3etsec_softc * const sc)
2346 {
2347 struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2348
2349 pq3etsec_txq_consume(sc, txq);
2350
2351 if (pq3etsec_txq_fillable_p(sc, txq))
2352 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2353 if (sc->sc_txerrors & (IEVENT_LC|IEVENT_CRL|IEVENT_XFUN|IEVENT_BABT)) {
2354 } else if (sc->sc_txerrors & IEVENT_EBERR) {
2355 }
2356
2357 if (pq3etsec_txq_active_p(sc, txq))
2358 etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2359 if (!pq3etsec_txq_enqueue(sc, txq)) {
2360 sc->sc_ev_tx_stall.ev_count++;
2361 sc->sc_if.if_flags |= IFF_OACTIVE;
2362 }
2363
2364 sc->sc_txerrors = 0;
2365 }
2366
2367 int
2368 pq3etsec_tx_intr(void *arg)
2369 {
2370 struct pq3etsec_softc * const sc = arg;
2371
2372 mutex_enter(sc->sc_hwlock);
2373
2374 sc->sc_ev_tx_intr.ev_count++;
2375
2376 uint32_t ievent = etsec_read(sc, IEVENT);
2377 ievent &= IEVENT_TXF|IEVENT_TXB;
2378 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2379
2380 #if 0
2381 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2382 __func__, ievent, etsec_read(sc, IMASK));
2383 #endif
2384
2385 if (ievent == 0) {
2386 mutex_exit(sc->sc_hwlock);
2387 return 0;
2388 }
2389
2390 sc->sc_imask &= ~(IEVENT_TXF|IEVENT_TXB);
2391 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2392 etsec_write(sc, IMASK, sc->sc_imask);
2393 softint_schedule(sc->sc_soft_ih);
2394
2395 mutex_exit(sc->sc_hwlock);
2396
2397 return 1;
2398 }
2399
2400 int
2401 pq3etsec_rx_intr(void *arg)
2402 {
2403 struct pq3etsec_softc * const sc = arg;
2404
2405 mutex_enter(sc->sc_hwlock);
2406
2407 sc->sc_ev_rx_intr.ev_count++;
2408
2409 uint32_t ievent = etsec_read(sc, IEVENT);
2410 ievent &= IEVENT_RXF|IEVENT_RXB;
2411 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2412 if (ievent == 0) {
2413 mutex_exit(sc->sc_hwlock);
2414 return 0;
2415 }
2416
2417 #if 0
2418 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2419 #endif
2420
2421 sc->sc_imask &= ~(IEVENT_RXF|IEVENT_RXB);
2422 atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2423 etsec_write(sc, IMASK, sc->sc_imask);
2424 softint_schedule(sc->sc_soft_ih);
2425
2426 mutex_exit(sc->sc_hwlock);
2427
2428 return 1;
2429 }
2430
2431 int
2432 pq3etsec_error_intr(void *arg)
2433 {
2434 struct pq3etsec_softc * const sc = arg;
2435
2436 mutex_enter(sc->sc_hwlock);
2437
2438 sc->sc_ev_error_intr.ev_count++;
2439
2440 for (int rv = 0, soft_flags = 0;; rv = 1) {
2441 uint32_t ievent = etsec_read(sc, IEVENT);
2442 ievent &= ~(IEVENT_RXF|IEVENT_RXB|IEVENT_TXF|IEVENT_TXB);
2443 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2444 if (ievent == 0) {
2445 if (soft_flags) {
2446 atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2447 softint_schedule(sc->sc_soft_ih);
2448 }
2449 mutex_exit(sc->sc_hwlock);
2450 return rv;
2451 }
2452 #if 0
2453 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2454 __func__, ievent, etsec_read(sc, IMASK));
2455 #endif
