pq3etsec.c revision 1.56 1 /* $NetBSD: pq3etsec.c,v 1.56 2021/08/07 16:19:02 thorpej Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: pq3etsec.c,v 1.56 2021/08/07 16:19:02 thorpej Exp $");
39
40 #ifdef _KERNEL_OPT
41 #include "opt_inet.h"
42 #include "opt_mpc85xx.h"
43 #include "opt_multiprocessor.h"
44 #include "opt_net_mpsafe.h"
45 #endif
46
47 #include <sys/param.h>
48 #include <sys/cpu.h>
49 #include <sys/device.h>
50 #include <sys/mbuf.h>
51 #include <sys/ioctl.h>
52 #include <sys/intr.h>
53 #include <sys/bus.h>
54 #include <sys/kernel.h>
55 #include <sys/kmem.h>
56 #include <sys/proc.h>
57 #include <sys/atomic.h>
58 #include <sys/callout.h>
59 #include <sys/sysctl.h>
60
61 #include <sys/rndsource.h>
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_ether.h>
66 #include <net/if_media.h>
67 #include <net/bpf.h>
68
69 #include <dev/mii/miivar.h>
70
71 #ifdef INET
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/ip.h>
75 #include <netinet/in_offload.h>
76 #endif /* INET */
77 #ifdef INET6
78 #include <netinet6/in6.h>
79 #include <netinet/ip6.h>
80 #endif
81 #include <netinet6/in6_offload.h>
82
83 #include <powerpc/spr.h>
84 #include <powerpc/booke/spr.h>
85 #include <powerpc/booke/cpuvar.h>
86 #include <powerpc/booke/e500var.h>
87 #include <powerpc/booke/e500reg.h>
88 #include <powerpc/booke/etsecreg.h>
89
90 #define M_HASFCB M_LINK2 /* tx packet has FCB prepended */
91
92 #define ETSEC_MAXTXMBUFS 30
93 #define ETSEC_NTXSEGS 30
94 #define ETSEC_MAXRXMBUFS 511
95 #define ETSEC_MINRXMBUFS 32
96 #define ETSEC_NRXSEGS 1
97
98 #define IFCAP_RCTRL_IPCSEN IFCAP_CSUM_IPv4_Rx
99 #define IFCAP_RCTRL_TUCSEN (IFCAP_CSUM_TCPv4_Rx \
100 | IFCAP_CSUM_UDPv4_Rx \
101 | IFCAP_CSUM_TCPv6_Rx \
102 | IFCAP_CSUM_UDPv6_Rx)
103
104 #define IFCAP_TCTRL_IPCSEN IFCAP_CSUM_IPv4_Tx
105 #define IFCAP_TCTRL_TUCSEN (IFCAP_CSUM_TCPv4_Tx \
106 | IFCAP_CSUM_UDPv4_Tx \
107 | IFCAP_CSUM_TCPv6_Tx \
108 | IFCAP_CSUM_UDPv6_Tx)
109
110 #define IFCAP_ETSEC (IFCAP_RCTRL_IPCSEN | IFCAP_RCTRL_TUCSEN \
111 | IFCAP_TCTRL_IPCSEN | IFCAP_TCTRL_TUCSEN)
112
113 #define M_CSUM_IP (M_CSUM_CIP | M_CSUM_CTU)
114 #define M_CSUM_IP6 (M_CSUM_TCPv6 | M_CSUM_UDPv6)
115 #define M_CSUM_TUP (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)
116 #define M_CSUM_UDP (M_CSUM_UDPv4 | M_CSUM_UDPv6)
117 #define M_CSUM_IP4 (M_CSUM_IPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4)
118 #define M_CSUM_CIP (M_CSUM_IPv4)
119 #define M_CSUM_CTU (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)
120
121 struct pq3etsec_txqueue {
122 bus_dmamap_t txq_descmap;
123 volatile struct txbd *txq_consumer;
124 volatile struct txbd *txq_producer;
125 volatile struct txbd *txq_first;
126 volatile struct txbd *txq_last;
127 struct ifqueue txq_mbufs;
128 struct mbuf *txq_next;
129 #ifdef ETSEC_DEBUG
130 struct mbuf *txq_lmbufs[512];
131 #endif
132 uint32_t txq_qmask;
133 uint32_t txq_free;
134 uint32_t txq_threshold;
135 uint32_t txq_lastintr;
136 bus_size_t txq_reg_tbase;
137 bus_dma_segment_t txq_descmap_seg;
138 };
139
140 struct pq3etsec_rxqueue {
141 bus_dmamap_t rxq_descmap;
142 volatile struct rxbd *rxq_consumer;
143 volatile struct rxbd *rxq_producer;
144 volatile struct rxbd *rxq_first;
145 volatile struct rxbd *rxq_last;
146 struct mbuf *rxq_mhead;
147 struct mbuf **rxq_mtail;
148 struct mbuf *rxq_mconsumer;
149 #ifdef ETSEC_DEBUG
150 struct mbuf *rxq_mbufs[512];
151 #endif
152 uint32_t rxq_qmask;
153 uint32_t rxq_inuse;
154 uint32_t rxq_threshold;
155 bus_size_t rxq_reg_rbase;
156 bus_size_t rxq_reg_rbptr;
157 bus_dma_segment_t rxq_descmap_seg;
158 };
159
160 struct pq3etsec_mapcache {
161 u_int dmc_nmaps;
162 u_int dmc_maxseg;
163 u_int dmc_maxmaps;
164 u_int dmc_maxmapsize;
165 bus_dmamap_t dmc_maps[0];
166 };
167
168 struct pq3etsec_softc {
169 device_t sc_dev;
170 device_t sc_mdio_dev;
171 struct ethercom sc_ec;
172 #define sc_if sc_ec.ec_if
173 struct mii_data sc_mii;
174 bus_space_tag_t sc_bst;
175 bus_space_handle_t sc_bsh;
176 bus_space_handle_t sc_mdio_bsh;
177 bus_dma_tag_t sc_dmat;
178 int sc_phy_addr;
179 prop_dictionary_t sc_intrmap;
180 uint32_t sc_intrmask;
181
182 uint32_t sc_soft_flags;
183 #define SOFT_RESET 0x0001
184 #define SOFT_RXINTR 0x0010
185 #define SOFT_RXBSY 0x0020
186 #define SOFT_TXINTR 0x0100
187 #define SOFT_TXERROR 0x0200
188
189 struct pq3etsec_txqueue sc_txq;
190 struct pq3etsec_rxqueue sc_rxq;
191 uint32_t sc_txerrors;
192 uint32_t sc_rxerrors;
193
194 size_t sc_rx_adjlen;
195
196 /*
197 * Copies of various ETSEC registers.
198 */
199 uint32_t sc_imask;
200 uint32_t sc_maccfg1;
201 uint32_t sc_maccfg2;
202 uint32_t sc_maxfrm;
203 uint32_t sc_ecntrl;
204 uint32_t sc_dmactrl;
205 uint32_t sc_macstnaddr1;
206 uint32_t sc_macstnaddr2;
207 uint32_t sc_tctrl;
208 uint32_t sc_rctrl;
209 uint32_t sc_gaddr[16];
210 uint64_t sc_macaddrs[15];
211
212 void *sc_tx_ih;
213 void *sc_rx_ih;
214 void *sc_error_ih;
215 void *sc_soft_ih;
216
217 kmutex_t *sc_lock;
218 kmutex_t *sc_hwlock;
219
220 struct evcnt sc_ev_tx_stall;
221 struct evcnt sc_ev_tx_intr;
222 struct evcnt sc_ev_rx_stall;
223 struct evcnt sc_ev_rx_intr;
224 struct evcnt sc_ev_error_intr;
225 struct evcnt sc_ev_soft_intr;
226 struct evcnt sc_ev_tx_pause;
227 struct evcnt sc_ev_rx_pause;
228 struct evcnt sc_ev_mii_ticks;
229
230 struct callout sc_mii_callout;
231 uint64_t sc_mii_last_tick;
232
233 struct ifqueue sc_rx_bufcache;
234 struct pq3etsec_mapcache *sc_rx_mapcache;
235 struct pq3etsec_mapcache *sc_tx_mapcache;
236
237 /* Interrupt Coalescing parameters */
238 int sc_ic_rx_time;
239 int sc_ic_rx_count;
240 int sc_ic_tx_time;
241 int sc_ic_tx_count;
242
243 krndsource_t rnd_source;
244 };
245
246 #define ETSEC_IC_RX_ENABLED(sc) \
247 ((sc)->sc_ic_rx_time != 0 && (sc)->sc_ic_rx_count != 0)
248 #define ETSEC_IC_TX_ENABLED(sc) \
249 ((sc)->sc_ic_tx_time != 0 && (sc)->sc_ic_tx_count != 0)
250
251 struct pq3mdio_softc {
252 device_t mdio_dev;
253
254 kmutex_t *mdio_lock;
255
256 bus_space_tag_t mdio_bst;
257 bus_space_handle_t mdio_bsh;
258 };
259
260 static int pq3etsec_match(device_t, cfdata_t, void *);
261 static void pq3etsec_attach(device_t, device_t, void *);
262
263 static int pq3mdio_match(device_t, cfdata_t, void *);
264 static void pq3mdio_attach(device_t, device_t, void *);
265
266 static void pq3etsec_ifstart(struct ifnet *);
267 static void pq3etsec_ifwatchdog(struct ifnet *);
268 static int pq3etsec_ifinit(struct ifnet *);
269 static void pq3etsec_ifstop(struct ifnet *, int);
270 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
271
272 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
273 struct pq3etsec_mapcache **, size_t, size_t, size_t);
274 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
275 struct pq3etsec_mapcache *);
276 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
277 struct pq3etsec_mapcache *);
278 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
279 struct pq3etsec_mapcache *, bus_dmamap_t);
280
281 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
282 struct pq3etsec_txqueue *, u_int);
283 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
284 struct pq3etsec_txqueue *);
285 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
286 struct pq3etsec_txqueue *);
287 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
288 struct pq3etsec_txqueue *);
289 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
290 struct pq3etsec_txqueue *, struct mbuf *m);
291 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
292 struct pq3etsec_txqueue *);
293
294 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
295 struct pq3etsec_rxqueue *, u_int);
296 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
297 struct pq3etsec_rxqueue *);
298 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
299 struct pq3etsec_rxqueue *, bool);
300 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
301 struct pq3etsec_rxqueue *);
302
303 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
304
305 static void pq3etsec_mii_tick(void *);
306 static int pq3etsec_rx_intr(void *);
307 static int pq3etsec_tx_intr(void *);
308 static int pq3etsec_error_intr(void *);
309 static void pq3etsec_soft_intr(void *);
310
311 static void pq3etsec_set_ic_rx(struct pq3etsec_softc *);
312 static void pq3etsec_set_ic_tx(struct pq3etsec_softc *);
313
314 static void pq3etsec_sysctl_setup(struct sysctllog **, struct pq3etsec_softc *);
315
316 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
