pq3etsec.c revision 1.50.2.1 1 /* $NetBSD: pq3etsec.c,v 1.50.2.1 2021/04/03 22:28:34 thorpej Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: pq3etsec.c,v 1.50.2.1 2021/04/03 22:28:34 thorpej Exp $");
39
40 #ifdef _KERNEL_OPT
41 #include "opt_inet.h"
42 #include "opt_mpc85xx.h"
43 #include "opt_multiprocessor.h"
44 #include "opt_net_mpsafe.h"
45 #endif
46
47 #include <sys/param.h>
48 #include <sys/cpu.h>
49 #include <sys/device.h>
50 #include <sys/mbuf.h>
51 #include <sys/ioctl.h>
52 #include <sys/intr.h>
53 #include <sys/bus.h>
54 #include <sys/kernel.h>
55 #include <sys/kmem.h>
56 #include <sys/proc.h>
57 #include <sys/atomic.h>
58 #include <sys/callout.h>
59 #include <sys/sysctl.h>
60
61 #include <sys/rndsource.h>
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_ether.h>
66 #include <net/if_media.h>
67 #include <net/bpf.h>
68
69 #include <dev/mii/miivar.h>
70
71 #ifdef INET
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/ip.h>
75 #include <netinet/in_offload.h>
76 #endif /* INET */
77 #ifdef INET6
78 #include <netinet6/in6.h>
79 #include <netinet/ip6.h>
80 #endif
81 #include <netinet6/in6_offload.h>
82
83 #include <powerpc/spr.h>
84 #include <powerpc/booke/spr.h>
85 #include <powerpc/booke/cpuvar.h>
86 #include <powerpc/booke/e500var.h>
87 #include <powerpc/booke/e500reg.h>
88 #include <powerpc/booke/etsecreg.h>
89
90 #define M_HASFCB M_LINK2 /* tx packet has FCB prepended */
91
92 #define ETSEC_MAXTXMBUFS 30
93 #define ETSEC_NTXSEGS 30
94 #define ETSEC_MAXRXMBUFS 511
95 #define ETSEC_MINRXMBUFS 32
96 #define ETSEC_NRXSEGS 1
97
98 #define IFCAP_RCTRL_IPCSEN IFCAP_CSUM_IPv4_Rx
99 #define IFCAP_RCTRL_TUCSEN (IFCAP_CSUM_TCPv4_Rx \
100 | IFCAP_CSUM_UDPv4_Rx \
101 | IFCAP_CSUM_TCPv6_Rx \
102 | IFCAP_CSUM_UDPv6_Rx)
103
104 #define IFCAP_TCTRL_IPCSEN IFCAP_CSUM_IPv4_Tx
105 #define IFCAP_TCTRL_TUCSEN (IFCAP_CSUM_TCPv4_Tx \
106 | IFCAP_CSUM_UDPv4_Tx \
107 | IFCAP_CSUM_TCPv6_Tx \
108 | IFCAP_CSUM_UDPv6_Tx)
109
110 #define IFCAP_ETSEC (IFCAP_RCTRL_IPCSEN | IFCAP_RCTRL_TUCSEN \
111 | IFCAP_TCTRL_IPCSEN | IFCAP_TCTRL_TUCSEN)
112
113 #define M_CSUM_IP (M_CSUM_CIP | M_CSUM_CTU)
114 #define M_CSUM_IP6 (M_CSUM_TCPv6 | M_CSUM_UDPv6)
115 #define M_CSUM_TUP (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)
116 #define M_CSUM_UDP (M_CSUM_UDPv4 | M_CSUM_UDPv6)
117 #define M_CSUM_IP4 (M_CSUM_IPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4)
118 #define M_CSUM_CIP (M_CSUM_IPv4)
119 #define M_CSUM_CTU (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)
120
121 struct pq3etsec_txqueue {
122 bus_dmamap_t txq_descmap;
123 volatile struct txbd *txq_consumer;
124 volatile struct txbd *txq_producer;
125 volatile struct txbd *txq_first;
126 volatile struct txbd *txq_last;
127 struct ifqueue txq_mbufs;
128 struct mbuf *txq_next;
129 #ifdef ETSEC_DEBUG
130 struct mbuf *txq_lmbufs[512];
131 #endif
132 uint32_t txq_qmask;
133 uint32_t txq_free;
134 uint32_t txq_threshold;
135 uint32_t txq_lastintr;
136 bus_size_t txq_reg_tbase;
137 bus_dma_segment_t txq_descmap_seg;
138 };
139
140 struct pq3etsec_rxqueue {
141 bus_dmamap_t rxq_descmap;
142 volatile struct rxbd *rxq_consumer;
143 volatile struct rxbd *rxq_producer;
144 volatile struct rxbd *rxq_first;
145 volatile struct rxbd *rxq_last;
146 struct mbuf *rxq_mhead;
147 struct mbuf **rxq_mtail;
148 struct mbuf *rxq_mconsumer;
149 #ifdef ETSEC_DEBUG
150 struct mbuf *rxq_mbufs[512];
151 #endif
152 uint32_t rxq_qmask;
153 uint32_t rxq_inuse;
154 uint32_t rxq_threshold;
155 bus_size_t rxq_reg_rbase;
156 bus_size_t rxq_reg_rbptr;
157 bus_dma_segment_t rxq_descmap_seg;
158 };
159
160 struct pq3etsec_mapcache {
161 u_int dmc_nmaps;
162 u_int dmc_maxseg;
163 u_int dmc_maxmaps;
164 u_int dmc_maxmapsize;
165 bus_dmamap_t dmc_maps[0];
166 };
167
168 struct pq3etsec_softc {
169 device_t sc_dev;
170 device_t sc_mdio_dev;
171 struct ethercom sc_ec;
172 #define sc_if sc_ec.ec_if
173 struct mii_data sc_mii;
174 bus_space_tag_t sc_bst;
175 bus_space_handle_t sc_bsh;
176 bus_space_handle_t sc_mdio_bsh;
177 bus_dma_tag_t sc_dmat;
178 int sc_phy_addr;
179 prop_dictionary_t sc_intrmap;
180 uint32_t sc_intrmask;
181
182 uint32_t sc_soft_flags;
183 #define SOFT_RESET 0x0001
184 #define SOFT_RXINTR 0x0010
185 #define SOFT_RXBSY 0x0020
186 #define SOFT_TXINTR 0x0100
187 #define SOFT_TXERROR 0x0200
188
189 struct pq3etsec_txqueue sc_txq;
190 struct pq3etsec_rxqueue sc_rxq;
191 uint32_t sc_txerrors;
192 uint32_t sc_rxerrors;
193
194 size_t sc_rx_adjlen;
195
196 /*
197 * Copies of various ETSEC registers.
198 */
199 uint32_t sc_imask;
200 uint32_t sc_maccfg1;
201 uint32_t sc_maccfg2;
202 uint32_t sc_maxfrm;
203 uint32_t sc_ecntrl;
204 uint32_t sc_dmactrl;
205 uint32_t sc_macstnaddr1;
206 uint32_t sc_macstnaddr2;
207 uint32_t sc_tctrl;
208 uint32_t sc_rctrl;
209 uint32_t sc_gaddr[16];
210 uint64_t sc_macaddrs[15];
211
212 void *sc_tx_ih;
213 void *sc_rx_ih;
214 void *sc_error_ih;
215 void *sc_soft_ih;
216
217 kmutex_t *sc_lock;
218 kmutex_t *sc_hwlock;
219
220 struct evcnt sc_ev_tx_stall;
221 struct evcnt sc_ev_tx_intr;
222 struct evcnt sc_ev_rx_stall;
223 struct evcnt sc_ev_rx_intr;
224 struct evcnt sc_ev_error_intr;
225 struct evcnt sc_ev_soft_intr;
226 struct evcnt sc_ev_tx_pause;
227 struct evcnt sc_ev_rx_pause;
228 struct evcnt sc_ev_mii_ticks;
229
230 struct callout sc_mii_callout;
231 uint64_t sc_mii_last_tick;
232
233 struct ifqueue sc_rx_bufcache;
234 struct pq3etsec_mapcache *sc_rx_mapcache;
235 struct pq3etsec_mapcache *sc_tx_mapcache;
236
237 /* Interrupt Coalescing parameters */
238 int sc_ic_rx_time;
239 int sc_ic_rx_count;
240 int sc_ic_tx_time;
241 int sc_ic_tx_count;
242
243 krndsource_t rnd_source;
244 };
245
246 #define ETSEC_IC_RX_ENABLED(sc) \
247 ((sc)->sc_ic_rx_time != 0 && (sc)->sc_ic_rx_count != 0)
248 #define ETSEC_IC_TX_ENABLED(sc) \
249 ((sc)->sc_ic_tx_time != 0 && (sc)->sc_ic_tx_count != 0)
250
251 struct pq3mdio_softc {
252 device_t mdio_dev;
253
254 kmutex_t *mdio_lock;
255
256 bus_space_tag_t mdio_bst;
257 bus_space_handle_t mdio_bsh;
258 };
259
260 static int pq3etsec_match(device_t, cfdata_t, void *);
261 static void pq3etsec_attach(device_t, device_t, void *);
262
263 static int pq3mdio_match(device_t, cfdata_t, void *);
264 static void pq3mdio_attach(device_t, device_t, void *);
265
266 static void pq3etsec_ifstart(struct ifnet *);
267 static void pq3etsec_ifwatchdog(struct ifnet *);
268 static int pq3etsec_ifinit(struct ifnet *);
269 static void pq3etsec_ifstop(struct ifnet *, int);
270 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
271
272 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
273 struct pq3etsec_mapcache **, size_t, size_t, size_t);
274 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
275 struct pq3etsec_mapcache *);
276 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
277 struct pq3etsec_mapcache *);
278 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
279 struct pq3etsec_mapcache *, bus_dmamap_t);
280
281 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
282 struct pq3etsec_txqueue *, u_int);
283 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
284 struct pq3etsec_txqueue *);
285 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
286 struct pq3etsec_txqueue *);
287 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
288 struct pq3etsec_txqueue *);
289 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
290 struct pq3etsec_txqueue *, struct mbuf *m);
291 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
292 struct pq3etsec_txqueue *);
293
294 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
295 struct pq3etsec_rxqueue *, u_int);
296 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
297 struct pq3etsec_rxqueue *);
298 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
299 struct pq3etsec_rxqueue *, bool);
300 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
301 struct pq3etsec_rxqueue *);
302
303 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
304
305 static void pq3etsec_mii_tick(void *);
306 static int pq3etsec_rx_intr(void *);
307 static int pq3etsec_tx_intr(void *);
308 static int pq3etsec_error_intr(void *);
309 static void pq3etsec_soft_intr(void *);
310
311 static void pq3etsec_set_ic_rx(struct pq3etsec_softc *);
312 static void pq3etsec_set_ic_tx(struct pq3etsec_softc *);
313
314 static void pq3etsec_sysctl_setup(struct sysctllog **, struct pq3etsec_softc *);
315
316 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
