pq3etsec.c revision 1.9 1 /* $NetBSD: pq3etsec.c,v 1.9 2011/10/13 19:53:30 matt Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #include "opt_inet.h"
38
39 #include <sys/cdefs.h>
40
41 __KERNEL_RCSID(0, "$NetBSD: pq3etsec.c,v 1.9 2011/10/13 19:53:30 matt Exp $");
42
43 #include <sys/param.h>
44 #include <sys/cpu.h>
45 #include <sys/device.h>
46 #include <sys/mbuf.h>
47 #include <sys/ioctl.h>
48 #include <sys/intr.h>
49 #include <sys/bus.h>
50 #include <sys/kernel.h>
51 #include <sys/kmem.h>
52 #include <sys/proc.h>
53 #include <sys/atomic.h>
54 #include <sys/callout.h>
55
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_ether.h>
59 #include <net/if_media.h>
60
61 #include <dev/mii/miivar.h>
62
63 #include "ioconf.h"
64
65 #include <net/bpf.h>
66
67 #ifdef INET
68 #include <netinet/in.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/ip.h>
71 #include <netinet/in_offload.h>
72 #endif /* INET */
73 #ifdef INET6
74 #include <netinet6/in6.h>
75 #include <netinet/ip6.h>
76 #endif
77 #include <netinet6/in6_offload.h>
78
79
80 #include <powerpc/spr.h>
81 #include <powerpc/booke/spr.h>
82
83 #include <powerpc/booke/cpuvar.h>
84 #include <powerpc/booke/e500var.h>
85 #include <powerpc/booke/e500reg.h>
86 #include <powerpc/booke/etsecreg.h>
87
88 #define M_HASFCB M_LINK2 /* tx packet has FCB prepended */
89
90 #define ETSEC_MAXTXMBUFS 30
91 #define ETSEC_NTXSEGS 30
92 #define ETSEC_MAXRXMBUFS 511
93 #define ETSEC_MINRXMBUFS 32
94 #define ETSEC_NRXSEGS 1
95
96 #define IFCAP_RCTRL_IPCSEN IFCAP_CSUM_IPv4_Rx
97 #define IFCAP_RCTRL_TUCSEN (IFCAP_CSUM_TCPv4_Rx\
98 |IFCAP_CSUM_UDPv4_Rx\
99 |IFCAP_CSUM_TCPv6_Rx\
100 |IFCAP_CSUM_UDPv6_Rx)
101
102 #define IFCAP_TCTRL_IPCSEN IFCAP_CSUM_IPv4_Tx
103 #define IFCAP_TCTRL_TUCSEN (IFCAP_CSUM_TCPv4_Tx\
104 |IFCAP_CSUM_UDPv4_Tx\
105 |IFCAP_CSUM_TCPv6_Tx\
106 |IFCAP_CSUM_UDPv6_Tx)
107
108 #define IFCAP_ETSEC (IFCAP_RCTRL_IPCSEN|IFCAP_RCTRL_TUCSEN\
109 |IFCAP_TCTRL_IPCSEN|IFCAP_TCTRL_TUCSEN)
110
111 #define M_CSUM_IP (M_CSUM_CIP|M_CSUM_CTU)
112 #define M_CSUM_IP6 (M_CSUM_TCPv6|M_CSUM_UDPv6)
113 #define M_CSUM_TUP (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
114 #define M_CSUM_UDP (M_CSUM_UDPv4|M_CSUM_UDPv6)
115 #define M_CSUM_IP4 (M_CSUM_IPv4|M_CSUM_UDPv4|M_CSUM_TCPv4)
116 #define M_CSUM_CIP (M_CSUM_IPv4)
117 #define M_CSUM_CTU (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
118
119 struct pq3etsec_txqueue {
120 bus_dmamap_t txq_descmap;
121 volatile struct txbd *txq_consumer;
122 volatile struct txbd *txq_producer;
123 volatile struct txbd *txq_first;
124 volatile struct txbd *txq_last;
125 struct ifqueue txq_mbufs;
126 struct mbuf *txq_next;
127 #ifdef ETSEC_DEBUG
128 struct mbuf *txq_lmbufs[512];
129 #endif
130 uint32_t txq_qmask;
131 uint32_t txq_free;
132 uint32_t txq_threshold;
133 uint32_t txq_lastintr;
134 bus_size_t txq_reg_tbase;
135 bus_dma_segment_t txq_descmap_seg;
136 };
137
138 struct pq3etsec_rxqueue {
139 bus_dmamap_t rxq_descmap;
140 volatile struct rxbd *rxq_consumer;
141 volatile struct rxbd *rxq_producer;
142 volatile struct rxbd *rxq_first;
143 volatile struct rxbd *rxq_last;
144 struct mbuf *rxq_mhead;
145 struct mbuf **rxq_mtail;
146 struct mbuf *rxq_mconsumer;
147 #ifdef ETSEC_DEBUG
148 struct mbuf *rxq_mbufs[512];
149 #endif
150 uint32_t rxq_qmask;
151 uint32_t rxq_inuse;
152 uint32_t rxq_threshold;
153 bus_size_t rxq_reg_rbase;
154 bus_size_t rxq_reg_rbptr;
155 bus_dma_segment_t rxq_descmap_seg;
156 };
157
158 struct pq3etsec_mapcache {
159 u_int dmc_nmaps;
160 u_int dmc_maxseg;
161 u_int dmc_maxmaps;
162 u_int dmc_maxmapsize;
163 bus_dmamap_t dmc_maps[0];
164 };
165
166 struct pq3etsec_softc {
167 device_t sc_dev;
168 struct ethercom sc_ec;
169 #define sc_if sc_ec.ec_if
170 struct mii_data sc_mii;
171 bus_space_tag_t sc_bst;
172 bus_space_handle_t sc_bsh;
173 bus_dma_tag_t sc_dmat;
174 int sc_phy_addr;
175 prop_dictionary_t sc_intrmap;
176 uint32_t sc_intrmask;
177
178 uint32_t sc_soft_flags;
179 #define SOFT_RESET 0x0001
180 #define SOFT_RXINTR 0x0010
181 #define SOFT_RXBSY 0x0020
182 #define SOFT_TXINTR 0x0100
183 #define SOFT_TXERROR 0x0200
184
185 struct pq3etsec_txqueue sc_txq;
186 struct pq3etsec_rxqueue sc_rxq;
187 uint32_t sc_txerrors;
188 uint32_t sc_rxerrors;
189
190 size_t sc_rx_adjlen;
191
192 /*
193 * Copies of various ETSEC registers.
194 */
195 uint32_t sc_imask;
196 uint32_t sc_maccfg1;
197 uint32_t sc_maccfg2;
198 uint32_t sc_maxfrm;
199 uint32_t sc_ecntrl;
200 uint32_t sc_dmactrl;
201 uint32_t sc_macstnaddr1;
202 uint32_t sc_macstnaddr2;
203 uint32_t sc_tctrl;
204 uint32_t sc_rctrl;
205 uint32_t sc_gaddr[16];
206 uint64_t sc_macaddrs[15];
207
208 void *sc_tx_ih;
209 void *sc_rx_ih;
210 void *sc_error_ih;
211 void *sc_soft_ih;
212
213 kmutex_t *sc_lock;
214
215 struct evcnt sc_ev_tx_stall;
216 struct evcnt sc_ev_tx_intr;
217 struct evcnt sc_ev_rx_stall;
218 struct evcnt sc_ev_rx_intr;
219 struct evcnt sc_ev_error_intr;
220 struct evcnt sc_ev_soft_intr;
221 struct evcnt sc_ev_tx_pause;
222 struct evcnt sc_ev_rx_pause;
223 struct evcnt sc_ev_mii_ticks;
224
225 struct callout sc_mii_callout;
226 uint64_t sc_mii_last_tick;
227
228 struct ifqueue sc_rx_bufcache;
229 struct pq3etsec_mapcache *sc_rx_mapcache;
230 struct pq3etsec_mapcache *sc_tx_mapcache;
231 };
232
233 static int pq3etsec_match(device_t, cfdata_t, void *);
234 static void pq3etsec_attach(device_t, device_t, void *);
235
236 static void pq3etsec_ifstart(struct ifnet *);
237 static void pq3etsec_ifwatchdog(struct ifnet *);
238 static int pq3etsec_ifinit(struct ifnet *);
239 static void pq3etsec_ifstop(struct ifnet *, int);
240 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
241
242 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
243 struct pq3etsec_mapcache **, size_t, size_t, size_t, size_t);
244 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
245 struct pq3etsec_mapcache *);
246 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
247 struct pq3etsec_mapcache *);
248 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
249 struct pq3etsec_mapcache *, bus_dmamap_t);
250
251 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
252 struct pq3etsec_txqueue *, u_int);
253 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
254 struct pq3etsec_txqueue *);
255 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
256 struct pq3etsec_txqueue *);
257 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
258 struct pq3etsec_txqueue *);
259 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
260 struct pq3etsec_txqueue *, struct mbuf *m);
261 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
262 struct pq3etsec_txqueue *);
263
264 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
265 struct pq3etsec_rxqueue *, u_int);
266 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
267 struct pq3etsec_rxqueue *);
268 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
269 struct pq3etsec_rxqueue *, bool);
270 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
271 struct pq3etsec_rxqueue *);
272
273 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
274
275 static void pq3etsec_mii_tick(void *);
276 static int pq3etsec_rx_intr(void *);
277 static int pq3etsec_tx_intr(void *);
278 static int pq3etsec_error_intr(void *);
279 static void pq3etsec_soft_intr(void *);
280
281 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
282 pq3etsec_match, pq3etsec_attach, NULL, NULL);
283
284 static int
285 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
286 {
287
288 if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
289 return 0;
290
291 return 1;
292 }
293
294 static inline uint32_t
295 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
296 {
297 return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
298 }
299
300 static inline void
301 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
302 {
303 bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
304 }
305
306 static int
307 pq3etsec_mii_readreg(device_t self, int phy, int reg)
308 {
309 struct pq3etsec_softc * const sc = device_private(self);
310 uint32_t miimcom = etsec_read(sc, MIIMCOM);
311
312 // int s = splnet();
313
314 etsec_write(sc, MIIMADD,
315 __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
316
317 etsec_write(sc, IEVENT, IEVENT_MMRD);
318 etsec_write(sc, MIIMCOM, 0); /* clear any past bits */
319 etsec_write(sc, MIIMCOM, MIIMCOM_READ);
320 #if 0
321 sc->sc_imask |= IEVENT_MMRD;
322 etsec_write(sc, IMASK, sc->sc_imask);
323 #endif
324
325 while (etsec_read(sc, MIIMIND) != 0) {
326 delay(1);
327 }
328 int data = etsec_read(sc, MIIMSTAT);
329
330 if (miimcom == MIIMCOM_SCAN)
331 etsec_write(sc, MIIMCOM, miimcom);
332
333 #if 0
334 aprint_normal_dev(sc->sc_dev, "%s: phy %d reg %d: %#x\n",
335 __func__, phy, reg, data);
336 #endif
337 etsec_write(sc, IEVENT, IEVENT_MMRD);
338 // splx(s);
339 return data;
340 }
341
342 static void
343 pq3etsec_mii_writereg(device_t self, int phy, int reg, int data)
344 {
345 struct pq3etsec_softc * const sc = device_private(self);
