pq3etsec.c revision 1.58 1 /* $NetBSD: pq3etsec.c,v 1.58 2022/09/18 13:09:17 thorpej Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: pq3etsec.c,v 1.58 2022/09/18 13:09:17 thorpej Exp $");
39
40 #ifdef _KERNEL_OPT
41 #include "opt_inet.h"
42 #include "opt_mpc85xx.h"
43 #include "opt_multiprocessor.h"
44 #include "opt_net_mpsafe.h"
45 #endif
46
47 #include <sys/param.h>
48 #include <sys/cpu.h>
49 #include <sys/device.h>
50 #include <sys/mbuf.h>
51 #include <sys/ioctl.h>
52 #include <sys/intr.h>
53 #include <sys/bus.h>
54 #include <sys/kernel.h>
55 #include <sys/kmem.h>
56 #include <sys/proc.h>
57 #include <sys/atomic.h>
58 #include <sys/callout.h>
59 #include <sys/sysctl.h>
60
61 #include <sys/rndsource.h>
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_ether.h>
66 #include <net/if_media.h>
67 #include <net/bpf.h>
68
69 #include <dev/mii/miivar.h>
70
71 #ifdef INET
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/ip.h>
75 #include <netinet/in_offload.h>
76 #endif /* INET */
77 #ifdef INET6
78 #include <netinet6/in6.h>
79 #include <netinet/ip6.h>
80 #endif
81 #include <netinet6/in6_offload.h>
82
83 #include <powerpc/spr.h>
84 #include <powerpc/booke/spr.h>
85 #include <powerpc/booke/cpuvar.h>
86 #include <powerpc/booke/e500var.h>
87 #include <powerpc/booke/e500reg.h>
88 #include <powerpc/booke/etsecreg.h>
89
90 #define M_HASFCB M_LINK2 /* tx packet has FCB prepended */
91
92 #define ETSEC_MAXTXMBUFS 30
93 #define ETSEC_NTXSEGS 30
94 #define ETSEC_MAXRXMBUFS 511
95 #define ETSEC_MINRXMBUFS 32
96 #define ETSEC_NRXSEGS 1
97
98 #define IFCAP_RCTRL_IPCSEN IFCAP_CSUM_IPv4_Rx
99 #define IFCAP_RCTRL_TUCSEN (IFCAP_CSUM_TCPv4_Rx \
100 | IFCAP_CSUM_UDPv4_Rx \
101 | IFCAP_CSUM_TCPv6_Rx \
102 | IFCAP_CSUM_UDPv6_Rx)
103
104 #define IFCAP_TCTRL_IPCSEN IFCAP_CSUM_IPv4_Tx
105 #define IFCAP_TCTRL_TUCSEN (IFCAP_CSUM_TCPv4_Tx \
106 | IFCAP_CSUM_UDPv4_Tx \
107 | IFCAP_CSUM_TCPv6_Tx \
108 | IFCAP_CSUM_UDPv6_Tx)
109
110 #define IFCAP_ETSEC (IFCAP_RCTRL_IPCSEN | IFCAP_RCTRL_TUCSEN \
111 | IFCAP_TCTRL_IPCSEN | IFCAP_TCTRL_TUCSEN)
112
113 #define M_CSUM_IP (M_CSUM_CIP | M_CSUM_CTU)
114 #define M_CSUM_IP6 (M_CSUM_TCPv6 | M_CSUM_UDPv6)
115 #define M_CSUM_TUP (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)
116 #define M_CSUM_UDP (M_CSUM_UDPv4 | M_CSUM_UDPv6)
117 #define M_CSUM_IP4 (M_CSUM_IPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4)
118 #define M_CSUM_CIP (M_CSUM_IPv4)
119 #define M_CSUM_CTU (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)
120
121 struct pq3etsec_txqueue {
122 bus_dmamap_t txq_descmap;
123 volatile struct txbd *txq_consumer;
124 volatile struct txbd *txq_producer;
125 volatile struct txbd *txq_first;
126 volatile struct txbd *txq_last;
127 struct ifqueue txq_mbufs;
128 struct mbuf *txq_next;
129 #ifdef ETSEC_DEBUG
130 struct mbuf *txq_lmbufs[512];
131 #endif
132 uint32_t txq_qmask;
133 uint32_t txq_free;
134 uint32_t txq_threshold;
135 uint32_t txq_lastintr;
136 bus_size_t txq_reg_tbase;
137 bus_dma_segment_t txq_descmap_seg;
138 };
139
140 struct pq3etsec_rxqueue {
141 bus_dmamap_t rxq_descmap;
142 volatile struct rxbd *rxq_consumer;
143 volatile struct rxbd *rxq_producer;
144 volatile struct rxbd *rxq_first;
145 volatile struct rxbd *rxq_last;
146 struct mbuf *rxq_mhead;
147 struct mbuf **rxq_mtail;
148 struct mbuf *rxq_mconsumer;
149 #ifdef ETSEC_DEBUG
150 struct mbuf *rxq_mbufs[512];
151 #endif
152 uint32_t rxq_qmask;
153 uint32_t rxq_inuse;
154 uint32_t rxq_threshold;
155 bus_size_t rxq_reg_rbase;
156 bus_size_t rxq_reg_rbptr;
157 bus_dma_segment_t rxq_descmap_seg;
158 };
159
160 struct pq3etsec_mapcache {
161 u_int dmc_nmaps;
162 u_int dmc_maxseg;
163 u_int dmc_maxmaps;
164 u_int dmc_maxmapsize;
165 bus_dmamap_t dmc_maps[0];
166 };
167
168 struct pq3etsec_softc {
169 device_t sc_dev;
170 device_t sc_mdio_dev;
171 struct ethercom sc_ec;
172 #define sc_if sc_ec.ec_if
173 struct mii_data sc_mii;
174 bus_space_tag_t sc_bst;
175 bus_space_handle_t sc_bsh;
176 bus_space_handle_t sc_mdio_bsh;
177 bus_dma_tag_t sc_dmat;
178 int sc_phy_addr;
179 prop_dictionary_t sc_intrmap;
180 uint32_t sc_intrmask;
181
182 uint32_t sc_soft_flags;
183 #define SOFT_RESET 0x0001
184 #define SOFT_RXINTR 0x0010
185 #define SOFT_RXBSY 0x0020
186 #define SOFT_TXINTR 0x0100
187 #define SOFT_TXERROR 0x0200
188
189 struct pq3etsec_txqueue sc_txq;
190 struct pq3etsec_rxqueue sc_rxq;
191 uint32_t sc_txerrors;
192 uint32_t sc_rxerrors;
193
194 size_t sc_rx_adjlen;
195
196 /*
197 * Copies of various ETSEC registers.
198 */
199 uint32_t sc_imask;
200 uint32_t sc_maccfg1;
201 uint32_t sc_maccfg2;
202 uint32_t sc_maxfrm;
203 uint32_t sc_ecntrl;
204 uint32_t sc_dmactrl;
205 uint32_t sc_macstnaddr1;
206 uint32_t sc_macstnaddr2;
207 uint32_t sc_tctrl;
208 uint32_t sc_rctrl;
209 uint32_t sc_gaddr[16];
210 uint64_t sc_macaddrs[15];
211
212 void *sc_tx_ih;
213 void *sc_rx_ih;
214 void *sc_error_ih;
215 void *sc_soft_ih;
216
217 kmutex_t *sc_lock;
218 kmutex_t *sc_hwlock;
219
220 struct evcnt sc_ev_tx_stall;
221 struct evcnt sc_ev_tx_intr;
222 struct evcnt sc_ev_rx_stall;
223 struct evcnt sc_ev_rx_intr;
224 struct evcnt sc_ev_error_intr;
225 struct evcnt sc_ev_soft_intr;
226 struct evcnt sc_ev_tx_pause;
227 struct evcnt sc_ev_rx_pause;
228 struct evcnt sc_ev_mii_ticks;
229
230 struct callout sc_mii_callout;
231 uint64_t sc_mii_last_tick;
232
233 struct ifqueue sc_rx_bufcache;
234 struct pq3etsec_mapcache *sc_rx_mapcache;
235 struct pq3etsec_mapcache *sc_tx_mapcache;
236
237 /* Interrupt Coalescing parameters */
238 int sc_ic_rx_time;
239 int sc_ic_rx_count;
240 int sc_ic_tx_time;
241 int sc_ic_tx_count;
242
243 krndsource_t rnd_source;
244 };
245
246 #define ETSEC_IC_RX_ENABLED(sc) \
247 ((sc)->sc_ic_rx_time != 0 && (sc)->sc_ic_rx_count != 0)
248 #define ETSEC_IC_TX_ENABLED(sc) \
249 ((sc)->sc_ic_tx_time != 0 && (sc)->sc_ic_tx_count != 0)
250
251 struct pq3mdio_softc {
252 device_t mdio_dev;
253
254 bus_space_tag_t mdio_bst;
255 bus_space_handle_t mdio_bsh;
256 };
257
258 static int pq3etsec_match(device_t, cfdata_t, void *);
259 static void pq3etsec_attach(device_t, device_t, void *);
260
261 static int pq3mdio_match(device_t, cfdata_t, void *);
262 static void pq3mdio_attach(device_t, device_t, void *);
263
264 static void pq3etsec_ifstart(struct ifnet *);
265 static void pq3etsec_ifwatchdog(struct ifnet *);
266 static int pq3etsec_ifinit(struct ifnet *);
267 static void pq3etsec_ifstop(struct ifnet *, int);
268 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
269
270 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
271 struct pq3etsec_mapcache **, size_t, size_t, size_t);
272 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
273 struct pq3etsec_mapcache *);
274 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
275 struct pq3etsec_mapcache *);
276 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
277 struct pq3etsec_mapcache *, bus_dmamap_t);
278
279 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
280 struct pq3etsec_txqueue *, u_int);
281 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
282 struct pq3etsec_txqueue *);
283 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
284 struct pq3etsec_txqueue *);
285 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
286 struct pq3etsec_txqueue *);
287 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
288 struct pq3etsec_txqueue *, struct mbuf *m);
289 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
290 struct pq3etsec_txqueue *);
291
292 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
293 struct pq3etsec_rxqueue *, u_int);
294 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
295 struct pq3etsec_rxqueue *);
296 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
297 struct pq3etsec_rxqueue *, bool);
298 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
299 struct pq3etsec_rxqueue *);
300
301 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
302
303 static void pq3etsec_mii_tick(void *);
304 static int pq3etsec_rx_intr(void *);
305 static int pq3etsec_tx_intr(void *);
306 static int pq3etsec_error_intr(void *);
307 static void pq3etsec_soft_intr(void *);
308
309 static void pq3etsec_set_ic_rx(struct pq3etsec_softc *);
310 static void pq3etsec_set_ic_tx(struct pq3etsec_softc *);
311