2456
2457 if (ievent & (IEVENT_GRSC|IEVENT_GTSC)) {
2458 sc->sc_imask &= ~(IEVENT_GRSC|IEVENT_GTSC);
2459 etsec_write(sc, IMASK, sc->sc_imask);
2460 wakeup(sc);
2461 }
2462 if (ievent & (IEVENT_MMRD|IEVENT_MMWR)) {
2463 sc->sc_imask &= ~(IEVENT_MMRD|IEVENT_MMWR);
2464 etsec_write(sc, IMASK, sc->sc_imask);
2465 wakeup(&sc->sc_mii);
2466 }
2467 if (ievent & IEVENT_BSY) {
2468 soft_flags |= SOFT_RXBSY;
2469 sc->sc_imask &= ~IEVENT_BSY;
2470 etsec_write(sc, IMASK, sc->sc_imask);
2471 }
2472 if (ievent & IEVENT_TXE) {
2473 soft_flags |= SOFT_TXERROR;
2474 sc->sc_imask &= ~IEVENT_TXE;
2475 sc->sc_txerrors |= ievent;
2476 }
2477 if (ievent & IEVENT_TXC) {
2478 sc->sc_ev_tx_pause.ev_count++;
2479 }
2480 if (ievent & IEVENT_RXC) {
2481 sc->sc_ev_rx_pause.ev_count++;
2482 }
2483 if (ievent & IEVENT_DPE) {
2484 soft_flags |= SOFT_RESET;
2485 sc->sc_imask &= ~IEVENT_DPE;
2486 etsec_write(sc, IMASK, sc->sc_imask);
2487 }
2488 }
2489 }
2490
2491 void
2492 pq3etsec_soft_intr(void *arg)
2493 {
2494 struct pq3etsec_softc * const sc = arg;
2495 struct ifnet * const ifp = &sc->sc_if;
2496 uint32_t imask = 0;
2497
2498 mutex_enter(sc->sc_lock);
2499
2500 u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2501
2502 sc->sc_ev_soft_intr.ev_count++;
2503
2504 if (soft_flags & SOFT_RESET) {
2505 int s = splnet();
2506 pq3etsec_ifinit(ifp);
2507 splx(s);
2508 soft_flags = 0;
2509 }
2510
2511 if (soft_flags & SOFT_RXBSY) {
2512 struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2513 size_t threshold = 5 * rxq->rxq_threshold / 4;
2514 if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2515 threshold = rxq->rxq_last - rxq->rxq_first - 1;
2516 } else {
2517 imask |= IEVENT_BSY;
2518 }
2519 aprint_normal_dev(sc->sc_dev,
2520 "increasing receive buffers from %zu to %zu\n",
2521 rxq->rxq_threshold, threshold);
2522 rxq->rxq_threshold = threshold;
2523 }
2524
2525 if ((soft_flags & SOFT_TXINTR)
2526 || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2527 /*
2528 * Let's do what we came here for. Consume transmitted
2529 * packets off the the transmit ring.
2530 */
2531 if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2532 || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2533 sc->sc_ev_tx_stall.ev_count++;
2534 ifp->if_flags |= IFF_OACTIVE;
2535 } else {
2536 ifp->if_flags &= ~IFF_OACTIVE;
2537 }
2538 imask |= IEVENT_TXF;
2539 }
2540
2541 if (soft_flags & (SOFT_RXINTR|SOFT_RXBSY)) {
2542 /*
2543 * Let's consume
2544 */
2545 pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2546 imask |= IEVENT_RXF;
2547 }
2548
2549 if (soft_flags & SOFT_TXERROR) {
2550 pq3etsec_tx_error(sc);
2551 imask |= IEVENT_TXE;
2552 }
2553
2554 if (ifp->if_flags & IFF_RUNNING) {
2555 pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2556 mutex_spin_enter(sc->sc_hwlock);
2557 sc->sc_imask |= imask;
2558 etsec_write(sc, IMASK, sc->sc_imask);
2559 mutex_spin_exit(sc->sc_hwlock);
2560 } else {