346 uint32_t miimcom = etsec_read(sc, MIIMCOM);
347
348 #if 0
349 aprint_normal_dev(sc->sc_dev, "%s: phy %d reg %d: %#x\n",
350 __func__, phy, reg, data);
351 #endif
352
353 // int s = splnet();
354 etsec_write(sc, IEVENT, IEVENT_MMWR);
355 etsec_write(sc, MIIMADD,
356 __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
357 etsec_write(sc, MIIMCOM, 0); /* clear any past bits */
358 etsec_write(sc, MIIMCON, data);
359
360 #if 0
361 sc->sc_imask |= IEVENT_MMWR;
362 etsec_write(sc, IMASK, sc->sc_imask);
363 #endif
364
365 int timo = 1000; /* 1ms */
366 while ((etsec_read(sc, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
367 delay(1);
368 }
369
370 if (miimcom == MIIMCOM_SCAN)
371 etsec_write(sc, MIIMCOM, miimcom);
372 etsec_write(sc, IEVENT, IEVENT_MMWR);
373 // splx(s);
374 }
375
376 static void
377 pq3etsec_mii_statchg(device_t self)
378 {
379 struct pq3etsec_softc * const sc = device_private(self);
380 struct mii_data * const mii = &sc->sc_mii;
381
382 uint32_t maccfg1 = sc->sc_maccfg1;
383 uint32_t maccfg2 = sc->sc_maccfg2;
384 uint32_t ecntrl = sc->sc_ecntrl;
385
386 maccfg1 &= ~(MACCFG1_TX_FLOW|MACCFG1_RX_FLOW);
387 maccfg2 &= ~(MACCFG2_IFMODE|MACCFG2_FD);
388
389 if (sc->sc_mii.mii_media_active & IFM_FDX) {
390 maccfg2 |= MACCFG2_FD;
391 }
392
393 /*
394 * Now deal with the flow control bits.
395 */
396 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
397 && (mii->mii_media_active & IFM_ETH_FMASK)) {
398 if (mii->mii_media_active & IFM_ETH_RXPAUSE)
399 maccfg1 |= MACCFG1_RX_FLOW;
400 if (mii->mii_media_active & IFM_ETH_TXPAUSE)
401 maccfg1 |= MACCFG1_TX_FLOW;
402 }
403
404 /*
405 * Now deal with the speed.
406 */
407 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
408 maccfg2 |= MACCFG2_IFMODE_GMII;
409 } else {
410 maccfg2 |= MACCFG2_IFMODE_MII;
411 ecntrl &= ~ECNTRL_R100M;
412 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
413 ecntrl |= ECNTRL_R100M;
414 }
415 }
416
417 /*
418 * If things are different, re-init things.
419 */
420 if (maccfg1 != sc->sc_maccfg1
421 || maccfg2 != sc->sc_maccfg2
422 || ecntrl != sc->sc_ecntrl) {
423 if (sc->sc_if.if_flags & IFF_RUNNING)
424 atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
425 sc->sc_maccfg1 = maccfg1;
426 sc->sc_maccfg2 = maccfg2;
427 sc->sc_ecntrl = ecntrl;
428 }
429 }
430
431 #if 0
432 static void
433 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
434 {
435 struct pq3etsec_softc * const sc = ifp->if_softc;
436
437 mii_pollstat(&sc->sc_mii);
438 ether_mediastatus(ifp, ifmr);
439 ifmr->ifm_status = sc->sc_mii.mii_media_status;
440 ifmr->ifm_active = sc->sc_mii.mii_media_active;
441 }
442
443 static int
444 pq3etsec_mediachange(struct ifnet *ifp)
445 {
446 struct pq3etsec_softc * const sc = ifp->if_softc;
447
448 if ((ifp->if_flags & IFF_UP) == 0)
449 return 0;
450
451 int rv = mii_mediachg(&sc->sc_mii);
452 return (rv == ENXIO) ? 0 : rv;
453 }
454 #endif
455
456 static void
457 pq3etsec_attach(device_t parent, device_t self, void *aux)
458 {
459 struct cpunode_softc * const psc = device_private(parent);
460 struct pq3etsec_softc * const sc = device_private(self);
461 struct cpunode_attach_args * const cna = aux;
462 struct cpunode_locators * const cnl = &cna->cna_locs;
463 cfdata_t cf = device_cfdata(self);
464 int error;
465
466 psc->sc_children |= cna->cna_childmask;
467 sc->sc_dev = self;
468 sc->sc_bst = cna->cna_memt;
469 sc->sc_dmat = &booke_bus_dma_tag;
470
471 /*
472 * If we have a common MDIO bus, if all off instance 1.
473 */
474 device_t miiself = (cf->cf_flags & 0x100) ? tsec_cd.cd_devs[0] : self;
475
476 /*
477 * See if the phy is in the config file...
478 */
479 if (cf->cf_flags & 0x3f) {
480 sc->sc_phy_addr = (cf->cf_flags & 0x3f) - 1;
481 } else {
482 unsigned char prop_name[20];
483 snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
484 cnl->cnl_instance);
485 sc->sc_phy_addr = board_info_get_number(prop_name);
486 }
487 if (sc->sc_phy_addr != MII_PHY_ANY)
488 aprint_normal(" phy %d", sc->sc_phy_addr);
489
490 error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
491 &sc->sc_bsh);
492 if (error) {
493 aprint_error(": error mapping registers: %d\n", error);
494 return;
495 }
496
497 /*
498 * Assume firmware has aready set the mac address and fetch it
499 * before we reinit it.
500 */
501 sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
502 sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
503 sc->sc_rctrl = RCTRL_DEFAULT;
504 sc->sc_maccfg2 = MACCFG2_DEFAULT;
505
506 if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
507 size_t len;
508 const uint8_t *mac_addr =
509 board_info_get_data("tsec-mac-addr-base", &len);
510 KASSERT(len == ETHER_ADDR_LEN);
511 sc->sc_macstnaddr2 =
512 (mac_addr[1] << 24)
513 | (mac_addr[0] << 16);
514 sc->sc_macstnaddr1 =
515 ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
516 | (mac_addr[4] << 16)
517 | (mac_addr[3] << 8)
518 | (mac_addr[2] << 0);
519 #if 0
520 aprint_error(": mac-address unknown\n");
521 return;
522 #endif
523 }
524
525 char enaddr[ETHER_ADDR_LEN] = {
526 [0] = sc->sc_macstnaddr2 >> 16,
527 [1] = sc->sc_macstnaddr2 >> 24,
528 [2] = sc->sc_macstnaddr1 >> 0,
529 [3] = sc->sc_macstnaddr1 >> 8,
530 [4] = sc->sc_macstnaddr1 >> 16,
531 [5] = sc->sc_macstnaddr1 >> 24,
532 };
533
534 error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
535 if (error) {
536 aprint_error(": failed to init rxq: %d\n", error);
537 return;
538 }
539
540 error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
541 if (error) {
542 aprint_error(": failed to init txq: %d\n", error);
543 return;
544 }
545
546 error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
547 ETSEC_MAXRXMBUFS, ETSEC_MINRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
548 if (error) {
549 aprint_error(": failed to allocate rx dmamaps: %d\n", error);
550 return;
551 }
552
553 error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
554 ETSEC_MAXTXMBUFS, ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
555 if (error) {
556 aprint_error(": failed to allocate tx dmamaps: %d\n", error);
557 return;
558 }
559
560 sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
561 pq3etsec_tx_intr, sc);
562 if (sc->sc_tx_ih == NULL) {
563 aprint_error(": failed to establish tx interrupt: %d\n",
564 cnl->cnl_intrs[0]);
565 return;
566 }
567
568 sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
569 pq3etsec_rx_intr, sc);
570 if (sc->sc_rx_ih == NULL) {
571 aprint_error(": failed to establish rx interrupt: %d\n",
572 cnl->cnl_intrs[1]);
573 return;
574 }
575
576 sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
577 pq3etsec_error_intr, sc);
578 if (sc->sc_error_ih == NULL) {
579 aprint_error(": failed to establish error interrupt: %d\n",
580 cnl->cnl_intrs[2]);
581 return;
582 }
583
584 sc->sc_soft_ih = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
585 pq3etsec_soft_intr, sc);
586 if (sc->sc_soft_ih == NULL) {
587 aprint_error(": failed to establish soft interrupt\n");
588 return;
589 }
590
591 aprint_normal("\n");
592
593 etsec_write(sc, ATTR, ATTR_DEFAULT);
594 etsec_write(sc, ATTRELI, ATTRELI_DEFAULT);
595
596 sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
597
598 callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
599 callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
600
601 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
602 ether_sprintf(enaddr));
603
604 const char * const xname = device_xname(sc->sc_dev);
605 struct ethercom * const ec = &sc->sc_ec;
606 struct ifnet * const ifp = &ec->ec_if;
607
608 ec->ec_mii = &sc->sc_mii;
609
610 sc->sc_mii.mii_ifp = ifp;
611 sc->sc_mii.mii_readreg = pq3etsec_mii_readreg;
612 sc->sc_mii.mii_writereg = pq3etsec_mii_writereg;
613 sc->sc_mii.mii_statchg = pq3etsec_mii_statchg;
614
615 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
616 ether_mediastatus);
617
618 if (sc->sc_phy_addr < 32) {
619 mii_attach(miiself, &sc->sc_mii, 0xffffffff,
620 sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
621
622 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
623 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
624 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
625 } else {
626 callout_schedule(&sc->sc_mii_callout, hz);
627 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
628 }
629 } else {
630 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
631 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX);
632 }
633
634 ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
635 | ETHERCAP_JUMBO_MTU;
636
637 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
638 ifp->if_softc = sc;
639 ifp->if_capabilities = IFCAP_ETSEC;
640 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
641 ifp->if_ioctl = pq3etsec_ifioctl;
642 ifp->if_start = pq3etsec_ifstart;
643 ifp->if_watchdog = pq3etsec_ifwatchdog;
644 ifp->if_init = pq3etsec_ifinit;
645 ifp->if_stop = pq3etsec_ifstop;
646 IFQ_SET_READY(&ifp->if_snd);
647
648 pq3etsec_ifstop(ifp, true);
649
650 /*
651 * Attach the interface.