317 pq3etsec_match, pq3etsec_attach, NULL, NULL);
318
319 CFATTACH_DECL_NEW(pq3mdio_tsec, sizeof(struct pq3mdio_softc),
320 pq3mdio_match, pq3mdio_attach, NULL, NULL);
321
322 CFATTACH_DECL_NEW(pq3mdio_cpunode, sizeof(struct pq3mdio_softc),
323 pq3mdio_match, pq3mdio_attach, NULL, NULL);
324
325 static inline uint32_t
326 etsec_mdio_read(struct pq3mdio_softc *mdio, bus_size_t off)
327 {
328 return bus_space_read_4(mdio->mdio_bst, mdio->mdio_bsh, off);
329 }
330
331 static inline void
332 etsec_mdio_write(struct pq3mdio_softc *mdio, bus_size_t off, uint32_t data)
333 {
334 bus_space_write_4(mdio->mdio_bst, mdio->mdio_bsh, off, data);
335 }
336
337 static inline uint32_t
338 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
339 {
340 return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
341 }
342
343 static int
344 pq3mdio_find(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
345 {
346 return strcmp(cf->cf_name, "mdio") == 0;
347 }
348
349 static int
350 pq3mdio_match(device_t parent, cfdata_t cf, void *aux)
351 {
352 const uint16_t svr = (mfspr(SPR_SVR) & ~0x80000) >> 16;
353 const bool p1025_p = (svr == (SVR_P1025v1 >> 16)
354 || svr == (SVR_P1016v1 >> 16));
355
356 if (device_is_a(parent, "cpunode")) {
357 if (!p1025_p
358 || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
359 return 0;
360
361 return 1;
362 }
363
364 if (device_is_a(parent, "tsec")) {
365 if (p1025_p
366 || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
367 return 0;
368
369 return 1;
370 }
371
372 return 0;
373 }
374
375 static void
376 pq3mdio_attach(device_t parent, device_t self, void *aux)
377 {
378 struct pq3mdio_softc * const mdio = device_private(self);
379 struct cpunode_attach_args * const cna = aux;
380 struct cpunode_locators * const cnl = &cna->cna_locs;
381
382 mdio->mdio_dev = self;
383 mdio->mdio_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
384
385 if (device_is_a(parent, "cpunode")) {
386 struct cpunode_softc * const psc = device_private(parent);
387 psc->sc_children |= cna->cna_childmask;
388
389 mdio->mdio_bst = cna->cna_memt;
390 if (bus_space_map(mdio->mdio_bst, cnl->cnl_addr,
391 cnl->cnl_size, 0, &mdio->mdio_bsh) != 0) {
392 aprint_error(": error mapping registers @ %#x\n",
393 cnl->cnl_addr);
394 return;
395 }
396 } else {
397 struct pq3etsec_softc * const sc = device_private(parent);
398
399 KASSERT(device_is_a(parent, "tsec"));
400 KASSERTMSG(cnl->cnl_addr == ETSEC1_BASE
401 || cnl->cnl_addr == ETSEC2_BASE
402 || cnl->cnl_addr == ETSEC3_BASE
403 || cnl->cnl_addr == ETSEC4_BASE,
404 "unknown tsec addr %x", cnl->cnl_addr);
405
406 mdio->mdio_bst = sc->sc_bst;
407 mdio->mdio_bsh = sc->sc_bsh;
408 }
409
410 aprint_normal("\n");
411 }
412
413 static int
414 pq3mdio_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
415 {
416 struct pq3mdio_softc * const mdio = device_private(self);
417 uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
418
419 mutex_enter(mdio->mdio_lock);
420
421 etsec_mdio_write(mdio, MIIMADD,
422 __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
423
424 etsec_mdio_write(mdio, MIIMCOM, 0); /* clear any past bits */
425 etsec_mdio_write(mdio, MIIMCOM, MIIMCOM_READ);
426
427 while (etsec_mdio_read(mdio, MIIMIND) != 0) {
428 delay(1);
429 }
430 *val = etsec_mdio_read(mdio, MIIMSTAT) &0xffff;
431
432 if (miimcom == MIIMCOM_SCAN)
433 etsec_mdio_write(mdio, MIIMCOM, miimcom);
434
435 #if 0
436 aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
437 __func__, phy, reg, data);
438 #endif
439 mutex_exit(mdio->mdio_lock);
440 return 0;
441 }
442
443 static int
444 pq3mdio_mii_writereg(device_t self, int phy, int reg, uint16_t data)
445 {
446 struct pq3mdio_softc * const mdio = device_private(self);
447 uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
448
449 #if 0
450 aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
451 __func__, phy, reg, data);
452 #endif
453
454 mutex_enter(mdio->mdio_lock);
455
456 etsec_mdio_write(mdio, MIIMADD,
457 __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
458 etsec_mdio_write(mdio, MIIMCOM, 0); /* clear any past bits */
459 etsec_mdio_write(mdio, MIIMCON, data);
460
461 int timo = 1000; /* 1ms */
462 while ((etsec_mdio_read(mdio, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
463 delay(1);
464 }
465
466 if (miimcom == MIIMCOM_SCAN)
467 etsec_mdio_write(mdio, MIIMCOM, miimcom);
468
469 mutex_exit(mdio->mdio_lock);
470
471 return 0;
472 }
473
474 static inline void
475 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
476 {
477 bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
478 }
479
480 static void
481 pq3etsec_mii_statchg(struct ifnet *ifp)
482 {
483 struct pq3etsec_softc * const sc = ifp->if_softc;
484 struct mii_data * const mii = &sc->sc_mii;
485
486 uint32_t maccfg1 = sc->sc_maccfg1;
487 uint32_t maccfg2 = sc->sc_maccfg2;
488 uint32_t ecntrl = sc->sc_ecntrl;
489
490 maccfg1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
491 maccfg2 &= ~(MACCFG2_IFMODE | MACCFG2_FD);
492
493 if (sc->sc_mii.mii_media_active & IFM_FDX) {
494 maccfg2 |= MACCFG2_FD;
495 }
496
497 /*
498 * Now deal with the flow control bits.
499 */
500 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
501 && (mii->mii_media_active & IFM_ETH_FMASK)) {
502 if (mii->mii_media_active & IFM_ETH_RXPAUSE)
503 maccfg1 |= MACCFG1_RX_FLOW;
504 if (mii->mii_media_active & IFM_ETH_TXPAUSE)
505 maccfg1 |= MACCFG1_TX_FLOW;
506 }
507
508 /*
509 * Now deal with the speed.
510 */
511 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
512 maccfg2 |= MACCFG2_IFMODE_GMII;
513 } else {
514 maccfg2 |= MACCFG2_IFMODE_MII;
515 ecntrl &= ~ECNTRL_R100M;
516 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
517 ecntrl |= ECNTRL_R100M;
518 }
519 }
520
521 /*
522 * If things are different, re-init things.
523 */
524 if (maccfg1 != sc->sc_maccfg1
525 || maccfg2 != sc->sc_maccfg2
526 || ecntrl != sc->sc_ecntrl) {
527 if (sc->sc_if.if_flags & IFF_RUNNING)
528 atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
529 sc->sc_maccfg1 = maccfg1;
530 sc->sc_maccfg2 = maccfg2;
531 sc->sc_ecntrl = ecntrl;
532 }
533 }
534
535 #if 0
536 static void
537 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
538 {
539 struct pq3etsec_softc * const sc = ifp->if_softc;
540
541 mii_pollstat(&sc->sc_mii);
542 ether_mediastatus(ifp, ifmr);
543 ifmr->ifm_status = sc->sc_mii.mii_media_status;
544 ifmr->ifm_active = sc->sc_mii.mii_media_active;
545 }
546
547 static int
548 pq3etsec_mediachange(struct ifnet *ifp)
549 {
550 struct pq3etsec_softc * const sc = ifp->if_softc;
551
552 if ((ifp->if_flags & IFF_UP) == 0)
553 return 0;
554
555 int rv = mii_mediachg(&sc->sc_mii);
556 return (rv == ENXIO) ? 0 : rv;
557 }
558 #endif
559
560 static int
561 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
562 {
563
564 if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
565 return 0;
566
567 return 1;
568 }
569
570 static void
571 pq3etsec_attach(device_t parent, device_t self, void *aux)
572 {
573 struct cpunode_softc * const psc = device_private(parent);
574 struct pq3etsec_softc * const sc = device_private(self);
575 struct mii_data * const mii = &sc->sc_mii;
576 struct cpunode_attach_args * const cna = aux;
577 struct cpunode_locators * const cnl = &cna->cna_locs;
578 cfdata_t cf = device_cfdata(self);
579 int error;
580
581 psc->sc_children |= cna->cna_childmask;
582 sc->sc_dev = self;
583 sc->sc_bst = cna->cna_memt;
584 sc->sc_dmat = &booke_bus_dma_tag;
585
586 /*
587 * Pull out the mdio bus and phy we are supposed to use.
588 */
589 const int mdio = cf->cf_loc[CPUNODECF_MDIO];
590 const int phy = cf->cf_loc[CPUNODECF_PHY];
591 if (mdio != CPUNODECF_MDIO_DEFAULT)
592 aprint_normal(" mdio %d", mdio);
593
594 /*
595 * See if the phy is in the config file...
596 */
597 if (phy != CPUNODECF_PHY_DEFAULT) {
598 sc->sc_phy_addr = phy;
599 } else {
600 unsigned char prop_name[20];
601 snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
602 cnl->cnl_instance);
603 sc->sc_phy_addr = board_info_get_number(prop_name);
604 }
605 if (sc->sc_phy_addr != MII_PHY_ANY)
606 aprint_normal(" phy %d", sc->sc_phy_addr);
607
608 error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
609 &sc->sc_bsh);
610 if (error) {
611 aprint_error(": error mapping registers: %d\n", error);
612 return;
613 }
614
615 /*
616 * Assume firmware has aready set the mac address and fetch it
617 * before we reinit it.