312 static void pq3etsec_sysctl_setup(struct sysctllog **, struct pq3etsec_softc *);
313
314 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
315 pq3etsec_match, pq3etsec_attach, NULL, NULL);
316
317 CFATTACH_DECL_NEW(pq3mdio_tsec, sizeof(struct pq3mdio_softc),
318 pq3mdio_match, pq3mdio_attach, NULL, NULL);
319
320 CFATTACH_DECL_NEW(pq3mdio_cpunode, sizeof(struct pq3mdio_softc),
321 pq3mdio_match, pq3mdio_attach, NULL, NULL);
322
323 static inline uint32_t
324 etsec_mdio_read(struct pq3mdio_softc *mdio, bus_size_t off)
325 {
326 return bus_space_read_4(mdio->mdio_bst, mdio->mdio_bsh, off);
327 }
328
329 static inline void
330 etsec_mdio_write(struct pq3mdio_softc *mdio, bus_size_t off, uint32_t data)
331 {
332 bus_space_write_4(mdio->mdio_bst, mdio->mdio_bsh, off, data);
333 }
334
335 static inline uint32_t
336 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
337 {
338 return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
339 }
340
341 static int
342 pq3mdio_find(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
343 {
344 return strcmp(cf->cf_name, "mdio") == 0;
345 }
346
347 static int
348 pq3mdio_match(device_t parent, cfdata_t cf, void *aux)
349 {
350 const uint16_t svr = (mfspr(SPR_SVR) & ~0x80000) >> 16;
351 const bool p1025_p = (svr == (SVR_P1025v1 >> 16)
352 || svr == (SVR_P1016v1 >> 16));
353
354 if (device_is_a(parent, "cpunode")) {
355 if (!p1025_p
356 || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
357 return 0;
358
359 return 1;
360 }
361
362 if (device_is_a(parent, "tsec")) {
363 if (p1025_p
364 || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
365 return 0;
366
367 return 1;
368 }
369
370 return 0;
371 }
372
373 static void
374 pq3mdio_attach(device_t parent, device_t self, void *aux)
375 {
376 struct pq3mdio_softc * const mdio = device_private(self);
377 struct cpunode_attach_args * const cna = aux;
378 struct cpunode_locators * const cnl = &cna->cna_locs;
379
380 mdio->mdio_dev = self;
381
382 if (device_is_a(parent, "cpunode")) {
383 struct cpunode_softc * const psc = device_private(parent);
384 psc->sc_children |= cna->cna_childmask;
385
386 mdio->mdio_bst = cna->cna_memt;
387 if (bus_space_map(mdio->mdio_bst, cnl->cnl_addr,
388 cnl->cnl_size, 0, &mdio->mdio_bsh) != 0) {
389 aprint_error(": error mapping registers @ %#x\n",
390 cnl->cnl_addr);
391 return;
392 }
393 } else {
394 struct pq3etsec_softc * const sc = device_private(parent);
395
396 KASSERT(device_is_a(parent, "tsec"));
397 KASSERTMSG(cnl->cnl_addr == ETSEC1_BASE
398 || cnl->cnl_addr == ETSEC2_BASE
399 || cnl->cnl_addr == ETSEC3_BASE
400 || cnl->cnl_addr == ETSEC4_BASE,
401 "unknown tsec addr %x", cnl->cnl_addr);
402
403 mdio->mdio_bst = sc->sc_bst;
404 mdio->mdio_bsh = sc->sc_bsh;
405 }
406
407 aprint_normal("\n");
408 }
409
410 static int
411 pq3mdio_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
412 {
413 struct pq3mdio_softc * const mdio = device_private(self);
414 uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
415
416 etsec_mdio_write(mdio, MIIMADD,
417 __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
418
419 etsec_mdio_write(mdio, MIIMCOM, 0); /* clear any past bits */
420 etsec_mdio_write(mdio, MIIMCOM, MIIMCOM_READ);
421
422 while (etsec_mdio_read(mdio, MIIMIND) != 0) {
423 delay(1);
424 }
425 *val = etsec_mdio_read(mdio, MIIMSTAT) &0xffff;
426
427 if (miimcom == MIIMCOM_SCAN)
428 etsec_mdio_write(mdio, MIIMCOM, miimcom);
429
430 #if 0
431 aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
432 __func__, phy, reg, data);
433 #endif
434 return 0;
435 }
436
437 static int
438 pq3mdio_mii_writereg(device_t self, int phy, int reg, uint16_t data)
439 {
440 struct pq3mdio_softc * const mdio = device_private(self);
441 uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
442
443 #if 0
444 aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
445 __func__, phy, reg, data);
446 #endif
447
448 etsec_mdio_write(mdio, MIIMADD,
449 __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
450 etsec_mdio_write(mdio, MIIMCOM, 0); /* clear any past bits */
451 etsec_mdio_write(mdio, MIIMCON, data);
452
453 int timo = 1000; /* 1ms */
454 while ((etsec_mdio_read(mdio, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
455 delay(1);
456 }
457
458 if (miimcom == MIIMCOM_SCAN)
459 etsec_mdio_write(mdio, MIIMCOM, miimcom);
460
461 return 0;
462 }
463
464 static inline void
465 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
466 {
467 bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
468 }
469
470 static void
471 pq3etsec_mii_statchg(struct ifnet *ifp)
472 {
473 struct pq3etsec_softc * const sc = ifp->if_softc;
474 struct mii_data * const mii = &sc->sc_mii;
475
476 uint32_t maccfg1 = sc->sc_maccfg1;
477 uint32_t maccfg2 = sc->sc_maccfg2;
478 uint32_t ecntrl = sc->sc_ecntrl;
479
480 maccfg1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
481 maccfg2 &= ~(MACCFG2_IFMODE | MACCFG2_FD);
482
483 if (sc->sc_mii.mii_media_active & IFM_FDX) {
484 maccfg2 |= MACCFG2_FD;
485 }
486
487 /*
488 * Now deal with the flow control bits.
489 */
490 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
491 && (mii->mii_media_active & IFM_ETH_FMASK)) {
492 if (mii->mii_media_active & IFM_ETH_RXPAUSE)
493 maccfg1 |= MACCFG1_RX_FLOW;
494 if (mii->mii_media_active & IFM_ETH_TXPAUSE)
495 maccfg1 |= MACCFG1_TX_FLOW;
496 }
497
498 /*
499 * Now deal with the speed.
500 */
501 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
502 maccfg2 |= MACCFG2_IFMODE_GMII;
503 } else {
504 maccfg2 |= MACCFG2_IFMODE_MII;
505 ecntrl &= ~ECNTRL_R100M;
506 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
507 ecntrl |= ECNTRL_R100M;
508 }
509 }
510
511 /*
512 * If things are different, re-init things.
513 */
514 if (maccfg1 != sc->sc_maccfg1
515 || maccfg2 != sc->sc_maccfg2
516 || ecntrl != sc->sc_ecntrl) {
517 if (sc->sc_if.if_flags & IFF_RUNNING)
518 atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
519 sc->sc_maccfg1 = maccfg1;
520 sc->sc_maccfg2 = maccfg2;
521 sc->sc_ecntrl = ecntrl;
522 }
523 }
524
525 #if 0
526 static void
527 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
528 {
529 struct pq3etsec_softc * const sc = ifp->if_softc;
530
531 mii_pollstat(&sc->sc_mii);
532 ether_mediastatus(ifp, ifmr);
533 ifmr->ifm_status = sc->sc_mii.mii_media_status;
534 ifmr->ifm_active = sc->sc_mii.mii_media_active;
535 }
536
537 static int
538 pq3etsec_mediachange(struct ifnet *ifp)
539 {
540 struct pq3etsec_softc * const sc = ifp->if_softc;
541
542 if ((ifp->if_flags & IFF_UP) == 0)
543 return 0;
544
545 int rv = mii_mediachg(&sc->sc_mii);
546 return (rv == ENXIO) ? 0 : rv;
547 }
548 #endif
549
550 static int
551 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
552 {
553
554 if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
555 return 0;
556
557 return 1;
558 }
559
560 static void
561 pq3etsec_attach(device_t parent, device_t self, void *aux)
562 {
563 struct cpunode_softc * const psc = device_private(parent);
564 struct pq3etsec_softc * const sc = device_private(self);
565 struct mii_data * const mii = &sc->sc_mii;
566 struct cpunode_attach_args * const cna = aux;
567 struct cpunode_locators * const cnl = &cna->cna_locs;
568 cfdata_t cf = device_cfdata(self);
569 int error;
570
571 psc->sc_children |= cna->cna_childmask;
572 sc->sc_dev = self;
573 sc->sc_bst = cna->cna_memt;
574 sc->sc_dmat = &booke_bus_dma_tag;
575
576 /*
577 * Pull out the mdio bus and phy we are supposed to use.
578 */
579 const int mdio = cf->cf_loc[CPUNODECF_MDIO];
580 const int phy = cf->cf_loc[CPUNODECF_PHY];
581 if (mdio != CPUNODECF_MDIO_DEFAULT)
582 aprint_normal(" mdio %d", mdio);
583
584 /*
585 * See if the phy is in the config file...
586 */
587 if (phy != CPUNODECF_PHY_DEFAULT) {
588 sc->sc_phy_addr = phy;
589 } else {
590 unsigned char prop_name[20];
591 snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
592 cnl->cnl_instance);
593 sc->sc_phy_addr = board_info_get_number(prop_name);
594 }
595 if (sc->sc_phy_addr != MII_PHY_ANY)
596 aprint_normal(" phy %d", sc->sc_phy_addr);
597
598 error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
599 &sc->sc_bsh);
600 if (error) {
601 aprint_error(": error mapping registers: %d\n", error);
602 return;
603 }
604
605 /*
606 * Assume firmware has aready set the mac address and fetch it
607 * before we reinit it.