317 pq3etsec_match, pq3etsec_attach, NULL, NULL);
318
319 CFATTACH_DECL_NEW(pq3mdio_tsec, sizeof(struct pq3mdio_softc),
320 pq3mdio_match, pq3mdio_attach, NULL, NULL);
321
322 CFATTACH_DECL_NEW(pq3mdio_cpunode, sizeof(struct pq3mdio_softc),
323 pq3mdio_match, pq3mdio_attach, NULL, NULL);
324
325 static inline uint32_t
326 etsec_mdio_read(struct pq3mdio_softc *mdio, bus_size_t off)
327 {
328 return bus_space_read_4(mdio->mdio_bst, mdio->mdio_bsh, off);
329 }
330
331 static inline void
332 etsec_mdio_write(struct pq3mdio_softc *mdio, bus_size_t off, uint32_t data)
333 {
334 bus_space_write_4(mdio->mdio_bst, mdio->mdio_bsh, off, data);
335 }
336
337 static inline uint32_t
338 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
339 {
340 return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
341 }
342
343 static int
344 pq3mdio_find(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
345 {
346 return strcmp(cf->cf_name, "mdio") == 0;
347 }
348
349 static int
350 pq3mdio_match(device_t parent, cfdata_t cf, void *aux)
351 {
352 const uint16_t svr = (mfspr(SPR_SVR) & ~0x80000) >> 16;
353 const bool p1025_p = (svr == (SVR_P1025v1 >> 16)
354 || svr == (SVR_P1016v1 >> 16));
355
356 if (device_is_a(parent, "cpunode")) {
357 if (!p1025_p
358 || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
359 return 0;
360
361 return 1;
362 }
363
364 if (device_is_a(parent, "tsec")) {
365 if (p1025_p
366 || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
367 return 0;
368
369 return 1;
370 }
371
372 return 0;
373 }
374
375 static void
376 pq3mdio_attach(device_t parent, device_t self, void *aux)
377 {
378 struct pq3mdio_softc * const mdio = device_private(self);
379 struct cpunode_attach_args * const cna = aux;
380 struct cpunode_locators * const cnl = &cna->cna_locs;
381
382 mdio->mdio_dev = self;
383 mdio->mdio_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
384
385 if (device_is_a(parent, "cpunode")) {
386 struct cpunode_softc * const psc = device_private(parent);
387 psc->sc_children |= cna->cna_childmask;
388
389 mdio->mdio_bst = cna->cna_memt;
390 if (bus_space_map(mdio->mdio_bst, cnl->cnl_addr,
391 cnl->cnl_size, 0, &mdio->mdio_bsh) != 0) {
392 aprint_error(": error mapping registers @ %#x\n",
393 cnl->cnl_addr);
394 return;
395 }
396 } else {
397 struct pq3etsec_softc * const sc = device_private(parent);
398
399 KASSERT(device_is_a(parent, "tsec"));
400 KASSERTMSG(cnl->cnl_addr == ETSEC1_BASE
401 || cnl->cnl_addr == ETSEC2_BASE
402 || cnl->cnl_addr == ETSEC3_BASE
403 || cnl->cnl_addr == ETSEC4_BASE,
404 "unknown tsec addr %x", cnl->cnl_addr);
405
406 mdio->mdio_bst = sc->sc_bst;
407 mdio->mdio_bsh = sc->sc_bsh;
408 }
409
410 aprint_normal("\n");
411 }
412
413 static int
414 pq3mdio_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
415 {
416 struct pq3mdio_softc * const mdio = device_private(self);
417 uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
418
419 mutex_enter(mdio->mdio_lock);
420
421 etsec_mdio_write(mdio, MIIMADD,
422 __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
423
424 etsec_mdio_write(mdio, MIIMCOM, 0); /* clear any past bits */
425 etsec_mdio_write(mdio, MIIMCOM, MIIMCOM_READ);
426
427 while (etsec_mdio_read(mdio, MIIMIND) != 0) {
428 delay(1);
429 }
430 *val = etsec_mdio_read(mdio, MIIMSTAT) &0xffff;
431
432 if (miimcom == MIIMCOM_SCAN)
433 etsec_mdio_write(mdio, MIIMCOM, miimcom);
434
435 #if 0
436 aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
437 __func__, phy, reg, data);
438 #endif
439 mutex_exit(mdio->mdio_lock);
440 return 0;
441 }
442
443 static int
444 pq3mdio_mii_writereg(device_t self, int phy, int reg, uint16_t data)
445 {
446 struct pq3mdio_softc * const mdio = device_private(self);
447 uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
448
449 #if 0
450 aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
451 __func__, phy, reg, data);
452 #endif
453
454 mutex_enter(mdio->mdio_lock);
455
456 etsec_mdio_write(mdio, MIIMADD,
457 __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
458 etsec_mdio_write(mdio, MIIMCOM, 0); /* clear any past bits */
459 etsec_mdio_write(mdio, MIIMCON, data);
460
461 int timo = 1000; /* 1ms */
462 while ((etsec_mdio_read(mdio, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
463 delay(1);
464 }
465
466 if (miimcom == MIIMCOM_SCAN)
467 etsec_mdio_write(mdio, MIIMCOM, miimcom);
468
469 mutex_exit(mdio->mdio_lock);
470
471 return 0;
472 }
473
474 static inline void
475 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
476 {
477 bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
478 }
479
480 static void
481 pq3etsec_mii_statchg(struct ifnet *ifp)
482 {
483 struct pq3etsec_softc * const sc = ifp->if_softc;
484 struct mii_data * const mii = &sc->sc_mii;
485
486 uint32_t maccfg1 = sc->sc_maccfg1;
487 uint32_t maccfg2 = sc->sc_maccfg2;
488 uint32_t ecntrl = sc->sc_ecntrl;
489
490 maccfg1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
491 maccfg2 &= ~(MACCFG2_IFMODE | MACCFG2_FD);
492
493 if (sc->sc_mii.mii_media_active & IFM_FDX) {
494 maccfg2 |= MACCFG2_FD;
495 }
496
497 /*
498 * Now deal with the flow control bits.
499 */
500 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
501 && (mii->mii_media_active & IFM_ETH_FMASK)) {
502 if (mii->mii_media_active & IFM_ETH_RXPAUSE)
503 maccfg1 |= MACCFG1_RX_FLOW;
504 if (mii->mii_media_active & IFM_ETH_TXPAUSE)
505 maccfg1 |= MACCFG1_TX_FLOW;
506 }
507
508 /*
509 * Now deal with the speed.
510 */
511 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
512 maccfg2 |= MACCFG2_IFMODE_GMII;
513 } else {
514 maccfg2 |= MACCFG2_IFMODE_MII;
515 ecntrl &= ~ECNTRL_R100M;
516 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
517 ecntrl |= ECNTRL_R100M;
518 }
519 }
520
521 /*
522 * If things are different, re-init things.
523 */
524 if (maccfg1 != sc->sc_maccfg1
525 || maccfg2 != sc->sc_maccfg2
526 || ecntrl != sc->sc_ecntrl) {
527 if (sc->sc_if.if_flags & IFF_RUNNING)
528 atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
529 sc->sc_maccfg1 = maccfg1;
530 sc->sc_maccfg2 = maccfg2;
531 sc->sc_ecntrl = ecntrl;
532 }
533 }
534
535 #if 0
536 static void
537 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
538 {
539 struct pq3etsec_softc * const sc = ifp->if_softc;
540
541 mii_pollstat(&sc->sc_mii);
542 ether_mediastatus(ifp, ifmr);
543 ifmr->ifm_status = sc->sc_mii.mii_media_status;
544 ifmr->ifm_active = sc->sc_mii.mii_media_active;
545 }
546
547 static int
548 pq3etsec_mediachange(struct ifnet *ifp)
549 {
550 struct pq3etsec_softc * const sc = ifp->if_softc;
551
552 if ((ifp->if_flags & IFF_UP) == 0)
553 return 0;
554
555 int rv = mii_mediachg(&sc->sc_mii);
556 return (rv == ENXIO) ? 0 : rv;
557 }
558 #endif
559
560 static int
561 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
562 {
563
564 if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
565 return 0;
566
567 return 1;
568 }
569
570 static void
571 pq3etsec_attach(device_t parent, device_t self, void *aux)
572 {
573 struct cpunode_softc * const psc = device_private(parent);
574 struct pq3etsec_softc * const sc = device_private(self);
575 struct mii_data * const mii = &sc->sc_mii;
576 struct cpunode_attach_args * const cna = aux;
577 struct cpunode_locators * const cnl = &cna->cna_locs;
578 cfdata_t cf = device_cfdata(self);
579 int error;
580
581 psc->sc_children |= cna->cna_childmask;
582 sc->sc_dev = self;
583 sc->sc_bst = cna->cna_memt;
584 sc->sc_dmat = &booke_bus_dma_tag;
585
586 /*
587 * Pull out the mdio bus and phy we are supposed to use.
588 */
589 const int mdio = cf->cf_loc[CPUNODECF_MDIO];
590 const int phy = cf->cf_loc[CPUNODECF_PHY];
591 if (mdio != CPUNODECF_MDIO_DEFAULT)
592 aprint_normal(" mdio %d", mdio);
593
594 /*
595 * See if the phy is in the config file...
596 */
597 if (phy != CPUNODECF_PHY_DEFAULT) {
598 sc->sc_phy_addr = phy;
599 } else {
600 unsigned char prop_name[20];
601 snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
602 cnl->cnl_instance);
603 sc->sc_phy_addr = board_info_get_number(prop_name);
604 }
605 if (sc->sc_phy_addr != MII_PHY_ANY)
606 aprint_normal(" phy %d", sc->sc_phy_addr);
607
608 error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
609 &sc->sc_bsh);
610 if (error) {
611 aprint_error(": error mapping registers: %d\n", error);
612 return;
613 }
614
615 /*
616 * Assume firmware has aready set the mac address and fetch it
617 * before we reinit it.