618 */
619 sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
620 sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
621 sc->sc_rctrl = RCTRL_DEFAULT;
622 sc->sc_ecntrl = etsec_read(sc, ECNTRL);
623 sc->sc_maccfg1 = etsec_read(sc, MACCFG1);
624 sc->sc_maccfg2 = etsec_read(sc, MACCFG2) | MACCFG2_DEFAULT;
625
626 if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
627 size_t len;
628 const uint8_t *mac_addr =
629 board_info_get_data("tsec-mac-addr-base", &len);
630 KASSERT(len == ETHER_ADDR_LEN);
631 sc->sc_macstnaddr2 =
632 (mac_addr[1] << 24)
633 | (mac_addr[0] << 16);
634 sc->sc_macstnaddr1 =
635 ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
636 | (mac_addr[4] << 16)
637 | (mac_addr[3] << 8)
638 | (mac_addr[2] << 0);
639 #if 0
640 aprint_error(": mac-address unknown\n");
641 return;
642 #endif
643 }
644
645 sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
646 sc->sc_hwlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_VM);
647
648 callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
649 callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
650
651 /* Disable interrupts */
652 etsec_write(sc, IMASK, 0);
653
654 error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
655 if (error) {
656 aprint_error(": failed to init rxq: %d\n", error);
657 goto fail_1;
658 }
659
660 error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
661 if (error) {
662 aprint_error(": failed to init txq: %d\n", error);
663 goto fail_2;
664 }
665
666 error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
667 ETSEC_MAXRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
668 if (error) {
669 aprint_error(": failed to allocate rx dmamaps: %d\n", error);
670 goto fail_3;
671 }
672
673 error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
674 ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
675 if (error) {
676 aprint_error(": failed to allocate tx dmamaps: %d\n", error);
677 goto fail_4;
678 }
679
680 sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
681 pq3etsec_tx_intr, sc);
682 if (sc->sc_tx_ih == NULL) {
683 aprint_error(": failed to establish tx interrupt: %d\n",
684 cnl->cnl_intrs[0]);
685 goto fail_5;
686 }
687
688 sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
689 pq3etsec_rx_intr, sc);
690 if (sc->sc_rx_ih == NULL) {
691 aprint_error(": failed to establish rx interrupt: %d\n",
692 cnl->cnl_intrs[1]);
693 goto fail_6;
694 }
695
696 sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
697 pq3etsec_error_intr, sc);
698 if (sc->sc_error_ih == NULL) {
699 aprint_error(": failed to establish error interrupt: %d\n",
700 cnl->cnl_intrs[2]);
701 goto fail_7;
702 }
703
704 int softint_flags = SOFTINT_NET;
705 #if !defined(MULTIPROCESSOR) || defined(NET_MPSAFE)
706 softint_flags |= SOFTINT_MPSAFE;
707 #endif /* !MULTIPROCESSOR || NET_MPSAFE */
708 sc->sc_soft_ih = softint_establish(softint_flags,
709 pq3etsec_soft_intr, sc);
710 if (sc->sc_soft_ih == NULL) {
711 aprint_error(": failed to establish soft interrupt\n");
712 goto fail_8;
713 }
714
715 /*
716 * If there was no MDIO
717 */
718 if (mdio == CPUNODECF_MDIO_DEFAULT) {
719 aprint_normal("\n");
720 cfdata_t mdio_cf = config_search_ia(pq3mdio_find, self, NULL, cna);
721 if (mdio_cf != NULL) {
722 sc->sc_mdio_dev = config_attach(self, mdio_cf, cna, NULL);
723 }
724 } else {
725 sc->sc_mdio_dev = device_find_by_driver_unit("mdio", mdio);
726 if (sc->sc_mdio_dev == NULL) {
727 aprint_error(": failed to locate mdio device\n");
728 goto fail_9;
729 }
730 aprint_normal("\n");
731 }
732
733 etsec_write(sc, ATTR, ATTR_DEFAULT);
734 etsec_write(sc, ATTRELI, ATTRELI_DEFAULT);
735
736 /* Enable interrupt coalesing */
737 sc->sc_ic_rx_time = 768;
738 sc->sc_ic_rx_count = 16;
739 sc->sc_ic_tx_time = 768;
740 sc->sc_ic_tx_count = 16;
741 pq3etsec_set_ic_rx(sc);
742 pq3etsec_set_ic_tx(sc);
743
744 char enaddr[ETHER_ADDR_LEN] = {
745 [0] = sc->sc_macstnaddr2 >> 16,
746 [1] = sc->sc_macstnaddr2 >> 24,
747 [2] = sc->sc_macstnaddr1 >> 0,
748 [3] = sc->sc_macstnaddr1 >> 8,
749 [4] = sc->sc_macstnaddr1 >> 16,
750 [5] = sc->sc_macstnaddr1 >> 24,
751 };
752 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
753 ether_sprintf(enaddr));
754
755 const char * const xname = device_xname(sc->sc_dev);
756 struct ethercom * const ec = &sc->sc_ec;
757 struct ifnet * const ifp = &ec->ec_if;
758
759 ec->ec_mii = mii;
760
761 mii->mii_ifp = ifp;
762 mii->mii_readreg = pq3mdio_mii_readreg;
763 mii->mii_writereg = pq3mdio_mii_writereg;
764 mii->mii_statchg = pq3etsec_mii_statchg;
765
766 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
767
768 if (sc->sc_mdio_dev != NULL && sc->sc_phy_addr < 32) {
769 mii_attach(sc->sc_mdio_dev, mii, 0xffffffff,
770 sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
771
772 if (LIST_FIRST(&mii->mii_phys) == NULL) {
773 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE,
774 0, NULL);
775 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
776 } else {
777 callout_schedule(&sc->sc_mii_callout, hz);
778 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
779 }
780 } else {
781 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_1000_T | IFM_FDX,
782 0, NULL);
783 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_1000_T | IFM_FDX);
784 }
785
786 ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
787 | ETHERCAP_JUMBO_MTU;
788 ec->ec_capenable = ETHERCAP_VLAN_HWTAGGING;
789
790 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
791 ifp->if_softc = sc;
792 ifp->if_capabilities = IFCAP_ETSEC;
793 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
794 ifp->if_ioctl = pq3etsec_ifioctl;
795 ifp->if_start = pq3etsec_ifstart;
796 ifp->if_watchdog = pq3etsec_ifwatchdog;
797 ifp->if_init = pq3etsec_ifinit;
798 ifp->if_stop = pq3etsec_ifstop;
799 IFQ_SET_READY(&ifp->if_snd);
800
801 /*
802 * Attach the interface.
803 */
804 error = if_initialize(ifp);
805 if (error != 0) {
806 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
807 error);
808 goto fail_10;
809 }
810 pq3etsec_sysctl_setup(NULL, sc);
811 if_attach(ifp);
812 if_deferred_start_init(ifp, NULL);
813 ether_ifattach(ifp, enaddr);
814
815 rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET,
816 RND_FLAG_DEFAULT);
817
818 pq3etsec_ifstop(ifp, true);
819
820 evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
821 NULL, xname, "rx stall");
822 evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
823 NULL, xname, "tx stall");
824 evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
825 NULL, xname, "tx intr");
826 evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
827 NULL, xname, "rx intr");
828 evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
829 NULL, xname, "error intr");
830 evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
831 NULL, xname, "soft intr");
832 evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
833 NULL, xname, "tx pause");
834 evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
835 NULL, xname, "rx pause");
836 evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
837 NULL, xname, "mii ticks");
838 return;
839
840 fail_10:
841 ifmedia_removeall(&mii->mii_media);
842 mii_detach(mii, sc->sc_phy_addr, MII_OFFSET_ANY);
843 fail_9:
844 softint_disestablish(sc->sc_soft_ih);
845 fail_8:
846 intr_disestablish(sc->sc_error_ih);
847 fail_7:
848 intr_disestablish(sc->sc_rx_ih);
849 fail_6:
850 intr_disestablish(sc->sc_tx_ih);
851 fail_5:
852 pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
853 fail_4:
854 pq3etsec_mapcache_destroy(sc, sc->sc_rx_mapcache);
855 fail_3:
856 #if 0 /* notyet */
857 pq3etsec_txq_detach(sc);
858 #endif
859 fail_2:
860 #if 0 /* notyet */
861 pq3etsec_rxq_detach(sc);
862 #endif
863 fail_1:
864 callout_destroy(&sc->sc_mii_callout);
865 mutex_obj_free(sc->sc_lock);
866 mutex_obj_free(sc->sc_hwlock);
867 bus_space_unmap(sc->sc_bst, sc->sc_bsh, cnl->cnl_size);
868 }
869
870 static uint64_t
871 pq3etsec_macaddr_create(const uint8_t *lladdr)
872 {
873 uint64_t macaddr = 0;
874
875 lladdr += ETHER_ADDR_LEN;
876 for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
877 macaddr = (macaddr << 8) | *--lladdr;
878 }
879 return macaddr << 16;
880 }
881
882 static int
883 pq3etsec_ifinit(struct ifnet *ifp)
884 {
885 struct pq3etsec_softc * const sc = ifp->if_softc;
886 int error = 0;
887
888 sc->sc_maxfrm = uimax(ifp->if_mtu + 32, MCLBYTES);
889 if (ifp->if_mtu > ETHERMTU_JUMBO)
890 return error;
891
892 KASSERT(ifp->if_flags & IFF_UP);
893
894 /*
895 * Stop the interface (steps 1 to 4 in the Soft Reset and
896 * Reconfigurating Procedure.
897 */
898 pq3etsec_ifstop(ifp, 0);
899
900 /*
901 * If our frame size has changed (or it's our first time through)
902 * destroy the existing transmit mapcache.
903 */
904 if (sc->sc_tx_mapcache != NULL
905 && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
906 pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
907 sc->sc_tx_mapcache = NULL;
908 }
909
910 if (sc->sc_tx_mapcache == NULL) {
911 error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
912 ETSEC_MAXTXMBUFS, sc->sc_maxfrm, ETSEC_NTXSEGS);
913 if (error)
914 return error;
915 }
916
917 sc->sc_ev_mii_ticks.ev_count++;
918 mii_tick(&sc->sc_mii);
919
920 if (ifp->if_flags & IFF_PROMISC) {
921 sc->sc_rctrl |= RCTRL_PROM;
922 } else {
923 sc->sc_rctrl &= ~RCTRL_PROM;
924 }
925
926 uint32_t rctrl_prsdep = 0;
927 sc->sc_rctrl &=
928 ~(RCTRL_IPCSEN | RCTRL_TUCSEN | RCTRL_VLEX | RCTRL_PRSDEP);
929 if (VLAN_ATTACHED(&sc->sc_ec)) {
930 sc->sc_rctrl |= RCTRL_VLEX;
931 rctrl_prsdep = RCTRL_PRSDEP_L2;
932 }
933 if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
934 sc->sc_rctrl |= RCTRL_IPCSEN;
935 rctrl_prsdep = RCTRL_PRSDEP_L3;
936 }
937 if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
938 sc->sc_rctrl |= RCTRL_TUCSEN;
939 rctrl_prsdep = RCTRL_PRSDEP_L4;
940 }
941 sc->sc_rctrl |= rctrl_prsdep;
942 #if 0
943 if (sc->sc_rctrl
944 & (RCTRL_IPCSEN | RCTRL_TUCSEN | RCTRL_VLEX | RCTRL_PRSDEP))
945 aprint_normal_dev(sc->sc_dev,
946 "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
947 sc->sc_rctrl,
948 __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
949 __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
950 __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
951 __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
952 #endif
953
954 sc->sc_tctrl &= ~(TCTRL_IPCSEN | TCTRL_TUCSEN | TCTRL_VLINS);
955 if (VLAN_ATTACHED(&sc->sc_ec)) /* is this really true */
956 sc->sc_tctrl |= TCTRL_VLINS;
957 if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
958 sc->sc_tctrl |= TCTRL_IPCSEN;
959 if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
960 sc->sc_tctrl |= TCTRL_TUCSEN;
961 #if 0
962 if (sc->sc_tctrl & (TCTRL_IPCSEN | TCTRL_TUCSEN | TCTRL_VLINS))
963 aprint_normal_dev(sc->sc_dev,
964 "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
965 sc->sc_tctrl,
966 __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
967 __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
968 __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
969 #endif
970
971 sc->sc_maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
972
973 const uint64_t macstnaddr =
974 pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
975
976 sc->sc_imask = IEVENT_DPE;
977
978 /* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
979 pq3etsec_rxq_reset(sc, &sc->sc_rxq);
980 pq3etsec_rxq_produce(sc, &sc->sc_rxq); /* fill with rx buffers */
981
982 /* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
983 pq3etsec_txq_reset(sc, &sc->sc_txq);
984
985 /* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
986 KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
987 etsec_write(sc, MAXFRM, sc->sc_maxfrm);
988 etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
989 etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >> 0));
990 etsec_write(sc, MACCFG1, sc->sc_maccfg1);
991 etsec_write(sc, MACCFG2, sc->sc_maccfg2);
992 etsec_write(sc, ECNTRL, sc->sc_ecntrl);
993
994 /* 8. Setup group address hash table (GADDR0-GADDR15) */
995 pq3etsec_mc_setup(sc);
996
997 /* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
998 etsec_write(sc, MRBLR, MCLBYTES);
999
1000 /* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
1001 sc->sc_dmactrl |= DMACTRL_DEFAULT;
1002 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1003
1004 /* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
1005 etsec_write(sc, TQUEUE, TQUEUE_EN0);
1006 sc->sc_imask |= IEVENT_TXF | IEVENT_TXE | IEVENT_TXC;
1007
1008 etsec_write(sc, TCTRL, sc->sc_tctrl); /* for TOE stuff */
1009
1010 /* 12. Enable receive queues in RQUEUE, */
1011 etsec_write(sc, RQUEUE, RQUEUE_EN0 | RQUEUE_EX0);
1012 sc->sc_imask |= IEVENT_RXF | IEVENT_BSY | IEVENT_RXC;
1013
1014 /* and optionally set TOE functionality in RCTRL. */
1015 etsec_write(sc, RCTRL, sc->sc_rctrl);
1016 sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
1017 if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
1018 sc->sc_rx_adjlen += sizeof(struct rxfcb);
1019
1020 /* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
1021 etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
1022
1023 /* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
1024 etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
1025
1026 /* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
1027 sc->sc_dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
1028 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1029
1030 /* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
1031 etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
1032 etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
1033
1034 sc->sc_soft_flags = 0;
1035
1036 etsec_write(sc, IMASK, sc->sc_imask);
1037
1038 ifp->if_flags |= IFF_RUNNING;
1039
1040 return error;
1041 }
1042
1043 static void
1044 pq3etsec_ifstop(struct ifnet *ifp, int disable)
1045 {
1046 struct pq3etsec_softc * const sc = ifp->if_softc;
1047
1048 KASSERT(!cpu_intr_p());
1049 const uint32_t imask_gsc_mask = IEVENT_GTSC | IEVENT_GRSC;
1050 /*
1051 * Clear the GTSC and GRSC from the interrupt mask until
1052 * we are ready for them. Then clear them from IEVENT,
1053 * request the graceful shutdown, and then enable the
1054 * GTSC and GRSC bits in the mask. This should cause the
1055 * error interrupt to fire which will issue a wakeup to
1056 * allow us to resume.