652 */
653 if_attach(ifp);
654 ether_ifattach(ifp, enaddr);
655
656 evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
657 NULL, xname, "rx stall");
658 evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
659 NULL, xname, "tx stall");
660 evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
661 NULL, xname, "tx intr");
662 evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
663 NULL, xname, "rx intr");
664 evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
665 NULL, xname, "error intr");
666 evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
667 NULL, xname, "soft intr");
668 evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
669 NULL, xname, "tx pause");
670 evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
671 NULL, xname, "rx pause");
672 evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
673 NULL, xname, "mii ticks");
674 }
675
676 static uint64_t
677 pq3etsec_macaddr_create(const uint8_t *lladdr)
678 {
679 uint64_t macaddr = 0;
680
681 lladdr += ETHER_ADDR_LEN;
682 for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
683 macaddr = (macaddr << 8) | *--lladdr;
684 }
685 return macaddr << 16;
686 }
687
688 static int
689 pq3etsec_ifinit(struct ifnet *ifp)
690 {
691 struct pq3etsec_softc * const sc = ifp->if_softc;
692 int error = 0;
693
694 sc->sc_maxfrm = max(ifp->if_mtu + 32, MCLBYTES);
695 if (ifp->if_mtu > ETHERMTU_JUMBO)
696 return error;
697
698 KASSERT(ifp->if_flags & IFF_UP);
699
700 /*
701 * Stop the interface (steps 1 to 4 in the Soft Reset and
702 * Reconfigurating Procedure.
703 */
704 pq3etsec_ifstop(ifp, 0);
705
706 /*
707 * If our frame size has changed (or it's our first time through)
708 * destroy the existing transmit mapcache.
709 */
710 if (sc->sc_tx_mapcache != NULL
711 && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
712 pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
713 sc->sc_tx_mapcache = NULL;
714 }
715
716 if (sc->sc_tx_mapcache == NULL) {
717 error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
718 ETSEC_MAXTXMBUFS, ETSEC_MAXTXMBUFS, sc->sc_maxfrm,
719 ETSEC_NTXSEGS);
720 if (error)
721 return error;
722 }
723
724 sc->sc_ev_mii_ticks.ev_count++;
725 mii_tick(&sc->sc_mii);
726
727 if (ifp->if_flags & IFF_PROMISC) {
728 sc->sc_rctrl |= RCTRL_PROM;
729 } else {
730 sc->sc_rctrl &= ~RCTRL_PROM;
731 }
732
733 uint32_t rctrl_prsdep = 0;
734 sc->sc_rctrl &= ~(RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP);
735 if (VLAN_ATTACHED(&sc->sc_ec)) {
736 sc->sc_rctrl |= RCTRL_VLEX;
737 rctrl_prsdep = RCTRL_PRSDEP_L2;
738 }
739 if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
740 sc->sc_rctrl |= RCTRL_IPCSEN;
741 rctrl_prsdep = RCTRL_PRSDEP_L3;
742 }
743 if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
744 sc->sc_rctrl |= RCTRL_TUCSEN;
745 rctrl_prsdep = RCTRL_PRSDEP_L4;
746 }
747 sc->sc_rctrl |= rctrl_prsdep;
748 #if 0
749 if (sc->sc_rctrl & (RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP))
750 aprint_normal_dev(sc->sc_dev,
751 "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
752 sc->sc_rctrl,
753 __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
754 __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
755 __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
756 __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
757 #endif
758
759 sc->sc_tctrl &= ~(TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS);
760 if (VLAN_ATTACHED(&sc->sc_ec)) /* is this really true */
761 sc->sc_tctrl |= TCTRL_VLINS;
762 if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
763 sc->sc_tctrl |= TCTRL_IPCSEN;
764 if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
765 sc->sc_tctrl |= TCTRL_TUCSEN;
766 #if 0
767 if (sc->sc_tctrl & (TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS))
768 aprint_normal_dev(sc->sc_dev,
769 "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
770 sc->sc_tctrl,
771 __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
772 __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
773 __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
774 #endif
775
776 sc->sc_maccfg1 &= ~(MACCFG1_TX_EN|MACCFG1_RX_EN);
777
778 const uint64_t macstnaddr =
779 pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
780
781 sc->sc_imask = IEVENT_DPE;
782
783 /* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
784 pq3etsec_rxq_reset(sc, &sc->sc_rxq);
785 pq3etsec_rxq_produce(sc, &sc->sc_rxq); /* fill with rx buffers */
786
787 /* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
788 pq3etsec_txq_reset(sc, &sc->sc_txq);
789
790 /* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
791 KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
792 etsec_write(sc, MAXFRM, sc->sc_maxfrm);
793 etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
794 etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >> 0));
795 etsec_write(sc, MACCFG1, sc->sc_maccfg1);
796 etsec_write(sc, MACCFG2, sc->sc_maccfg2);
797 etsec_write(sc, ECNTRL, sc->sc_ecntrl);
798
799 /* 8. Setup group address hash table (GADDR0-GADDR15) */
800 pq3etsec_mc_setup(sc);
801
802 /* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
803 etsec_write(sc, MRBLR, MCLBYTES);
804
805 /* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
806 sc->sc_dmactrl |= DMACTRL_DEFAULT;
807 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
808
809 /* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
810 etsec_write(sc, TQUEUE, TQUEUE_EN0);
811 sc->sc_imask |= IEVENT_TXF|IEVENT_TXE|IEVENT_TXC;
812
813 etsec_write(sc, TCTRL, sc->sc_tctrl); /* for TOE stuff */
814
815 /* 12. Enable receive queues in RQUEUE, */
816 etsec_write(sc, RQUEUE, RQUEUE_EN0|RQUEUE_EX0);
817 sc->sc_imask |= IEVENT_RXF|IEVENT_BSY|IEVENT_RXC;
818
819 /* and optionally set TOE functionality in RCTRL. */
820 etsec_write(sc, RCTRL, sc->sc_rctrl);
821 sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
822 if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
823 sc->sc_rx_adjlen += sizeof(struct rxfcb);
824
825 /* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
826 etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
827
828 /* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
829 etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
830
831 /* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
832 sc->sc_dmactrl &= ~(DMACTRL_GRS|DMACTRL_GTS);
833 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
834
835 /* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
836 etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
837 etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
838
839 sc->sc_soft_flags = 0;
840
841 etsec_write(sc, IMASK, sc->sc_imask);
842
843 ifp->if_flags |= IFF_RUNNING;
844
845 return error;
846 }
847
848 static void
849 pq3etsec_ifstop(struct ifnet *ifp, int disable)
850 {
851 struct pq3etsec_softc * const sc = ifp->if_softc;
852
853 KASSERT(!cpu_intr_p());
854 const uint32_t imask_gsc_mask = IEVENT_GTSC|IEVENT_GRSC;
855 /*
856 * Clear the GTSC and GRSC from the interrupt mask until
857 * we are ready for them. Then clear them from IEVENT,
858 * request the graceful shutdown, and then enable the
859 * GTSC and GRSC bits in the mask. This should cause the
860 * error interrupt to fire which will issue a wakeup to
861 * allow us to resume.
862 */
863
864 /*
865 * 1. Set GRS/GTS bits in DMACTRL register
866 */
867 sc->sc_dmactrl |= DMACTRL_GRS|DMACTRL_GTS;
868 etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
869 etsec_write(sc, IEVENT, imask_gsc_mask);
870 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
871
872 if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN|MACCFG1_RX_EN)) {
873 /*
874 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
875 */
876 etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
877
878 u_int timo = 1000;
879 uint32_t ievent = etsec_read(sc, IEVENT);
880 while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
881 if (--timo == 0) {
882 aprint_error_dev(sc->sc_dev,
883 "WARNING: "
884 "request to stop failed (IEVENT=%#x)\n",
885 ievent);
886 break;
887 }
888 delay(10);
889 ievent = etsec_read(sc, IEVENT);
890 }
891 }
892
893 /*
894 * Now reset the controller.