608 */
609 sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
610 sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
611 sc->sc_rctrl = RCTRL_DEFAULT;
612 sc->sc_ecntrl = etsec_read(sc, ECNTRL);
613 sc->sc_maccfg1 = etsec_read(sc, MACCFG1);
614 sc->sc_maccfg2 = etsec_read(sc, MACCFG2) | MACCFG2_DEFAULT;
615
616 if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
617 size_t len;
618 const uint8_t *mac_addr =
619 board_info_get_data("tsec-mac-addr-base", &len);
620 KASSERT(len == ETHER_ADDR_LEN);
621 sc->sc_macstnaddr2 =
622 (mac_addr[1] << 24)
623 | (mac_addr[0] << 16);
624 sc->sc_macstnaddr1 =
625 ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
626 | (mac_addr[4] << 16)
627 | (mac_addr[3] << 8)
628 | (mac_addr[2] << 0);
629 #if 0
630 aprint_error(": mac-address unknown\n");
631 return;
632 #endif
633 }
634
635 sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
636 sc->sc_hwlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_VM);
637
638 callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
639 callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
640
641 /* Disable interrupts */
642 etsec_write(sc, IMASK, 0);
643
644 error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
645 if (error) {
646 aprint_error(": failed to init rxq: %d\n", error);
647 goto fail_1;
648 }
649
650 error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
651 if (error) {
652 aprint_error(": failed to init txq: %d\n", error);
653 goto fail_2;
654 }
655
656 error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
657 ETSEC_MAXRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
658 if (error) {
659 aprint_error(": failed to allocate rx dmamaps: %d\n", error);
660 goto fail_3;
661 }
662
663 error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
664 ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
665 if (error) {
666 aprint_error(": failed to allocate tx dmamaps: %d\n", error);
667 goto fail_4;
668 }
669
670 sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
671 pq3etsec_tx_intr, sc);
672 if (sc->sc_tx_ih == NULL) {
673 aprint_error(": failed to establish tx interrupt: %d\n",
674 cnl->cnl_intrs[0]);
675 goto fail_5;
676 }
677
678 sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
679 pq3etsec_rx_intr, sc);
680 if (sc->sc_rx_ih == NULL) {
681 aprint_error(": failed to establish rx interrupt: %d\n",
682 cnl->cnl_intrs[1]);
683 goto fail_6;
684 }
685
686 sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
687 pq3etsec_error_intr, sc);
688 if (sc->sc_error_ih == NULL) {
689 aprint_error(": failed to establish error interrupt: %d\n",
690 cnl->cnl_intrs[2]);
691 goto fail_7;
692 }
693
694 int softint_flags = SOFTINT_NET;
695 #if !defined(MULTIPROCESSOR) || defined(NET_MPSAFE)
696 softint_flags |= SOFTINT_MPSAFE;
697 #endif /* !MULTIPROCESSOR || NET_MPSAFE */
698 sc->sc_soft_ih = softint_establish(softint_flags,
699 pq3etsec_soft_intr, sc);
700 if (sc->sc_soft_ih == NULL) {
701 aprint_error(": failed to establish soft interrupt\n");
702 goto fail_8;
703 }
704
705 /*
706 * If there was no MDIO
707 */
708 if (mdio == CPUNODECF_MDIO_DEFAULT) {
709 aprint_normal("\n");
710 cfdata_t mdio_cf = config_search(self, cna,
711 CFARGS(.submatch = pq3mdio_find));
712 if (mdio_cf != NULL) {
713 sc->sc_mdio_dev =
714 config_attach(self, mdio_cf, cna, NULL, CFARGS_NONE);
715 }
716 } else {
717 sc->sc_mdio_dev = device_find_by_driver_unit("mdio", mdio);
718 if (sc->sc_mdio_dev == NULL) {
719 aprint_error(": failed to locate mdio device\n");
720 goto fail_9;
721 }
722 aprint_normal("\n");
723 }
724
725 etsec_write(sc, ATTR, ATTR_DEFAULT);
726 etsec_write(sc, ATTRELI, ATTRELI_DEFAULT);
727
728 /* Enable interrupt coalesing */
729 sc->sc_ic_rx_time = 768;
730 sc->sc_ic_rx_count = 16;
731 sc->sc_ic_tx_time = 768;
732 sc->sc_ic_tx_count = 16;
733 pq3etsec_set_ic_rx(sc);
734 pq3etsec_set_ic_tx(sc);
735
736 char enaddr[ETHER_ADDR_LEN] = {
737 [0] = sc->sc_macstnaddr2 >> 16,
738 [1] = sc->sc_macstnaddr2 >> 24,
739 [2] = sc->sc_macstnaddr1 >> 0,
740 [3] = sc->sc_macstnaddr1 >> 8,
741 [4] = sc->sc_macstnaddr1 >> 16,
742 [5] = sc->sc_macstnaddr1 >> 24,
743 };
744 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
745 ether_sprintf(enaddr));
746
747 const char * const xname = device_xname(sc->sc_dev);
748 struct ethercom * const ec = &sc->sc_ec;
749 struct ifnet * const ifp = &ec->ec_if;
750
751 ec->ec_mii = mii;
752
753 mii->mii_ifp = ifp;
754 mii->mii_readreg = pq3mdio_mii_readreg;
755 mii->mii_writereg = pq3mdio_mii_writereg;
756 mii->mii_statchg = pq3etsec_mii_statchg;
757
758 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
759
760 if (sc->sc_mdio_dev != NULL && sc->sc_phy_addr < 32) {
761 mii_attach(sc->sc_mdio_dev, mii, 0xffffffff,
762 sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
763
764 if (LIST_FIRST(&mii->mii_phys) == NULL) {
765 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE,
766 0, NULL);
767 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
768 } else {
769 callout_schedule(&sc->sc_mii_callout, hz);
770 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
771 }
772 } else {
773 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_1000_T | IFM_FDX,
774 0, NULL);
775 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_1000_T | IFM_FDX);
776 }
777
778 ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
779 | ETHERCAP_JUMBO_MTU;
780 ec->ec_capenable = ETHERCAP_VLAN_HWTAGGING;
781
782 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
783 ifp->if_softc = sc;
784 ifp->if_capabilities = IFCAP_ETSEC;
785 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
786 ifp->if_ioctl = pq3etsec_ifioctl;
787 ifp->if_start = pq3etsec_ifstart;
788 ifp->if_watchdog = pq3etsec_ifwatchdog;
789 ifp->if_init = pq3etsec_ifinit;
790 ifp->if_stop = pq3etsec_ifstop;
791 IFQ_SET_READY(&ifp->if_snd);
792
793 /*
794 * Attach the interface.
795 */
796 if_initialize(ifp);
797 pq3etsec_sysctl_setup(NULL, sc);
798 if_attach(ifp);
799 if_deferred_start_init(ifp, NULL);
800 ether_ifattach(ifp, enaddr);
801
802 rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET,
803 RND_FLAG_DEFAULT);
804
805 pq3etsec_ifstop(ifp, true);
806
807 evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
808 NULL, xname, "rx stall");
809 evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
810 NULL, xname, "tx stall");
811 evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
812 NULL, xname, "tx intr");
813 evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
814 NULL, xname, "rx intr");
815 evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
816 NULL, xname, "error intr");
817 evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
818 NULL, xname, "soft intr");
819 evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
820 NULL, xname, "tx pause");
821 evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
822 NULL, xname, "rx pause");
823 evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
824 NULL, xname, "mii ticks");
825 return;
826
827 fail_9:
828 softint_disestablish(sc->sc_soft_ih);
829 fail_8:
830 intr_disestablish(sc->sc_error_ih);
831 fail_7:
832 intr_disestablish(sc->sc_rx_ih);
833 fail_6:
834 intr_disestablish(sc->sc_tx_ih);
835 fail_5:
836 pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
837 fail_4:
838 pq3etsec_mapcache_destroy(sc, sc->sc_rx_mapcache);
839 fail_3:
840 #if 0 /* notyet */
841 pq3etsec_txq_detach(sc);
842 #endif
843 fail_2:
844 #if 0 /* notyet */
845 pq3etsec_rxq_detach(sc);
846 #endif
847 fail_1:
848 callout_destroy(&sc->sc_mii_callout);
849 mutex_obj_free(sc->sc_lock);
850 mutex_obj_free(sc->sc_hwlock);
851 bus_space_unmap(sc->sc_bst, sc->sc_bsh, cnl->cnl_size);
852 }
853
854 static uint64_t
855 pq3etsec_macaddr_create(const uint8_t *lladdr)
856 {
857 uint64_t macaddr = 0;
858
859 lladdr += ETHER_ADDR_LEN;
860 for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
861 macaddr = (macaddr << 8) | *--lladdr;
862 }
863 return macaddr << 16;
864 }
865
866 static int
867 pq3etsec_ifinit(struct ifnet *ifp)
868 {
869 struct pq3etsec_softc * const sc = ifp->if_softc;
870 int error = 0;
871
872 sc->sc_maxfrm = uimax(ifp->if_mtu + 32, MCLBYTES);
873 if (ifp->if_mtu > ETHERMTU_JUMBO)
874 return error;
875
876 KASSERT(ifp->if_flags & IFF_UP);
877
878 /*
879 * Stop the interface (steps 1 to 4 in the Soft Reset and
880 * Reconfigurating Procedure.
881 */
882 pq3etsec_ifstop(ifp, 0);
883
884 /*
885 * If our frame size has changed (or it's our first time through)
886 * destroy the existing transmit mapcache.
887 */
888 if (sc->sc_tx_mapcache != NULL
889 && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
890 pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
891 sc->sc_tx_mapcache = NULL;
892 }
893
894 if (sc->sc_tx_mapcache == NULL) {
895 error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
896 ETSEC_MAXTXMBUFS, sc->sc_maxfrm, ETSEC_NTXSEGS);
897 if (error)
898 return error;
899 }
900
901 sc->sc_ev_mii_ticks.ev_count++;
902 mii_tick(&sc->sc_mii);
903
904 if (ifp->if_flags & IFF_PROMISC) {
905 sc->sc_rctrl |= RCTRL_PROM;
906 } else {
907 sc->sc_rctrl &= ~RCTRL_PROM;
908 }
909
910 uint32_t rctrl_prsdep = 0;
911 sc->sc_rctrl &=
912 ~(RCTRL_IPCSEN | RCTRL_TUCSEN | RCTRL_VLEX | RCTRL_PRSDEP);
913 if (VLAN_ATTACHED(&sc->sc_ec)) {
914 sc->sc_rctrl |= RCTRL_VLEX;
915 rctrl_prsdep = RCTRL_PRSDEP_L2;
916 }
917 if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
918 sc->sc_rctrl |= RCTRL_IPCSEN;
919 rctrl_prsdep = RCTRL_PRSDEP_L3;
920 }
921 if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
922 sc->sc_rctrl |= RCTRL_TUCSEN;
923 rctrl_prsdep = RCTRL_PRSDEP_L4;
924 }
925 sc->sc_rctrl |= rctrl_prsdep;
926 #if 0
927 if (sc->sc_rctrl
928 & (RCTRL_IPCSEN | RCTRL_TUCSEN | RCTRL_VLEX | RCTRL_PRSDEP))
929 aprint_normal_dev(sc->sc_dev,
930 "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
931 sc->sc_rctrl,
932 __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
933 __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
934 __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
935 __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
936 #endif
937
938 sc->sc_tctrl &= ~(TCTRL_IPCSEN | TCTRL_TUCSEN | TCTRL_VLINS);
939 if (VLAN_ATTACHED(&sc->sc_ec)) /* is this really true */
940 sc->sc_tctrl |= TCTRL_VLINS;
941 if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
942 sc->sc_tctrl |= TCTRL_IPCSEN;
943 if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
944 sc->sc_tctrl |= TCTRL_TUCSEN;
945 #if 0
946 if (sc->sc_tctrl & (TCTRL_IPCSEN | TCTRL_TUCSEN | TCTRL_VLINS))
947 aprint_normal_dev(sc->sc_dev,
948 "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
949 sc->sc_tctrl,
950 __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
951 __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
952 __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
953 #endif
954
955 sc->sc_maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
956
957 const uint64_t macstnaddr =
958 pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
959
960 sc->sc_imask = IEVENT_DPE;
961
962 /* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
963 pq3etsec_rxq_reset(sc, &sc->sc_rxq);
964 pq3etsec_rxq_produce(sc, &sc->sc_rxq); /* fill with rx buffers */
965
966 /* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
967 pq3etsec_txq_reset(sc, &sc->sc_txq);
968
969 /* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
970 KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
971 etsec_write(sc, MAXFRM, sc->sc_maxfrm);
972 etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
973 etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >> 0));
974 etsec_write(sc, MACCFG1, sc->sc_maccfg1);
975 etsec_write(sc, MACCFG2, sc->sc_maccfg2);
976 etsec_write(sc, ECNTRL, sc->sc_ecntrl);
977
978 /* 8. Setup group address hash table (GADDR0-GADDR15) */
979 pq3etsec_mc_setup(sc);
980
981 /* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
982 etsec_write(sc, MRBLR, MCLBYTES);
983
984 /* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
985 sc->sc_dmactrl |= DMACTRL_DEFAULT;
986 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
987
988 /* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
989 etsec_write(sc, TQUEUE, TQUEUE_EN0);
990 sc->sc_imask |= IEVENT_TXF | IEVENT_TXE | IEVENT_TXC;
991
992 etsec_write(sc, TCTRL, sc->sc_tctrl); /* for TOE stuff */
993
994 /* 12. Enable receive queues in RQUEUE, */
995 etsec_write(sc, RQUEUE, RQUEUE_EN0 | RQUEUE_EX0);
996 sc->sc_imask |= IEVENT_RXF | IEVENT_BSY | IEVENT_RXC;
997
998 /* and optionally set TOE functionality in RCTRL. */
999 etsec_write(sc, RCTRL, sc->sc_rctrl);
1000 sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
1001 if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
1002 sc->sc_rx_adjlen += sizeof(struct rxfcb);
1003
1004 /* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
1005 etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
1006
1007 /* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
1008 etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
1009
1010 /* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
1011 sc->sc_dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
1012 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1013
1014 /* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
1015 etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
1016 etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
1017
1018 sc->sc_soft_flags = 0;
1019
1020 etsec_write(sc, IMASK, sc->sc_imask);
1021
1022 ifp->if_flags |= IFF_RUNNING;
1023
1024 return error;
1025 }
1026
1027 static void
1028 pq3etsec_ifstop(struct ifnet *ifp, int disable)
1029 {
1030 struct pq3etsec_softc * const sc = ifp->if_softc;
1031
1032 KASSERT(!cpu_intr_p());
1033 const uint32_t imask_gsc_mask = IEVENT_GTSC | IEVENT_GRSC;
1034 /*
1035 * Clear the GTSC and GRSC from the interrupt mask until
1036 * we are ready for them. Then clear them from IEVENT,
1037 * request the graceful shutdown, and then enable the
1038 * GTSC and GRSC bits in the mask. This should cause the
1039 * error interrupt to fire which will issue a wakeup to
1040 * allow us to resume.