1057 */
1058
1059 /*
1060 * 1. Set GRS/GTS bits in DMACTRL register
1061 */
1062 sc->sc_dmactrl |= DMACTRL_GRS | DMACTRL_GTS;
1063 etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
1064 etsec_write(sc, IEVENT, imask_gsc_mask);
1065 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1066
1067 if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN | MACCFG1_RX_EN)) {
1068 /*
1069 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
1070 */
1071 etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
1072
1073 u_int timo = 1000;
1074 uint32_t ievent = etsec_read(sc, IEVENT);
1075 while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
1076 if (--timo == 0) {
1077 aprint_error_dev(sc->sc_dev,
1078 "WARNING: "
1079 "request to stop failed (IEVENT=%#x)\n",
1080 ievent);
1081 break;
1082 }
1083 delay(10);
1084 ievent = etsec_read(sc, IEVENT);
1085 }
1086 }
1087
1088 /*
1089 * Now reset the controller.
1090 *
1091 * 3. Set SOFT_RESET bit in MACCFG1 register
1092 * 4. Clear SOFT_RESET bit in MACCFG1 register
1093 */
1094 etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
1095 etsec_write(sc, MACCFG1, 0);
1096 etsec_write(sc, IMASK, 0);
1097 etsec_write(sc, IEVENT, ~0);
1098 sc->sc_imask = 0;
1099 ifp->if_flags &= ~IFF_RUNNING;
1100
1101 uint32_t tbipa = etsec_read(sc, TBIPA);
1102 if (tbipa == sc->sc_phy_addr) {
1103 aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
1104 etsec_write(sc, TBIPA, 0x1f);
1105 }
1106 uint32_t miimcfg = etsec_read(sc, MIIMCFG);
1107 etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
1108 etsec_write(sc, MIIMCFG, miimcfg);
1109
1110 /*
1111 * Let's consume any remaing transmitted packets. And if we are
1112 * disabling the interface, purge ourselves of any untransmitted
1113 * packets. But don't consume any received packets, just drop them.
1114 * If we aren't disabling the interface, save the mbufs in the
1115 * receive queue for reuse.
1116 */
1117 pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
1118 pq3etsec_txq_consume(sc, &sc->sc_txq);
1119 if (disable) {
1120 pq3etsec_txq_purge(sc, &sc->sc_txq);
1121 IFQ_PURGE(&ifp->if_snd);
1122 }
1123 }
1124
1125 static void
1126 pq3etsec_ifwatchdog(struct ifnet *ifp)
1127 {
1128 }
1129
1130 static void
1131 pq3etsec_mc_setup(
1132 struct pq3etsec_softc *sc)
1133 {
1134 struct ethercom * const ec = &sc->sc_ec;
1135 struct ifnet * const ifp = &sc->sc_if;
1136 struct ether_multi *enm;
1137 struct ether_multistep step;
1138 uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
1139 const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
1140
1141 memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
1142 memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1143
1144 ifp->if_flags &= ~IFF_ALLMULTI;
1145
1146 ETHER_LOCK(ec);
1147 ETHER_FIRST_MULTI(step, ec, enm);
1148 for (u_int i = 0; enm != NULL; ) {
1149 const char *addr = enm->enm_addrlo;
1150 if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1151 ifp->if_flags |= IFF_ALLMULTI;
1152 memset(gaddr, 0xff, 32 << (crc_shift & 1));
1153 memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1154 break;
1155 }
1156 if ((sc->sc_rctrl & RCTRL_EMEN)
1157 && i < __arraycount(sc->sc_macaddrs)) {
1158 sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
1159 } else {
1160 uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1161 #if 0
1162 printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
1163 ether_sprintf(addr), crc,
1164 crc >> crc_shift,
1165 crc >> (crc_shift + 5),
1166 (crc >> crc_shift) & 31,
1167 1 << (((crc >> crc_shift) & 31) ^ 31));
1168 #endif
1169 /*
1170 * The documentation doesn't completely follow PowerPC
1171 * bit order. The BE crc32 (H) for 01:00:5E:00:00:01
1172 * is 0x7fa32d9b. By empirical testing, the
1173 * corresponding hash bit is word 3, bit 31 (ppc bit
1174 * order). Since 3 << 31 | 31 is 0x7f, we deduce
1175 * H[0:2] selects the register while H[3:7] selects
1176 * the bit (ppc bit order).
1177 */
1178 crc >>= crc_shift;
1179 gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
1180 }
1181 ETHER_NEXT_MULTI(step, enm);
1182 }
1183 ETHER_UNLOCK(ec);
1184 for (u_int i = 0; i < 8; i++) {
1185 etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
1186 etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
1187 #if 0
1188 if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
1189 printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
1190 i, IGADDR(i), etsec_read(sc, IGADDR(i)),
1191 i, GADDR(i), etsec_read(sc, GADDR(i)));
1192 #endif
1193 }
1194 for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
1195 uint64_t macaddr = sc->sc_macaddrs[i];
1196 etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
1197 etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >> 0));
1198 #if 0
1199 if (macaddr)
1200 printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
1201 i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
1202 i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
1203 #endif
1204 }
1205 }
1206
1207 static int
1208 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1209 {
1210 struct pq3etsec_softc *sc = ifp->if_softc;
1211 struct ifreq * const ifr = data;
1212 const int s = splnet();
1213 int error;
1214
1215 switch (cmd) {
1216 case SIOCSIFMEDIA:
1217 /* Flow control requires full-duplex mode. */
1218 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1219 (ifr->ifr_media & IFM_FDX) == 0)
1220 ifr->ifr_media &= ~IFM_ETH_FMASK;
1221 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1222 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1223 /* We can do both TXPAUSE and RXPAUSE. */
1224 ifr->ifr_media |=
1225 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1226 }
1227 }
1228 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1229 break;
1230
1231 default:
1232 error = ether_ioctl(ifp, cmd, data);
1233 if (error != ENETRESET)
1234 break;
1235
1236 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1237 error = 0;
1238 if (ifp->if_flags & IFF_RUNNING)
1239 pq3etsec_mc_setup(sc);
1240 break;
1241 }
1242 error = pq3etsec_ifinit(ifp);
1243 break;
1244 }
1245
1246 splx(s);
1247 return error;
1248 }
1249
1250 static void
1251 pq3etsec_rxq_desc_presync(
1252 struct pq3etsec_softc *sc,
1253 struct pq3etsec_rxqueue *rxq,
1254 volatile struct rxbd *rxbd,
1255 size_t count)
1256 {
1257 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1258 (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1259 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1260 }
1261
1262 static void
1263 pq3etsec_rxq_desc_postsync(
1264 struct pq3etsec_softc *sc,
1265 struct pq3etsec_rxqueue *rxq,
1266 volatile struct rxbd *rxbd,
1267 size_t count)
1268 {
1269 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1270 (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1271 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1272 }
1273
1274 static void
1275 pq3etsec_txq_desc_presync(
1276 struct pq3etsec_softc *sc,
1277 struct pq3etsec_txqueue *txq,
1278 volatile struct txbd *txbd,
1279 size_t count)
1280 {
1281 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1282 (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1283 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1284 }
1285
1286 static void
1287 pq3etsec_txq_desc_postsync(
1288 struct pq3etsec_softc *sc,
1289 struct pq3etsec_txqueue *txq,
1290 volatile struct txbd *txbd,
1291 size_t count)
1292 {
1293 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1294 (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1295 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1296 }
1297
1298 static bus_dmamap_t
1299 pq3etsec_mapcache_get(
1300 struct pq3etsec_softc *sc,
1301 struct pq3etsec_mapcache *dmc)
1302 {
1303 KASSERT(dmc->dmc_nmaps > 0);
1304 KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1305 return dmc->dmc_maps[--dmc->dmc_nmaps];
1306 }
1307
1308 static void
1309 pq3etsec_mapcache_put(
1310 struct pq3etsec_softc *sc,
1311 struct pq3etsec_mapcache *dmc,
1312 bus_dmamap_t map)
1313 {
1314 KASSERT(map != NULL);
1315 KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1316 dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1317 }
1318
1319 static void
1320 pq3etsec_mapcache_destroy(
1321 struct pq3etsec_softc *sc,
1322 struct pq3etsec_mapcache *dmc)
1323 {
1324 const size_t dmc_size =
1325 offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1326
1327 for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1328 bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1329 }
1330 kmem_intr_free(dmc, dmc_size);
1331 }
1332
1333 static int
1334 pq3etsec_mapcache_create(
1335 struct pq3etsec_softc *sc,
1336 struct pq3etsec_mapcache **dmc_p,
1337 size_t maxmaps,
1338 size_t maxmapsize,
1339 size_t maxseg)
1340 {
1341 const size_t dmc_size =
1342 offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1343 struct pq3etsec_mapcache * const dmc =
1344 kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
1345
1346 dmc->dmc_maxmaps = maxmaps;
1347 dmc->dmc_nmaps = maxmaps;
1348 dmc->dmc_maxmapsize = maxmapsize;
1349 dmc->dmc_maxseg = maxseg;
1350
1351 for (u_int i = 0; i < maxmaps; i++) {
1352 int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1353 dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1354 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1355 if (error) {
1356 aprint_error_dev(sc->sc_dev,
1357 "failed to creat dma map cache "
1358 "entry %u of %zu: %d\n",
1359 i, maxmaps, error);
1360 while (i-- > 0) {
1361 bus_dmamap_destroy(sc->sc_dmat,
1362 dmc->dmc_maps[i]);
1363 }
1364 kmem_intr_free(dmc, dmc_size);
1365 return error;
1366 }
1367 KASSERT(dmc->dmc_maps[i] != NULL);
1368 }
1369
1370 *dmc_p = dmc;
1371
1372 return 0;
1373 }
1374
1375 #if 0
1376 static void
1377 pq3etsec_dmamem_free(
1378 bus_dma_tag_t dmat,
1379 size_t map_size,
1380 bus_dma_segment_t *seg,
1381 bus_dmamap_t map,
1382 void *kvap)
1383 {
1384 bus_dmamap_destroy(dmat, map);
1385 bus_dmamem_unmap(dmat, kvap, map_size);
1386 bus_dmamem_free(dmat, seg, 1);
1387 }
1388 #endif
1389
1390 static int
1391 pq3etsec_dmamem_alloc(
1392 bus_dma_tag_t dmat,
1393 size_t map_size,
1394 bus_dma_segment_t *seg,
1395 bus_dmamap_t *map,
1396 void **kvap)
1397 {
1398 int error;
1399 int nseg;
1400
1401 *kvap = NULL;
1402 *map = NULL;
1403
1404 error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1405 seg, 1, &nseg, 0);
1406 if (error)
1407 return error;
1408
1409 KASSERT(nseg == 1);