618 */
619 sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
620 sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
621 sc->sc_rctrl = RCTRL_DEFAULT;
622 sc->sc_ecntrl = etsec_read(sc, ECNTRL);
623 sc->sc_maccfg1 = etsec_read(sc, MACCFG1);
624 sc->sc_maccfg2 = etsec_read(sc, MACCFG2) | MACCFG2_DEFAULT;
625
626 if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
627 size_t len;
628 const uint8_t *mac_addr =
629 board_info_get_data("tsec-mac-addr-base", &len);
630 KASSERT(len == ETHER_ADDR_LEN);
631 sc->sc_macstnaddr2 =
632 (mac_addr[1] << 24)
633 | (mac_addr[0] << 16);
634 sc->sc_macstnaddr1 =
635 ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
636 | (mac_addr[4] << 16)
637 | (mac_addr[3] << 8)
638 | (mac_addr[2] << 0);
639 #if 0
640 aprint_error(": mac-address unknown\n");
641 return;
642 #endif
643 }
644
645 sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
646 sc->sc_hwlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_VM);
647
648 callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
649 callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
650
651 /* Disable interrupts */
652 etsec_write(sc, IMASK, 0);
653
654 error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
655 if (error) {
656 aprint_error(": failed to init rxq: %d\n", error);
657 goto fail_1;
658 }
659
660 error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
661 if (error) {
662 aprint_error(": failed to init txq: %d\n", error);
663 goto fail_2;
664 }
665
666 error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
667 ETSEC_MAXRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
668 if (error) {
669 aprint_error(": failed to allocate rx dmamaps: %d\n", error);
670 goto fail_3;
671 }
672
673 error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
674 ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
675 if (error) {
676 aprint_error(": failed to allocate tx dmamaps: %d\n", error);
677 goto fail_4;
678 }
679
680 sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
681 pq3etsec_tx_intr, sc);
682 if (sc->sc_tx_ih == NULL) {
683 aprint_error(": failed to establish tx interrupt: %d\n",
684 cnl->cnl_intrs[0]);
685 goto fail_5;
686 }
687
688 sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
689 pq3etsec_rx_intr, sc);
690 if (sc->sc_rx_ih == NULL) {
691 aprint_error(": failed to establish rx interrupt: %d\n",
692 cnl->cnl_intrs[1]);
693 goto fail_6;
694 }
695
696 sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
697 pq3etsec_error_intr, sc);
698 if (sc->sc_error_ih == NULL) {
699 aprint_error(": failed to establish error interrupt: %d\n",
700 cnl->cnl_intrs[2]);
701 goto fail_7;
702 }
703
704 int softint_flags = SOFTINT_NET;
705 #if !defined(MULTIPROCESSOR) || defined(NET_MPSAFE)
706 softint_flags |= SOFTINT_MPSAFE;
707 #endif /* !MULTIPROCESSOR || NET_MPSAFE */
708 sc->sc_soft_ih = softint_establish(softint_flags,
709 pq3etsec_soft_intr, sc);
710 if (sc->sc_soft_ih == NULL) {
711 aprint_error(": failed to establish soft interrupt\n");
712 goto fail_8;
713 }
714
715 /*
716 * If there was no MDIO
717 */
718 if (mdio == CPUNODECF_MDIO_DEFAULT) {
719 aprint_normal("\n");
720 cfdata_t mdio_cf = config_search(self, cna,
721 CFARGS(.submatch = pq3mdio_find));
722 if (mdio_cf != NULL) {
723 sc->sc_mdio_dev =
724 config_attach(self, mdio_cf, cna, NULL, CFARGS_NONE);
725 }
726 } else {
727 sc->sc_mdio_dev = device_find_by_driver_unit("mdio", mdio);
728 if (sc->sc_mdio_dev == NULL) {
729 aprint_error(": failed to locate mdio device\n");
730 goto fail_9;
731 }
732 aprint_normal("\n");
733 }
734
735 etsec_write(sc, ATTR, ATTR_DEFAULT);
736 etsec_write(sc, ATTRELI, ATTRELI_DEFAULT);
737
738 /* Enable interrupt coalesing */
739 sc->sc_ic_rx_time = 768;
740 sc->sc_ic_rx_count = 16;
741 sc->sc_ic_tx_time = 768;
742 sc->sc_ic_tx_count = 16;
743 pq3etsec_set_ic_rx(sc);
744 pq3etsec_set_ic_tx(sc);
745
746 char enaddr[ETHER_ADDR_LEN] = {
747 [0] = sc->sc_macstnaddr2 >> 16,
748 [1] = sc->sc_macstnaddr2 >> 24,
749 [2] = sc->sc_macstnaddr1 >> 0,
750 [3] = sc->sc_macstnaddr1 >> 8,
751 [4] = sc->sc_macstnaddr1 >> 16,
752 [5] = sc->sc_macstnaddr1 >> 24,
753 };
754 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
755 ether_sprintf(enaddr));
756
757 const char * const xname = device_xname(sc->sc_dev);
758 struct ethercom * const ec = &sc->sc_ec;
759 struct ifnet * const ifp = &ec->ec_if;
760
761 ec->ec_mii = mii;
762
763 mii->mii_ifp = ifp;
764 mii->mii_readreg = pq3mdio_mii_readreg;
765 mii->mii_writereg = pq3mdio_mii_writereg;
766 mii->mii_statchg = pq3etsec_mii_statchg;
767
768 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
769
770 if (sc->sc_mdio_dev != NULL && sc->sc_phy_addr < 32) {
771 mii_attach(sc->sc_mdio_dev, mii, 0xffffffff,
772 sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
773
774 if (LIST_FIRST(&mii->mii_phys) == NULL) {
775 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE,
776 0, NULL);
777 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
778 } else {
779 callout_schedule(&sc->sc_mii_callout, hz);
780 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
781 }
782 } else {
783 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_1000_T | IFM_FDX,
784 0, NULL);
785 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_1000_T | IFM_FDX);
786 }
787
788 ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
789 | ETHERCAP_JUMBO_MTU;
790 ec->ec_capenable = ETHERCAP_VLAN_HWTAGGING;
791
792 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
793 ifp->if_softc = sc;
794 ifp->if_capabilities = IFCAP_ETSEC;
795 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
796 ifp->if_ioctl = pq3etsec_ifioctl;
797 ifp->if_start = pq3etsec_ifstart;
798 ifp->if_watchdog = pq3etsec_ifwatchdog;
799 ifp->if_init = pq3etsec_ifinit;
800 ifp->if_stop = pq3etsec_ifstop;
801 IFQ_SET_READY(&ifp->if_snd);
802
803 /*
804 * Attach the interface.
805 */
806 if_initialize(ifp);
807 pq3etsec_sysctl_setup(NULL, sc);
808 if_attach(ifp);
809 if_deferred_start_init(ifp, NULL);
810 ether_ifattach(ifp, enaddr);
811
812 rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET,
813 RND_FLAG_DEFAULT);
814
815 pq3etsec_ifstop(ifp, true);
816
817 evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
818 NULL, xname, "rx stall");
819 evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
820 NULL, xname, "tx stall");
821 evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
822 NULL, xname, "tx intr");
823 evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
824 NULL, xname, "rx intr");
825 evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
826 NULL, xname, "error intr");
827 evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
828 NULL, xname, "soft intr");
829 evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
830 NULL, xname, "tx pause");
831 evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
832 NULL, xname, "rx pause");
833 evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
834 NULL, xname, "mii ticks");
835 return;
836
837 fail_9:
838 softint_disestablish(sc->sc_soft_ih);
839 fail_8:
840 intr_disestablish(sc->sc_error_ih);
841 fail_7:
842 intr_disestablish(sc->sc_rx_ih);
843 fail_6:
844 intr_disestablish(sc->sc_tx_ih);
845 fail_5:
846 pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
847 fail_4:
848 pq3etsec_mapcache_destroy(sc, sc->sc_rx_mapcache);
849 fail_3:
850 #if 0 /* notyet */
851 pq3etsec_txq_detach(sc);
852 #endif
853 fail_2:
854 #if 0 /* notyet */
855 pq3etsec_rxq_detach(sc);
856 #endif
857 fail_1:
858 callout_destroy(&sc->sc_mii_callout);
859 mutex_obj_free(sc->sc_lock);
860 mutex_obj_free(sc->sc_hwlock);
861 bus_space_unmap(sc->sc_bst, sc->sc_bsh, cnl->cnl_size);
862 }
863
864 static uint64_t
865 pq3etsec_macaddr_create(const uint8_t *lladdr)
866 {
867 uint64_t macaddr = 0;
868
869 lladdr += ETHER_ADDR_LEN;
870 for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
871 macaddr = (macaddr << 8) | *--lladdr;
872 }
873 return macaddr << 16;
874 }
875
876 static int
877 pq3etsec_ifinit(struct ifnet *ifp)
878 {
879 struct pq3etsec_softc * const sc = ifp->if_softc;
880 int error = 0;
881
882 sc->sc_maxfrm = uimax(ifp->if_mtu + 32, MCLBYTES);
883 if (ifp->if_mtu > ETHERMTU_JUMBO)
884 return error;
885
886 KASSERT(ifp->if_flags & IFF_UP);
887
888 /*
889 * Stop the interface (steps 1 to 4 in the Soft Reset and
890 * Reconfigurating Procedure.
891 */
892 pq3etsec_ifstop(ifp, 0);
893
894 /*
895 * If our frame size has changed (or it's our first time through)
896 * destroy the existing transmit mapcache.
897 */
898 if (sc->sc_tx_mapcache != NULL
899 && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
900 pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
901 sc->sc_tx_mapcache = NULL;
902 }
903
904 if (sc->sc_tx_mapcache == NULL) {
905 error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
906 ETSEC_MAXTXMBUFS, sc->sc_maxfrm, ETSEC_NTXSEGS);
907 if (error)
908 return error;
909 }
910
911 sc->sc_ev_mii_ticks.ev_count++;
912 mii_tick(&sc->sc_mii);
913
914 if (ifp->if_flags & IFF_PROMISC) {
915 sc->sc_rctrl |= RCTRL_PROM;
916 } else {
917 sc->sc_rctrl &= ~RCTRL_PROM;
918 }
919
920 uint32_t rctrl_prsdep = 0;
921 sc->sc_rctrl &=
922 ~(RCTRL_IPCSEN | RCTRL_TUCSEN | RCTRL_VLEX | RCTRL_PRSDEP);
923 if (VLAN_ATTACHED(&sc->sc_ec)) {
924 sc->sc_rctrl |= RCTRL_VLEX;
925 rctrl_prsdep = RCTRL_PRSDEP_L2;
926 }
927 if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
928 sc->sc_rctrl |= RCTRL_IPCSEN;
929 rctrl_prsdep = RCTRL_PRSDEP_L3;
930 }
931 if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
932 sc->sc_rctrl |= RCTRL_TUCSEN;
933 rctrl_prsdep = RCTRL_PRSDEP_L4;
934 }
935 sc->sc_rctrl |= rctrl_prsdep;
936 #if 0
937 if (sc->sc_rctrl
938 & (RCTRL_IPCSEN | RCTRL_TUCSEN | RCTRL_VLEX | RCTRL_PRSDEP))
939 aprint_normal_dev(sc->sc_dev,
940 "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
941 sc->sc_rctrl,
942 __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
943 __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
944 __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
945 __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
946 #endif
947
948 sc->sc_tctrl &= ~(TCTRL_IPCSEN | TCTRL_TUCSEN | TCTRL_VLINS);
949 if (VLAN_ATTACHED(&sc->sc_ec)) /* is this really true */
950 sc->sc_tctrl |= TCTRL_VLINS;
951 if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
952 sc->sc_tctrl |= TCTRL_IPCSEN;
953 if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
954 sc->sc_tctrl |= TCTRL_TUCSEN;
955 #if 0
956 if (sc->sc_tctrl & (TCTRL_IPCSEN | TCTRL_TUCSEN | TCTRL_VLINS))
957 aprint_normal_dev(sc->sc_dev,
958 "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
959 sc->sc_tctrl,
960 __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
961 __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
962 __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
963 #endif
964
965 sc->sc_maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
966
967 const uint64_t macstnaddr =
968 pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
969
970 sc->sc_imask = IEVENT_DPE;
971
972 /* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
973 pq3etsec_rxq_reset(sc, &sc->sc_rxq);
974 pq3etsec_rxq_produce(sc, &sc->sc_rxq); /* fill with rx buffers */
975
976 /* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
977 pq3etsec_txq_reset(sc, &sc->sc_txq);
978
979 /* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
980 KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
981 etsec_write(sc, MAXFRM, sc->sc_maxfrm);
982 etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
983 etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >> 0));
984 etsec_write(sc, MACCFG1, sc->sc_maccfg1);
985 etsec_write(sc, MACCFG2, sc->sc_maccfg2);
986 etsec_write(sc, ECNTRL, sc->sc_ecntrl);
987
988 /* 8. Setup group address hash table (GADDR0-GADDR15) */
989 pq3etsec_mc_setup(sc);
990
991 /* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
992 etsec_write(sc, MRBLR, MCLBYTES);
993
994 /* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
995 sc->sc_dmactrl |= DMACTRL_DEFAULT;
996 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
997
998 /* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
999 etsec_write(sc, TQUEUE, TQUEUE_EN0);
1000 sc->sc_imask |= IEVENT_TXF | IEVENT_TXE | IEVENT_TXC;
1001
1002 etsec_write(sc, TCTRL, sc->sc_tctrl); /* for TOE stuff */
1003
1004 /* 12. Enable receive queues in RQUEUE, */
1005 etsec_write(sc, RQUEUE, RQUEUE_EN0 | RQUEUE_EX0);
1006 sc->sc_imask |= IEVENT_RXF | IEVENT_BSY | IEVENT_RXC;
1007
1008 /* and optionally set TOE functionality in RCTRL. */
1009 etsec_write(sc, RCTRL, sc->sc_rctrl);
1010 sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
1011 if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
1012 sc->sc_rx_adjlen += sizeof(struct rxfcb);
1013
1014 /* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
1015 etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
1016
1017 /* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
1018 etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
1019
1020 /* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
1021 sc->sc_dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
1022 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1023
1024 /* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
1025 etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
1026 etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
1027
1028 sc->sc_soft_flags = 0;
1029
1030 etsec_write(sc, IMASK, sc->sc_imask);
1031
1032 ifp->if_flags |= IFF_RUNNING;
1033
1034 return error;
1035 }
1036
1037 static void
1038 pq3etsec_ifstop(struct ifnet *ifp, int disable)
1039 {
1040 struct pq3etsec_softc * const sc = ifp->if_softc;
1041
1042 KASSERT(!cpu_intr_p());
1043 const uint32_t imask_gsc_mask = IEVENT_GTSC | IEVENT_GRSC;
1044 /*
1045 * Clear the GTSC and GRSC from the interrupt mask until
1046 * we are ready for them. Then clear them from IEVENT,
1047 * request the graceful shutdown, and then enable the
1048 * GTSC and GRSC bits in the mask. This should cause the
1049 * error interrupt to fire which will issue a wakeup to
1050 * allow us to resume.