895 *
896 * 3. Set SOFT_RESET bit in MACCFG1 register
897 * 4. Clear SOFT_RESET bit in MACCFG1 register
898 */
899 etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
900 etsec_write(sc, MACCFG1, 0);
901 etsec_write(sc, IMASK, 0);
902 etsec_write(sc, IEVENT, ~0);
903 sc->sc_imask = 0;
904 ifp->if_flags &= ~IFF_RUNNING;
905
906 uint32_t tbipa = etsec_read(sc, TBIPA);
907 if (tbipa == sc->sc_phy_addr) {
908 aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
909 etsec_write(sc, TBIPA, 0x1f);
910 }
911 uint32_t miimcfg = etsec_read(sc, MIIMCFG);
912 etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
913 etsec_write(sc, MIIMCFG, miimcfg);
914
915 /*
916 * Let's consume any remaing transmitted packets. And if we are
917 * disabling the interface, purge ourselves of any untransmitted
918 * packets. But don't consume any received packets, just drop them.
919 * If we aren't disabling the interface, save the mbufs in the
920 * receive queue for reuse.
921 */
922 pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
923 pq3etsec_txq_consume(sc, &sc->sc_txq);
924 if (disable) {
925 pq3etsec_txq_purge(sc, &sc->sc_txq);
926 IF_PURGE(&ifp->if_snd);
927 }
928 }
929
930 static void
931 pq3etsec_ifwatchdog(struct ifnet *ifp)
932 {
933 }
934
935 static void
936 pq3etsec_mc_setup(
937 struct pq3etsec_softc *sc)
938 {
939 struct ethercom * const ec = &sc->sc_ec;
940 struct ifnet * const ifp = &sc->sc_if;
941 struct ether_multi *enm;
942 struct ether_multistep step;
943 uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
944 const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
945
946 memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
947 memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
948
949 ifp->if_flags &= ~IFF_ALLMULTI;
950
951 ETHER_FIRST_MULTI(step, ec, enm);
952 for (u_int i = 0; enm != NULL; ) {
953 const char *addr = enm->enm_addrlo;
954 if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
955 ifp->if_flags |= IFF_ALLMULTI;
956 memset(gaddr, 0xff, 32 << (crc_shift & 1));
957 memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
958 break;
959 }
960 if ((sc->sc_rctrl & RCTRL_EMEN)
961 && i < __arraycount(sc->sc_macaddrs)) {
962 sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
963 } else {
964 uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
965 #if 0
966 printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
967 ether_sprintf(addr), crc,
968 crc >> crc_shift,
969 crc >> (crc_shift + 5),
970 (crc >> crc_shift) & 31,
971 1 << (((crc >> crc_shift) & 31) ^ 31));
972 #endif
973 /*
974 * The documentation doesn't completely follow PowerPC
975 * bit order. The BE crc32 (H) for 01:00:5E:00:00:01
976 * is 0x7fa32d9b. By empirical testing, the
977 * corresponding hash bit is word 3, bit 31 (ppc bit
978 * order). Since 3 << 31 | 31 is 0x7f, we deduce
979 * H[0:2] selects the register while H[3:7] selects
980 * the bit (ppc bit order).
981 */
982 crc >>= crc_shift;
983 gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
984 }
985 ETHER_NEXT_MULTI(step, enm);
986 }
987 for (u_int i = 0; i < 8; i++) {
988 etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
989 etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
990 #if 0
991 if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
992 printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
993 i, IGADDR(i), etsec_read(sc, IGADDR(i)),
994 i, GADDR(i), etsec_read(sc, GADDR(i)));
995 #endif
996 }
997 for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
998 uint64_t macaddr = sc->sc_macaddrs[i];
999 etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
1000 etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >> 0));
1001 #if 0
1002 if (macaddr)
1003 printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
1004 i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
1005 i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
1006 #endif
1007 }
1008 }
1009
1010 static int
1011 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1012 {
1013 struct pq3etsec_softc *sc = ifp->if_softc;
1014 struct ifreq * const ifr = data;
1015 const int s = splnet();
1016 int error;
1017
1018 switch (cmd) {
1019 case SIOCSIFMEDIA:
1020 case SIOCGIFMEDIA:
1021 /* Flow control requires full-duplex mode. */
1022 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1023 (ifr->ifr_media & IFM_FDX) == 0)
1024 ifr->ifr_media &= ~IFM_ETH_FMASK;
1025 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1026 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1027 /* We can do both TXPAUSE and RXPAUSE. */
1028 ifr->ifr_media |=
1029 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1030 }
1031 }
1032 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1033 break;
1034
1035 default:
1036 error = ether_ioctl(ifp, cmd, data);
1037 if (error != ENETRESET)
1038 break;
1039
1040 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1041 error = 0;
1042 if (ifp->if_flags & IFF_RUNNING)
1043 pq3etsec_mc_setup(sc);
1044 break;
1045 }
1046 error = pq3etsec_ifinit(ifp);
1047 break;
1048 }
1049
1050 splx(s);
1051 return error;
1052 }
1053
1054 static void
1055 pq3etsec_rxq_desc_presync(
1056 struct pq3etsec_softc *sc,
1057 struct pq3etsec_rxqueue *rxq,
1058 volatile struct rxbd *rxbd,
1059 size_t count)
1060 {
1061 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1062 (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1063 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1064 }
1065
1066 static void
1067 pq3etsec_rxq_desc_postsync(
1068 struct pq3etsec_softc *sc,
1069 struct pq3etsec_rxqueue *rxq,
1070 volatile struct rxbd *rxbd,
1071 size_t count)
1072 {
1073 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1074 (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1075 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1076 }
1077
1078 static void
1079 pq3etsec_txq_desc_presync(
1080 struct pq3etsec_softc *sc,
1081 struct pq3etsec_txqueue *txq,
1082 volatile struct txbd *txbd,
1083 size_t count)
1084 {
1085 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1086 (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1087 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1088 }
1089
1090 static void
1091 pq3etsec_txq_desc_postsync(
1092 struct pq3etsec_softc *sc,
1093 struct pq3etsec_txqueue *txq,
1094 volatile struct txbd *txbd,
1095 size_t count)
1096 {
1097 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1098 (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1099 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1100 }
1101
1102 static bus_dmamap_t
1103 pq3etsec_mapcache_get(
1104 struct pq3etsec_softc *sc,
1105 struct pq3etsec_mapcache *dmc)
1106 {
1107 if (dmc->dmc_nmaps == 0) {
1108 bus_dmamap_t map;
1109 int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1110 dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1111 BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &map);
1112 if (error) {
1113 aprint_error_dev(sc->sc_dev,
1114 "failed to allocate a %zuB map: %d\n",
1115 dmc->dmc_maxmapsize, error);
1116 return NULL;
1117 }
1118 return map;
1119 }
1120
1121 KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1122 return dmc->dmc_maps[--dmc->dmc_nmaps];
1123 }
1124
1125 static void
1126 pq3etsec_mapcache_put(
1127 struct pq3etsec_softc *sc,
1128 struct pq3etsec_mapcache *dmc,
1129 bus_dmamap_t map)
1130 {
1131 KASSERT(map != NULL);
1132 KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1133 dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1134 }
1135
1136 static void
1137 pq3etsec_mapcache_destroy(
1138 struct pq3etsec_softc *sc,
1139 struct pq3etsec_mapcache *dmc)
1140 {
1141 const size_t dmc_size =
1142 offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1143
1144 for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1145 bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1146 }
1147 kmem_free(dmc, dmc_size);
1148 }
1149
1150 static int
1151 pq3etsec_mapcache_create(
1152 struct pq3etsec_softc *sc,
1153 struct pq3etsec_mapcache **dmc_p,
1154 size_t maxmaps,
1155 size_t minmaps,
1156 size_t maxmapsize,
1157 size_t maxseg)
1158 {
1159 const size_t dmc_size =
1160 offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1161 struct pq3etsec_mapcache * const dmc = kmem_zalloc(dmc_size, KM_SLEEP);
1162
1163 dmc->dmc_maxmaps = maxmaps;
1164 dmc->dmc_nmaps = minmaps;
1165 dmc->dmc_maxmapsize = maxmapsize;
1166 dmc->dmc_maxseg = maxseg;
1167
1168 for (u_int i = 0; i < minmaps; i++) {
1169 int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1170 dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1171 BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1172 if (error) {
1173 aprint_error_dev(sc->sc_dev,
1174 "failed to creat dma map cache "
1175 "entry %u of %zu (max %zu): %d\n",
1176 i, minmaps, maxmaps, error);