1041 */
1042
1043 /*
1044 * 1. Set GRS/GTS bits in DMACTRL register
1045 */
1046 sc->sc_dmactrl |= DMACTRL_GRS | DMACTRL_GTS;
1047 etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
1048 etsec_write(sc, IEVENT, imask_gsc_mask);
1049 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1050
1051 if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN | MACCFG1_RX_EN)) {
1052 /*
1053 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
1054 */
1055 etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
1056
1057 u_int timo = 1000;
1058 uint32_t ievent = etsec_read(sc, IEVENT);
1059 while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
1060 if (--timo == 0) {
1061 aprint_error_dev(sc->sc_dev,
1062 "WARNING: "
1063 "request to stop failed (IEVENT=%#x)\n",
1064 ievent);
1065 break;
1066 }
1067 delay(10);
1068 ievent = etsec_read(sc, IEVENT);
1069 }
1070 }
1071
1072 /*
1073 * Now reset the controller.
1074 *
1075 * 3. Set SOFT_RESET bit in MACCFG1 register
1076 * 4. Clear SOFT_RESET bit in MACCFG1 register
1077 */
1078 etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
1079 etsec_write(sc, MACCFG1, 0);
1080 etsec_write(sc, IMASK, 0);
1081 etsec_write(sc, IEVENT, ~0);
1082 sc->sc_imask = 0;
1083 ifp->if_flags &= ~IFF_RUNNING;
1084
1085 uint32_t tbipa = etsec_read(sc, TBIPA);
1086 if (tbipa == sc->sc_phy_addr) {
1087 aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
1088 etsec_write(sc, TBIPA, 0x1f);
1089 }
1090 uint32_t miimcfg = etsec_read(sc, MIIMCFG);
1091 etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
1092 etsec_write(sc, MIIMCFG, miimcfg);
1093
1094 /*
1095 * Let's consume any remaing transmitted packets. And if we are
1096 * disabling the interface, purge ourselves of any untransmitted
1097 * packets. But don't consume any received packets, just drop them.
1098 * If we aren't disabling the interface, save the mbufs in the
1099 * receive queue for reuse.
1100 */
1101 pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
1102 pq3etsec_txq_consume(sc, &sc->sc_txq);
1103 if (disable) {
1104 pq3etsec_txq_purge(sc, &sc->sc_txq);
1105 IFQ_PURGE(&ifp->if_snd);
1106 }
1107 }
1108
1109 static void
1110 pq3etsec_ifwatchdog(struct ifnet *ifp)
1111 {
1112 }
1113
1114 static void
1115 pq3etsec_mc_setup(
1116 struct pq3etsec_softc *sc)
1117 {
1118 struct ethercom * const ec = &sc->sc_ec;
1119 struct ifnet * const ifp = &sc->sc_if;
1120 struct ether_multi *enm;
1121 struct ether_multistep step;
1122 uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
1123 const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
1124
1125 memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
1126 memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1127
1128 ifp->if_flags &= ~IFF_ALLMULTI;
1129
1130 ETHER_LOCK(ec);
1131 ETHER_FIRST_MULTI(step, ec, enm);
1132 for (u_int i = 0; enm != NULL; ) {
1133 const char *addr = enm->enm_addrlo;
1134 if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1135 ifp->if_flags |= IFF_ALLMULTI;
1136 memset(gaddr, 0xff, 32 << (crc_shift & 1));
1137 memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1138 break;
1139 }
1140 if ((sc->sc_rctrl & RCTRL_EMEN)
1141 && i < __arraycount(sc->sc_macaddrs)) {
1142 sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
1143 } else {
1144 uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1145 #if 0
1146 printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
1147 ether_sprintf(addr), crc,
1148 crc >> crc_shift,
1149 crc >> (crc_shift + 5),
1150 (crc >> crc_shift) & 31,
1151 1 << (((crc >> crc_shift) & 31) ^ 31));
1152 #endif
1153 /*
1154 * The documentation doesn't completely follow PowerPC
1155 * bit order. The BE crc32 (H) for 01:00:5E:00:00:01
1156 * is 0x7fa32d9b. By empirical testing, the
1157 * corresponding hash bit is word 3, bit 31 (ppc bit
1158 * order). Since 3 << 31 | 31 is 0x7f, we deduce
1159 * H[0:2] selects the register while H[3:7] selects
1160 * the bit (ppc bit order).
1161 */
1162 crc >>= crc_shift;
1163 gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
1164 }
1165 ETHER_NEXT_MULTI(step, enm);
1166 }
1167 ETHER_UNLOCK(ec);
1168 for (u_int i = 0; i < 8; i++) {
1169 etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
1170 etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
1171 #if 0
1172 if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
1173 printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
1174 i, IGADDR(i), etsec_read(sc, IGADDR(i)),
1175 i, GADDR(i), etsec_read(sc, GADDR(i)));
1176 #endif
1177 }
1178 for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
1179 uint64_t macaddr = sc->sc_macaddrs[i];
1180 etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
1181 etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >> 0));
1182 #if 0
1183 if (macaddr)
1184 printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
1185 i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
1186 i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
1187 #endif
1188 }
1189 }
1190
1191 static int
1192 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1193 {
1194 struct pq3etsec_softc *sc = ifp->if_softc;
1195 struct ifreq * const ifr = data;
1196 const int s = splnet();
1197 int error;
1198
1199 switch (cmd) {
1200 case SIOCSIFMEDIA:
1201 /* Flow control requires full-duplex mode. */
1202 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1203 (ifr->ifr_media & IFM_FDX) == 0)
1204 ifr->ifr_media &= ~IFM_ETH_FMASK;
1205 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1206 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1207 /* We can do both TXPAUSE and RXPAUSE. */
1208 ifr->ifr_media |=
1209 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1210 }
1211 }
1212 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1213 break;
1214
1215 default:
1216 error = ether_ioctl(ifp, cmd, data);
1217 if (error != ENETRESET)
1218 break;
1219
1220 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1221 error = 0;
1222 if (ifp->if_flags & IFF_RUNNING)
1223 pq3etsec_mc_setup(sc);
1224 break;
1225 }
1226 error = pq3etsec_ifinit(ifp);
1227 break;
1228 }
1229
1230 splx(s);
1231 return error;
1232 }
1233
1234 static void
1235 pq3etsec_rxq_desc_presync(
1236 struct pq3etsec_softc *sc,
1237 struct pq3etsec_rxqueue *rxq,
1238 volatile struct rxbd *rxbd,
1239 size_t count)
1240 {
1241 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1242 (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1243 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1244 }
1245
1246 static void
1247 pq3etsec_rxq_desc_postsync(
1248 struct pq3etsec_softc *sc,
1249 struct pq3etsec_rxqueue *rxq,
1250 volatile struct rxbd *rxbd,
1251 size_t count)
1252 {
1253 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1254 (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1255 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1256 }
1257
1258 static void
1259 pq3etsec_txq_desc_presync(
1260 struct pq3etsec_softc *sc,
1261 struct pq3etsec_txqueue *txq,
1262 volatile struct txbd *txbd,
1263 size_t count)
1264 {
1265 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1266 (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1267 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1268 }
1269
1270 static void
1271 pq3etsec_txq_desc_postsync(
1272 struct pq3etsec_softc *sc,
1273 struct pq3etsec_txqueue *txq,
1274 volatile struct txbd *txbd,
1275 size_t count)
1276 {
1277 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1278 (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1279 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1280 }
1281
1282 static bus_dmamap_t
1283 pq3etsec_mapcache_get(
1284 struct pq3etsec_softc *sc,
1285 struct pq3etsec_mapcache *dmc)
1286 {
1287 KASSERT(dmc->dmc_nmaps > 0);
1288 KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1289 return dmc->dmc_maps[--dmc->dmc_nmaps];
1290 }
1291
1292 static void
1293 pq3etsec_mapcache_put(
1294 struct pq3etsec_softc *sc,
1295 struct pq3etsec_mapcache *dmc,
1296 bus_dmamap_t map)
1297 {
1298 KASSERT(map != NULL);
1299 KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1300 dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1301 }
1302
1303 static void
1304 pq3etsec_mapcache_destroy(
1305 struct pq3etsec_softc *sc,
1306 struct pq3etsec_mapcache *dmc)
1307 {
1308 const size_t dmc_size =
1309 offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1310
1311 for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1312 bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1313 }
1314 kmem_intr_free(dmc, dmc_size);
1315 }
1316
1317 static int
1318 pq3etsec_mapcache_create(
1319 struct pq3etsec_softc *sc,
1320 struct pq3etsec_mapcache **dmc_p,
1321 size_t maxmaps,
1322 size_t maxmapsize,
1323 size_t maxseg)
1324 {
1325 const size_t dmc_size =
1326 offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1327 struct pq3etsec_mapcache * const dmc =
1328 kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
1329
1330 dmc->dmc_maxmaps = maxmaps;
1331 dmc->dmc_nmaps = maxmaps;
1332 dmc->dmc_maxmapsize = maxmapsize;
1333 dmc->dmc_maxseg = maxseg;
1334
1335 for (u_int i = 0; i < maxmaps; i++) {
1336 int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1337 dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1338 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1339 if (error) {
1340 aprint_error_dev(sc->sc_dev,
1341 "failed to creat dma map cache "
1342 "entry %u of %zu: %d\n",
1343 i, maxmaps, error);
1344 while (i-- > 0) {
1345 bus_dmamap_destroy(sc->sc_dmat,
1346 dmc->dmc_maps[i]);
1347 }
1348 kmem_intr_free(dmc, dmc_size);
1349 return error;
1350 }
1351 KASSERT(dmc->dmc_maps[i] != NULL);
1352 }
1353
1354 *dmc_p = dmc;
1355
1356 return 0;
1357 }
1358
1359 #if 0
1360 static void
1361 pq3etsec_dmamem_free(
1362 bus_dma_tag_t dmat,
1363 size_t map_size,
1364 bus_dma_segment_t *seg,
1365 bus_dmamap_t map,
1366 void *kvap)
1367 {
1368 bus_dmamap_destroy(dmat, map);
1369 bus_dmamem_unmap(dmat, kvap, map_size);
1370 bus_dmamem_free(dmat, seg, 1);
1371 }
1372 #endif
1373
1374 static int
1375 pq3etsec_dmamem_alloc(
1376 bus_dma_tag_t dmat,
1377 size_t map_size,
1378 bus_dma_segment_t *seg,
1379 bus_dmamap_t *map,
1380 void **kvap)
1381 {
1382 int error;
1383 int nseg;
1384
1385 *kvap = NULL;
1386 *map = NULL;
1387
1388 error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1389 seg, 1, &nseg, 0);
1390 if (error)
1391 return error;
1392
1393 KASSERT(nseg == 1);