1051 */
1052
1053 /*
1054 * 1. Set GRS/GTS bits in DMACTRL register
1055 */
1056 sc->sc_dmactrl |= DMACTRL_GRS | DMACTRL_GTS;
1057 etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
1058 etsec_write(sc, IEVENT, imask_gsc_mask);
1059 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1060
1061 if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN | MACCFG1_RX_EN)) {
1062 /*
1063 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
1064 */
1065 etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
1066
1067 u_int timo = 1000;
1068 uint32_t ievent = etsec_read(sc, IEVENT);
1069 while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
1070 if (--timo == 0) {
1071 aprint_error_dev(sc->sc_dev,
1072 "WARNING: "
1073 "request to stop failed (IEVENT=%#x)\n",
1074 ievent);
1075 break;
1076 }
1077 delay(10);
1078 ievent = etsec_read(sc, IEVENT);
1079 }
1080 }
1081
1082 /*
1083 * Now reset the controller.
1084 *
1085 * 3. Set SOFT_RESET bit in MACCFG1 register
1086 * 4. Clear SOFT_RESET bit in MACCFG1 register
1087 */
1088 etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
1089 etsec_write(sc, MACCFG1, 0);
1090 etsec_write(sc, IMASK, 0);
1091 etsec_write(sc, IEVENT, ~0);
1092 sc->sc_imask = 0;
1093 ifp->if_flags &= ~IFF_RUNNING;
1094
1095 uint32_t tbipa = etsec_read(sc, TBIPA);
1096 if (tbipa == sc->sc_phy_addr) {
1097 aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
1098 etsec_write(sc, TBIPA, 0x1f);
1099 }
1100 uint32_t miimcfg = etsec_read(sc, MIIMCFG);
1101 etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
1102 etsec_write(sc, MIIMCFG, miimcfg);
1103
1104 /*
1105 * Let's consume any remaing transmitted packets. And if we are
1106 * disabling the interface, purge ourselves of any untransmitted
1107 * packets. But don't consume any received packets, just drop them.
1108 * If we aren't disabling the interface, save the mbufs in the
1109 * receive queue for reuse.
1110 */
1111 pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
1112 pq3etsec_txq_consume(sc, &sc->sc_txq);
1113 if (disable) {
1114 pq3etsec_txq_purge(sc, &sc->sc_txq);
1115 IFQ_PURGE(&ifp->if_snd);
1116 }
1117 }
1118
1119 static void
1120 pq3etsec_ifwatchdog(struct ifnet *ifp)
1121 {
1122 }
1123
1124 static void
1125 pq3etsec_mc_setup(
1126 struct pq3etsec_softc *sc)
1127 {
1128 struct ethercom * const ec = &sc->sc_ec;
1129 struct ifnet * const ifp = &sc->sc_if;
1130 struct ether_multi *enm;
1131 struct ether_multistep step;
1132 uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
1133 const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
1134
1135 memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
1136 memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1137
1138 ifp->if_flags &= ~IFF_ALLMULTI;
1139
1140 ETHER_LOCK(ec);
1141 ETHER_FIRST_MULTI(step, ec, enm);
1142 for (u_int i = 0; enm != NULL; ) {
1143 const char *addr = enm->enm_addrlo;
1144 if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1145 ifp->if_flags |= IFF_ALLMULTI;
1146 memset(gaddr, 0xff, 32 << (crc_shift & 1));
1147 memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1148 break;
1149 }
1150 if ((sc->sc_rctrl & RCTRL_EMEN)
1151 && i < __arraycount(sc->sc_macaddrs)) {
1152 sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
1153 } else {
1154 uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1155 #if 0
1156 printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
1157 ether_sprintf(addr), crc,
1158 crc >> crc_shift,
1159 crc >> (crc_shift + 5),
1160 (crc >> crc_shift) & 31,
1161 1 << (((crc >> crc_shift) & 31) ^ 31));
1162 #endif
1163 /*
1164 * The documentation doesn't completely follow PowerPC
1165 * bit order. The BE crc32 (H) for 01:00:5E:00:00:01
1166 * is 0x7fa32d9b. By empirical testing, the
1167 * corresponding hash bit is word 3, bit 31 (ppc bit
1168 * order). Since 3 << 31 | 31 is 0x7f, we deduce
1169 * H[0:2] selects the register while H[3:7] selects
1170 * the bit (ppc bit order).
1171 */
1172 crc >>= crc_shift;
1173 gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
1174 }
1175 ETHER_NEXT_MULTI(step, enm);
1176 }
1177 ETHER_UNLOCK(ec);
1178 for (u_int i = 0; i < 8; i++) {
1179 etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
1180 etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
1181 #if 0
1182 if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
1183 printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
1184 i, IGADDR(i), etsec_read(sc, IGADDR(i)),
1185 i, GADDR(i), etsec_read(sc, GADDR(i)));
1186 #endif
1187 }
1188 for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
1189 uint64_t macaddr = sc->sc_macaddrs[i];
1190 etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
1191 etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >> 0));
1192 #if 0
1193 if (macaddr)
1194 printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
1195 i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
1196 i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
1197 #endif
1198 }
1199 }
1200
1201 static int
1202 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1203 {
1204 struct pq3etsec_softc *sc = ifp->if_softc;
1205 struct ifreq * const ifr = data;
1206 const int s = splnet();
1207 int error;
1208
1209 switch (cmd) {
1210 case SIOCSIFMEDIA:
1211 /* Flow control requires full-duplex mode. */
1212 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1213 (ifr->ifr_media & IFM_FDX) == 0)
1214 ifr->ifr_media &= ~IFM_ETH_FMASK;
1215 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1216 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1217 /* We can do both TXPAUSE and RXPAUSE. */
1218 ifr->ifr_media |=
1219 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1220 }
1221 }
1222 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1223 break;
1224
1225 default:
1226 error = ether_ioctl(ifp, cmd, data);
1227 if (error != ENETRESET)
1228 break;
1229
1230 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1231 error = 0;
1232 if (ifp->if_flags & IFF_RUNNING)
1233 pq3etsec_mc_setup(sc);
1234 break;
1235 }
1236 error = pq3etsec_ifinit(ifp);
1237 break;
1238 }
1239
1240 splx(s);
1241 return error;
1242 }
1243
1244 static void
1245 pq3etsec_rxq_desc_presync(
1246 struct pq3etsec_softc *sc,
1247 struct pq3etsec_rxqueue *rxq,
1248 volatile struct rxbd *rxbd,
1249 size_t count)
1250 {
1251 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1252 (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1253 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1254 }
1255
1256 static void
1257 pq3etsec_rxq_desc_postsync(
1258 struct pq3etsec_softc *sc,
1259 struct pq3etsec_rxqueue *rxq,
1260 volatile struct rxbd *rxbd,
1261 size_t count)
1262 {
1263 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1264 (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1265 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1266 }
1267
1268 static void
1269 pq3etsec_txq_desc_presync(
1270 struct pq3etsec_softc *sc,
1271 struct pq3etsec_txqueue *txq,
1272 volatile struct txbd *txbd,
1273 size_t count)
1274 {
1275 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1276 (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1277 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1278 }
1279
1280 static void
1281 pq3etsec_txq_desc_postsync(
1282 struct pq3etsec_softc *sc,
1283 struct pq3etsec_txqueue *txq,
1284 volatile struct txbd *txbd,
1285 size_t count)
1286 {
1287 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1288 (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1289 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1290 }
1291
1292 static bus_dmamap_t
1293 pq3etsec_mapcache_get(
1294 struct pq3etsec_softc *sc,
1295 struct pq3etsec_mapcache *dmc)
1296 {
1297 KASSERT(dmc->dmc_nmaps > 0);
1298 KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1299 return dmc->dmc_maps[--dmc->dmc_nmaps];
1300 }
1301
1302 static void
1303 pq3etsec_mapcache_put(
1304 struct pq3etsec_softc *sc,
1305 struct pq3etsec_mapcache *dmc,
1306 bus_dmamap_t map)
1307 {
1308 KASSERT(map != NULL);
1309 KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1310 dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1311 }
1312
1313 static void
1314 pq3etsec_mapcache_destroy(
1315 struct pq3etsec_softc *sc,
1316 struct pq3etsec_mapcache *dmc)
1317 {
1318 const size_t dmc_size =
1319 offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1320
1321 for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1322 bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1323 }
1324 kmem_intr_free(dmc, dmc_size);
1325 }
1326
1327 static int
1328 pq3etsec_mapcache_create(
1329 struct pq3etsec_softc *sc,
1330 struct pq3etsec_mapcache **dmc_p,
1331 size_t maxmaps,
1332 size_t maxmapsize,
1333 size_t maxseg)
1334 {
1335 const size_t dmc_size =
1336 offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1337 struct pq3etsec_mapcache * const dmc =
1338 kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
1339
1340 dmc->dmc_maxmaps = maxmaps;
1341 dmc->dmc_nmaps = maxmaps;
1342 dmc->dmc_maxmapsize = maxmapsize;
1343 dmc->dmc_maxseg = maxseg;
1344
1345 for (u_int i = 0; i < maxmaps; i++) {
1346 int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1347 dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1348 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1349 if (error) {
1350 aprint_error_dev(sc->sc_dev,
1351 "failed to creat dma map cache "
1352 "entry %u of %zu: %d\n",
1353 i, maxmaps, error);
1354 while (i-- > 0) {
1355 bus_dmamap_destroy(sc->sc_dmat,
1356 dmc->dmc_maps[i]);
1357 }
1358 kmem_intr_free(dmc, dmc_size);
1359 return error;
1360 }
1361 KASSERT(dmc->dmc_maps[i] != NULL);
1362 }
1363
1364 *dmc_p = dmc;
1365
1366 return 0;
1367 }
1368
1369 #if 0
1370 static void
1371 pq3etsec_dmamem_free(
1372 bus_dma_tag_t dmat,
1373 size_t map_size,
1374 bus_dma_segment_t *seg,
1375 bus_dmamap_t map,
1376 void *kvap)
1377 {
1378 bus_dmamap_destroy(dmat, map);
1379 bus_dmamem_unmap(dmat, kvap, map_size);
1380 bus_dmamem_free(dmat, seg, 1);
1381 }
1382 #endif
1383
1384 static int
1385 pq3etsec_dmamem_alloc(
1386 bus_dma_tag_t dmat,
1387 size_t map_size,
1388 bus_dma_segment_t *seg,
1389 bus_dmamap_t *map,
1390 void **kvap)
1391 {
1392 int error;
1393 int nseg;
1394
1395 *kvap = NULL;
1396 *map = NULL;
1397
1398 error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1399 seg, 1, &nseg, 0);
1400 if (error)
1401 return error;
1402
1403 KASSERT(nseg == 1);