1177 while (i-- > 0) {
1178 bus_dmamap_destroy(sc->sc_dmat,
1179 dmc->dmc_maps[i]);
1180 }
1181 kmem_free(dmc, dmc_size);
1182 return error;
1183 }
1184 KASSERT(dmc->dmc_maps[i] != NULL);
1185 }
1186
1187 *dmc_p = dmc;
1188
1189 return 0;
1190 }
1191
1192 #if 0
1193 static void
1194 pq3etsec_dmamem_free(
1195 bus_dma_tag_t dmat,
1196 size_t map_size,
1197 bus_dma_segment_t *seg,
1198 bus_dmamap_t map,
1199 void *kvap)
1200 {
1201 bus_dmamap_destroy(dmat, map);
1202 bus_dmamem_unmap(dmat, kvap, map_size);
1203 bus_dmamem_free(dmat, seg, 1);
1204 }
1205 #endif
1206
1207 static int
1208 pq3etsec_dmamem_alloc(
1209 bus_dma_tag_t dmat,
1210 size_t map_size,
1211 bus_dma_segment_t *seg,
1212 bus_dmamap_t *map,
1213 void **kvap)
1214 {
1215 int error;
1216 int nseg;
1217
1218 *kvap = NULL;
1219 *map = NULL;
1220
1221 error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1222 seg, 1, &nseg, 0);
1223 if (error)
1224 return error;
1225
1226 KASSERT(nseg == 1);
1227
1228 error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1229 BUS_DMA_COHERENT);
1230 if (error == 0) {
1231 error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1232 map);
1233 if (error == 0) {
1234 error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1235 NULL, 0);
1236 if (error == 0)
1237 return 0;
1238 bus_dmamap_destroy(dmat, *map);
1239 *map = NULL;
1240 }
1241 bus_dmamem_unmap(dmat, *kvap, map_size);
1242 *kvap = NULL;
1243 }
1244 bus_dmamem_free(dmat, seg, nseg);
1245 return 0;
1246 }
1247
1248 static struct mbuf *
1249 pq3etsec_rx_buf_alloc(
1250 struct pq3etsec_softc *sc)
1251 {
1252 struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1253 if (m == NULL) {
1254 printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1255 return NULL;
1256 }
1257 MCLGET(m, M_DONTWAIT);
1258 if ((m->m_flags & M_EXT) == 0) {
1259 printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1260 m_freem(m);
1261 return NULL;
1262 }
1263 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1264
1265 bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1266 if (map == NULL) {
1267 printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1268 m_freem(m);
1269 return NULL;
1270 }
1271 M_SETCTX(m, map);
1272 m->m_len = m->m_pkthdr.len = MCLBYTES;
1273 int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1274 BUS_DMA_READ|BUS_DMA_NOWAIT);
1275 if (error) {
1276 aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1277 error);
1278 M_SETCTX(m, NULL);
1279 m_freem(m);
1280 pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1281 return NULL;
1282 }
1283 KASSERT(map->dm_mapsize == MCLBYTES);
1284 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1285 BUS_DMASYNC_PREREAD);
1286
1287 return m;
1288 }
1289
1290 static void
1291 pq3etsec_rx_map_unload(
1292 struct pq3etsec_softc *sc,
1293 struct mbuf *m)
1294 {
1295 KASSERT(m);
1296 for (; m != NULL; m = m->m_next) {
1297 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1298 KASSERT(map);
1299 KASSERT(map->dm_mapsize == MCLBYTES);
1300 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1301 BUS_DMASYNC_POSTREAD);
1302 bus_dmamap_unload(sc->sc_dmat, map);
1303 pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1304 M_SETCTX(m, NULL);
1305 }
1306 }
1307
1308 static bool
1309 pq3etsec_rxq_produce(
1310 struct pq3etsec_softc *sc,
1311 struct pq3etsec_rxqueue *rxq)
1312 {
1313 volatile struct rxbd *producer = rxq->rxq_producer;
1314 #if 0
1315 size_t inuse = rxq->rxq_inuse;
1316 #endif
1317 while (rxq->rxq_inuse < rxq->rxq_threshold) {
1318 struct mbuf *m;
1319 IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1320 if (m == NULL) {
1321 m = pq3etsec_rx_buf_alloc(sc);
1322 if (m == NULL) {
1323 printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1324 break;
1325 }
1326 }
1327 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1328 KASSERT(map);
1329
1330 #ifdef ETSEC_DEBUG
1331 KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1332 rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1333 #endif
1334
1335 /* rxbd_len is write-only by the ETSEC */
1336 producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1337 membar_producer();
1338 producer->rxbd_flags |= RXBD_E;
1339 if (__predict_false(rxq->rxq_mhead == NULL)) {
1340 KASSERT(producer == rxq->rxq_consumer);
1341 rxq->rxq_mconsumer = m;
1342 }
1343 *rxq->rxq_mtail = m;
1344 rxq->rxq_mtail = &m->m_next;
1345 m->m_len = MCLBYTES;
1346 m->m_next = NULL;
1347 rxq->rxq_inuse++;
1348 if (++producer == rxq->rxq_last) {
1349 membar_producer();
1350 pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1351 rxq->rxq_last - rxq->rxq_producer);
1352 producer = rxq->rxq_producer = rxq->rxq_first;
1353 }
1354 }
1355 if (producer != rxq->rxq_producer) {
1356 membar_producer();
1357 pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1358 producer - rxq->rxq_producer);
1359 rxq->rxq_producer = producer;
1360 }
1361 uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1362 if (qhlt) {
1363 KASSERT(qhlt & rxq->rxq_qmask);
1364 sc->sc_ev_rx_stall.ev_count++;
1365 etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1366 }
1367 #if 0
1368 aprint_normal_dev(sc->sc_dev,
1369 "%s: buffers inuse went from %zu to %zu\n",
1370 __func__, inuse, rxq->rxq_inuse);
1371 #endif
1372 return true;
1373 }
1374
1375 static bool
1376 pq3etsec_rx_offload(
1377 struct pq3etsec_softc *sc,
1378 struct mbuf *m,
1379 const struct rxfcb *fcb)
1380 {
1381 if (fcb->rxfcb_flags & RXFCB_VLN) {
1382 VLAN_INPUT_TAG(&sc->sc_if, m, fcb->rxfcb_vlctl,
1383 m_freem(m); return false);
1384 }
1385 if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1386 || (fcb->rxfcb_flags & (RXFCB_CIP|RXFCB_CTU)) == 0)
1387 return true;
1388 int csum_flags = 0;
1389 if ((fcb->rxfcb_flags & (RXFCB_IP6|RXFCB_CIP)) == RXFCB_CIP) {
1390 csum_flags |= M_CSUM_IPv4;
1391 if (fcb->rxfcb_flags & RXFCB_EIP)
1392 csum_flags |= M_CSUM_IPv4_BAD;
1393 }
1394 if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1395 int ipv_flags;
1396 if (fcb->rxfcb_flags & RXFCB_IP6)
1397 ipv_flags = M_CSUM_TCPv6|M_CSUM_UDPv6;
1398 else
1399 ipv_flags = M_CSUM_TCPv4|M_CSUM_UDPv4;
1400 if (fcb->rxfcb_pro == IPPROTO_TCP) {
1401 csum_flags |= (M_CSUM_TCPv4|M_CSUM_TCPv6) & ipv_flags;
1402 } else {
1403 csum_flags |= (M_CSUM_UDPv4|M_CSUM_UDPv6) & ipv_flags;
1404 }
1405 if (fcb->rxfcb_flags & RXFCB_ETU)
1406 csum_flags |= M_CSUM_TCP_UDP_BAD;
1407 }
1408
1409 m->m_pkthdr.csum_flags = csum_flags;
1410 return true;
1411 }
1412
1413 static void
1414 pq3etsec_rx_input(
1415 struct pq3etsec_softc *sc,
1416 struct mbuf *m,
1417 uint16_t rxbd_flags)
1418 {
1419 struct ifnet * const ifp = &sc->sc_if;
1420
1421 pq3etsec_rx_map_unload(sc, m);
1422
1423 if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1424 struct rxfcb fcb = *mtod(m, struct rxfcb *);
1425 if (!pq3etsec_rx_offload(sc, m, &fcb))
1426 return;
1427 }
1428 m_adj(m, sc->sc_rx_adjlen);
1429
1430 if (rxbd_flags & RXBD_M)
1431 m->m_flags |= M_PROMISC;
1432 if (rxbd_flags & RXBD_BC)
1433 m->m_flags |= M_BCAST;
1434 if (rxbd_flags & RXBD_MC)
1435 m->m_flags |= M_MCAST;
1436 m->m_flags |= M_HASFCS;
1437 m->m_pkthdr.rcvif = &sc->sc_if;
1438
1439 ifp->if_ipackets++;
1440 ifp->if_ibytes += m->m_pkthdr.len;
1441
1442 /*
1443 * Let's give it to the network subsystm to deal with.
1444 */
1445 int s = splnet();
1446 bpf_mtap(ifp, m);
1447 (*ifp->if_input)(ifp, m);
1448 splx(s);
1449 }
1450
1451 static void
1452 pq3etsec_rxq_consume(
1453 struct pq3etsec_softc *sc,
1454 struct pq3etsec_rxqueue *rxq)
1455 {
1456 struct ifnet * const ifp = &sc->sc_if;
1457 volatile struct rxbd *consumer = rxq->rxq_consumer;
1458 size_t rxconsumed = 0;
1459
1460 etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1461
1462 for (;;) {
1463 if (consumer == rxq->rxq_producer) {
1464 rxq->rxq_consumer = consumer;
1465 rxq->rxq_inuse -= rxconsumed;
1466 KASSERT(rxq->rxq_inuse == 0);
1467 return;
1468 }
1469 pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1470 const uint16_t rxbd_flags = consumer->rxbd_flags;
1471 if (rxbd_flags & RXBD_E) {
1472 rxq->rxq_consumer = consumer;
1473 rxq->rxq_inuse -= rxconsumed;
1474 return;
1475 }
1476 KASSERT(rxq->rxq_mconsumer != NULL);
1477 #ifdef ETSEC_DEBUG
1478 KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1479 #endif
1480 #if 0
1481 printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1482 __func__,
1483 consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1484 mtod(rxq->rxq_mconsumer, int *)[0],
1485 mtod(rxq->rxq_mconsumer, int *)[1],
1486 mtod(rxq->rxq_mconsumer, int *)[2],
1487 mtod(rxq->rxq_mconsumer, int *)[3]);
1488 #endif
1489 /*
1490 * We own this packet again. Clear all flags except wrap.
1491 */
1492 rxconsumed++;
1493 consumer->rxbd_flags = rxbd_flags & (RXBD_W|RXBD_I);
1494
1495 /*
1496 * If this descriptor has the LAST bit set and no errors,
1497 * it's a valid input packet.