2561 KASSERT((soft_flags & SOFT_RXBSY) == 0);
2562 }
2563
2564 mutex_exit(sc->sc_lock);
2565 }
2566
2567 static void
2568 pq3etsec_mii_tick(void *arg)
2569 {
2570 struct pq3etsec_softc * const sc = arg;
2571 mutex_enter(sc->sc_lock);
2572 callout_ack(&sc->sc_mii_callout);
2573 sc->sc_ev_mii_ticks.ev_count++;
2574 #ifdef DEBUG
2575 uint64_t now = mftb();
2576 if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2577 aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2578 __func__, now - sc->sc_mii_last_tick);
2579 callout_stop(&sc->sc_mii_callout);
2580 }
2581 #endif
2582 mii_tick(&sc->sc_mii);
2583 int s = splnet();
2584 if (sc->sc_soft_flags & SOFT_RESET)
2585 softint_schedule(sc->sc_soft_ih);
2586 splx(s);
2587 callout_schedule(&sc->sc_mii_callout, hz);
2588 #ifdef DEBUG
2589 sc->sc_mii_last_tick = now;
2590 #endif
2591 mutex_exit(sc->sc_lock);
2592 }
2593
2594 static void
2595 pq3etsec_set_ic_rx(struct pq3etsec_softc *sc)
2596 {
2597 uint32_t reg;
2598
2599 if (ETSEC_IC_RX_ENABLED(sc)) {
2600 reg = RXIC_ICEN;
2601 reg |= RXIC_ICFT_SET(sc->sc_ic_rx_count);
2602 reg |= RXIC_ICTT_SET(sc->sc_ic_rx_time);
2603 } else {
2604 /* Disable RX interrupt coalescing */
2605 reg = 0;
2606 }
2607
2608 etsec_write(sc, RXIC, reg);
2609 }
2610
2611 static void
2612 pq3etsec_set_ic_tx(struct pq3etsec_softc *sc)
2613 {
2614 uint32_t reg;
2615
2616 if (ETSEC_IC_TX_ENABLED(sc)) {
2617 reg = TXIC_ICEN;
2618 reg |= TXIC_ICFT_SET(sc->sc_ic_tx_count);
2619 reg |= TXIC_ICTT_SET(sc->sc_ic_tx_time);
2620 } else {
2621 /* Disable TX interrupt coalescing */
2622 reg = 0;
2623 }
2624
2625 etsec_write(sc, TXIC, reg);
2626 }
2627
2628 /*
2629 * sysctl
2630 */
2631 static int
2632 pq3etsec_sysctl_ic_time_helper(SYSCTLFN_ARGS, int *valuep)
2633 {
2634 struct sysctlnode node = *rnode;
2635 struct pq3etsec_softc *sc = rnode->sysctl_data;
2636 int value = *valuep;
2637 int error;
2638
2639 node.sysctl_data = &value;
2640 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2641 if (error != 0 || newp == NULL)
2642 return error;
2643
2644 if (value < 0 || value > 65535)
2645 return EINVAL;
2646
2647 mutex_enter(sc->sc_lock);
2648 *valuep = value;
2649 if (valuep == &sc->sc_ic_rx_time)
2650 pq3etsec_set_ic_rx(sc);
2651 else
2652 pq3etsec_set_ic_tx(sc);
2653 mutex_exit(sc->sc_lock);
2654
2655 return 0;
2656 }
2657
2658 static int
2659 pq3etsec_sysctl_ic_count_helper(SYSCTLFN_ARGS, int *valuep)
2660 {
2661 struct sysctlnode node = *rnode;
2662 struct pq3etsec_softc *sc = rnode->sysctl_data;
2663 int value = *valuep;
2664 int error;
2665
2666 node.sysctl_data = &value;
2667 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2668 if (error != 0 || newp == NULL)
2669 return error;
2670
2671 if (value < 0 || value > 255)
2672 return EINVAL;
2673
2674 mutex_enter(sc->sc_lock);
2675 *valuep = value;
2676 if (valuep == &sc->sc_ic_rx_count)
2677 pq3etsec_set_ic_rx(sc);
2678 else
2679 pq3etsec_set_ic_tx(sc);