1404
1405 error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1406 BUS_DMA_COHERENT);
1407 if (error == 0) {
1408 error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1409 map);
1410 if (error == 0) {
1411 error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1412 NULL, 0);
1413 if (error == 0)
1414 return 0;
1415 bus_dmamap_destroy(dmat, *map);
1416 *map = NULL;
1417 }
1418 bus_dmamem_unmap(dmat, *kvap, map_size);
1419 *kvap = NULL;
1420 }
1421 bus_dmamem_free(dmat, seg, nseg);
1422 return 0;
1423 }
1424
1425 static struct mbuf *
1426 pq3etsec_rx_buf_alloc(
1427 struct pq3etsec_softc *sc)
1428 {
1429 struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1430 if (m == NULL) {
1431 printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1432 return NULL;
1433 }
1434 MCLGET(m, M_DONTWAIT);
1435 if ((m->m_flags & M_EXT) == 0) {
1436 printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1437 m_freem(m);
1438 return NULL;
1439 }
1440 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1441
1442 bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1443 if (map == NULL) {
1444 printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1445 m_freem(m);
1446 return NULL;
1447 }
1448 M_SETCTX(m, map);
1449 m->m_len = m->m_pkthdr.len = MCLBYTES;
1450 int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1451 BUS_DMA_READ | BUS_DMA_NOWAIT);
1452 if (error) {
1453 aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1454 error);
1455 M_SETCTX(m, NULL);
1456 m_freem(m);
1457 pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1458 return NULL;
1459 }
1460 KASSERT(map->dm_mapsize == MCLBYTES);
1461 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1462 BUS_DMASYNC_PREREAD);
1463
1464 return m;
1465 }
1466
1467 static void
1468 pq3etsec_rx_map_unload(
1469 struct pq3etsec_softc *sc,
1470 struct mbuf *m)
1471 {
1472 KASSERT(m);
1473 for (; m != NULL; m = m->m_next) {
1474 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1475 KASSERT(map);
1476 KASSERT(map->dm_mapsize == MCLBYTES);
1477 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1478 BUS_DMASYNC_POSTREAD);
1479 bus_dmamap_unload(sc->sc_dmat, map);
1480 pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1481 M_SETCTX(m, NULL);
1482 }
1483 }
1484
1485 static bool
1486 pq3etsec_rxq_produce(
1487 struct pq3etsec_softc *sc,
1488 struct pq3etsec_rxqueue *rxq)
1489 {
1490 volatile struct rxbd *producer = rxq->rxq_producer;
1491 #if 0
1492 size_t inuse = rxq->rxq_inuse;
1493 #endif
1494 while (rxq->rxq_inuse < rxq->rxq_threshold) {
1495 struct mbuf *m;
1496 IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1497 if (m == NULL) {
1498 m = pq3etsec_rx_buf_alloc(sc);
1499 if (m == NULL) {
1500 printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1501 break;
1502 }
1503 }
1504 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1505 KASSERT(map);
1506
1507 #ifdef ETSEC_DEBUG
1508 KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1509 rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1510 #endif
1511
1512 /* rxbd_len is write-only by the ETSEC */
1513 producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1514 membar_producer();
1515 producer->rxbd_flags |= RXBD_E;
1516 if (__predict_false(rxq->rxq_mhead == NULL)) {
1517 KASSERT(producer == rxq->rxq_consumer);
1518 rxq->rxq_mconsumer = m;
1519 }
1520 *rxq->rxq_mtail = m;
1521 rxq->rxq_mtail = &m->m_next;
1522 m->m_len = MCLBYTES;
1523 m->m_next = NULL;
1524 rxq->rxq_inuse++;
1525 if (++producer == rxq->rxq_last) {
1526 membar_producer();
1527 pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1528 rxq->rxq_last - rxq->rxq_producer);
1529 producer = rxq->rxq_producer = rxq->rxq_first;
1530 }
1531 }
1532 if (producer != rxq->rxq_producer) {
1533 membar_producer();
1534 pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1535 producer - rxq->rxq_producer);
1536 rxq->rxq_producer = producer;
1537 }
1538 uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1539 if (qhlt) {
1540 KASSERT(qhlt & rxq->rxq_qmask);
1541 sc->sc_ev_rx_stall.ev_count++;
1542 etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1543 }
1544 #if 0
1545 aprint_normal_dev(sc->sc_dev,
1546 "%s: buffers inuse went from %zu to %zu\n",
1547 __func__, inuse, rxq->rxq_inuse);
1548 #endif
1549 return true;
1550 }
1551
1552 static bool
1553 pq3etsec_rx_offload(
1554 struct pq3etsec_softc *sc,
1555 struct mbuf *m,
1556 const struct rxfcb *fcb)
1557 {
1558 if (fcb->rxfcb_flags & RXFCB_VLN) {
1559 vlan_set_tag(m, fcb->rxfcb_vlctl);
1560 }
1561 if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1562 || (fcb->rxfcb_flags & (RXFCB_CIP | RXFCB_CTU)) == 0)
1563 return true;
1564 int csum_flags = 0;
1565 if ((fcb->rxfcb_flags & (RXFCB_IP6 | RXFCB_CIP)) == RXFCB_CIP) {
1566 csum_flags |= M_CSUM_IPv4;
1567 if (fcb->rxfcb_flags & RXFCB_EIP)
1568 csum_flags |= M_CSUM_IPv4_BAD;
1569 }
1570 if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1571 int ipv_flags;
1572 if (fcb->rxfcb_flags & RXFCB_IP6)
1573 ipv_flags = M_CSUM_TCPv6 | M_CSUM_UDPv6;
1574 else
1575 ipv_flags = M_CSUM_TCPv4 | M_CSUM_UDPv4;
1576 if (fcb->rxfcb_pro == IPPROTO_TCP) {
1577 csum_flags |= (M_CSUM_TCPv4 |M_CSUM_TCPv6) & ipv_flags;
1578 } else {
1579 csum_flags |= (M_CSUM_UDPv4 |M_CSUM_UDPv6) & ipv_flags;
1580 }
1581 if (fcb->rxfcb_flags & RXFCB_ETU)
1582 csum_flags |= M_CSUM_TCP_UDP_BAD;
1583 }
1584
1585 m->m_pkthdr.csum_flags = csum_flags;
1586 return true;
1587 }
1588
1589 static void
1590 pq3etsec_rx_input(
1591 struct pq3etsec_softc *sc,
1592 struct mbuf *m,
1593 uint16_t rxbd_flags)
1594 {
1595 struct ifnet * const ifp = &sc->sc_if;
1596
1597 pq3etsec_rx_map_unload(sc, m);
1598
1599 if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1600 struct rxfcb fcb = *mtod(m, struct rxfcb *);
1601 if (!pq3etsec_rx_offload(sc, m, &fcb))
1602 return;
1603 }
1604 m_adj(m, sc->sc_rx_adjlen);
1605
1606 if (rxbd_flags & RXBD_M)
1607 m->m_flags |= M_PROMISC;
1608 if (rxbd_flags & RXBD_BC)
1609 m->m_flags |= M_BCAST;
1610 if (rxbd_flags & RXBD_MC)
1611 m->m_flags |= M_MCAST;
1612 m->m_flags |= M_HASFCS;
1613 m_set_rcvif(m, &sc->sc_if);
1614
1615 /*
1616 * Let's give it to the network subsystm to deal with.
1617 */
1618 if_percpuq_enqueue(ifp->if_percpuq, m);
1619 }
1620
1621 static void
1622 pq3etsec_rxq_consume(
1623 struct pq3etsec_softc *sc,
1624 struct pq3etsec_rxqueue *rxq)
1625 {
1626 struct ifnet * const ifp = &sc->sc_if;
1627 volatile struct rxbd *consumer = rxq->rxq_consumer;
1628 size_t rxconsumed = 0;
1629
1630 etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1631
1632 for (;;) {
1633 if (consumer == rxq->rxq_producer) {
1634 rxq->rxq_consumer = consumer;
1635 rxq->rxq_inuse -= rxconsumed;
1636 KASSERT(rxq->rxq_inuse == 0);
1637 break;
1638 }
1639 pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1640 const uint16_t rxbd_flags = consumer->rxbd_flags;
1641 if (rxbd_flags & RXBD_E) {
1642 rxq->rxq_consumer = consumer;
1643 rxq->rxq_inuse -= rxconsumed;
1644 break;
1645 }
1646 KASSERT(rxq->rxq_mconsumer != NULL);
1647 #ifdef ETSEC_DEBUG
1648 KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1649 #endif
1650 #if 0
1651 printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1652 __func__,
1653 consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1654 mtod(rxq->rxq_mconsumer, int *)[0],
1655 mtod(rxq->rxq_mconsumer, int *)[1],
1656 mtod(rxq->rxq_mconsumer, int *)[2],
1657 mtod(rxq->rxq_mconsumer, int *)[3]);
1658 #endif
1659 /*
1660 * We own this packet again. Clear all flags except wrap.
1661 */
1662 rxconsumed++;
1663 consumer->rxbd_flags = rxbd_flags & (RXBD_W | RXBD_I);
1664
1665 /*
1666 * If this descriptor has the LAST bit set and no errors,
1667 * it's a valid input packet.
1668 */
1669 if ((rxbd_flags & (RXBD_L | RXBD_ERRORS)) == RXBD_L) {
1670 size_t rxbd_len = consumer->rxbd_len;
1671 struct mbuf *m = rxq->rxq_mhead;
1672 struct mbuf *m_last = rxq->rxq_mconsumer;
1673 if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1674 rxq->rxq_mtail = &rxq->rxq_mhead;
1675 rxq->rxq_mconsumer = rxq->rxq_mhead;
1676 m_last->m_next = NULL;
1677 m_last->m_len = rxbd_len & (MCLBYTES - 1);
1678 m->m_pkthdr.len = rxbd_len;
1679 pq3etsec_rx_input(sc, m, rxbd_flags);
1680 } else if (rxbd_flags & RXBD_L) {
1681 KASSERT(rxbd_flags & RXBD_ERRORS);
1682 struct mbuf *m;
1683 /*
1684 * We encountered an error, take the mbufs and add
1685 * then to the rx bufcache so we can reuse them.
1686 */
1687 if_statinc(ifp, if_ierrors);
1688 for (m = rxq->rxq_mhead;
1689 m != rxq->rxq_mconsumer;
1690 m = m->m_next) {
1691 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1692 }
1693 m = rxq->rxq_mconsumer;
1694 if ((rxq->rxq_mhead = m->m_next) == NULL)
1695 rxq->rxq_mtail = &rxq->rxq_mhead;
1696 rxq->rxq_mconsumer = m->m_next;
1697 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1698 } else {
1699 rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1700 }
1701 #ifdef ETSEC_DEBUG
1702 rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1703 #endif
1704
1705 /*
1706 * Wrap at the last entry!
1707 */
1708 if (rxbd_flags & RXBD_W) {
1709 KASSERT(consumer + 1 == rxq->rxq_last);
1710 consumer = rxq->rxq_first;
1711 } else {
1712 consumer++;
1713 }
1714 #ifdef ETSEC_DEBUG
1715 KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1716 #endif
1717 }
1718
1719 if (rxconsumed != 0)
1720 rnd_add_uint32(&sc->rnd_source, rxconsumed);
1721 }
1722
1723 static void
1724 pq3etsec_rxq_purge(
1725 struct pq3etsec_softc *sc,
1726 struct pq3etsec_rxqueue *rxq,
1727 bool discard)
1728 {
1729 struct mbuf *m;
1730
1731 if ((m = rxq->rxq_mhead) != NULL) {
1732 #ifdef ETSEC_DEBUG
1733 memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1734 #endif
1735
1736 if (discard) {
1737 pq3etsec_rx_map_unload(sc, m);
1738 m_freem(m);
1739 } else {
1740 while (m != NULL) {
1741 struct mbuf *m0 = m->m_next;
1742 m->m_next = NULL;
1743 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1744 m = m0;
1745 }
1746 }
1747 }
1748
1749 rxq->rxq_mconsumer = NULL;
1750 rxq->rxq_mhead = NULL;
1751 rxq->rxq_mtail = &rxq->rxq_mhead;
1752 rxq->rxq_inuse = 0;
1753 }
1754
1755 static void
1756 pq3etsec_rxq_reset(
1757 struct pq3etsec_softc *sc,
1758 struct pq3etsec_rxqueue *rxq)
1759 {
1760 /*
1761 * sync all the descriptors
1762 */
1763 pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1764 rxq->rxq_last - rxq->rxq_first);
1765
1766 /*
1767 * Make sure we own all descriptors in the ring.