1410
1411 error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1412 BUS_DMA_COHERENT);
1413 if (error == 0) {
1414 error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1415 map);
1416 if (error == 0) {
1417 error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1418 NULL, 0);
1419 if (error == 0)
1420 return 0;
1421 bus_dmamap_destroy(dmat, *map);
1422 *map = NULL;
1423 }
1424 bus_dmamem_unmap(dmat, *kvap, map_size);
1425 *kvap = NULL;
1426 }
1427 bus_dmamem_free(dmat, seg, nseg);
1428 return 0;
1429 }
1430
1431 static struct mbuf *
1432 pq3etsec_rx_buf_alloc(
1433 struct pq3etsec_softc *sc)
1434 {
1435 struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1436 if (m == NULL) {
1437 printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1438 return NULL;
1439 }
1440 MCLGET(m, M_DONTWAIT);
1441 if ((m->m_flags & M_EXT) == 0) {
1442 printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1443 m_freem(m);
1444 return NULL;
1445 }
1446 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1447
1448 bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1449 if (map == NULL) {
1450 printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1451 m_freem(m);
1452 return NULL;
1453 }
1454 M_SETCTX(m, map);
1455 m->m_len = m->m_pkthdr.len = MCLBYTES;
1456 int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1457 BUS_DMA_READ | BUS_DMA_NOWAIT);
1458 if (error) {
1459 aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1460 error);
1461 M_SETCTX(m, NULL);
1462 m_freem(m);
1463 pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1464 return NULL;
1465 }
1466 KASSERT(map->dm_mapsize == MCLBYTES);
1467 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1468 BUS_DMASYNC_PREREAD);
1469
1470 return m;
1471 }
1472
1473 static void
1474 pq3etsec_rx_map_unload(
1475 struct pq3etsec_softc *sc,
1476 struct mbuf *m)
1477 {
1478 KASSERT(m);
1479 for (; m != NULL; m = m->m_next) {
1480 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1481 KASSERT(map);
1482 KASSERT(map->dm_mapsize == MCLBYTES);
1483 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1484 BUS_DMASYNC_POSTREAD);
1485 bus_dmamap_unload(sc->sc_dmat, map);
1486 pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1487 M_SETCTX(m, NULL);
1488 }
1489 }
1490
1491 static bool
1492 pq3etsec_rxq_produce(
1493 struct pq3etsec_softc *sc,
1494 struct pq3etsec_rxqueue *rxq)
1495 {
1496 volatile struct rxbd *producer = rxq->rxq_producer;
1497 #if 0
1498 size_t inuse = rxq->rxq_inuse;
1499 #endif
1500 while (rxq->rxq_inuse < rxq->rxq_threshold) {
1501 struct mbuf *m;
1502 IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1503 if (m == NULL) {
1504 m = pq3etsec_rx_buf_alloc(sc);
1505 if (m == NULL) {
1506 printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1507 break;
1508 }
1509 }
1510 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1511 KASSERT(map);
1512
1513 #ifdef ETSEC_DEBUG
1514 KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1515 rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1516 #endif
1517
1518 /* rxbd_len is write-only by the ETSEC */
1519 producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1520 membar_producer();
1521 producer->rxbd_flags |= RXBD_E;
1522 if (__predict_false(rxq->rxq_mhead == NULL)) {
1523 KASSERT(producer == rxq->rxq_consumer);
1524 rxq->rxq_mconsumer = m;
1525 }
1526 *rxq->rxq_mtail = m;
1527 rxq->rxq_mtail = &m->m_next;
1528 m->m_len = MCLBYTES;
1529 m->m_next = NULL;
1530 rxq->rxq_inuse++;
1531 if (++producer == rxq->rxq_last) {
1532 membar_producer();
1533 pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1534 rxq->rxq_last - rxq->rxq_producer);
1535 producer = rxq->rxq_producer = rxq->rxq_first;
1536 }
1537 }
1538 if (producer != rxq->rxq_producer) {
1539 membar_producer();
1540 pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1541 producer - rxq->rxq_producer);
1542 rxq->rxq_producer = producer;
1543 }
1544 uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1545 if (qhlt) {
1546 KASSERT(qhlt & rxq->rxq_qmask);
1547 sc->sc_ev_rx_stall.ev_count++;
1548 etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1549 }
1550 #if 0
1551 aprint_normal_dev(sc->sc_dev,
1552 "%s: buffers inuse went from %zu to %zu\n",
1553 __func__, inuse, rxq->rxq_inuse);
1554 #endif
1555 return true;
1556 }
1557
1558 static bool
1559 pq3etsec_rx_offload(
1560 struct pq3etsec_softc *sc,
1561 struct mbuf *m,
1562 const struct rxfcb *fcb)
1563 {
1564 if (fcb->rxfcb_flags & RXFCB_VLN) {
1565 vlan_set_tag(m, fcb->rxfcb_vlctl);
1566 }
1567 if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1568 || (fcb->rxfcb_flags & (RXFCB_CIP | RXFCB_CTU)) == 0)
1569 return true;
1570 int csum_flags = 0;
1571 if ((fcb->rxfcb_flags & (RXFCB_IP6 | RXFCB_CIP)) == RXFCB_CIP) {
1572 csum_flags |= M_CSUM_IPv4;
1573 if (fcb->rxfcb_flags & RXFCB_EIP)
1574 csum_flags |= M_CSUM_IPv4_BAD;
1575 }
1576 if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1577 int ipv_flags;
1578 if (fcb->rxfcb_flags & RXFCB_IP6)
1579 ipv_flags = M_CSUM_TCPv6 | M_CSUM_UDPv6;
1580 else
1581 ipv_flags = M_CSUM_TCPv4 | M_CSUM_UDPv4;
1582 if (fcb->rxfcb_pro == IPPROTO_TCP) {
1583 csum_flags |= (M_CSUM_TCPv4 |M_CSUM_TCPv6) & ipv_flags;
1584 } else {
1585 csum_flags |= (M_CSUM_UDPv4 |M_CSUM_UDPv6) & ipv_flags;
1586 }
1587 if (fcb->rxfcb_flags & RXFCB_ETU)
1588 csum_flags |= M_CSUM_TCP_UDP_BAD;
1589 }
1590
1591 m->m_pkthdr.csum_flags = csum_flags;
1592 return true;
1593 }
1594
1595 static void
1596 pq3etsec_rx_input(
1597 struct pq3etsec_softc *sc,
1598 struct mbuf *m,
1599 uint16_t rxbd_flags)
1600 {
1601 struct ifnet * const ifp = &sc->sc_if;
1602
1603 pq3etsec_rx_map_unload(sc, m);
1604
1605 if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1606 struct rxfcb fcb = *mtod(m, struct rxfcb *);
1607 if (!pq3etsec_rx_offload(sc, m, &fcb))
1608 return;
1609 }
1610 m_adj(m, sc->sc_rx_adjlen);
1611
1612 if (rxbd_flags & RXBD_M)
1613 m->m_flags |= M_PROMISC;
1614 if (rxbd_flags & RXBD_BC)
1615 m->m_flags |= M_BCAST;
1616 if (rxbd_flags & RXBD_MC)
1617 m->m_flags |= M_MCAST;
1618 m->m_flags |= M_HASFCS;
1619 m_set_rcvif(m, &sc->sc_if);
1620
1621 /*
1622 * Let's give it to the network subsystm to deal with.
1623 */
1624 if_percpuq_enqueue(ifp->if_percpuq, m);
1625 }
1626
1627 static void
1628 pq3etsec_rxq_consume(
1629 struct pq3etsec_softc *sc,
1630 struct pq3etsec_rxqueue *rxq)
1631 {
1632 struct ifnet * const ifp = &sc->sc_if;
1633 volatile struct rxbd *consumer = rxq->rxq_consumer;
1634 size_t rxconsumed = 0;
1635
1636 etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1637
1638 for (;;) {
1639 if (consumer == rxq->rxq_producer) {
1640 rxq->rxq_consumer = consumer;
1641 rxq->rxq_inuse -= rxconsumed;
1642 KASSERT(rxq->rxq_inuse == 0);
1643 return;
1644 }
1645 pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1646 const uint16_t rxbd_flags = consumer->rxbd_flags;
1647 if (rxbd_flags & RXBD_E) {
1648 rxq->rxq_consumer = consumer;
1649 rxq->rxq_inuse -= rxconsumed;
1650 return;
1651 }
1652 KASSERT(rxq->rxq_mconsumer != NULL);
1653 #ifdef ETSEC_DEBUG
1654 KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1655 #endif
1656 #if 0
1657 printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1658 __func__,
1659 consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1660 mtod(rxq->rxq_mconsumer, int *)[0],
1661 mtod(rxq->rxq_mconsumer, int *)[1],
1662 mtod(rxq->rxq_mconsumer, int *)[2],
1663 mtod(rxq->rxq_mconsumer, int *)[3]);
1664 #endif
1665 /*
1666 * We own this packet again. Clear all flags except wrap.
1667 */
1668 rxconsumed++;
1669 consumer->rxbd_flags = rxbd_flags & (RXBD_W | RXBD_I);
1670
1671 /*
1672 * If this descriptor has the LAST bit set and no errors,
1673 * it's a valid input packet.
1674 */
1675 if ((rxbd_flags & (RXBD_L | RXBD_ERRORS)) == RXBD_L) {
1676 size_t rxbd_len = consumer->rxbd_len;
1677 struct mbuf *m = rxq->rxq_mhead;
1678 struct mbuf *m_last = rxq->rxq_mconsumer;
1679 if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1680 rxq->rxq_mtail = &rxq->rxq_mhead;
1681 rxq->rxq_mconsumer = rxq->rxq_mhead;
1682 m_last->m_next = NULL;
1683 m_last->m_len = rxbd_len & (MCLBYTES - 1);
1684 m->m_pkthdr.len = rxbd_len;
1685 pq3etsec_rx_input(sc, m, rxbd_flags);
1686 } else if (rxbd_flags & RXBD_L) {
1687 KASSERT(rxbd_flags & RXBD_ERRORS);
1688 struct mbuf *m;
1689 /*
1690 * We encountered an error, take the mbufs and add
1691 * then to the rx bufcache so we can reuse them.
1692 */
1693 if_statinc(ifp, if_ierrors);
1694 for (m = rxq->rxq_mhead;
1695 m != rxq->rxq_mconsumer;
1696 m = m->m_next) {
1697 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1698 }
1699 m = rxq->rxq_mconsumer;
1700 if ((rxq->rxq_mhead = m->m_next) == NULL)
1701 rxq->rxq_mtail = &rxq->rxq_mhead;
1702 rxq->rxq_mconsumer = m->m_next;
1703 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1704 } else {
1705 rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1706 }
1707 #ifdef ETSEC_DEBUG
1708 rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1709 #endif
1710
1711 /*
1712 * Wrap at the last entry!
1713 */
1714 if (rxbd_flags & RXBD_W) {
1715 KASSERT(consumer + 1 == rxq->rxq_last);
1716 consumer = rxq->rxq_first;
1717 } else {
1718 consumer++;
1719 }
1720 #ifdef ETSEC_DEBUG
1721 KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1722 #endif
1723 }
1724
1725 if (rxconsumed != 0)
1726 rnd_add_uint32(&sc->rnd_source, rxconsumed);
1727 }
1728
1729 static void
1730 pq3etsec_rxq_purge(
1731 struct pq3etsec_softc *sc,
1732 struct pq3etsec_rxqueue *rxq,
1733 bool discard)
1734 {
1735 struct mbuf *m;
1736
1737 if ((m = rxq->rxq_mhead) != NULL) {
1738 #ifdef ETSEC_DEBUG
1739 memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1740 #endif
1741
1742 if (discard) {
1743 pq3etsec_rx_map_unload(sc, m);
1744 m_freem(m);
1745 } else {
1746 while (m != NULL) {
1747 struct mbuf *m0 = m->m_next;
1748 m->m_next = NULL;
1749 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1750 m = m0;
1751 }
1752 }
1753 }
1754
1755 rxq->rxq_mconsumer = NULL;
1756 rxq->rxq_mhead = NULL;
1757 rxq->rxq_mtail = &rxq->rxq_mhead;
1758 rxq->rxq_inuse = 0;
1759 }
1760
1761 static void
1762 pq3etsec_rxq_reset(
1763 struct pq3etsec_softc *sc,
1764 struct pq3etsec_rxqueue *rxq)
1765 {
1766 /*
1767 * sync all the descriptors
1768 */
1769 pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1770 rxq->rxq_last - rxq->rxq_first);
1771
1772 /*
1773 * Make sure we own all descriptors in the ring.