1394
1395 error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1396 BUS_DMA_COHERENT);
1397 if (error == 0) {
1398 error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1399 map);
1400 if (error == 0) {
1401 error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1402 NULL, 0);
1403 if (error == 0)
1404 return 0;
1405 bus_dmamap_destroy(dmat, *map);
1406 *map = NULL;
1407 }
1408 bus_dmamem_unmap(dmat, *kvap, map_size);
1409 *kvap = NULL;
1410 }
1411 bus_dmamem_free(dmat, seg, nseg);
1412 return 0;
1413 }
1414
1415 static struct mbuf *
1416 pq3etsec_rx_buf_alloc(
1417 struct pq3etsec_softc *sc)
1418 {
1419 struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1420 if (m == NULL) {
1421 printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1422 return NULL;
1423 }
1424 MCLGET(m, M_DONTWAIT);
1425 if ((m->m_flags & M_EXT) == 0) {
1426 printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1427 m_freem(m);
1428 return NULL;
1429 }
1430 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1431
1432 bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1433 if (map == NULL) {
1434 printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1435 m_freem(m);
1436 return NULL;
1437 }
1438 M_SETCTX(m, map);
1439 m->m_len = m->m_pkthdr.len = MCLBYTES;
1440 int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1441 BUS_DMA_READ | BUS_DMA_NOWAIT);
1442 if (error) {
1443 aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1444 error);
1445 M_SETCTX(m, NULL);
1446 m_freem(m);
1447 pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1448 return NULL;
1449 }
1450 KASSERT(map->dm_mapsize == MCLBYTES);
1451 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1452 BUS_DMASYNC_PREREAD);
1453
1454 return m;
1455 }
1456
1457 static void
1458 pq3etsec_rx_map_unload(
1459 struct pq3etsec_softc *sc,
1460 struct mbuf *m)
1461 {
1462 KASSERT(m);
1463 for (; m != NULL; m = m->m_next) {
1464 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1465 KASSERT(map);
1466 KASSERT(map->dm_mapsize == MCLBYTES);
1467 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1468 BUS_DMASYNC_POSTREAD);
1469 bus_dmamap_unload(sc->sc_dmat, map);
1470 pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1471 M_SETCTX(m, NULL);
1472 }
1473 }
1474
1475 static bool
1476 pq3etsec_rxq_produce(
1477 struct pq3etsec_softc *sc,
1478 struct pq3etsec_rxqueue *rxq)
1479 {
1480 volatile struct rxbd *producer = rxq->rxq_producer;
1481 #if 0
1482 size_t inuse = rxq->rxq_inuse;
1483 #endif
1484 while (rxq->rxq_inuse < rxq->rxq_threshold) {
1485 struct mbuf *m;
1486 IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1487 if (m == NULL) {
1488 m = pq3etsec_rx_buf_alloc(sc);
1489 if (m == NULL) {
1490 printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1491 break;
1492 }
1493 }
1494 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1495 KASSERT(map);
1496
1497 #ifdef ETSEC_DEBUG
1498 KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1499 rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1500 #endif
1501
1502 /* rxbd_len is write-only by the ETSEC */
1503 producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1504 membar_producer();
1505 producer->rxbd_flags |= RXBD_E;
1506 if (__predict_false(rxq->rxq_mhead == NULL)) {
1507 KASSERT(producer == rxq->rxq_consumer);
1508 rxq->rxq_mconsumer = m;
1509 }
1510 *rxq->rxq_mtail = m;
1511 rxq->rxq_mtail = &m->m_next;
1512 m->m_len = MCLBYTES;
1513 m->m_next = NULL;
1514 rxq->rxq_inuse++;
1515 if (++producer == rxq->rxq_last) {
1516 membar_producer();
1517 pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1518 rxq->rxq_last - rxq->rxq_producer);
1519 producer = rxq->rxq_producer = rxq->rxq_first;
1520 }
1521 }
1522 if (producer != rxq->rxq_producer) {
1523 membar_producer();
1524 pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1525 producer - rxq->rxq_producer);
1526 rxq->rxq_producer = producer;
1527 }
1528 uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1529 if (qhlt) {
1530 KASSERT(qhlt & rxq->rxq_qmask);
1531 sc->sc_ev_rx_stall.ev_count++;
1532 etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1533 }
1534 #if 0
1535 aprint_normal_dev(sc->sc_dev,
1536 "%s: buffers inuse went from %zu to %zu\n",
1537 __func__, inuse, rxq->rxq_inuse);
1538 #endif
1539 return true;
1540 }
1541
1542 static bool
1543 pq3etsec_rx_offload(
1544 struct pq3etsec_softc *sc,
1545 struct mbuf *m,
1546 const struct rxfcb *fcb)
1547 {
1548 if (fcb->rxfcb_flags & RXFCB_VLN) {
1549 vlan_set_tag(m, fcb->rxfcb_vlctl);
1550 }
1551 if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1552 || (fcb->rxfcb_flags & (RXFCB_CIP | RXFCB_CTU)) == 0)
1553 return true;
1554 int csum_flags = 0;
1555 if ((fcb->rxfcb_flags & (RXFCB_IP6 | RXFCB_CIP)) == RXFCB_CIP) {
1556 csum_flags |= M_CSUM_IPv4;
1557 if (fcb->rxfcb_flags & RXFCB_EIP)
1558 csum_flags |= M_CSUM_IPv4_BAD;
1559 }
1560 if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1561 int ipv_flags;
1562 if (fcb->rxfcb_flags & RXFCB_IP6)
1563 ipv_flags = M_CSUM_TCPv6 | M_CSUM_UDPv6;
1564 else
1565 ipv_flags = M_CSUM_TCPv4 | M_CSUM_UDPv4;
1566 if (fcb->rxfcb_pro == IPPROTO_TCP) {
1567 csum_flags |= (M_CSUM_TCPv4 |M_CSUM_TCPv6) & ipv_flags;
1568 } else {
1569 csum_flags |= (M_CSUM_UDPv4 |M_CSUM_UDPv6) & ipv_flags;
1570 }
1571 if (fcb->rxfcb_flags & RXFCB_ETU)
1572 csum_flags |= M_CSUM_TCP_UDP_BAD;
1573 }
1574
1575 m->m_pkthdr.csum_flags = csum_flags;
1576 return true;
1577 }
1578
1579 static void
1580 pq3etsec_rx_input(
1581 struct pq3etsec_softc *sc,
1582 struct mbuf *m,
1583 uint16_t rxbd_flags)
1584 {
1585 struct ifnet * const ifp = &sc->sc_if;
1586
1587 pq3etsec_rx_map_unload(sc, m);
1588
1589 if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1590 struct rxfcb fcb = *mtod(m, struct rxfcb *);
1591 if (!pq3etsec_rx_offload(sc, m, &fcb))
1592 return;
1593 }
1594 m_adj(m, sc->sc_rx_adjlen);
1595
1596 if (rxbd_flags & RXBD_M)
1597 m->m_flags |= M_PROMISC;
1598 if (rxbd_flags & RXBD_BC)
1599 m->m_flags |= M_BCAST;
1600 if (rxbd_flags & RXBD_MC)
1601 m->m_flags |= M_MCAST;
1602 m->m_flags |= M_HASFCS;
1603 m_set_rcvif(m, &sc->sc_if);
1604
1605 /*
1606 * Let's give it to the network subsystm to deal with.
1607 */
1608 if_percpuq_enqueue(ifp->if_percpuq, m);
1609 }
1610
1611 static void
1612 pq3etsec_rxq_consume(
1613 struct pq3etsec_softc *sc,
1614 struct pq3etsec_rxqueue *rxq)
1615 {
1616 struct ifnet * const ifp = &sc->sc_if;
1617 volatile struct rxbd *consumer = rxq->rxq_consumer;
1618 size_t rxconsumed = 0;
1619
1620 etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1621
1622 for (;;) {
1623 if (consumer == rxq->rxq_producer) {
1624 rxq->rxq_consumer = consumer;
1625 rxq->rxq_inuse -= rxconsumed;
1626 KASSERT(rxq->rxq_inuse == 0);
1627 break;
1628 }
1629 pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1630 const uint16_t rxbd_flags = consumer->rxbd_flags;
1631 if (rxbd_flags & RXBD_E) {
1632 rxq->rxq_consumer = consumer;
1633 rxq->rxq_inuse -= rxconsumed;
1634 break;
1635 }
1636 KASSERT(rxq->rxq_mconsumer != NULL);
1637 #ifdef ETSEC_DEBUG
1638 KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1639 #endif
1640 #if 0
1641 printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1642 __func__,
1643 consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1644 mtod(rxq->rxq_mconsumer, int *)[0],
1645 mtod(rxq->rxq_mconsumer, int *)[1],
1646 mtod(rxq->rxq_mconsumer, int *)[2],
1647 mtod(rxq->rxq_mconsumer, int *)[3]);
1648 #endif
1649 /*
1650 * We own this packet again. Clear all flags except wrap.
1651 */
1652 rxconsumed++;
1653 consumer->rxbd_flags = rxbd_flags & (RXBD_W | RXBD_I);
1654
1655 /*
1656 * If this descriptor has the LAST bit set and no errors,
1657 * it's a valid input packet.
1658 */
1659 if ((rxbd_flags & (RXBD_L | RXBD_ERRORS)) == RXBD_L) {
1660 size_t rxbd_len = consumer->rxbd_len;
1661 struct mbuf *m = rxq->rxq_mhead;
1662 struct mbuf *m_last = rxq->rxq_mconsumer;
1663 if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1664 rxq->rxq_mtail = &rxq->rxq_mhead;
1665 rxq->rxq_mconsumer = rxq->rxq_mhead;
1666 m_last->m_next = NULL;
1667 m_last->m_len = rxbd_len & (MCLBYTES - 1);
1668 m->m_pkthdr.len = rxbd_len;
1669 pq3etsec_rx_input(sc, m, rxbd_flags);
1670 } else if (rxbd_flags & RXBD_L) {
1671 KASSERT(rxbd_flags & RXBD_ERRORS);
1672 struct mbuf *m;
1673 /*
1674 * We encountered an error, take the mbufs and add
1675 * then to the rx bufcache so we can reuse them.
1676 */
1677 if_statinc(ifp, if_ierrors);
1678 for (m = rxq->rxq_mhead;
1679 m != rxq->rxq_mconsumer;
1680 m = m->m_next) {
1681 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1682 }
1683 m = rxq->rxq_mconsumer;
1684 if ((rxq->rxq_mhead = m->m_next) == NULL)
1685 rxq->rxq_mtail = &rxq->rxq_mhead;
1686 rxq->rxq_mconsumer = m->m_next;
1687 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1688 } else {
1689 rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1690 }
1691 #ifdef ETSEC_DEBUG
1692 rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1693 #endif
1694
1695 /*
1696 * Wrap at the last entry!
1697 */
1698 if (rxbd_flags & RXBD_W) {
1699 KASSERT(consumer + 1 == rxq->rxq_last);
1700 consumer = rxq->rxq_first;
1701 } else {
1702 consumer++;
1703 }
1704 #ifdef ETSEC_DEBUG
1705 KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1706 #endif
1707 }
1708
1709 if (rxconsumed != 0)
1710 rnd_add_uint32(&sc->rnd_source, rxconsumed);
1711 }
1712
1713 static void
1714 pq3etsec_rxq_purge(
1715 struct pq3etsec_softc *sc,
1716 struct pq3etsec_rxqueue *rxq,
1717 bool discard)
1718 {
1719 struct mbuf *m;
1720
1721 if ((m = rxq->rxq_mhead) != NULL) {
1722 #ifdef ETSEC_DEBUG
1723 memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1724 #endif
1725
1726 if (discard) {
1727 pq3etsec_rx_map_unload(sc, m);
1728 m_freem(m);
1729 } else {
1730 while (m != NULL) {
1731 struct mbuf *m0 = m->m_next;
1732 m->m_next = NULL;
1733 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1734 m = m0;
1735 }
1736 }
1737 }
1738
1739 rxq->rxq_mconsumer = NULL;
1740 rxq->rxq_mhead = NULL;
1741 rxq->rxq_mtail = &rxq->rxq_mhead;
1742 rxq->rxq_inuse = 0;
1743 }
1744
1745 static void
1746 pq3etsec_rxq_reset(
1747 struct pq3etsec_softc *sc,
1748 struct pq3etsec_rxqueue *rxq)
1749 {
1750 /*
1751 * sync all the descriptors
1752 */
1753 pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1754 rxq->rxq_last - rxq->rxq_first);
1755
1756 /*
1757 * Make sure we own all descriptors in the ring.