1768 */
1769 volatile struct rxbd *rxbd;
1770 for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1771 rxbd->rxbd_flags = RXBD_I;
1772 }
1773
1774 /*
1775 * Last descriptor has the wrap flag.
1776 */
1777 rxbd->rxbd_flags = RXBD_W | RXBD_I;
1778
1779 /*
1780 * Reset the producer consumer indexes.
1781 */
1782 rxq->rxq_consumer = rxq->rxq_first;
1783 rxq->rxq_producer = rxq->rxq_first;
1784 rxq->rxq_inuse = 0;
1785 if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1786 rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1787
1788 sc->sc_imask |= IEVENT_RXF | IEVENT_BSY;
1789
1790 /*
1791 * Restart the transmit at the first descriptor
1792 */
1793 etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1794 }
1795
1796 static int
1797 pq3etsec_rxq_attach(
1798 struct pq3etsec_softc *sc,
1799 struct pq3etsec_rxqueue *rxq,
1800 u_int qno)
1801 {
1802 size_t map_size = PAGE_SIZE;
1803 size_t desc_count = map_size / sizeof(struct rxbd);
1804 int error;
1805 void *descs;
1806
1807 error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1808 &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1809 if (error)
1810 return error;
1811
1812 memset(descs, 0, map_size);
1813 rxq->rxq_first = descs;
1814 rxq->rxq_last = rxq->rxq_first + desc_count;
1815 rxq->rxq_consumer = descs;
1816 rxq->rxq_producer = descs;
1817
1818 pq3etsec_rxq_purge(sc, rxq, true);
1819 pq3etsec_rxq_reset(sc, rxq);
1820
1821 rxq->rxq_reg_rbase = RBASEn(qno);
1822 rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1823
1824 return 0;
1825 }
1826
1827 static bool
1828 pq3etsec_txq_active_p(
1829 struct pq3etsec_softc * const sc,
1830 struct pq3etsec_txqueue *txq)
1831 {
1832 return !IF_IS_EMPTY(&txq->txq_mbufs);
1833 }
1834
1835 static bool
1836 pq3etsec_txq_fillable_p(
1837 struct pq3etsec_softc * const sc,
1838 struct pq3etsec_txqueue *txq)
1839 {
1840 return txq->txq_free >= txq->txq_threshold;
1841 }
1842
1843 static int
1844 pq3etsec_txq_attach(
1845 struct pq3etsec_softc *sc,
1846 struct pq3etsec_txqueue *txq,
1847 u_int qno)
1848 {
1849 size_t map_size = PAGE_SIZE;
1850 size_t desc_count = map_size / sizeof(struct txbd);
1851 int error;
1852 void *descs;
1853
1854 error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1855 &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1856 if (error)
1857 return error;
1858
1859 memset(descs, 0, map_size);
1860 txq->txq_first = descs;
1861 txq->txq_last = txq->txq_first + desc_count;
1862 txq->txq_consumer = descs;
1863 txq->txq_producer = descs;
1864
1865 IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1866
1867 txq->txq_reg_tbase = TBASEn(qno);
1868 txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1869
1870 pq3etsec_txq_reset(sc, txq);
1871
1872 return 0;
1873 }
1874
1875 static int
1876 pq3etsec_txq_map_load(
1877 struct pq3etsec_softc *sc,
1878 struct pq3etsec_txqueue *txq,
1879 struct mbuf *m)
1880 {
1881 bus_dmamap_t map;
1882 int error;
1883
1884 map = M_GETCTX(m, bus_dmamap_t);
1885 if (map != NULL)
1886 return 0;
1887
1888 map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1889 if (map == NULL)
1890 return ENOMEM;
1891
1892 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1893 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1894 if (error)
1895 return error;
1896
1897 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1898 BUS_DMASYNC_PREWRITE);
1899 M_SETCTX(m, map);
1900 return 0;
1901 }
1902
1903 static void
1904 pq3etsec_txq_map_unload(
1905 struct pq3etsec_softc *sc,
1906 struct pq3etsec_txqueue *txq,
1907 struct mbuf *m)
1908 {
1909 KASSERT(m);
1910 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1911 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1912 BUS_DMASYNC_POSTWRITE);
1913 bus_dmamap_unload(sc->sc_dmat, map);
1914 pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1915 }
1916
1917 static bool
1918 pq3etsec_txq_produce(
1919 struct pq3etsec_softc *sc,
1920 struct pq3etsec_txqueue *txq,
1921 struct mbuf *m)
1922 {
1923 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1924
1925 if (map->dm_nsegs > txq->txq_free)
1926 return false;
1927
1928 /*
1929 * TCP Offload flag must be set in the first descriptor.
1930 */
1931 volatile struct txbd *producer = txq->txq_producer;
1932 uint16_t last_flags = TXBD_L;
1933 uint16_t first_flags = TXBD_R
1934 | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1935
1936 /*
1937 * If we've produced enough descriptors without consuming any
1938 * we need to ask for an interrupt to reclaim some.
1939 */
1940 txq->txq_lastintr += map->dm_nsegs;
1941 if (ETSEC_IC_TX_ENABLED(sc)
1942 || txq->txq_lastintr >= txq->txq_threshold
1943 || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1944 txq->txq_lastintr = 0;
1945 last_flags |= TXBD_I;
1946 }
1947
1948 #ifdef ETSEC_DEBUG
1949 KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1950 #endif
1951 KASSERT(producer != txq->txq_last);
1952 producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1953 producer->txbd_len = map->dm_segs[0].ds_len;
1954
1955 if (map->dm_nsegs > 1) {
1956 volatile struct txbd *start = producer + 1;
1957 size_t count = map->dm_nsegs - 1;
1958 for (u_int i = 1; i < map->dm_nsegs; i++) {
1959 if (__predict_false(++producer == txq->txq_last)) {
1960 producer = txq->txq_first;
1961 if (start < txq->txq_last) {
1962 pq3etsec_txq_desc_presync(sc, txq,
1963 start, txq->txq_last - start);
1964 count -= txq->txq_last - start;
1965 }
1966 start = txq->txq_first;
1967 }
1968 #ifdef ETSEC_DEBUG
1969 KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1970 #endif
1971 producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1972 producer->txbd_len = map->dm_segs[i].ds_len;
1973 producer->txbd_flags = TXBD_R
1974 | (producer->txbd_flags & TXBD_W)
1975 | (i == map->dm_nsegs - 1 ? last_flags : 0);
1976 #if 0
1977 printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1978 producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1979 #endif
1980 }
1981 pq3etsec_txq_desc_presync(sc, txq, start, count);
1982 } else {
1983 first_flags |= last_flags;
1984 }
1985
1986 membar_producer();
1987 txq->txq_producer->txbd_flags =
1988 first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1989 #if 0
1990 printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1991 txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1992 txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1993 #endif
1994 pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
1995
1996 /*
1997 * Reduce free count by the number of segments we consumed.
1998 */
1999 txq->txq_free -= map->dm_nsegs;
2000 KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
2001 KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
2002 KASSERT(producer->txbd_flags & TXBD_L);
2003 #ifdef ETSEC_DEBUG
2004 txq->txq_lmbufs[producer - txq->txq_first] = m;
2005 #endif
2006
2007 #if 0
2008 printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
2009 __func__, m, m->m_pkthdr.len, map->dm_nsegs,
2010 txq->txq_producer - txq->txq_first, producer - txq->txq_first);
2011 #endif
2012
2013 if (++producer == txq->txq_last)
2014 txq->txq_producer = txq->txq_first;
2015 else
2016 txq->txq_producer = producer;
2017 IF_ENQUEUE(&txq->txq_mbufs, m);
2018
2019 /*
2020 * Restart the transmitter.
2021 */
2022 etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT); /* W1C */
2023
2024 return true;
2025 }
2026
2027 static void
2028 pq3etsec_tx_offload(
2029 struct pq3etsec_softc *sc,
2030 struct pq3etsec_txqueue *txq,
2031 struct mbuf **mp)
2032 {
2033 struct mbuf *m = *mp;
2034 u_int csum_flags = m->m_pkthdr.csum_flags;
2035 bool have_vtag;
2036 uint16_t vtag;
2037
2038 KASSERT(m->m_flags & M_PKTHDR);
2039
2040 have_vtag = vlan_has_tag(m);
2041 vtag = (have_vtag) ? vlan_get_tag(m) : 0;
2042
2043 /*
2044 * Let see if we are doing any offload first.