1774 */
1775 volatile struct rxbd *rxbd;
1776 for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1777 rxbd->rxbd_flags = RXBD_I;
1778 }
1779
1780 /*
1781 * Last descriptor has the wrap flag.
1782 */
1783 rxbd->rxbd_flags = RXBD_W | RXBD_I;
1784
1785 /*
1786 * Reset the producer consumer indexes.
1787 */
1788 rxq->rxq_consumer = rxq->rxq_first;
1789 rxq->rxq_producer = rxq->rxq_first;
1790 rxq->rxq_inuse = 0;
1791 if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1792 rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1793
1794 sc->sc_imask |= IEVENT_RXF | IEVENT_BSY;
1795
1796 /*
1797 * Restart the transmit at the first descriptor
1798 */
1799 etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1800 }
1801
1802 static int
1803 pq3etsec_rxq_attach(
1804 struct pq3etsec_softc *sc,
1805 struct pq3etsec_rxqueue *rxq,
1806 u_int qno)
1807 {
1808 size_t map_size = PAGE_SIZE;
1809 size_t desc_count = map_size / sizeof(struct rxbd);
1810 int error;
1811 void *descs;
1812
1813 error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1814 &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1815 if (error)
1816 return error;
1817
1818 memset(descs, 0, map_size);
1819 rxq->rxq_first = descs;
1820 rxq->rxq_last = rxq->rxq_first + desc_count;
1821 rxq->rxq_consumer = descs;
1822 rxq->rxq_producer = descs;
1823
1824 pq3etsec_rxq_purge(sc, rxq, true);
1825 pq3etsec_rxq_reset(sc, rxq);
1826
1827 rxq->rxq_reg_rbase = RBASEn(qno);
1828 rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1829
1830 return 0;
1831 }
1832
1833 static bool
1834 pq3etsec_txq_active_p(
1835 struct pq3etsec_softc * const sc,
1836 struct pq3etsec_txqueue *txq)
1837 {
1838 return !IF_IS_EMPTY(&txq->txq_mbufs);
1839 }
1840
1841 static bool
1842 pq3etsec_txq_fillable_p(
1843 struct pq3etsec_softc * const sc,
1844 struct pq3etsec_txqueue *txq)
1845 {
1846 return txq->txq_free >= txq->txq_threshold;
1847 }
1848
1849 static int
1850 pq3etsec_txq_attach(
1851 struct pq3etsec_softc *sc,
1852 struct pq3etsec_txqueue *txq,
1853 u_int qno)
1854 {
1855 size_t map_size = PAGE_SIZE;
1856 size_t desc_count = map_size / sizeof(struct txbd);
1857 int error;
1858 void *descs;
1859
1860 error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1861 &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1862 if (error)
1863 return error;
1864
1865 memset(descs, 0, map_size);
1866 txq->txq_first = descs;
1867 txq->txq_last = txq->txq_first + desc_count;
1868 txq->txq_consumer = descs;
1869 txq->txq_producer = descs;
1870
1871 IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1872
1873 txq->txq_reg_tbase = TBASEn(qno);
1874 txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1875
1876 pq3etsec_txq_reset(sc, txq);
1877
1878 return 0;
1879 }
1880
1881 static int
1882 pq3etsec_txq_map_load(
1883 struct pq3etsec_softc *sc,
1884 struct pq3etsec_txqueue *txq,
1885 struct mbuf *m)
1886 {
1887 bus_dmamap_t map;
1888 int error;
1889
1890 map = M_GETCTX(m, bus_dmamap_t);
1891 if (map != NULL)
1892 return 0;
1893
1894 map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1895 if (map == NULL)
1896 return ENOMEM;
1897
1898 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1899 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1900 if (error)
1901 return error;
1902
1903 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1904 BUS_DMASYNC_PREWRITE);
1905 M_SETCTX(m, map);
1906 return 0;
1907 }
1908
1909 static void
1910 pq3etsec_txq_map_unload(
1911 struct pq3etsec_softc *sc,
1912 struct pq3etsec_txqueue *txq,
1913 struct mbuf *m)
1914 {
1915 KASSERT(m);
1916 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1917 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1918 BUS_DMASYNC_POSTWRITE);
1919 bus_dmamap_unload(sc->sc_dmat, map);
1920 pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1921 }
1922
1923 static bool
1924 pq3etsec_txq_produce(
1925 struct pq3etsec_softc *sc,
1926 struct pq3etsec_txqueue *txq,
1927 struct mbuf *m)
1928 {
1929 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1930
1931 if (map->dm_nsegs > txq->txq_free)
1932 return false;
1933
1934 /*
1935 * TCP Offload flag must be set in the first descriptor.
1936 */
1937 volatile struct txbd *producer = txq->txq_producer;
1938 uint16_t last_flags = TXBD_L;
1939 uint16_t first_flags = TXBD_R
1940 | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1941
1942 /*
1943 * If we've produced enough descriptors without consuming any
1944 * we need to ask for an interrupt to reclaim some.
1945 */
1946 txq->txq_lastintr += map->dm_nsegs;
1947 if (ETSEC_IC_TX_ENABLED(sc)
1948 || txq->txq_lastintr >= txq->txq_threshold
1949 || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1950 txq->txq_lastintr = 0;
1951 last_flags |= TXBD_I;
1952 }
1953
1954 #ifdef ETSEC_DEBUG
1955 KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1956 #endif
1957 KASSERT(producer != txq->txq_last);
1958 producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1959 producer->txbd_len = map->dm_segs[0].ds_len;
1960
1961 if (map->dm_nsegs > 1) {
1962 volatile struct txbd *start = producer + 1;
1963 size_t count = map->dm_nsegs - 1;
1964 for (u_int i = 1; i < map->dm_nsegs; i++) {
1965 if (__predict_false(++producer == txq->txq_last)) {
1966 producer = txq->txq_first;
1967 if (start < txq->txq_last) {
1968 pq3etsec_txq_desc_presync(sc, txq,
1969 start, txq->txq_last - start);
1970 count -= txq->txq_last - start;
1971 }
1972 start = txq->txq_first;
1973 }
1974 #ifdef ETSEC_DEBUG
1975 KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1976 #endif
1977 producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1978 producer->txbd_len = map->dm_segs[i].ds_len;
1979 producer->txbd_flags = TXBD_R
1980 | (producer->txbd_flags & TXBD_W)
1981 | (i == map->dm_nsegs - 1 ? last_flags : 0);
1982 #if 0
1983 printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1984 producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1985 #endif
1986 }
1987 pq3etsec_txq_desc_presync(sc, txq, start, count);
1988 } else {
1989 first_flags |= last_flags;
1990 }
1991
1992 membar_producer();
1993 txq->txq_producer->txbd_flags =
1994 first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1995 #if 0
1996 printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1997 txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1998 txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1999 #endif
2000 pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
2001
2002 /*
2003 * Reduce free count by the number of segments we consumed.
2004 */
2005 txq->txq_free -= map->dm_nsegs;
2006 KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
2007 KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
2008 KASSERT(producer->txbd_flags & TXBD_L);
2009 #ifdef ETSEC_DEBUG
2010 txq->txq_lmbufs[producer - txq->txq_first] = m;
2011 #endif
2012
2013 #if 0
2014 printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
2015 __func__, m, m->m_pkthdr.len, map->dm_nsegs,
2016 txq->txq_producer - txq->txq_first, producer - txq->txq_first);
2017 #endif
2018
2019 if (++producer == txq->txq_last)
2020 txq->txq_producer = txq->txq_first;
2021 else
2022 txq->txq_producer = producer;
2023 IF_ENQUEUE(&txq->txq_mbufs, m);
2024
2025 /*
2026 * Restart the transmitter.
2027 */
2028 etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT); /* W1C */
2029
2030 return true;
2031 }
2032
2033 static void
2034 pq3etsec_tx_offload(
2035 struct pq3etsec_softc *sc,
2036 struct pq3etsec_txqueue *txq,
2037 struct mbuf **mp)
2038 {
2039 struct mbuf *m = *mp;
2040 u_int csum_flags = m->m_pkthdr.csum_flags;
2041 bool have_vtag;
2042 uint16_t vtag;
2043
2044 KASSERT(m->m_flags & M_PKTHDR);
2045
2046 have_vtag = vlan_has_tag(m);
2047 vtag = (have_vtag) ? vlan_get_tag(m) : 0;
2048
2049 /*
2050 * Let see if we are doing any offload first.