1498 */
1499 if ((rxbd_flags & (RXBD_L|RXBD_ERRORS)) == RXBD_L) {
1500 size_t rxbd_len = consumer->rxbd_len;
1501 struct mbuf *m = rxq->rxq_mhead;
1502 struct mbuf *m_last = rxq->rxq_mconsumer;
1503 if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1504 rxq->rxq_mtail = &rxq->rxq_mhead;
1505 rxq->rxq_mconsumer = rxq->rxq_mhead;
1506 m_last->m_next = NULL;
1507 m_last->m_len = rxbd_len & (MCLBYTES - 1);
1508 m->m_pkthdr.len = rxbd_len;
1509 pq3etsec_rx_input(sc, m, rxbd_flags);
1510 } else if (rxbd_flags & RXBD_L) {
1511 KASSERT(rxbd_flags & RXBD_ERRORS);
1512 struct mbuf *m;
1513 /*
1514 * We encountered an error, take the mbufs and add
1515 * then to the rx bufcache so we can reuse them.
1516 */
1517 ifp->if_ierrors++;
1518 for (m = rxq->rxq_mhead;
1519 m != rxq->rxq_mconsumer;
1520 m = m->m_next) {
1521 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1522 }
1523 m = rxq->rxq_mconsumer;
1524 if ((rxq->rxq_mhead = m->m_next) == NULL)
1525 rxq->rxq_mtail = &rxq->rxq_mhead;
1526 rxq->rxq_mconsumer = m->m_next;
1527 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1528 } else {
1529 rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1530 }
1531 #ifdef ETSEC_DEBUG
1532 rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1533 #endif
1534
1535 /*
1536 * Wrap at the last entry!
1537 */
1538 if (rxbd_flags & RXBD_W) {
1539 KASSERT(consumer + 1 == rxq->rxq_last);
1540 consumer = rxq->rxq_first;
1541 } else {
1542 consumer++;
1543 }
1544 #ifdef ETSEC_DEBUG
1545 KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1546 #endif
1547 }
1548 }
1549
1550 static void
1551 pq3etsec_rxq_purge(
1552 struct pq3etsec_softc *sc,
1553 struct pq3etsec_rxqueue *rxq,
1554 bool discard)
1555 {
1556 struct mbuf *m;
1557
1558 if ((m = rxq->rxq_mhead) != NULL) {
1559 #ifdef ETSEC_DEBUG
1560 memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1561 #endif
1562
1563 if (discard) {
1564 pq3etsec_rx_map_unload(sc, m);
1565 m_freem(m);
1566 } else {
1567 while (m != NULL) {
1568 struct mbuf *m0 = m->m_next;
1569 m->m_next = NULL;
1570 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1571 m = m0;
1572 }
1573 }
1574
1575 }
1576
1577 rxq->rxq_mconsumer = NULL;
1578 rxq->rxq_mhead = NULL;
1579 rxq->rxq_mtail = &rxq->rxq_mhead;
1580 rxq->rxq_inuse = 0;
1581 }
1582
1583 static void
1584 pq3etsec_rxq_reset(
1585 struct pq3etsec_softc *sc,
1586 struct pq3etsec_rxqueue *rxq)
1587 {
1588 /*
1589 * sync all the descriptors
1590 */
1591 pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1592 rxq->rxq_last - rxq->rxq_first);
1593
1594 /*
1595 * Make sure we own all descriptors in the ring.
1596 */
1597 volatile struct rxbd *rxbd;
1598 for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1599 rxbd->rxbd_flags = RXBD_I;
1600 }
1601
1602 /*
1603 * Last descriptor has the wrap flag.
1604 */
1605 rxbd->rxbd_flags = RXBD_W|RXBD_I;
1606
1607 /*
1608 * Reset the producer consumer indexes.
1609 */
1610 rxq->rxq_consumer = rxq->rxq_first;
1611 rxq->rxq_producer = rxq->rxq_first;
1612 rxq->rxq_inuse = 0;
1613 if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1614 rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1615
1616 sc->sc_imask |= IEVENT_RXF|IEVENT_BSY;
1617
1618 /*
1619 * Restart the transmit at the first descriptor
1620 */
1621 etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1622 }
1623
1624 static int
1625 pq3etsec_rxq_attach(
1626 struct pq3etsec_softc *sc,
1627 struct pq3etsec_rxqueue *rxq,
1628 u_int qno)
1629 {
1630 size_t map_size = PAGE_SIZE;
1631 size_t desc_count = map_size / sizeof(struct rxbd);
1632 int error;
1633 void *descs;
1634
1635 error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1636 &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1637 if (error)
1638 return error;
1639
1640 memset(descs, 0, map_size);
1641 rxq->rxq_first = descs;
1642 rxq->rxq_last = rxq->rxq_first + desc_count;
1643 rxq->rxq_consumer = descs;
1644 rxq->rxq_producer = descs;
1645
1646 pq3etsec_rxq_purge(sc, rxq, true);
1647 pq3etsec_rxq_reset(sc, rxq);
1648
1649 rxq->rxq_reg_rbase = RBASEn(qno);
1650 rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1651
1652 return 0;
1653 }
1654
1655 static bool
1656 pq3etsec_txq_active_p(
1657 struct pq3etsec_softc * const sc,
1658 struct pq3etsec_txqueue *txq)
1659 {
1660 return !IF_IS_EMPTY(&txq->txq_mbufs);
1661 }
1662
1663 static bool
1664 pq3etsec_txq_fillable_p(
1665 struct pq3etsec_softc * const sc,
1666 struct pq3etsec_txqueue *txq)
1667 {
1668 return txq->txq_free >= txq->txq_threshold;
1669 }
1670
1671 static int
1672 pq3etsec_txq_attach(
1673 struct pq3etsec_softc *sc,
1674 struct pq3etsec_txqueue *txq,
1675 u_int qno)
1676 {
1677 size_t map_size = PAGE_SIZE;
1678 size_t desc_count = map_size / sizeof(struct txbd);
1679 int error;
1680 void *descs;
1681
1682 error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1683 &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1684 if (error)
1685 return error;
1686
1687 memset(descs, 0, map_size);
1688 txq->txq_first = descs;
1689 txq->txq_last = txq->txq_first + desc_count;
1690 txq->txq_consumer = descs;
1691 txq->txq_producer = descs;
1692
1693 IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1694
1695 txq->txq_reg_tbase = TBASEn(qno);
1696 txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1697
1698 pq3etsec_txq_reset(sc, txq);
1699
1700 return 0;
1701 }
1702
1703 static int
1704 pq3etsec_txq_map_load(
1705 struct pq3etsec_softc *sc,
1706 struct pq3etsec_txqueue *txq,
1707 struct mbuf *m)
1708 {
1709 bus_dmamap_t map;
1710 int error;
1711
1712 map = M_GETCTX(m, bus_dmamap_t);
1713 if (map != NULL)
1714 return 0;
1715
1716 map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1717 if (map == NULL)
1718 return ENOMEM;
1719
1720 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1721 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1722 if (error)
1723 return error;
1724
1725 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1726 BUS_DMASYNC_PREWRITE);
1727 M_SETCTX(m, map);
1728 return 0;
1729 }
1730
1731 static void
1732 pq3etsec_txq_map_unload(
1733 struct pq3etsec_softc *sc,
1734 struct pq3etsec_txqueue *txq,
1735 struct mbuf *m)
1736 {
1737 KASSERT(m);
1738 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1739 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1740 BUS_DMASYNC_POSTWRITE);
1741 bus_dmamap_unload(sc->sc_dmat, map);
1742 pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1743 }
1744
1745 static bool
1746 pq3etsec_txq_produce(
1747 struct pq3etsec_softc *sc,
1748 struct pq3etsec_txqueue *txq,
1749 struct mbuf *m)
1750 {
1751 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1752
1753 if (map->dm_nsegs > txq->txq_free)
1754 return false;
1755
1756 /*
1757 * TCP Offload flag must be set in the first descriptor.
1758 */
1759 volatile struct txbd *producer = txq->txq_producer;
1760 uint16_t last_flags = TXBD_L;
1761 uint16_t first_flags = TXBD_R
1762 | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1763
1764 /*
1765 * If we've produced enough descriptors without consuming any
1766 * we need to ask for an interrupt to reclaim some.
1767 */
1768 txq->txq_lastintr += map->dm_nsegs;
1769 if (txq->txq_lastintr >= txq->txq_threshold
1770 || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1771 txq->txq_lastintr = 0;
1772 last_flags |= TXBD_I;
1773 }
1774
1775 #ifdef ETSEC_DEBUG
1776 KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1777 #endif
1778 KASSERT(producer != txq->txq_last);
1779 producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1780 producer->txbd_len = map->dm_segs[0].ds_len;
1781
1782 if (map->dm_nsegs > 1) {
1783 volatile struct txbd *start = producer + 1;
1784 size_t count = map->dm_nsegs - 1;
1785 for (u_int i = 1; i < map->dm_nsegs; i++) {
1786 if (__predict_false(++producer == txq->txq_last)) {
1787 producer = txq->txq_first;
1788 if (start < txq->txq_last) {
1789 pq3etsec_txq_desc_presync(sc, txq,
1790 start, txq->txq_last - start);
1791 count -= txq->txq_last - start;
1792 }
1793 start = txq->txq_first;
1794 }
1795 #ifdef ETSEC_DEBUG
1796 KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1797 #endif
1798 producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1799 producer->txbd_len = map->dm_segs[i].ds_len;
1800 producer->txbd_flags = TXBD_R
1801 | (producer->txbd_flags & TXBD_W)
1802 | (i == map->dm_nsegs - 1 ? last_flags : 0);
1803 #if 0
1804 printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1805 producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1806 #endif
1807 }
1808 pq3etsec_txq_desc_presync(sc, txq, start, count);
1809 } else {
1810 first_flags |= last_flags;
1811 }
1812
1813 membar_producer();
1814 txq->txq_producer->txbd_flags =
1815 first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1816 #if 0
1817 printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1818 txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1819 txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1820 #endif
1821 pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
1822
1823 /*
1824 * Reduce free count by the number of segments we consumed.