2045 */
2046 if (csum_flags == 0 && !have_vtag) {
2047 m->m_flags &= ~M_HASFCB;
2048 return;
2049 }
2050
2051 uint16_t flags = 0;
2052 if (csum_flags & M_CSUM_IP) {
2053 flags |= TXFCB_IP
2054 | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
2055 | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
2056 | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
2057 | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
2058 | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
2059 }
2060 if (have_vtag) {
2061 flags |= TXFCB_VLN;
2062 }
2063 if (flags == 0) {
2064 m->m_flags &= ~M_HASFCB;
2065 return;
2066 }
2067
2068 struct txfcb fcb;
2069 fcb.txfcb_flags = flags;
2070 if (csum_flags & M_CSUM_IPv4)
2071 fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
2072 else
2073 fcb.txfcb_l4os = M_CSUM_DATA_IPv6_IPHL(m->m_pkthdr.csum_data);
2074 fcb.txfcb_l3os = ETHER_HDR_LEN;
2075 fcb.txfcb_phcs = 0;
2076 fcb.txfcb_vlctl = vtag;
2077
2078 #if 0
2079 printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
2080 __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
2081 fcb.txfcb_phcs, fcb.txfcb_vlctl);
2082 #endif
2083
2084 if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
2085 m->m_data -= sizeof(fcb);
2086 m->m_len += sizeof(fcb);
2087 } else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
2088 memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
2089 m->m_data = m->m_pktdat;
2090 m->m_len += sizeof(fcb);
2091 } else {
2092 struct mbuf *mn;
2093 MGET(mn, M_DONTWAIT, m->m_type);
2094 if (mn == NULL) {
2095 if (csum_flags & M_CSUM_IP4) {
2096 #ifdef INET
2097 in_undefer_cksum(m, ETHER_HDR_LEN,
2098 csum_flags & M_CSUM_IP4);
2099 #else
2100 panic("%s: impossible M_CSUM flags %#x",
2101 device_xname(sc->sc_dev), csum_flags);
2102 #endif
2103 } else if (csum_flags & M_CSUM_IP6) {
2104 #ifdef INET6
2105 in6_undefer_cksum(m, ETHER_HDR_LEN,
2106 csum_flags & M_CSUM_IP6);
2107 #else
2108 panic("%s: impossible M_CSUM flags %#x",
2109 device_xname(sc->sc_dev), csum_flags);
2110 #endif
2111 }
2112
2113 m->m_flags &= ~M_HASFCB;
2114 return;
2115 }
2116
2117 m_move_pkthdr(mn, m);
2118 mn->m_next = m;
2119 m = mn;
2120 m_align(m, sizeof(fcb));
2121 m->m_len = sizeof(fcb);
2122 *mp = m;
2123 }
2124 m->m_pkthdr.len += sizeof(fcb);
2125 m->m_flags |= M_HASFCB;
2126 *mtod(m, struct txfcb *) = fcb;
2127 return;
2128 }
2129
2130 static bool
2131 pq3etsec_txq_enqueue(
2132 struct pq3etsec_softc *sc,
2133 struct pq3etsec_txqueue *txq)
2134 {
2135 for (;;) {
2136 if (IF_QFULL(&txq->txq_mbufs))
2137 return false;
2138 struct mbuf *m = txq->txq_next;
2139 if (m == NULL) {
2140 int s = splnet();
2141 IFQ_DEQUEUE(&sc->sc_if.if_snd, m);
2142 splx(s);
2143 if (m == NULL)
2144 return true;
2145 M_SETCTX(m, NULL);
2146 pq3etsec_tx_offload(sc, txq, &m);
2147 } else {
2148 txq->txq_next = NULL;
2149 }
2150 int error = pq3etsec_txq_map_load(sc, txq, m);
2151 if (error) {
2152 aprint_error_dev(sc->sc_dev,
2153 "discarded packet due to "
2154 "dmamap load failure: %d\n", error);
2155 m_freem(m);
2156 continue;
2157 }
2158 KASSERT(txq->txq_next == NULL);
2159 if (!pq3etsec_txq_produce(sc, txq, m)) {
2160 txq->txq_next = m;
2161 return false;
2162 }
2163 KASSERT(txq->txq_next == NULL);
2164 }
2165 }
2166
2167 static bool
2168 pq3etsec_txq_consume(
2169 struct pq3etsec_softc *sc,
2170 struct pq3etsec_txqueue *txq)
2171 {
2172 struct ifnet * const ifp = &sc->sc_if;
2173 volatile struct txbd *consumer = txq->txq_consumer;
2174 size_t txfree = 0;
2175 bool ret;
2176
2177 #if 0
2178 printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
2179 #endif
2180 etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
2181
2182 for (;;) {
2183 if (consumer == txq->txq_producer) {
2184 txq->txq_consumer = consumer;
2185 txq->txq_free += txfree;
2186 txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
2187 KASSERT(txq->txq_lastintr == 0);
2188 KASSERT(txq->txq_free ==
2189 txq->txq_last - txq->txq_first - 1);
2190 ret = true;
2191 break;
2192 }
2193 pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2194 const uint16_t txbd_flags = consumer->txbd_flags;
2195 if (txbd_flags & TXBD_R) {
2196 txq->txq_consumer = consumer;
2197 txq->txq_free += txfree;
2198 txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
2199 ret = pq3etsec_txq_fillable_p(sc, txq);
2200 break;
2201 }
2202
2203 /*
2204 * If this is the last descriptor in the chain, get the
2205 * mbuf, free its dmamap, and free the mbuf chain itself.
2206 */
2207 if (txbd_flags & TXBD_L) {
2208 struct mbuf *m;
2209
2210 IF_DEQUEUE(&txq->txq_mbufs, m);
2211 #ifdef ETSEC_DEBUG
2212 KASSERTMSG(
2213 m == txq->txq_lmbufs[consumer-txq->txq_first],
2214 "%s: %p [%u]: flags %#x m (%p) != %p (%p)",
2215 __func__, consumer, consumer - txq->txq_first,
2216 txbd_flags, m,
2217 &txq->txq_lmbufs[consumer-txq->txq_first],
2218 txq->txq_lmbufs[consumer-txq->txq_first]);
2219 #endif
2220 KASSERT(m);
2221 pq3etsec_txq_map_unload(sc, txq, m);
2222 #if 0
2223 printf("%s: mbuf %p: consumed a %u byte packet\n",
2224 __func__, m, m->m_pkthdr.len);
2225 #endif
2226 if (m->m_flags & M_HASFCB)
2227 m_adj(m, sizeof(struct txfcb));
2228 bpf_mtap(ifp, m, BPF_D_OUT);
2229 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
2230 if_statinc_ref(nsr, if_opackets);
2231 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
2232 if (m->m_flags & M_MCAST)
2233 if_statinc_ref(nsr, if_omcasts);
2234 if (txbd_flags & TXBD_ERRORS)
2235 if_statinc_ref(nsr, if_oerrors);
2236 IF_STAT_PUTREF(ifp);
2237 m_freem(m);
2238 #ifdef ETSEC_DEBUG
2239 txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2240 #endif
2241 } else {
2242 #ifdef ETSEC_DEBUG
2243 KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2244 #endif
2245 }
2246
2247 /*
2248 * We own this packet again. Clear all flags except wrap.
2249 */
2250 txfree++;
2251 //consumer->txbd_flags = txbd_flags & TXBD_W;
2252
2253 /*
2254 * Wrap at the last entry!
2255 */
2256 if (txbd_flags & TXBD_W) {
2257 KASSERT(consumer + 1 == txq->txq_last);
2258 consumer = txq->txq_first;
2259 } else {
2260 consumer++;
2261 KASSERT(consumer < txq->txq_last);
2262 }
2263 }
2264
2265 if (txfree != 0)
2266 rnd_add_uint32(&sc->rnd_source, txfree);
2267 return ret;
2268 }
2269
2270 static void
2271 pq3etsec_txq_purge(
2272 struct pq3etsec_softc *sc,
2273 struct pq3etsec_txqueue *txq)
2274 {
2275 struct mbuf *m;
2276 KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2277
2278 for (;;) {
2279 IF_DEQUEUE(&txq->txq_mbufs, m);
2280 if (m == NULL)
2281 break;
2282 pq3etsec_txq_map_unload(sc, txq, m);
2283 m_freem(m);
2284 }
2285 if ((m = txq->txq_next) != NULL) {
2286 txq->txq_next = NULL;
2287 pq3etsec_txq_map_unload(sc, txq, m);
2288 m_freem(m);
2289 }
2290 #ifdef ETSEC_DEBUG
2291 memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2292 #endif
2293 }
2294
2295 static void
2296 pq3etsec_txq_reset(
2297 struct pq3etsec_softc *sc,
2298 struct pq3etsec_txqueue *txq)
2299 {
2300 /*
2301 * sync all the descriptors
2302 */
2303 pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2304 txq->txq_last - txq->txq_first);
2305
2306 /*
2307 * Make sure we own all descriptors in the ring.
2308 */
2309 volatile struct txbd *txbd;
2310 for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2311 txbd->txbd_flags = 0;
2312 }
2313
2314 /*
2315 * Last descriptor has the wrap flag.
2316 */
2317 txbd->txbd_flags = TXBD_W;
2318
2319 /*
2320 * Reset the producer consumer indexes.
2321 */
2322 txq->txq_consumer = txq->txq_first;
2323 txq->txq_producer = txq->txq_first;
2324 txq->txq_free = txq->txq_last - txq->txq_first - 1;
2325 txq->txq_threshold = txq->txq_free / 2;
2326 txq->txq_lastintr = 0;
2327
2328 /*
2329 * What do we want to get interrupted on?
2330 */
2331 sc->sc_imask |= IEVENT_TXF | IEVENT_TXE;
2332
2333 /*
2334 * Restart the transmit at the first descriptor
2335 */
2336 etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2337 }
2338
2339 static void
2340 pq3etsec_ifstart(struct ifnet *ifp)
2341 {
2342 struct pq3etsec_softc * const sc = ifp->if_softc;
2343
2344 if (__predict_false((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)) {
2345 return;
2346 }
2347
2348 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2349 softint_schedule(sc->sc_soft_ih);
2350 }
2351
2352 static void
2353 pq3etsec_tx_error(
2354 struct pq3etsec_softc * const sc)
2355 {
2356 struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2357
2358 pq3etsec_txq_consume(sc, txq);
2359
2360 if (pq3etsec_txq_fillable_p(sc, txq))
2361 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2362 if (sc->sc_txerrors
2363 & (IEVENT_LC | IEVENT_CRL | IEVENT_XFUN | IEVENT_BABT)) {
2364 } else if (sc->sc_txerrors & IEVENT_EBERR) {
2365 }
2366
2367 if (pq3etsec_txq_active_p(sc, txq))
2368 etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2369 if (!pq3etsec_txq_enqueue(sc, txq)) {
2370 sc->sc_ev_tx_stall.ev_count++;
2371 sc->sc_if.if_flags |= IFF_OACTIVE;
2372 }
2373
2374 sc->sc_txerrors = 0;
2375 }
2376
2377 int
2378 pq3etsec_tx_intr(void *arg)
2379 {
2380 struct pq3etsec_softc * const sc = arg;
2381
2382 mutex_enter(sc->sc_hwlock);
2383
2384 sc->sc_ev_tx_intr.ev_count++;
2385
2386 uint32_t ievent = etsec_read(sc, IEVENT);
2387 ievent &= IEVENT_TXF | IEVENT_TXB;
2388 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2389
2390 #if 0
2391 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2392 __func__, ievent, etsec_read(sc, IMASK));
2393 #endif
2394
2395 if (ievent == 0) {
2396 mutex_exit(sc->sc_hwlock);
2397 return 0;
2398 }
2399
2400 sc->sc_imask &= ~(IEVENT_TXF | IEVENT_TXB);
2401 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2402 etsec_write(sc, IMASK, sc->sc_imask);
2403 softint_schedule(sc->sc_soft_ih);
2404
2405 mutex_exit(sc->sc_hwlock);
2406
2407 return 1;
2408 }
2409
2410 int
2411 pq3etsec_rx_intr(void *arg)
2412 {
2413 struct pq3etsec_softc * const sc = arg;
2414
2415 mutex_enter(sc->sc_hwlock);
2416
2417 sc->sc_ev_rx_intr.ev_count++;
2418
2419 uint32_t ievent = etsec_read(sc, IEVENT);
2420 ievent &= IEVENT_RXF | IEVENT_RXB;
2421 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2422 if (ievent == 0) {
2423 mutex_exit(sc->sc_hwlock);
2424 return 0;
2425 }
2426
2427 #if 0
2428 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2429 #endif
2430
2431 sc->sc_imask &= ~(IEVENT_RXF | IEVENT_RXB);
2432 atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2433 etsec_write(sc, IMASK, sc->sc_imask);
2434 softint_schedule(sc->sc_soft_ih);
2435
2436 mutex_exit(sc->sc_hwlock);
2437
2438 return 1;
2439 }
2440
2441 int
2442 pq3etsec_error_intr(void *arg)
2443 {
2444 struct pq3etsec_softc * const sc = arg;
2445
2446 mutex_enter(sc->sc_hwlock);
2447
2448 sc->sc_ev_error_intr.ev_count++;
2449
2450 for (int rv = 0, soft_flags = 0;; rv = 1) {
2451 uint32_t ievent = etsec_read(sc, IEVENT);
2452 ievent &= ~(IEVENT_RXF | IEVENT_RXB | IEVENT_TXF | IEVENT_TXB);
2453 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2454 if (ievent == 0) {
2455 if (soft_flags) {
2456 atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2457 softint_schedule(sc->sc_soft_ih);
2458 }
2459 mutex_exit(sc->sc_hwlock);
2460 return rv;
2461 }
2462 #if 0
2463 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2464 __func__, ievent, etsec_read(sc, IMASK));
2465 #endif
2466
2467 if (ievent & (IEVENT_GRSC | IEVENT_GTSC)) {
2468 sc->sc_imask &= ~(IEVENT_GRSC | IEVENT_GTSC);
2469 etsec_write(sc, IMASK, sc->sc_imask);
2470 wakeup(sc);
2471 }
2472 if (ievent & (IEVENT_MMRD | IEVENT_MMWR)) {
2473 sc->sc_imask &= ~(IEVENT_MMRD | IEVENT_MMWR);
2474 etsec_write(sc, IMASK, sc->sc_imask);
2475 wakeup(&sc->sc_mii);
2476 }
2477 if (ievent & IEVENT_BSY) {
2478 soft_flags |= SOFT_RXBSY;
2479 sc->sc_imask &= ~IEVENT_BSY;
2480 etsec_write(sc, IMASK, sc->sc_imask);
2481 }
2482 if (ievent & IEVENT_TXE) {
2483 soft_flags |= SOFT_TXERROR;
2484 sc->sc_imask &= ~IEVENT_TXE;
2485 sc->sc_txerrors |= ievent;
2486 }
2487 if (ievent & IEVENT_TXC) {
2488 sc->sc_ev_tx_pause.ev_count++;
2489 }
2490 if (ievent & IEVENT_RXC) {
2491 sc->sc_ev_rx_pause.ev_count++;
2492 }
2493 if (ievent & IEVENT_DPE) {
2494 soft_flags |= SOFT_RESET;
2495 sc->sc_imask &= ~IEVENT_DPE;
2496 etsec_write(sc, IMASK, sc->sc_imask);
2497 }
2498 }
2499 }
2500
2501 void
2502 pq3etsec_soft_intr(void *arg)
2503 {
2504 struct pq3etsec_softc * const sc = arg;
2505 struct ifnet * const ifp = &sc->sc_if;
2506 uint32_t imask = 0;
2507
2508 mutex_enter(sc->sc_lock);
2509
2510 u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2511
2512 sc->sc_ev_soft_intr.ev_count++;
2513
2514 if (soft_flags & SOFT_RESET) {
2515 int s = splnet();
2516 pq3etsec_ifinit(ifp);
2517 splx(s);
2518 soft_flags = 0;
2519 }
2520
2521 if (soft_flags & SOFT_RXBSY) {
2522 struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2523 size_t threshold = 5 * rxq->rxq_threshold / 4;
2524 if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2525 threshold = rxq->rxq_last - rxq->rxq_first - 1;
2526 } else {
2527 imask |= IEVENT_BSY;
2528 }
2529 aprint_normal_dev(sc->sc_dev,
2530 "increasing receive buffers from %zu to %zu\n",
2531 rxq->rxq_threshold, threshold);
2532 rxq->rxq_threshold = threshold;
2533 }
2534
2535 if ((soft_flags & SOFT_TXINTR)
2536 || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2537 /*
2538 * Let's do what we came here for. Consume transmitted
2539 * packets off the transmit ring.