1758 */
1759 volatile struct rxbd *rxbd;
1760 for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1761 rxbd->rxbd_flags = RXBD_I;
1762 }
1763
1764 /*
1765 * Last descriptor has the wrap flag.
1766 */
1767 rxbd->rxbd_flags = RXBD_W | RXBD_I;
1768
1769 /*
1770 * Reset the producer consumer indexes.
1771 */
1772 rxq->rxq_consumer = rxq->rxq_first;
1773 rxq->rxq_producer = rxq->rxq_first;
1774 rxq->rxq_inuse = 0;
1775 if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1776 rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1777
1778 sc->sc_imask |= IEVENT_RXF | IEVENT_BSY;
1779
1780 /*
1781 * Restart the transmit at the first descriptor
1782 */
1783 etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1784 }
1785
1786 static int
1787 pq3etsec_rxq_attach(
1788 struct pq3etsec_softc *sc,
1789 struct pq3etsec_rxqueue *rxq,
1790 u_int qno)
1791 {
1792 size_t map_size = PAGE_SIZE;
1793 size_t desc_count = map_size / sizeof(struct rxbd);
1794 int error;
1795 void *descs;
1796
1797 error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1798 &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1799 if (error)
1800 return error;
1801
1802 memset(descs, 0, map_size);
1803 rxq->rxq_first = descs;
1804 rxq->rxq_last = rxq->rxq_first + desc_count;
1805 rxq->rxq_consumer = descs;
1806 rxq->rxq_producer = descs;
1807
1808 pq3etsec_rxq_purge(sc, rxq, true);
1809 pq3etsec_rxq_reset(sc, rxq);
1810
1811 rxq->rxq_reg_rbase = RBASEn(qno);
1812 rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1813
1814 return 0;
1815 }
1816
1817 static bool
1818 pq3etsec_txq_active_p(
1819 struct pq3etsec_softc * const sc,
1820 struct pq3etsec_txqueue *txq)
1821 {
1822 return !IF_IS_EMPTY(&txq->txq_mbufs);
1823 }
1824
1825 static bool
1826 pq3etsec_txq_fillable_p(
1827 struct pq3etsec_softc * const sc,
1828 struct pq3etsec_txqueue *txq)
1829 {
1830 return txq->txq_free >= txq->txq_threshold;
1831 }
1832
1833 static int
1834 pq3etsec_txq_attach(
1835 struct pq3etsec_softc *sc,
1836 struct pq3etsec_txqueue *txq,
1837 u_int qno)
1838 {
1839 size_t map_size = PAGE_SIZE;
1840 size_t desc_count = map_size / sizeof(struct txbd);
1841 int error;
1842 void *descs;
1843
1844 error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1845 &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1846 if (error)
1847 return error;
1848
1849 memset(descs, 0, map_size);
1850 txq->txq_first = descs;
1851 txq->txq_last = txq->txq_first + desc_count;
1852 txq->txq_consumer = descs;
1853 txq->txq_producer = descs;
1854
1855 IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1856
1857 txq->txq_reg_tbase = TBASEn(qno);
1858 txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1859
1860 pq3etsec_txq_reset(sc, txq);
1861
1862 return 0;
1863 }
1864
1865 static int
1866 pq3etsec_txq_map_load(
1867 struct pq3etsec_softc *sc,
1868 struct pq3etsec_txqueue *txq,
1869 struct mbuf *m)
1870 {
1871 bus_dmamap_t map;
1872 int error;
1873
1874 map = M_GETCTX(m, bus_dmamap_t);
1875 if (map != NULL)
1876 return 0;
1877
1878 map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1879 if (map == NULL)
1880 return ENOMEM;
1881
1882 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1883 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1884 if (error)
1885 return error;
1886
1887 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1888 BUS_DMASYNC_PREWRITE);
1889 M_SETCTX(m, map);
1890 return 0;
1891 }
1892
1893 static void
1894 pq3etsec_txq_map_unload(
1895 struct pq3etsec_softc *sc,
1896 struct pq3etsec_txqueue *txq,
1897 struct mbuf *m)
1898 {
1899 KASSERT(m);
1900 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1901 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1902 BUS_DMASYNC_POSTWRITE);
1903 bus_dmamap_unload(sc->sc_dmat, map);
1904 pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1905 }
1906
1907 static bool
1908 pq3etsec_txq_produce(
1909 struct pq3etsec_softc *sc,
1910 struct pq3etsec_txqueue *txq,
1911 struct mbuf *m)
1912 {
1913 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1914
1915 if (map->dm_nsegs > txq->txq_free)
1916 return false;
1917
1918 /*
1919 * TCP Offload flag must be set in the first descriptor.
1920 */
1921 volatile struct txbd *producer = txq->txq_producer;
1922 uint16_t last_flags = TXBD_L;
1923 uint16_t first_flags = TXBD_R
1924 | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1925
1926 /*
1927 * If we've produced enough descriptors without consuming any
1928 * we need to ask for an interrupt to reclaim some.
1929 */
1930 txq->txq_lastintr += map->dm_nsegs;
1931 if (ETSEC_IC_TX_ENABLED(sc)
1932 || txq->txq_lastintr >= txq->txq_threshold
1933 || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1934 txq->txq_lastintr = 0;
1935 last_flags |= TXBD_I;
1936 }
1937
1938 #ifdef ETSEC_DEBUG
1939 KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1940 #endif
1941 KASSERT(producer != txq->txq_last);
1942 producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1943 producer->txbd_len = map->dm_segs[0].ds_len;
1944
1945 if (map->dm_nsegs > 1) {
1946 volatile struct txbd *start = producer + 1;
1947 size_t count = map->dm_nsegs - 1;
1948 for (u_int i = 1; i < map->dm_nsegs; i++) {
1949 if (__predict_false(++producer == txq->txq_last)) {
1950 producer = txq->txq_first;
1951 if (start < txq->txq_last) {
1952 pq3etsec_txq_desc_presync(sc, txq,
1953 start, txq->txq_last - start);
1954 count -= txq->txq_last - start;
1955 }
1956 start = txq->txq_first;
1957 }
1958 #ifdef ETSEC_DEBUG
1959 KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1960 #endif
1961 producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1962 producer->txbd_len = map->dm_segs[i].ds_len;
1963 producer->txbd_flags = TXBD_R
1964 | (producer->txbd_flags & TXBD_W)
1965 | (i == map->dm_nsegs - 1 ? last_flags : 0);
1966 #if 0
1967 printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1968 producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1969 #endif
1970 }
1971 pq3etsec_txq_desc_presync(sc, txq, start, count);
1972 } else {
1973 first_flags |= last_flags;
1974 }
1975
1976 membar_producer();
1977 txq->txq_producer->txbd_flags =
1978 first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1979 #if 0
1980 printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1981 txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1982 txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1983 #endif
1984 pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
1985
1986 /*
1987 * Reduce free count by the number of segments we consumed.
1988 */
1989 txq->txq_free -= map->dm_nsegs;
1990 KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1991 KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
1992 KASSERT(producer->txbd_flags & TXBD_L);
1993 #ifdef ETSEC_DEBUG
1994 txq->txq_lmbufs[producer - txq->txq_first] = m;
1995 #endif
1996
1997 #if 0
1998 printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
1999 __func__, m, m->m_pkthdr.len, map->dm_nsegs,
2000 txq->txq_producer - txq->txq_first, producer - txq->txq_first);
2001 #endif
2002
2003 if (++producer == txq->txq_last)
2004 txq->txq_producer = txq->txq_first;
2005 else
2006 txq->txq_producer = producer;
2007 IF_ENQUEUE(&txq->txq_mbufs, m);
2008
2009 /*
2010 * Restart the transmitter.
2011 */
2012 etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT); /* W1C */
2013
2014 return true;
2015 }
2016
2017 static void
2018 pq3etsec_tx_offload(
2019 struct pq3etsec_softc *sc,
2020 struct pq3etsec_txqueue *txq,
2021 struct mbuf **mp)
2022 {
2023 struct mbuf *m = *mp;
2024 u_int csum_flags = m->m_pkthdr.csum_flags;
2025 bool have_vtag;
2026 uint16_t vtag;
2027
2028 KASSERT(m->m_flags & M_PKTHDR);
2029
2030 have_vtag = vlan_has_tag(m);
2031 vtag = (have_vtag) ? vlan_get_tag(m) : 0;
2032
2033 /*
2034 * Let see if we are doing any offload first.