2680 mutex_exit(sc->sc_lock);
2681
2682 return 0;
2683 }
2684
2685 static int
2686 pq3etsec_sysctl_ic_rx_time_helper(SYSCTLFN_ARGS)
2687 {
2688 struct pq3etsec_softc *sc = rnode->sysctl_data;
2689
2690 return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2691 &sc->sc_ic_rx_time);
2692 }
2693
2694 static int
2695 pq3etsec_sysctl_ic_rx_count_helper(SYSCTLFN_ARGS)
2696 {
2697 struct pq3etsec_softc *sc = rnode->sysctl_data;
2698
2699 return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2700 &sc->sc_ic_rx_count);
2701 }
2702
2703 static int
2704 pq3etsec_sysctl_ic_tx_time_helper(SYSCTLFN_ARGS)
2705 {
2706 struct pq3etsec_softc *sc = rnode->sysctl_data;
2707
2708 return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2709 &sc->sc_ic_tx_time);
2710 }
2711
2712 static int
2713 pq3etsec_sysctl_ic_tx_count_helper(SYSCTLFN_ARGS)
2714 {
2715 struct pq3etsec_softc *sc = rnode->sysctl_data;
2716
2717 return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2718 &sc->sc_ic_tx_count);
2719 }
2720
2721 static void pq3etsec_sysctl_setup(struct sysctllog **clog,
2722 struct pq3etsec_softc *sc)
2723 {
2724 const struct sysctlnode *cnode, *rnode;
2725
2726 if (sysctl_createv(clog, 0, NULL, &rnode,
2727 CTLFLAG_PERMANENT,
2728 CTLTYPE_NODE, device_xname(sc->sc_dev),
2729 SYSCTL_DESCR("TSEC interface"),
2730 NULL, 0, NULL, 0,
2731 CTL_HW, CTL_CREATE, CTL_EOL) != 0)
2732 goto bad;
2733
2734 if (sysctl_createv(clog, 0, &rnode, &rnode,
2735 CTLFLAG_PERMANENT,
2736 CTLTYPE_NODE, "int_coal",
2737 SYSCTL_DESCR("Interrupts coalescing"),
2738 NULL, 0, NULL, 0,
2739 CTL_CREATE, CTL_EOL) != 0)
2740 goto bad;
2741
2742 if (sysctl_createv(clog, 0, &rnode, &cnode,
2743 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2744 CTLTYPE_INT, "rx_time",
2745 SYSCTL_DESCR("RX time threshold (0-65535)"),
2746 pq3etsec_sysctl_ic_rx_time_helper, 0, (void *)sc, 0,
2747 CTL_CREATE, CTL_EOL) != 0)
2748 goto bad;
2749
2750 if (sysctl_createv(clog, 0, &rnode, &cnode,
2751 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2752 CTLTYPE_INT, "rx_count",
2753 SYSCTL_DESCR("RX frame count threshold (0-255)"),
2754 pq3etsec_sysctl_ic_rx_count_helper, 0, (void *)sc, 0,
2755 CTL_CREATE, CTL_EOL) != 0)
2756 goto bad;
2757
2758 if (sysctl_createv(clog, 0, &rnode, &cnode,
2759 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2760 CTLTYPE_INT, "tx_time",
2761 SYSCTL_DESCR("TX time threshold (0-65535)"),
2762 pq3etsec_sysctl_ic_tx_time_helper, 0, (void *)sc, 0,
2763 CTL_CREATE, CTL_EOL) != 0)
2764 goto bad;
2765
2766 if (sysctl_createv(clog, 0, &rnode, &cnode,
2767 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2768 CTLTYPE_INT, "tx_count",
2769 SYSCTL_DESCR("TX frame count threshold (0-255)"),
2770 pq3etsec_sysctl_ic_tx_count_helper, 0, (void *)sc, 0,
2771 CTL_CREATE, CTL_EOL) != 0)
2772 goto bad;
2773
2774 return;
2775
2776 bad:
2777 aprint_error_dev(sc->sc_dev, "could not attach sysctl nodes\n");
2778 }
2779