2540 */
2541 if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2542 || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2543 sc->sc_ev_tx_stall.ev_count++;
2544 ifp->if_flags |= IFF_OACTIVE;
2545 } else {
2546 ifp->if_flags &= ~IFF_OACTIVE;
2547 }
2548 imask |= IEVENT_TXF;
2549 }
2550
2551 if (soft_flags & (SOFT_RXINTR | SOFT_RXBSY)) {
2552 /* Let's consume */
2553 pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2554 imask |= IEVENT_RXF;
2555 }
2556
2557 if (soft_flags & SOFT_TXERROR) {
2558 pq3etsec_tx_error(sc);
2559 imask |= IEVENT_TXE;
2560 }
2561
2562 if (ifp->if_flags & IFF_RUNNING) {
2563 pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2564 mutex_spin_enter(sc->sc_hwlock);
2565 sc->sc_imask |= imask;
2566 etsec_write(sc, IMASK, sc->sc_imask);
2567 mutex_spin_exit(sc->sc_hwlock);
2568 } else {
2569 KASSERT((soft_flags & SOFT_RXBSY) == 0);
2570 }
2571
2572 mutex_exit(sc->sc_lock);
2573 }
2574
2575 static void
2576 pq3etsec_mii_tick(void *arg)
2577 {
2578 struct pq3etsec_softc * const sc = arg;
2579 mutex_enter(sc->sc_lock);
2580 callout_ack(&sc->sc_mii_callout);
2581 sc->sc_ev_mii_ticks.ev_count++;
2582 #ifdef DEBUG
2583 uint64_t now = mftb();
2584 if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2585 aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2586 __func__, now - sc->sc_mii_last_tick);
2587 callout_stop(&sc->sc_mii_callout);
2588 }
2589 #endif
2590 mii_tick(&sc->sc_mii);
2591 int s = splnet();
2592 if (sc->sc_soft_flags & SOFT_RESET)
2593 softint_schedule(sc->sc_soft_ih);
2594 splx(s);
2595 callout_schedule(&sc->sc_mii_callout, hz);
2596 #ifdef DEBUG
2597 sc->sc_mii_last_tick = now;
2598 #endif
2599 mutex_exit(sc->sc_lock);
2600 }
2601
2602 static void
2603 pq3etsec_set_ic_rx(struct pq3etsec_softc *sc)
2604 {
2605 uint32_t reg;
2606
2607 if (ETSEC_IC_RX_ENABLED(sc)) {
2608 reg = RXIC_ICEN;
2609 reg |= RXIC_ICFT_SET(sc->sc_ic_rx_count);
2610 reg |= RXIC_ICTT_SET(sc->sc_ic_rx_time);
2611 } else {
2612 /* Disable RX interrupt coalescing */
2613 reg = 0;
2614 }
2615
2616 etsec_write(sc, RXIC, reg);
2617 }
2618
2619 static void
2620 pq3etsec_set_ic_tx(struct pq3etsec_softc *sc)
2621 {
2622 uint32_t reg;
2623
2624 if (ETSEC_IC_TX_ENABLED(sc)) {
2625 reg = TXIC_ICEN;
2626 reg |= TXIC_ICFT_SET(sc->sc_ic_tx_count);
2627 reg |= TXIC_ICTT_SET(sc->sc_ic_tx_time);
2628 } else {
2629 /* Disable TX interrupt coalescing */
2630 reg = 0;
2631 }
2632
2633 etsec_write(sc, TXIC, reg);
2634 }
2635
2636 /*
2637 * sysctl
2638 */
2639 static int
2640 pq3etsec_sysctl_ic_time_helper(SYSCTLFN_ARGS, int *valuep)
2641 {
2642 struct sysctlnode node = *rnode;
2643 struct pq3etsec_softc *sc = rnode->sysctl_data;
2644 int value = *valuep;
2645 int error;
2646
2647 node.sysctl_data = &value;
2648 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2649 if (error != 0 || newp == NULL)
2650 return error;
2651
2652 if (value < 0 || value > 65535)
2653 return EINVAL;
2654
2655 mutex_enter(sc->sc_lock);
2656 *valuep = value;
2657 if (valuep == &sc->sc_ic_rx_time)
2658 pq3etsec_set_ic_rx(sc);
2659 else
2660 pq3etsec_set_ic_tx(sc);
2661 mutex_exit(sc->sc_lock);
2662
2663 return 0;
2664 }
2665
2666 static int
2667 pq3etsec_sysctl_ic_count_helper(SYSCTLFN_ARGS, int *valuep)
2668 {
2669 struct sysctlnode node = *rnode;
2670 struct pq3etsec_softc *sc = rnode->sysctl_data;
2671 int value = *valuep;
2672 int error;
2673
2674 node.sysctl_data = &value;
2675 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2676 if (error != 0 || newp == NULL)
2677 return error;
2678
2679 if (value < 0 || value > 255)
2680 return EINVAL;
2681
2682 mutex_enter(sc->sc_lock);
2683 *valuep = value;
2684 if (valuep == &sc->sc_ic_rx_count)
2685 pq3etsec_set_ic_rx(sc);
2686 else
2687 pq3etsec_set_ic_tx(sc);
2688 mutex_exit(sc->sc_lock);
2689
2690 return 0;
2691 }
2692
2693 static int
2694 pq3etsec_sysctl_ic_rx_time_helper(SYSCTLFN_ARGS)
2695 {
2696 struct pq3etsec_softc *sc = rnode->sysctl_data;
2697
2698 return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2699 &sc->sc_ic_rx_time);
2700 }
2701
2702 static int
2703 pq3etsec_sysctl_ic_rx_count_helper(SYSCTLFN_ARGS)
2704 {
2705 struct pq3etsec_softc *sc = rnode->sysctl_data;
2706
2707 return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2708 &sc->sc_ic_rx_count);
2709 }
2710
2711 static int
2712 pq3etsec_sysctl_ic_tx_time_helper(SYSCTLFN_ARGS)
2713 {
2714 struct pq3etsec_softc *sc = rnode->sysctl_data;
2715
2716 return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2717 &sc->sc_ic_tx_time);
2718 }
2719
2720 static int
2721 pq3etsec_sysctl_ic_tx_count_helper(SYSCTLFN_ARGS)
2722 {
2723 struct pq3etsec_softc *sc = rnode->sysctl_data;
2724
2725 return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2726 &sc->sc_ic_tx_count);
2727 }
2728
2729 static void pq3etsec_sysctl_setup(struct sysctllog **clog,
2730 struct pq3etsec_softc *sc)
2731 {
2732 const struct sysctlnode *cnode, *rnode;
2733
2734 if (sysctl_createv(clog, 0, NULL, &rnode,
2735 CTLFLAG_PERMANENT,
2736 CTLTYPE_NODE, device_xname(sc->sc_dev),
2737 SYSCTL_DESCR("TSEC interface"),
2738 NULL, 0, NULL, 0,
2739 CTL_HW, CTL_CREATE, CTL_EOL) != 0)
2740 goto bad;
2741
2742 if (sysctl_createv(clog, 0, &rnode, &rnode,
2743 CTLFLAG_PERMANENT,
2744 CTLTYPE_NODE, "int_coal",
2745 SYSCTL_DESCR("Interrupts coalescing"),
2746 NULL, 0, NULL, 0,
2747 CTL_CREATE, CTL_EOL) != 0)
2748 goto bad;
2749
2750 if (sysctl_createv(clog, 0, &rnode, &cnode,
2751 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2752 CTLTYPE_INT, "rx_time",
2753 SYSCTL_DESCR("RX time threshold (0-65535)"),
2754 pq3etsec_sysctl_ic_rx_time_helper, 0, (void *)sc, 0,
2755 CTL_CREATE, CTL_EOL) != 0)
2756 goto bad;
2757
2758 if (sysctl_createv(clog, 0, &rnode, &cnode,
2759 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2760 CTLTYPE_INT, "rx_count",
2761 SYSCTL_DESCR("RX frame count threshold (0-255)"),
2762 pq3etsec_sysctl_ic_rx_count_helper, 0, (void *)sc, 0,
2763 CTL_CREATE, CTL_EOL) != 0)
2764 goto bad;
2765
2766 if (sysctl_createv(clog, 0, &rnode, &cnode,
2767 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2768 CTLTYPE_INT, "tx_time",
2769 SYSCTL_DESCR("TX time threshold (0-65535)"),
2770 pq3etsec_sysctl_ic_tx_time_helper, 0, (void *)sc, 0,
2771 CTL_CREATE, CTL_EOL) != 0)
2772 goto bad;
2773
2774 if (sysctl_createv(clog, 0, &rnode, &cnode,
2775 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2776 CTLTYPE_INT, "tx_count",
2777 SYSCTL_DESCR("TX frame count threshold (0-255)"),
2778 pq3etsec_sysctl_ic_tx_count_helper, 0, (void *)sc, 0,
2779 CTL_CREATE, CTL_EOL) != 0)
2780 goto bad;
2781
2782 return;
2783
2784 bad:
2785 aprint_error_dev(sc->sc_dev, "could not attach sysctl nodes\n");
2786 }
2787