2035 */
2036 if (csum_flags == 0 && !have_vtag) {
2037 m->m_flags &= ~M_HASFCB;
2038 return;
2039 }
2040
2041 uint16_t flags = 0;
2042 if (csum_flags & M_CSUM_IP) {
2043 flags |= TXFCB_IP
2044 | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
2045 | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
2046 | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
2047 | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
2048 | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
2049 }
2050 if (have_vtag) {
2051 flags |= TXFCB_VLN;
2052 }
2053 if (flags == 0) {
2054 m->m_flags &= ~M_HASFCB;
2055 return;
2056 }
2057
2058 struct txfcb fcb;
2059 fcb.txfcb_flags = flags;
2060 if (csum_flags & M_CSUM_IPv4)
2061 fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
2062 else
2063 fcb.txfcb_l4os = M_CSUM_DATA_IPv6_IPHL(m->m_pkthdr.csum_data);
2064 fcb.txfcb_l3os = ETHER_HDR_LEN;
2065 fcb.txfcb_phcs = 0;
2066 fcb.txfcb_vlctl = vtag;
2067
2068 #if 0
2069 printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
2070 __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
2071 fcb.txfcb_phcs, fcb.txfcb_vlctl);
2072 #endif
2073
2074 if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
2075 m->m_data -= sizeof(fcb);
2076 m->m_len += sizeof(fcb);
2077 } else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
2078 memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
2079 m->m_data = m->m_pktdat;
2080 m->m_len += sizeof(fcb);
2081 } else {
2082 struct mbuf *mn;
2083 MGET(mn, M_DONTWAIT, m->m_type);
2084 if (mn == NULL) {
2085 if (csum_flags & M_CSUM_IP4) {
2086 #ifdef INET
2087 in_undefer_cksum(m, ETHER_HDR_LEN,
2088 csum_flags & M_CSUM_IP4);
2089 #else
2090 panic("%s: impossible M_CSUM flags %#x",
2091 device_xname(sc->sc_dev), csum_flags);
2092 #endif
2093 } else if (csum_flags & M_CSUM_IP6) {
2094 #ifdef INET6
2095 in6_undefer_cksum(m, ETHER_HDR_LEN,
2096 csum_flags & M_CSUM_IP6);
2097 #else
2098 panic("%s: impossible M_CSUM flags %#x",
2099 device_xname(sc->sc_dev), csum_flags);
2100 #endif
2101 }
2102
2103 m->m_flags &= ~M_HASFCB;
2104 return;
2105 }
2106
2107 m_move_pkthdr(mn, m);
2108 mn->m_next = m;
2109 m = mn;
2110 m_align(m, sizeof(fcb));
2111 m->m_len = sizeof(fcb);
2112 *mp = m;
2113 }
2114 m->m_pkthdr.len += sizeof(fcb);
2115 m->m_flags |= M_HASFCB;
2116 *mtod(m, struct txfcb *) = fcb;
2117 return;
2118 }
2119
2120 static bool
2121 pq3etsec_txq_enqueue(
2122 struct pq3etsec_softc *sc,
2123 struct pq3etsec_txqueue *txq)
2124 {
2125 for (;;) {
2126 if (IF_QFULL(&txq->txq_mbufs))
2127 return false;
2128 struct mbuf *m = txq->txq_next;
2129 if (m == NULL) {
2130 int s = splnet();
2131 IFQ_DEQUEUE(&sc->sc_if.if_snd, m);
2132 splx(s);
2133 if (m == NULL)
2134 return true;
2135 M_SETCTX(m, NULL);
2136 pq3etsec_tx_offload(sc, txq, &m);
2137 } else {
2138 txq->txq_next = NULL;
2139 }
2140 int error = pq3etsec_txq_map_load(sc, txq, m);
2141 if (error) {
2142 aprint_error_dev(sc->sc_dev,
2143 "discarded packet due to "
2144 "dmamap load failure: %d\n", error);
2145 m_freem(m);
2146 continue;
2147 }
2148 KASSERT(txq->txq_next == NULL);
2149 if (!pq3etsec_txq_produce(sc, txq, m)) {
2150 txq->txq_next = m;
2151 return false;
2152 }
2153 KASSERT(txq->txq_next == NULL);
2154 }
2155 }
2156
2157 static bool
2158 pq3etsec_txq_consume(
2159 struct pq3etsec_softc *sc,
2160 struct pq3etsec_txqueue *txq)
2161 {
2162 struct ifnet * const ifp = &sc->sc_if;
2163 volatile struct txbd *consumer = txq->txq_consumer;
2164 size_t txfree = 0;
2165 bool ret;
2166
2167 #if 0
2168 printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
2169 #endif
2170 etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
2171
2172 for (;;) {
2173 if (consumer == txq->txq_producer) {
2174 txq->txq_consumer = consumer;
2175 txq->txq_free += txfree;
2176 txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
2177 KASSERT(txq->txq_lastintr == 0);
2178 KASSERT(txq->txq_free ==
2179 txq->txq_last - txq->txq_first - 1);
2180 ret = true;
2181 break;
2182 }
2183 pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2184 const uint16_t txbd_flags = consumer->txbd_flags;
2185 if (txbd_flags & TXBD_R) {
2186 txq->txq_consumer = consumer;
2187 txq->txq_free += txfree;
2188 txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
2189 ret = pq3etsec_txq_fillable_p(sc, txq);
2190 break;
2191 }
2192
2193 /*
2194 * If this is the last descriptor in the chain, get the
2195 * mbuf, free its dmamap, and free the mbuf chain itself.
2196 */
2197 if (txbd_flags & TXBD_L) {
2198 struct mbuf *m;
2199
2200 IF_DEQUEUE(&txq->txq_mbufs, m);
2201 #ifdef ETSEC_DEBUG
2202 KASSERTMSG(
2203 m == txq->txq_lmbufs[consumer-txq->txq_first],
2204 "%s: %p [%u]: flags %#x m (%p) != %p (%p)",
2205 __func__, consumer, consumer - txq->txq_first,
2206 txbd_flags, m,
2207 &txq->txq_lmbufs[consumer-txq->txq_first],
2208 txq->txq_lmbufs[consumer-txq->txq_first]);
2209 #endif
2210 KASSERT(m);
2211 pq3etsec_txq_map_unload(sc, txq, m);
2212 #if 0
2213 printf("%s: mbuf %p: consumed a %u byte packet\n",
2214 __func__, m, m->m_pkthdr.len);
2215 #endif
2216 if (m->m_flags & M_HASFCB)
2217 m_adj(m, sizeof(struct txfcb));
2218 bpf_mtap(ifp, m, BPF_D_OUT);
2219 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
2220 if_statinc_ref(nsr, if_opackets);
2221 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
2222 if (m->m_flags & M_MCAST)
2223 if_statinc_ref(nsr, if_omcasts);
2224 if (txbd_flags & TXBD_ERRORS)
2225 if_statinc_ref(nsr, if_oerrors);
2226 IF_STAT_PUTREF(ifp);
2227 m_freem(m);
2228 #ifdef ETSEC_DEBUG
2229 txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2230 #endif
2231 } else {
2232 #ifdef ETSEC_DEBUG
2233 KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2234 #endif
2235 }
2236
2237 /*
2238 * We own this packet again. Clear all flags except wrap.
2239 */
2240 txfree++;
2241 //consumer->txbd_flags = txbd_flags & TXBD_W;
2242
2243 /*
2244 * Wrap at the last entry!
2245 */
2246 if (txbd_flags & TXBD_W) {
2247 KASSERT(consumer + 1 == txq->txq_last);
2248 consumer = txq->txq_first;
2249 } else {
2250 consumer++;
2251 KASSERT(consumer < txq->txq_last);
2252 }
2253 }
2254
2255 if (txfree != 0)
2256 rnd_add_uint32(&sc->rnd_source, txfree);
2257 return ret;
2258 }
2259
2260 static void
2261 pq3etsec_txq_purge(
2262 struct pq3etsec_softc *sc,
2263 struct pq3etsec_txqueue *txq)
2264 {
2265 struct mbuf *m;
2266 KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2267
2268 for (;;) {
2269 IF_DEQUEUE(&txq->txq_mbufs, m);
2270 if (m == NULL)
2271 break;
2272 pq3etsec_txq_map_unload(sc, txq, m);
2273 m_freem(m);
2274 }
2275 if ((m = txq->txq_next) != NULL) {
2276 txq->txq_next = NULL;
2277 pq3etsec_txq_map_unload(sc, txq, m);
2278 m_freem(m);
2279 }
2280 #ifdef ETSEC_DEBUG
2281 memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2282 #endif
2283 }
2284
2285 static void
2286 pq3etsec_txq_reset(
2287 struct pq3etsec_softc *sc,
2288 struct pq3etsec_txqueue *txq)
2289 {
2290 /*
2291 * sync all the descriptors
2292 */
2293 pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2294 txq->txq_last - txq->txq_first);
2295
2296 /*
2297 * Make sure we own all descriptors in the ring.
2298 */
2299 volatile struct txbd *txbd;
2300 for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2301 txbd->txbd_flags = 0;
2302 }
2303
2304 /*
2305 * Last descriptor has the wrap flag.
2306 */
2307 txbd->txbd_flags = TXBD_W;
2308
2309 /*
2310 * Reset the producer consumer indexes.
2311 */
2312 txq->txq_consumer = txq->txq_first;
2313 txq->txq_producer = txq->txq_first;
2314 txq->txq_free = txq->txq_last - txq->txq_first - 1;
2315 txq->txq_threshold = txq->txq_free / 2;
2316 txq->txq_lastintr = 0;
2317
2318 /*
2319 * What do we want to get interrupted on?
2320 */
2321 sc->sc_imask |= IEVENT_TXF | IEVENT_TXE;
2322
2323 /*
2324 * Restart the transmit at the first descriptor
2325 */
2326 etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2327 }
2328
2329 static void
2330 pq3etsec_ifstart(struct ifnet *ifp)
2331 {
2332 struct pq3etsec_softc * const sc = ifp->if_softc;
2333
2334 if (__predict_false((ifp->if_flags & IFF_RUNNING) == 0)) {
2335 return;
2336 }
2337
2338 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2339 softint_schedule(sc->sc_soft_ih);
2340 }
2341
2342 static void
2343 pq3etsec_tx_error(
2344 struct pq3etsec_softc * const sc)
2345 {
2346 struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2347
2348 pq3etsec_txq_consume(sc, txq);
2349
2350 if (sc->sc_txerrors
2351 & (IEVENT_LC | IEVENT_CRL | IEVENT_XFUN | IEVENT_BABT)) {
2352 } else if (sc->sc_txerrors & IEVENT_EBERR) {
2353 }
2354
2355 if (pq3etsec_txq_active_p(sc, txq))
2356 etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2357 if (!pq3etsec_txq_enqueue(sc, txq)) {
2358 sc->sc_ev_tx_stall.ev_count++;
2359 }
2360
2361 sc->sc_txerrors = 0;
2362 }
2363
2364 int
2365 pq3etsec_tx_intr(void *arg)
2366 {
2367 struct pq3etsec_softc * const sc = arg;
2368
2369 mutex_enter(sc->sc_hwlock);
2370
2371 sc->sc_ev_tx_intr.ev_count++;
2372
2373 uint32_t ievent = etsec_read(sc, IEVENT);
2374 ievent &= IEVENT_TXF | IEVENT_TXB;
2375 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2376
2377 #if 0
2378 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2379 __func__, ievent, etsec_read(sc, IMASK));
2380 #endif
2381
2382 if (ievent == 0) {
2383 mutex_exit(sc->sc_hwlock);
2384 return 0;
2385 }
2386
2387 sc->sc_imask &= ~(IEVENT_TXF | IEVENT_TXB);
2388 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2389 etsec_write(sc, IMASK, sc->sc_imask);
2390 softint_schedule(sc->sc_soft_ih);
2391
2392 mutex_exit(sc->sc_hwlock);
2393
2394 return 1;
2395 }
2396
2397 int
2398 pq3etsec_rx_intr(void *arg)
2399 {
2400 struct pq3etsec_softc * const sc = arg;
2401
2402 mutex_enter(sc->sc_hwlock);
2403
2404 sc->sc_ev_rx_intr.ev_count++;
2405
2406 uint32_t ievent = etsec_read(sc, IEVENT);
2407 ievent &= IEVENT_RXF | IEVENT_RXB;
2408 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2409 if (ievent == 0) {
2410 mutex_exit(sc->sc_hwlock);
2411 return 0;
2412 }
2413
2414 #if 0
2415 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2416 #endif
2417
2418 sc->sc_imask &= ~(IEVENT_RXF | IEVENT_RXB);
2419 atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2420 etsec_write(sc, IMASK, sc->sc_imask);
2421 softint_schedule(sc->sc_soft_ih);
2422
2423 mutex_exit(sc->sc_hwlock);
2424
2425 return 1;
2426 }
2427
2428 int
2429 pq3etsec_error_intr(void *arg)
2430 {
2431 struct pq3etsec_softc * const sc = arg;
2432
2433 mutex_enter(sc->sc_hwlock);
2434
2435 sc->sc_ev_error_intr.ev_count++;
2436
2437 for (int rv = 0, soft_flags = 0;; rv = 1) {
2438 uint32_t ievent = etsec_read(sc, IEVENT);
2439 ievent &= ~(IEVENT_RXF | IEVENT_RXB | IEVENT_TXF | IEVENT_TXB);
2440 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2441 if (ievent == 0) {
2442 if (soft_flags) {
2443 atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2444 softint_schedule(sc->sc_soft_ih);
2445 }
2446 mutex_exit(sc->sc_hwlock);
2447 return rv;
2448 }
2449 #if 0
2450 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2451 __func__, ievent, etsec_read(sc, IMASK));
2452 #endif
2453
2454 if (ievent & (IEVENT_GRSC | IEVENT_GTSC)) {
2455 sc->sc_imask &= ~(IEVENT_GRSC | IEVENT_GTSC);
2456 etsec_write(sc, IMASK, sc->sc_imask);
2457 wakeup(sc);
2458 }
2459 if (ievent & (IEVENT_MMRD | IEVENT_MMWR)) {
2460 sc->sc_imask &= ~(IEVENT_MMRD | IEVENT_MMWR);
2461 etsec_write(sc, IMASK, sc->sc_imask);
2462 wakeup(&sc->sc_mii);
2463 }
2464 if (ievent & IEVENT_BSY) {
2465 soft_flags |= SOFT_RXBSY;
2466 sc->sc_imask &= ~IEVENT_BSY;
2467 etsec_write(sc, IMASK, sc->sc_imask);
2468 }
2469 if (ievent & IEVENT_TXE) {
2470 soft_flags |= SOFT_TXERROR;
2471 sc->sc_imask &= ~IEVENT_TXE;
2472 sc->sc_txerrors |= ievent;
2473 }
2474 if (ievent & IEVENT_TXC) {
2475 sc->sc_ev_tx_pause.ev_count++;
2476 }
2477 if (ievent & IEVENT_RXC) {
2478 sc->sc_ev_rx_pause.ev_count++;
2479 }
2480 if (ievent & IEVENT_DPE) {
2481 soft_flags |= SOFT_RESET;
2482 sc->sc_imask &= ~IEVENT_DPE;
2483 etsec_write(sc, IMASK, sc->sc_imask);
2484 }
2485 }
2486 }
2487
2488 void
2489 pq3etsec_soft_intr(void *arg)
2490 {
2491 struct pq3etsec_softc * const sc = arg;
2492 struct ifnet * const ifp = &sc->sc_if;
2493 uint32_t imask = 0;
2494
2495 mutex_enter(sc->sc_lock);
2496
2497 u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2498
2499 sc->sc_ev_soft_intr.ev_count++;
2500
2501 if (soft_flags & SOFT_RESET) {
2502 int s = splnet();
2503 pq3etsec_ifinit(ifp);
2504 splx(s);
2505 soft_flags = 0;
2506 }
2507
2508 if (soft_flags & SOFT_RXBSY) {
2509 struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2510 size_t threshold = 5 * rxq->rxq_threshold / 4;
2511 if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2512 threshold = rxq->rxq_last - rxq->rxq_first - 1;
2513 } else {
2514 imask |= IEVENT_BSY;
2515 }
2516 aprint_normal_dev(sc->sc_dev,
2517 "increasing receive buffers from %zu to %zu\n",
2518 rxq->rxq_threshold, threshold);
2519 rxq->rxq_threshold = threshold;
2520 }
2521
2522 if ((soft_flags & SOFT_TXINTR)
2523 || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2524 /*
2525 * Let's do what we came here for. Consume transmitted
2526 * packets off the transmit ring.