2051 */
2052 if (csum_flags == 0 && !have_vtag) {
2053 m->m_flags &= ~M_HASFCB;
2054 return;
2055 }
2056
2057 uint16_t flags = 0;
2058 if (csum_flags & M_CSUM_IP) {
2059 flags |= TXFCB_IP
2060 | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
2061 | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
2062 | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
2063 | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
2064 | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
2065 }
2066 if (have_vtag) {
2067 flags |= TXFCB_VLN;
2068 }
2069 if (flags == 0) {
2070 m->m_flags &= ~M_HASFCB;
2071 return;
2072 }
2073
2074 struct txfcb fcb;
2075 fcb.txfcb_flags = flags;
2076 if (csum_flags & M_CSUM_IPv4)
2077 fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
2078 else
2079 fcb.txfcb_l4os = M_CSUM_DATA_IPv6_IPHL(m->m_pkthdr.csum_data);
2080 fcb.txfcb_l3os = ETHER_HDR_LEN;
2081 fcb.txfcb_phcs = 0;
2082 fcb.txfcb_vlctl = vtag;
2083
2084 #if 0
2085 printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
2086 __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
2087 fcb.txfcb_phcs, fcb.txfcb_vlctl);
2088 #endif
2089
2090 if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
2091 m->m_data -= sizeof(fcb);
2092 m->m_len += sizeof(fcb);
2093 } else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
2094 memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
2095 m->m_data = m->m_pktdat;
2096 m->m_len += sizeof(fcb);
2097 } else {
2098 struct mbuf *mn;
2099 MGET(mn, M_DONTWAIT, m->m_type);
2100 if (mn == NULL) {
2101 if (csum_flags & M_CSUM_IP4) {
2102 #ifdef INET
2103 in_undefer_cksum(m, ETHER_HDR_LEN,
2104 csum_flags & M_CSUM_IP4);
2105 #else
2106 panic("%s: impossible M_CSUM flags %#x",
2107 device_xname(sc->sc_dev), csum_flags);
2108 #endif
2109 } else if (csum_flags & M_CSUM_IP6) {
2110 #ifdef INET6
2111 in6_undefer_cksum(m, ETHER_HDR_LEN,
2112 csum_flags & M_CSUM_IP6);
2113 #else
2114 panic("%s: impossible M_CSUM flags %#x",
2115 device_xname(sc->sc_dev), csum_flags);
2116 #endif
2117 }
2118
2119 m->m_flags &= ~M_HASFCB;
2120 return;
2121 }
2122
2123 m_move_pkthdr(mn, m);
2124 mn->m_next = m;
2125 m = mn;
2126 m_align(m, sizeof(fcb));
2127 m->m_len = sizeof(fcb);
2128 *mp = m;
2129 }
2130 m->m_pkthdr.len += sizeof(fcb);
2131 m->m_flags |= M_HASFCB;
2132 *mtod(m, struct txfcb *) = fcb;
2133 return;
2134 }
2135
2136 static bool
2137 pq3etsec_txq_enqueue(
2138 struct pq3etsec_softc *sc,
2139 struct pq3etsec_txqueue *txq)
2140 {
2141 for (;;) {
2142 if (IF_QFULL(&txq->txq_mbufs))
2143 return false;
2144 struct mbuf *m = txq->txq_next;
2145 if (m == NULL) {
2146 int s = splnet();
2147 IFQ_DEQUEUE(&sc->sc_if.if_snd, m);
2148 splx(s);
2149 if (m == NULL)
2150 return true;
2151 M_SETCTX(m, NULL);
2152 pq3etsec_tx_offload(sc, txq, &m);
2153 } else {
2154 txq->txq_next = NULL;
2155 }
2156 int error = pq3etsec_txq_map_load(sc, txq, m);
2157 if (error) {
2158 aprint_error_dev(sc->sc_dev,
2159 "discarded packet due to "
2160 "dmamap load failure: %d\n", error);
2161 m_freem(m);
2162 continue;
2163 }
2164 KASSERT(txq->txq_next == NULL);
2165 if (!pq3etsec_txq_produce(sc, txq, m)) {
2166 txq->txq_next = m;
2167 return false;
2168 }
2169 KASSERT(txq->txq_next == NULL);
2170 }
2171 }
2172
2173 static bool
2174 pq3etsec_txq_consume(
2175 struct pq3etsec_softc *sc,
2176 struct pq3etsec_txqueue *txq)
2177 {
2178 struct ifnet * const ifp = &sc->sc_if;
2179 volatile struct txbd *consumer = txq->txq_consumer;
2180 size_t txfree = 0;
2181
2182 #if 0
2183 printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
2184 #endif
2185 etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
2186
2187 for (;;) {
2188 if (consumer == txq->txq_producer) {
2189 txq->txq_consumer = consumer;
2190 txq->txq_free += txfree;
2191 txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
2192 #if 0
2193 printf("%s: empty: freed %zu descriptors going form %zu to %zu\n",
2194 __func__, txfree, txq->txq_free - txfree, txq->txq_free);
2195 #endif
2196 KASSERT(txq->txq_lastintr == 0);
2197 KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
2198 return true;
2199 }
2200 pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2201 const uint16_t txbd_flags = consumer->txbd_flags;
2202 if (txbd_flags & TXBD_R) {
2203 txq->txq_consumer = consumer;
2204 txq->txq_free += txfree;
2205 txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
2206 #if 0
2207 printf("%s: freed %zu descriptors\n",
2208 __func__, txfree);
2209 #endif
2210 return pq3etsec_txq_fillable_p(sc, txq);
2211 }
2212
2213 /*
2214 * If this is the last descriptor in the chain, get the
2215 * mbuf, free its dmamap, and free the mbuf chain itself.
2216 */
2217 if (txbd_flags & TXBD_L) {
2218 struct mbuf *m;
2219
2220 IF_DEQUEUE(&txq->txq_mbufs, m);
2221 #ifdef ETSEC_DEBUG
2222 KASSERTMSG(
2223 m == txq->txq_lmbufs[consumer-txq->txq_first],
2224 "%s: %p [%u]: flags %#x m (%p) != %p (%p)",
2225 __func__, consumer, consumer - txq->txq_first,
2226 txbd_flags, m,
2227 &txq->txq_lmbufs[consumer-txq->txq_first],
2228 txq->txq_lmbufs[consumer-txq->txq_first]);
2229 #endif
2230 KASSERT(m);
2231 pq3etsec_txq_map_unload(sc, txq, m);
2232 #if 0
2233 printf("%s: mbuf %p: consumed a %u byte packet\n",
2234 __func__, m, m->m_pkthdr.len);
2235 #endif
2236 if (m->m_flags & M_HASFCB)
2237 m_adj(m, sizeof(struct txfcb));
2238 bpf_mtap(ifp, m, BPF_D_OUT);
2239 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
2240 if_statinc_ref(nsr, if_opackets);
2241 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
2242 if (m->m_flags & M_MCAST)
2243 if_statinc_ref(nsr, if_omcasts);
2244 if (txbd_flags & TXBD_ERRORS)
2245 if_statinc_ref(nsr, if_oerrors);
2246 IF_STAT_PUTREF(ifp);
2247 m_freem(m);
2248 #ifdef ETSEC_DEBUG
2249 txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2250 #endif
2251 } else {
2252 #ifdef ETSEC_DEBUG
2253 KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2254 #endif
2255 }
2256
2257 /*
2258 * We own this packet again. Clear all flags except wrap.
2259 */
2260 txfree++;
2261 //consumer->txbd_flags = txbd_flags & TXBD_W;
2262
2263 /*
2264 * Wrap at the last entry!
2265 */
2266 if (txbd_flags & TXBD_W) {
2267 KASSERT(consumer + 1 == txq->txq_last);
2268 consumer = txq->txq_first;
2269 } else {
2270 consumer++;
2271 KASSERT(consumer < txq->txq_last);
2272 }
2273 }
2274
2275 if (txfree != 0)
2276 rnd_add_uint32(&sc->rnd_source, txfree);
2277 }
2278
2279 static void
2280 pq3etsec_txq_purge(
2281 struct pq3etsec_softc *sc,
2282 struct pq3etsec_txqueue *txq)
2283 {
2284 struct mbuf *m;
2285 KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2286
2287 for (;;) {
2288 IF_DEQUEUE(&txq->txq_mbufs, m);
2289 if (m == NULL)
2290 break;
2291 pq3etsec_txq_map_unload(sc, txq, m);
2292 m_freem(m);
2293 }
2294 if ((m = txq->txq_next) != NULL) {
2295 txq->txq_next = NULL;
2296 pq3etsec_txq_map_unload(sc, txq, m);
2297 m_freem(m);
2298 }
2299 #ifdef ETSEC_DEBUG
2300 memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2301 #endif
2302 }
2303
2304 static void
2305 pq3etsec_txq_reset(
2306 struct pq3etsec_softc *sc,
2307 struct pq3etsec_txqueue *txq)
2308 {
2309 /*
2310 * sync all the descriptors
2311 */
2312 pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2313 txq->txq_last - txq->txq_first);
2314
2315 /*
2316 * Make sure we own all descriptors in the ring.
2317 */
2318 volatile struct txbd *txbd;
2319 for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2320 txbd->txbd_flags = 0;
2321 }
2322
2323 /*
2324 * Last descriptor has the wrap flag.
2325 */
2326 txbd->txbd_flags = TXBD_W;
2327
2328 /*
2329 * Reset the producer consumer indexes.
2330 */
2331 txq->txq_consumer = txq->txq_first;
2332 txq->txq_producer = txq->txq_first;
2333 txq->txq_free = txq->txq_last - txq->txq_first - 1;
2334 txq->txq_threshold = txq->txq_free / 2;
2335 txq->txq_lastintr = 0;
2336
2337 /*
2338 * What do we want to get interrupted on?
2339 */
2340 sc->sc_imask |= IEVENT_TXF | IEVENT_TXE;
2341
2342 /*
2343 * Restart the transmit at the first descriptor
2344 */
2345 etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2346 }
2347
2348 static void
2349 pq3etsec_ifstart(struct ifnet *ifp)
2350 {
2351 struct pq3etsec_softc * const sc = ifp->if_softc;
2352
2353 if (__predict_false((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)) {
2354 return;
2355 }
2356
2357 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2358 softint_schedule(sc->sc_soft_ih);
2359 }
2360
2361 static void
2362 pq3etsec_tx_error(
2363 struct pq3etsec_softc * const sc)
2364 {
2365 struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2366
2367 pq3etsec_txq_consume(sc, txq);
2368
2369 if (pq3etsec_txq_fillable_p(sc, txq))
2370 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2371 if (sc->sc_txerrors
2372 & (IEVENT_LC | IEVENT_CRL | IEVENT_XFUN | IEVENT_BABT)) {
2373 } else if (sc->sc_txerrors & IEVENT_EBERR) {
2374 }
2375
2376 if (pq3etsec_txq_active_p(sc, txq))
2377 etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2378 if (!pq3etsec_txq_enqueue(sc, txq)) {
2379 sc->sc_ev_tx_stall.ev_count++;
2380 sc->sc_if.if_flags |= IFF_OACTIVE;
2381 }
2382
2383 sc->sc_txerrors = 0;
2384 }
2385
2386 int
2387 pq3etsec_tx_intr(void *arg)
2388 {
2389 struct pq3etsec_softc * const sc = arg;
2390
2391 mutex_enter(sc->sc_hwlock);
2392
2393 sc->sc_ev_tx_intr.ev_count++;
2394
2395 uint32_t ievent = etsec_read(sc, IEVENT);
2396 ievent &= IEVENT_TXF | IEVENT_TXB;
2397 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2398
2399 #if 0
2400 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2401 __func__, ievent, etsec_read(sc, IMASK));
2402 #endif
2403
2404 if (ievent == 0) {
2405 mutex_exit(sc->sc_hwlock);
2406 return 0;
2407 }
2408
2409 sc->sc_imask &= ~(IEVENT_TXF | IEVENT_TXB);
2410 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2411 etsec_write(sc, IMASK, sc->sc_imask);
2412 softint_schedule(sc->sc_soft_ih);
2413
2414 mutex_exit(sc->sc_hwlock);
2415
2416 return 1;
2417 }
2418
2419 int
2420 pq3etsec_rx_intr(void *arg)
2421 {
2422 struct pq3etsec_softc * const sc = arg;
2423
2424 mutex_enter(sc->sc_hwlock);
2425
2426 sc->sc_ev_rx_intr.ev_count++;
2427
2428 uint32_t ievent = etsec_read(sc, IEVENT);
2429 ievent &= IEVENT_RXF | IEVENT_RXB;
2430 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2431 if (ievent == 0) {
2432 mutex_exit(sc->sc_hwlock);
2433 return 0;
2434 }
2435
2436 #if 0
2437 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2438 #endif
2439
2440 sc->sc_imask &= ~(IEVENT_RXF | IEVENT_RXB);
2441 atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2442 etsec_write(sc, IMASK, sc->sc_imask);
2443 softint_schedule(sc->sc_soft_ih);
2444
2445 mutex_exit(sc->sc_hwlock);
2446
2447 return 1;
2448 }
2449
2450 int
2451 pq3etsec_error_intr(void *arg)
2452 {
2453 struct pq3etsec_softc * const sc = arg;
2454
2455 mutex_enter(sc->sc_hwlock);
2456
2457 sc->sc_ev_error_intr.ev_count++;
2458
2459 for (int rv = 0, soft_flags = 0;; rv = 1) {
2460 uint32_t ievent = etsec_read(sc, IEVENT);
2461 ievent &= ~(IEVENT_RXF | IEVENT_RXB | IEVENT_TXF | IEVENT_TXB);
2462 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2463 if (ievent == 0) {
2464 if (soft_flags) {
2465 atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2466 softint_schedule(sc->sc_soft_ih);
2467 }
2468 mutex_exit(sc->sc_hwlock);
2469 return rv;
2470 }
2471 #if 0
2472 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2473 __func__, ievent, etsec_read(sc, IMASK));
2474 #endif
2475
2476 if (ievent & (IEVENT_GRSC | IEVENT_GTSC)) {
2477 sc->sc_imask &= ~(IEVENT_GRSC | IEVENT_GTSC);
2478 etsec_write(sc, IMASK, sc->sc_imask);
2479 wakeup(sc);
2480 }
2481 if (ievent & (IEVENT_MMRD | IEVENT_MMWR)) {
2482 sc->sc_imask &= ~(IEVENT_MMRD | IEVENT_MMWR);
2483 etsec_write(sc, IMASK, sc->sc_imask);
2484 wakeup(&sc->sc_mii);
2485 }
2486 if (ievent & IEVENT_BSY) {
2487 soft_flags |= SOFT_RXBSY;
2488 sc->sc_imask &= ~IEVENT_BSY;
2489 etsec_write(sc, IMASK, sc->sc_imask);
2490 }
2491 if (ievent & IEVENT_TXE) {
2492 soft_flags |= SOFT_TXERROR;
2493 sc->sc_imask &= ~IEVENT_TXE;
2494 sc->sc_txerrors |= ievent;
2495 }
2496 if (ievent & IEVENT_TXC) {
2497 sc->sc_ev_tx_pause.ev_count++;
2498 }
2499 if (ievent & IEVENT_RXC) {
2500 sc->sc_ev_rx_pause.ev_count++;
2501 }
2502 if (ievent & IEVENT_DPE) {
2503 soft_flags |= SOFT_RESET;
2504 sc->sc_imask &= ~IEVENT_DPE;
2505 etsec_write(sc, IMASK, sc->sc_imask);
2506 }
2507 }
2508 }
2509
2510 void
2511 pq3etsec_soft_intr(void *arg)
2512 {
2513 struct pq3etsec_softc * const sc = arg;
2514 struct ifnet * const ifp = &sc->sc_if;
2515 uint32_t imask = 0;
2516
2517 mutex_enter(sc->sc_lock);
2518
2519 u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2520
2521 sc->sc_ev_soft_intr.ev_count++;
2522
2523 if (soft_flags & SOFT_RESET) {
2524 int s = splnet();
2525 pq3etsec_ifinit(ifp);
2526 splx(s);
2527 soft_flags = 0;
2528 }
2529
2530 if (soft_flags & SOFT_RXBSY) {
2531 struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2532 size_t threshold = 5 * rxq->rxq_threshold / 4;
2533 if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2534 threshold = rxq->rxq_last - rxq->rxq_first - 1;
2535 } else {
2536 imask |= IEVENT_BSY;
2537 }
2538 aprint_normal_dev(sc->sc_dev,
2539 "increasing receive buffers from %zu to %zu\n",
2540 rxq->rxq_threshold, threshold);
2541 rxq->rxq_threshold = threshold;
2542 }
2543
2544 if ((soft_flags & SOFT_TXINTR)
2545 || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2546 /*
2547 * Let's do what we came here for. Consume transmitted
2548 * packets off the transmit ring.