1825 */
1826 txq->txq_free -= map->dm_nsegs;
1827 KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1828 KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
1829 KASSERT(producer->txbd_flags & TXBD_L);
1830 #ifdef ETSEC_DEBUG
1831 txq->txq_lmbufs[producer - txq->txq_first] = m;
1832 #endif
1833
1834 #if 0
1835 printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
1836 __func__, m, m->m_pkthdr.len, map->dm_nsegs,
1837 txq->txq_producer - txq->txq_first, producer - txq->txq_first);
1838 #endif
1839
1840 if (++producer == txq->txq_last)
1841 txq->txq_producer = txq->txq_first;
1842 else
1843 txq->txq_producer = producer;
1844 IF_ENQUEUE(&txq->txq_mbufs, m);
1845
1846 /*
1847 * Restart the transmitter.
1848 */
1849 etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT); /* W1C */
1850
1851 return true;
1852 }
1853
1854 static void
1855 pq3etsec_tx_offload(
1856 struct pq3etsec_softc *sc,
1857 struct pq3etsec_txqueue *txq,
1858 struct mbuf **mp)
1859 {
1860 struct mbuf *m = *mp;
1861 u_int csum_flags = m->m_pkthdr.csum_flags;
1862 struct m_tag *vtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m);
1863
1864 KASSERT(m->m_flags & M_PKTHDR);
1865
1866 /*
1867 * Let see if we are doing any offload first.
1868 */
1869 if (csum_flags == 0 && vtag == 0) {
1870 m->m_flags &= ~M_HASFCB;
1871 return;
1872 }
1873
1874 uint16_t flags = 0;
1875 if (csum_flags & M_CSUM_IP) {
1876 flags |= TXFCB_IP
1877 | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
1878 | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
1879 | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
1880 | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
1881 | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
1882 }
1883 if (vtag) {
1884 flags |= TXFCB_VLN;
1885 }
1886 if (flags == 0) {
1887 m->m_flags &= ~M_HASFCB;
1888 return;
1889 }
1890
1891 struct txfcb fcb;
1892 fcb.txfcb_flags = flags;
1893 if (csum_flags & M_CSUM_IPv4)
1894 fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
1895 else
1896 fcb.txfcb_l4os = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1897 fcb.txfcb_l3os = ETHER_HDR_LEN;
1898 fcb.txfcb_phcs = 0;
1899 fcb.txfcb_vlctl = vtag ? VLAN_TAG_VALUE(vtag) & 0xffff : 0;
1900
1901 #if 0
1902 printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
1903 __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
1904 fcb.txfcb_phcs, fcb.txfcb_vlctl);
1905 #endif
1906
1907 if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
1908 m->m_data -= sizeof(fcb);
1909 m->m_len += sizeof(fcb);
1910 } else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
1911 memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
1912 m->m_data = m->m_pktdat;
1913 m->m_len += sizeof(fcb);
1914 } else {
1915 struct mbuf *mn;
1916 MGET(mn, M_DONTWAIT, m->m_type);
1917 if (mn == NULL) {
1918 if (csum_flags & M_CSUM_IP4) {
1919 #ifdef INET
1920 ip_undefer_csum(m, ETHER_HDR_LEN,
1921 csum_flags & M_CSUM_IP4);
1922 #else
1923 panic("%s: impossible M_CSUM flags %#x",
1924 device_xname(sc->sc_dev), csum_flags);
1925 #endif
1926 } else if (csum_flags & M_CSUM_IP6) {
1927 #ifdef INET6
1928 ip6_undefer_csum(m, ETHER_HDR_LEN,
1929 csum_flags & M_CSUM_IP6);
1930 #else
1931 panic("%s: impossible M_CSUM flags %#x",
1932 device_xname(sc->sc_dev), csum_flags);
1933 #endif
1934 } else if (vtag) {
1935 }
1936
1937 m->m_flags &= ~M_HASFCB;
1938 return;
1939 }
1940
1941 M_MOVE_PKTHDR(mn, m);
1942 mn->m_next = m;
1943 m = mn;
1944 MH_ALIGN(m, sizeof(fcb));
1945 m->m_len = sizeof(fcb);
1946 *mp = m;
1947 }
1948 m->m_pkthdr.len += sizeof(fcb);
1949 m->m_flags |= M_HASFCB;
1950 *mtod(m, struct txfcb *) = fcb;
1951 return;
1952 }
1953
1954 static bool
1955 pq3etsec_txq_enqueue(
1956 struct pq3etsec_softc *sc,
1957 struct pq3etsec_txqueue *txq)
1958 {
1959 for (;;) {
1960 if (IF_QFULL(&txq->txq_mbufs))
1961 return false;
1962 struct mbuf *m = txq->txq_next;
1963 if (m == NULL) {
1964 int s = splnet();
1965 IF_DEQUEUE(&sc->sc_if.if_snd, m);
1966 splx(s);
1967 if (m == NULL)
1968 return true;
1969 M_SETCTX(m, NULL);
1970 pq3etsec_tx_offload(sc, txq, &m);
1971 } else {
1972 txq->txq_next = NULL;
1973 }
1974 int error = pq3etsec_txq_map_load(sc, txq, m);
1975 if (error) {
1976 aprint_error_dev(sc->sc_dev,
1977 "discarded packet due to "
1978 "dmamap load failure: %d\n", error);
1979 m_freem(m);
1980 continue;
1981 }
1982 KASSERT(txq->txq_next == NULL);
1983 if (!pq3etsec_txq_produce(sc, txq, m)) {
1984 txq->txq_next = m;
1985 return false;
1986 }
1987 KASSERT(txq->txq_next == NULL);
1988 }
1989 }
1990
1991 static bool
1992 pq3etsec_txq_consume(
1993 struct pq3etsec_softc *sc,
1994 struct pq3etsec_txqueue *txq)
1995 {
1996 struct ifnet * const ifp = &sc->sc_if;
1997 volatile struct txbd *consumer = txq->txq_consumer;
1998 size_t txfree = 0;
1999
2000 #if 0
2001 printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
2002 #endif
2003 etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
2004
2005 for (;;) {
2006 if (consumer == txq->txq_producer) {
2007 txq->txq_consumer = consumer;
2008 txq->txq_free += txfree;
2009 txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2010 #if 0
2011 printf("%s: empty: freed %zu descriptors going form %zu to %zu\n",
2012 __func__, txfree, txq->txq_free - txfree, txq->txq_free);
2013 #endif
2014 KASSERT(txq->txq_lastintr == 0);
2015 KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
2016 return true;
2017 }
2018 pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2019 const uint16_t txbd_flags = consumer->txbd_flags;
2020 if (txbd_flags & TXBD_R) {
2021 txq->txq_consumer = consumer;
2022 txq->txq_free += txfree;
2023 txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2024 #if 0
2025 printf("%s: freed %zu descriptors\n",
2026 __func__, txfree);
2027 #endif
2028 return pq3etsec_txq_fillable_p(sc, txq);
2029 }
2030
2031 /*
2032 * If this is the last descriptor in the chain, get the
2033 * mbuf, free its dmamap, and free the mbuf chain itself.
2034 */
2035 if (txbd_flags & TXBD_L) {
2036 struct mbuf *m;
2037
2038 IF_DEQUEUE(&txq->txq_mbufs, m);
2039 #ifdef ETSEC_DEBUG
2040 KASSERTMSG(
2041 m == txq->txq_lmbufs[consumer-txq->txq_first],
2042 "%s: %p [%u]: flags %#x m (%p) != %p (%p)",
2043 __func__, consumer, consumer - txq->txq_first,
2044 txbd_flags, m,
2045 &txq->txq_lmbufs[consumer-txq->txq_first],
2046 txq->txq_lmbufs[consumer-txq->txq_first]);
2047 #endif
2048 KASSERT(m);
2049 pq3etsec_txq_map_unload(sc, txq, m);
2050 #if 0
2051 printf("%s: mbuf %p: consumed a %u byte packet\n",
2052 __func__, m, m->m_pkthdr.len);
2053 #endif
2054 if (m->m_flags & M_HASFCB)
2055 m_adj(m, sizeof(struct txfcb));
2056 ifp->if_opackets++;
2057 ifp->if_obytes += m->m_pkthdr.len;
2058 if (m->m_flags & M_MCAST)
2059 ifp->if_omcasts++;
2060 if (txbd_flags & TXBD_ERRORS)
2061 ifp->if_oerrors++;
2062 m_freem(m);
2063 #ifdef ETSEC_DEBUG
2064 txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2065 #endif
2066 } else {
2067 #ifdef ETSEC_DEBUG
2068 KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2069 #endif
2070 }
2071
2072 /*
2073 * We own this packet again. Clear all flags except wrap.
2074 */
2075 txfree++;
2076 //consumer->txbd_flags = txbd_flags & TXBD_W;
2077
2078 /*
2079 * Wrap at the last entry!
2080 */
2081 if (txbd_flags & TXBD_W) {
2082 KASSERT(consumer + 1 == txq->txq_last);
2083 consumer = txq->txq_first;
2084 } else {
2085 consumer++;
2086 KASSERT(consumer < txq->txq_last);
2087 }
2088 }
2089 }
2090
2091 static void
2092 pq3etsec_txq_purge(
2093 struct pq3etsec_softc *sc,
2094 struct pq3etsec_txqueue *txq)
2095 {
2096 struct mbuf *m;
2097 KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2098
2099 for (;;) {
2100 IF_DEQUEUE(&txq->txq_mbufs, m);
2101 if (m == NULL)
2102 break;
2103 pq3etsec_txq_map_unload(sc, txq, m);
2104 m_freem(m);
2105 }
2106 if ((m = txq->txq_next) != NULL) {
2107 txq->txq_next = NULL;
2108 pq3etsec_txq_map_unload(sc, txq, m);
2109 m_freem(m);
2110 }
2111 #ifdef ETSEC_DEBUG
2112 memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2113 #endif
2114 }
2115
2116 static void
2117 pq3etsec_txq_reset(
2118 struct pq3etsec_softc *sc,
2119 struct pq3etsec_txqueue *txq)
2120 {
2121 /*
2122 * sync all the descriptors
2123 */
2124 pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2125 txq->txq_last - txq->txq_first);
2126
2127 /*
2128 * Make sure we own all descriptors in the ring.