2527 */
2528 if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2529 || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2530 sc->sc_ev_tx_stall.ev_count++;
2531 }
2532 imask |= IEVENT_TXF;
2533 }
2534
2535 if (soft_flags & (SOFT_RXINTR | SOFT_RXBSY)) {
2536 /* Let's consume */
2537 pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2538 imask |= IEVENT_RXF;
2539 }
2540
2541 if (soft_flags & SOFT_TXERROR) {
2542 pq3etsec_tx_error(sc);
2543 imask |= IEVENT_TXE;
2544 }
2545
2546 if (ifp->if_flags & IFF_RUNNING) {
2547 pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2548 mutex_spin_enter(sc->sc_hwlock);
2549 sc->sc_imask |= imask;
2550 etsec_write(sc, IMASK, sc->sc_imask);
2551 mutex_spin_exit(sc->sc_hwlock);
2552 } else {
2553 KASSERT((soft_flags & SOFT_RXBSY) == 0);
2554 }
2555
2556 mutex_exit(sc->sc_lock);
2557 }
2558
2559 static void
2560 pq3etsec_mii_tick(void *arg)
2561 {
2562 struct pq3etsec_softc * const sc = arg;
2563 mutex_enter(sc->sc_lock);
2564 callout_ack(&sc->sc_mii_callout);
2565 sc->sc_ev_mii_ticks.ev_count++;
2566 #ifdef DEBUG
2567 uint64_t now = mftb();
2568 if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2569 aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2570 __func__, now - sc->sc_mii_last_tick);
2571 callout_stop(&sc->sc_mii_callout);
2572 }
2573 #endif
2574 mii_tick(&sc->sc_mii);
2575 int s = splnet();
2576 if (sc->sc_soft_flags & SOFT_RESET)
2577 softint_schedule(sc->sc_soft_ih);
2578 splx(s);
2579 callout_schedule(&sc->sc_mii_callout, hz);
2580 #ifdef DEBUG
2581 sc->sc_mii_last_tick = now;
2582 #endif
2583 mutex_exit(sc->sc_lock);
2584 }
2585
2586 static void
2587 pq3etsec_set_ic_rx(struct pq3etsec_softc *sc)
2588 {
2589 uint32_t reg;
2590
2591 if (ETSEC_IC_RX_ENABLED(sc)) {
2592 reg = RXIC_ICEN;
2593 reg |= RXIC_ICFT_SET(sc->sc_ic_rx_count);
2594 reg |= RXIC_ICTT_SET(sc->sc_ic_rx_time);
2595 } else {
2596 /* Disable RX interrupt coalescing */
2597 reg = 0;
2598 }
2599
2600 etsec_write(sc, RXIC, reg);
2601 }
2602
2603 static void
2604 pq3etsec_set_ic_tx(struct pq3etsec_softc *sc)
2605 {
2606 uint32_t reg;
2607
2608 if (ETSEC_IC_TX_ENABLED(sc)) {
2609 reg = TXIC_ICEN;
2610 reg |= TXIC_ICFT_SET(sc->sc_ic_tx_count);
2611 reg |= TXIC_ICTT_SET(sc->sc_ic_tx_time);
2612 } else {
2613 /* Disable TX interrupt coalescing */
2614 reg = 0;
2615 }
2616
2617 etsec_write(sc, TXIC, reg);
2618 }
2619
2620 /*
2621 * sysctl
2622 */
2623 static int
2624 pq3etsec_sysctl_ic_time_helper(SYSCTLFN_ARGS, int *valuep)
2625 {
2626 struct sysctlnode node = *rnode;
2627 struct pq3etsec_softc *sc = rnode->sysctl_data;
2628 int value = *valuep;
2629 int error;
2630
2631 node.sysctl_data = &value;
2632 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2633 if (error != 0 || newp == NULL)
2634 return error;
2635
2636 if (value < 0 || value > 65535)
2637 return EINVAL;
2638
2639 mutex_enter(sc->sc_lock);
2640 *valuep = value;
2641 if (valuep == &sc->sc_ic_rx_time)
2642 pq3etsec_set_ic_rx(sc);
2643 else
2644 pq3etsec_set_ic_tx(sc);
2645 mutex_exit(sc->sc_lock);
2646
2647 return 0;
2648 }
2649
2650 static int
2651 pq3etsec_sysctl_ic_count_helper(SYSCTLFN_ARGS, int *valuep)
2652 {
2653 struct sysctlnode node = *rnode;
2654 struct pq3etsec_softc *sc = rnode->sysctl_data;
2655 int value = *valuep;
2656 int error;
2657
2658 node.sysctl_data = &value;
2659 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2660 if (error != 0 || newp == NULL)
2661 return error;
2662
2663 if (value < 0 || value > 255)
2664 return EINVAL;
2665
2666 mutex_enter(sc->sc_lock);
2667 *valuep = value;
2668 if (valuep == &sc->sc_ic_rx_count)
2669 pq3etsec_set_ic_rx(sc);
2670 else
2671 pq3etsec_set_ic_tx(sc);
2672 mutex_exit(sc->sc_lock);
2673
2674 return 0;
2675 }
2676
2677 static int
2678 pq3etsec_sysctl_ic_rx_time_helper(SYSCTLFN_ARGS)
2679 {
2680 struct pq3etsec_softc *sc = rnode->sysctl_data;
2681
2682 return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2683 &sc->sc_ic_rx_time);
2684 }
2685
2686 static int
2687 pq3etsec_sysctl_ic_rx_count_helper(SYSCTLFN_ARGS)
2688 {
2689 struct pq3etsec_softc *sc = rnode->sysctl_data;
2690
2691 return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2692 &sc->sc_ic_rx_count);
2693 }
2694
2695 static int
2696 pq3etsec_sysctl_ic_tx_time_helper(SYSCTLFN_ARGS)
2697 {
2698 struct pq3etsec_softc *sc = rnode->sysctl_data;
2699
2700 return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2701 &sc->sc_ic_tx_time);
2702 }
2703
2704 static int
2705 pq3etsec_sysctl_ic_tx_count_helper(SYSCTLFN_ARGS)
2706 {
2707 struct pq3etsec_softc *sc = rnode->sysctl_data;
2708
2709 return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2710 &sc->sc_ic_tx_count);
2711 }
2712
2713 static void pq3etsec_sysctl_setup(struct sysctllog **clog,
2714 struct pq3etsec_softc *sc)
2715 {
2716 const struct sysctlnode *cnode, *rnode;
2717
2718 if (sysctl_createv(clog, 0, NULL, &rnode,
2719 CTLFLAG_PERMANENT,
2720 CTLTYPE_NODE, device_xname(sc->sc_dev),
2721 SYSCTL_DESCR("TSEC interface"),
2722 NULL, 0, NULL, 0,
2723 CTL_HW, CTL_CREATE, CTL_EOL) != 0)
2724 goto bad;
2725
2726 if (sysctl_createv(clog, 0, &rnode, &rnode,
2727 CTLFLAG_PERMANENT,
2728 CTLTYPE_NODE, "int_coal",
2729 SYSCTL_DESCR("Interrupts coalescing"),
2730 NULL, 0, NULL, 0,
2731 CTL_CREATE, CTL_EOL) != 0)
2732 goto bad;
2733
2734 if (sysctl_createv(clog, 0, &rnode, &cnode,
2735 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2736 CTLTYPE_INT, "rx_time",
2737 SYSCTL_DESCR("RX time threshold (0-65535)"),
2738 pq3etsec_sysctl_ic_rx_time_helper, 0, (void *)sc, 0,
2739 CTL_CREATE, CTL_EOL) != 0)
2740 goto bad;
2741
2742 if (sysctl_createv(clog, 0, &rnode, &cnode,
2743 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2744 CTLTYPE_INT, "rx_count",
2745 SYSCTL_DESCR("RX frame count threshold (0-255)"),
2746 pq3etsec_sysctl_ic_rx_count_helper, 0, (void *)sc, 0,
2747 CTL_CREATE, CTL_EOL) != 0)
2748 goto bad;
2749
2750 if (sysctl_createv(clog, 0, &rnode, &cnode,
2751 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2752 CTLTYPE_INT, "tx_time",
2753 SYSCTL_DESCR("TX time threshold (0-65535)"),
2754 pq3etsec_sysctl_ic_tx_time_helper, 0, (void *)sc, 0,
2755 CTL_CREATE, CTL_EOL) != 0)
2756 goto bad;
2757
2758 if (sysctl_createv(clog, 0, &rnode, &cnode,
2759 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2760 CTLTYPE_INT, "tx_count",
2761 SYSCTL_DESCR("TX frame count threshold (0-255)"),
2762 pq3etsec_sysctl_ic_tx_count_helper, 0, (void *)sc, 0,
2763 CTL_CREATE, CTL_EOL) != 0)
2764 goto bad;
2765
2766 return;
2767
2768 bad:
2769 aprint_error_dev(sc->sc_dev, "could not attach sysctl nodes\n");
2770 }
2771