2549 */
2550 if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2551 || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2552 sc->sc_ev_tx_stall.ev_count++;
2553 ifp->if_flags |= IFF_OACTIVE;
2554 } else {
2555 ifp->if_flags &= ~IFF_OACTIVE;
2556 }
2557 imask |= IEVENT_TXF;
2558 }
2559
2560 if (soft_flags & (SOFT_RXINTR | SOFT_RXBSY)) {
2561 /* Let's consume */
2562 pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2563 imask |= IEVENT_RXF;
2564 }
2565
2566 if (soft_flags & SOFT_TXERROR) {
2567 pq3etsec_tx_error(sc);
2568 imask |= IEVENT_TXE;
2569 }
2570
2571 if (ifp->if_flags & IFF_RUNNING) {
2572 pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2573 mutex_spin_enter(sc->sc_hwlock);
2574 sc->sc_imask |= imask;
2575 etsec_write(sc, IMASK, sc->sc_imask);
2576 mutex_spin_exit(sc->sc_hwlock);
2577 } else {
2578 KASSERT((soft_flags & SOFT_RXBSY) == 0);
2579 }
2580
2581 mutex_exit(sc->sc_lock);
2582 }
2583
2584 static void
2585 pq3etsec_mii_tick(void *arg)
2586 {
2587 struct pq3etsec_softc * const sc = arg;
2588 mutex_enter(sc->sc_lock);
2589 callout_ack(&sc->sc_mii_callout);
2590 sc->sc_ev_mii_ticks.ev_count++;
2591 #ifdef DEBUG
2592 uint64_t now = mftb();
2593 if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2594 aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2595 __func__, now - sc->sc_mii_last_tick);
2596 callout_stop(&sc->sc_mii_callout);
2597 }
2598 #endif
2599 mii_tick(&sc->sc_mii);
2600 int s = splnet();
2601 if (sc->sc_soft_flags & SOFT_RESET)
2602 softint_schedule(sc->sc_soft_ih);
2603 splx(s);
2604 callout_schedule(&sc->sc_mii_callout, hz);
2605 #ifdef DEBUG
2606 sc->sc_mii_last_tick = now;
2607 #endif
2608 mutex_exit(sc->sc_lock);
2609 }
2610
2611 static void
2612 pq3etsec_set_ic_rx(struct pq3etsec_softc *sc)
2613 {
2614 uint32_t reg;
2615
2616 if (ETSEC_IC_RX_ENABLED(sc)) {
2617 reg = RXIC_ICEN;
2618 reg |= RXIC_ICFT_SET(sc->sc_ic_rx_count);
2619 reg |= RXIC_ICTT_SET(sc->sc_ic_rx_time);
2620 } else {
2621 /* Disable RX interrupt coalescing */
2622 reg = 0;
2623 }
2624
2625 etsec_write(sc, RXIC, reg);
2626 }
2627
2628 static void
2629 pq3etsec_set_ic_tx(struct pq3etsec_softc *sc)
2630 {
2631 uint32_t reg;
2632
2633 if (ETSEC_IC_TX_ENABLED(sc)) {
2634 reg = TXIC_ICEN;
2635 reg |= TXIC_ICFT_SET(sc->sc_ic_tx_count);
2636 reg |= TXIC_ICTT_SET(sc->sc_ic_tx_time);
2637 } else {
2638 /* Disable TX interrupt coalescing */
2639 reg = 0;
2640 }
2641
2642 etsec_write(sc, TXIC, reg);
2643 }
2644
2645 /*
2646 * sysctl
2647 */
2648 static int
2649 pq3etsec_sysctl_ic_time_helper(SYSCTLFN_ARGS, int *valuep)
2650 {
2651 struct sysctlnode node = *rnode;
2652 struct pq3etsec_softc *sc = rnode->sysctl_data;
2653 int value = *valuep;
2654 int error;
2655
2656 node.sysctl_data = &value;
2657 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2658 if (error != 0 || newp == NULL)
2659 return error;
2660
2661 if (value < 0 || value > 65535)
2662 return EINVAL;
2663
2664 mutex_enter(sc->sc_lock);
2665 *valuep = value;
2666 if (valuep == &sc->sc_ic_rx_time)
2667 pq3etsec_set_ic_rx(sc);
2668 else
2669 pq3etsec_set_ic_tx(sc);
2670 mutex_exit(sc->sc_lock);
2671
2672 return 0;
2673 }
2674
2675 static int
2676 pq3etsec_sysctl_ic_count_helper(SYSCTLFN_ARGS, int *valuep)
2677 {
2678 struct sysctlnode node = *rnode;
2679 struct pq3etsec_softc *sc = rnode->sysctl_data;
2680 int value = *valuep;
2681 int error;
2682
2683 node.sysctl_data = &value;
2684 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2685 if (error != 0 || newp == NULL)
2686 return error;
2687
2688 if (value < 0 || value > 255)
2689 return EINVAL;
2690
2691 mutex_enter(sc->sc_lock);
2692 *valuep = value;
2693 if (valuep == &sc->sc_ic_rx_count)
2694 pq3etsec_set_ic_rx(sc);
2695 else
2696 pq3etsec_set_ic_tx(sc);
2697 mutex_exit(sc->sc_lock);
2698
2699 return 0;
2700 }
2701
2702 static int
2703 pq3etsec_sysctl_ic_rx_time_helper(SYSCTLFN_ARGS)
2704 {
2705 struct pq3etsec_softc *sc = rnode->sysctl_data;
2706
2707 return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2708 &sc->sc_ic_rx_time);
2709 }
2710
2711 static int
2712 pq3etsec_sysctl_ic_rx_count_helper(SYSCTLFN_ARGS)
2713 {
2714 struct pq3etsec_softc *sc = rnode->sysctl_data;
2715
2716 return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2717 &sc->sc_ic_rx_count);
2718 }
2719
2720 static int
2721 pq3etsec_sysctl_ic_tx_time_helper(SYSCTLFN_ARGS)
2722 {
2723 struct pq3etsec_softc *sc = rnode->sysctl_data;
2724
2725 return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2726 &sc->sc_ic_tx_time);
2727 }
2728
2729 static int
2730 pq3etsec_sysctl_ic_tx_count_helper(SYSCTLFN_ARGS)
2731 {
2732 struct pq3etsec_softc *sc = rnode->sysctl_data;
2733
2734 return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2735 &sc->sc_ic_tx_count);
2736 }
2737
2738 static void pq3etsec_sysctl_setup(struct sysctllog **clog,
2739 struct pq3etsec_softc *sc)
2740 {
2741 const struct sysctlnode *cnode, *rnode;
2742
2743 if (sysctl_createv(clog, 0, NULL, &rnode,
2744 CTLFLAG_PERMANENT,
2745 CTLTYPE_NODE, device_xname(sc->sc_dev),
2746 SYSCTL_DESCR("TSEC interface"),
2747 NULL, 0, NULL, 0,
2748 CTL_HW, CTL_CREATE, CTL_EOL) != 0)
2749 goto bad;
2750
2751 if (sysctl_createv(clog, 0, &rnode, &rnode,
2752 CTLFLAG_PERMANENT,
2753 CTLTYPE_NODE, "int_coal",
2754 SYSCTL_DESCR("Interrupts coalescing"),
2755 NULL, 0, NULL, 0,
2756 CTL_CREATE, CTL_EOL) != 0)
2757 goto bad;
2758
2759 if (sysctl_createv(clog, 0, &rnode, &cnode,
2760 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2761 CTLTYPE_INT, "rx_time",
2762 SYSCTL_DESCR("RX time threshold (0-65535)"),
2763 pq3etsec_sysctl_ic_rx_time_helper, 0, (void *)sc, 0,
2764 CTL_CREATE, CTL_EOL) != 0)
2765 goto bad;
2766
2767 if (sysctl_createv(clog, 0, &rnode, &cnode,
2768 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2769 CTLTYPE_INT, "rx_count",
2770 SYSCTL_DESCR("RX frame count threshold (0-255)"),
2771 pq3etsec_sysctl_ic_rx_count_helper, 0, (void *)sc, 0,
2772 CTL_CREATE, CTL_EOL) != 0)
2773 goto bad;
2774
2775 if (sysctl_createv(clog, 0, &rnode, &cnode,
2776 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2777 CTLTYPE_INT, "tx_time",
2778 SYSCTL_DESCR("TX time threshold (0-65535)"),
2779 pq3etsec_sysctl_ic_tx_time_helper, 0, (void *)sc, 0,
2780 CTL_CREATE, CTL_EOL) != 0)
2781 goto bad;
2782
2783 if (sysctl_createv(clog, 0, &rnode, &cnode,
2784 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2785 CTLTYPE_INT, "tx_count",
2786 SYSCTL_DESCR("TX frame count threshold (0-255)"),
2787 pq3etsec_sysctl_ic_tx_count_helper, 0, (void *)sc, 0,
2788 CTL_CREATE, CTL_EOL) != 0)
2789 goto bad;
2790
2791 return;
2792
2793 bad:
2794 aprint_error_dev(sc->sc_dev, "could not attach sysctl nodes\n");
2795 }
2796