2129 */
2130 volatile struct txbd *txbd;
2131 for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2132 txbd->txbd_flags = 0;
2133 }
2134
2135 /*
2136 * Last descriptor has the wrap flag.
2137 */
2138 txbd->txbd_flags = TXBD_W;
2139
2140 /*
2141 * Reset the producer consumer indexes.
2142 */
2143 txq->txq_consumer = txq->txq_first;
2144 txq->txq_producer = txq->txq_first;
2145 txq->txq_free = txq->txq_last - txq->txq_first - 1;
2146 txq->txq_threshold = txq->txq_free / 2;
2147 txq->txq_lastintr = 0;
2148
2149 /*
2150 * What do we want to get interrupted on?
2151 */
2152 sc->sc_imask |= IEVENT_TXF|IEVENT_TXE;
2153
2154 /*
2155 * Restart the transmit at the first descriptor
2156 */
2157 etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2158 }
2159
2160 static void
2161 pq3etsec_ifstart(struct ifnet *ifp)
2162 {
2163 struct pq3etsec_softc * const sc = ifp->if_softc;
2164
2165 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2166 softint_schedule(sc->sc_soft_ih);
2167 }
2168
2169 static void
2170 pq3etsec_tx_error(
2171 struct pq3etsec_softc * const sc)
2172 {
2173 struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2174
2175 pq3etsec_txq_consume(sc, txq);
2176
2177 if (pq3etsec_txq_fillable_p(sc, txq))
2178 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2179 if (sc->sc_txerrors & (IEVENT_LC|IEVENT_CRL|IEVENT_XFUN|IEVENT_BABT)) {
2180 } else if (sc->sc_txerrors & IEVENT_EBERR) {
2181 }
2182
2183 if (pq3etsec_txq_active_p(sc, txq))
2184 etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2185 if (!pq3etsec_txq_enqueue(sc, txq)) {
2186 sc->sc_ev_tx_stall.ev_count++;
2187 sc->sc_if.if_flags |= IFF_OACTIVE;
2188 }
2189
2190 sc->sc_txerrors = 0;
2191 }
2192
2193 int
2194 pq3etsec_tx_intr(void *arg)
2195 {
2196 struct pq3etsec_softc * const sc = arg;
2197
2198 sc->sc_ev_tx_intr.ev_count++;
2199
2200 uint32_t ievent = etsec_read(sc, IEVENT);
2201 ievent &= IEVENT_TXF|IEVENT_TXB;
2202 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2203
2204 #if 0
2205 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2206 __func__, ievent, etsec_read(sc, IMASK));
2207 #endif
2208
2209 if (ievent == 0)
2210 return 0;
2211
2212 sc->sc_imask &= ~(IEVENT_TXF|IEVENT_TXB);
2213 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2214 etsec_write(sc, IMASK, sc->sc_imask);
2215 softint_schedule(sc->sc_soft_ih);
2216 return 1;
2217 }
2218
2219 int
2220 pq3etsec_rx_intr(void *arg)
2221 {
2222 struct pq3etsec_softc * const sc = arg;
2223
2224 sc->sc_ev_rx_intr.ev_count++;
2225
2226 uint32_t ievent = etsec_read(sc, IEVENT);
2227 ievent &= IEVENT_RXF|IEVENT_RXB;
2228 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2229 if (ievent == 0)
2230 return 0;
2231
2232 #if 0
2233 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2234 #endif
2235
2236 sc->sc_imask &= ~(IEVENT_RXF|IEVENT_RXB);
2237 atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2238 etsec_write(sc, IMASK, sc->sc_imask);
2239 softint_schedule(sc->sc_soft_ih);
2240 return 1;
2241 }
2242
2243 int
2244 pq3etsec_error_intr(void *arg)
2245 {
2246 struct pq3etsec_softc * const sc = arg;
2247
2248 sc->sc_ev_error_intr.ev_count++;
2249
2250 for (int rv = 0, soft_flags = 0;; rv = 1) {
2251 uint32_t ievent = etsec_read(sc, IEVENT);
2252 ievent &= ~(IEVENT_RXF|IEVENT_RXB|IEVENT_TXF|IEVENT_TXB);
2253 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2254 if (ievent == 0) {
2255 if (soft_flags) {
2256 atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2257 softint_schedule(sc->sc_soft_ih);
2258 }
2259 return rv;
2260 }
2261 #if 0
2262 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2263 __func__, ievent, etsec_read(sc, IMASK));
2264 #endif
2265
2266 if (ievent & (IEVENT_GRSC|IEVENT_GTSC)) {
2267 sc->sc_imask &= ~(IEVENT_GRSC|IEVENT_GTSC);
2268 etsec_write(sc, IMASK, sc->sc_imask);
2269 wakeup(sc);
2270 }
2271 if (ievent & (IEVENT_MMRD|IEVENT_MMWR)) {
2272 sc->sc_imask &= ~(IEVENT_MMRD|IEVENT_MMWR);
2273 etsec_write(sc, IMASK, sc->sc_imask);
2274 wakeup(&sc->sc_mii);
2275 }
2276 if (ievent & IEVENT_BSY) {
2277 soft_flags |= SOFT_RXBSY;
2278 sc->sc_imask &= ~IEVENT_BSY;
2279 etsec_write(sc, IMASK, sc->sc_imask);
2280 }
2281 if (ievent & IEVENT_TXE) {
2282 soft_flags |= SOFT_TXERROR;
2283 sc->sc_imask &= ~IEVENT_TXE;
2284 sc->sc_txerrors |= ievent;
2285 }
2286 if (ievent & IEVENT_TXC) {
2287 sc->sc_ev_tx_pause.ev_count++;
2288 }
2289 if (ievent & IEVENT_RXC) {
2290 sc->sc_ev_rx_pause.ev_count++;
2291 }
2292 if (ievent & IEVENT_DPE) {
2293 soft_flags |= SOFT_RESET;
2294 sc->sc_imask &= ~IEVENT_DPE;
2295 etsec_write(sc, IMASK, sc->sc_imask);
2296 }
2297 }
2298 }
2299
2300 void
2301 pq3etsec_soft_intr(void *arg)
2302 {
2303 struct pq3etsec_softc * const sc = arg;
2304 struct ifnet * const ifp = &sc->sc_if;
2305
2306 mutex_enter(sc->sc_lock);
2307
2308 u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2309
2310 sc->sc_ev_soft_intr.ev_count++;
2311
2312 if (soft_flags & SOFT_RESET) {
2313 int s = splnet();
2314 pq3etsec_ifinit(ifp);
2315 splx(s);
2316 soft_flags = 0;
2317 }
2318
2319 if (soft_flags & SOFT_RXBSY) {
2320 struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2321 size_t threshold = 5 * rxq->rxq_threshold / 4;
2322 if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2323 threshold = rxq->rxq_last - rxq->rxq_first - 1;
2324 } else {
2325 sc->sc_imask |= IEVENT_BSY;
2326 }
2327 aprint_normal_dev(sc->sc_dev,
2328 "increasing receive buffers from %zu to %zu\n",
2329 rxq->rxq_threshold, threshold);
2330 rxq->rxq_threshold = threshold;
2331 }
2332
2333 if ((soft_flags & SOFT_TXINTR)
2334 || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2335 /*
2336 * Let's do what we came here for. Consume transmitted
2337 * packets off the the transmit ring.
2338 */
2339 if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2340 || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2341 sc->sc_ev_tx_stall.ev_count++;
2342 ifp->if_flags |= IFF_OACTIVE;
2343 } else {
2344 ifp->if_flags &= ~IFF_OACTIVE;
2345 }
2346 sc->sc_imask |= IEVENT_TXF;
2347 }
2348
2349 if (soft_flags & (SOFT_RXINTR|SOFT_RXBSY)) {
2350 /*
2351 * Let's consume
2352 */
2353 pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2354 sc->sc_imask |= IEVENT_RXF;
2355 }
2356
2357 if (soft_flags & SOFT_TXERROR) {
2358 pq3etsec_tx_error(sc);
2359 sc->sc_imask |= IEVENT_TXE;
2360 }
2361
2362 if (ifp->if_flags & IFF_RUNNING) {
2363 pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2364 etsec_write(sc, IMASK, sc->sc_imask);
2365 } else {
2366 KASSERT((soft_flags & SOFT_RXBSY) == 0);
2367 }
2368
2369 mutex_exit(sc->sc_lock);
2370 }
2371
2372 static void
2373 pq3etsec_mii_tick(void *arg)
2374 {
2375 struct pq3etsec_softc * const sc = arg;
2376 mutex_enter(sc->sc_lock);
2377 callout_ack(&sc->sc_mii_callout);
2378 sc->sc_ev_mii_ticks.ev_count++;
2379 #ifdef DEBUG
2380 uint64_t now = mftb();
2381 if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2382 aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2383 __func__, now - sc->sc_mii_last_tick);
2384 callout_stop(&sc->sc_mii_callout);
2385 }
2386 #endif
2387 mii_tick(&sc->sc_mii);
2388 int s = splnet();
2389 if (sc->sc_soft_flags & SOFT_RESET)
2390 softint_schedule(sc->sc_soft_ih);
2391 splx(s);
2392 callout_schedule(&sc->sc_mii_callout, hz);
2393 #ifdef DEBUG
2394 sc->sc_mii_last_tick = now;
2395 #endif
2396 mutex_exit(sc->sc_lock);
2397 }
2398