1 1.9 rin /* $NetBSD: fpu_div.c,v 1.9 2022/09/06 23:04:08 rin Exp $ */ 2 1.1 simonb 3 1.1 simonb /* 4 1.1 simonb * Copyright (c) 1992, 1993 5 1.1 simonb * The Regents of the University of California. All rights reserved. 6 1.1 simonb * 7 1.1 simonb * This software was developed by the Computer Systems Engineering group 8 1.1 simonb * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 9 1.1 simonb * contributed to Berkeley. 10 1.1 simonb * 11 1.1 simonb * All advertising materials mentioning features or use of this software 12 1.1 simonb * must display the following acknowledgement: 13 1.1 simonb * This product includes software developed by the University of 14 1.1 simonb * California, Lawrence Berkeley Laboratory. 15 1.1 simonb * 16 1.1 simonb * Redistribution and use in source and binary forms, with or without 17 1.1 simonb * modification, are permitted provided that the following conditions 18 1.1 simonb * are met: 19 1.1 simonb * 1. Redistributions of source code must retain the above copyright 20 1.1 simonb * notice, this list of conditions and the following disclaimer. 21 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright 22 1.1 simonb * notice, this list of conditions and the following disclaimer in the 23 1.1 simonb * documentation and/or other materials provided with the distribution. 24 1.3 agc * 3. Neither the name of the University nor the names of its contributors 25 1.1 simonb * may be used to endorse or promote products derived from this software 26 1.1 simonb * without specific prior written permission. 27 1.1 simonb * 28 1.1 simonb * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 1.1 simonb * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 1.1 simonb * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 1.1 simonb * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 1.1 simonb * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 1.1 simonb * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 1.1 simonb * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 1.1 simonb * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 1.1 simonb * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 1.1 simonb * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 1.1 simonb * SUCH DAMAGE. 39 1.1 simonb * 40 1.1 simonb * @(#)fpu_div.c 8.1 (Berkeley) 6/11/93 41 1.1 simonb */ 42 1.1 simonb 43 1.1 simonb /* 44 1.1 simonb * Perform an FPU divide (return x / y). 45 1.1 simonb */ 46 1.2 lukem 47 1.2 lukem #include <sys/cdefs.h> 48 1.9 rin __KERNEL_RCSID(0, "$NetBSD: fpu_div.c,v 1.9 2022/09/06 23:04:08 rin Exp $"); 49 1.1 simonb 50 1.1 simonb #include <sys/types.h> 51 1.1 simonb #if defined(DIAGNOSTIC)||defined(DEBUG) 52 1.1 simonb #include <sys/systm.h> 53 1.1 simonb #endif 54 1.1 simonb 55 1.5 rin #include <machine/fpu.h> 56 1.1 simonb #include <machine/reg.h> 57 1.1 simonb 58 1.1 simonb #include <powerpc/fpu/fpu_arith.h> 59 1.1 simonb #include <powerpc/fpu/fpu_emu.h> 60 1.1 simonb 61 1.1 simonb /* 62 1.1 simonb * Division of normal numbers is done as follows: 63 1.1 simonb * 64 1.1 simonb * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e. 65 1.1 simonb * If X and Y are the mantissas (1.bbbb's), the quotient is then: 66 1.1 simonb * 67 1.1 simonb * q = (X / Y) * 2^((x exponent) - (y exponent)) 68 1.1 simonb * 69 1.1 simonb * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y) 70 1.1 simonb * will be in [0.5,2.0). Moreover, it will be less than 1.0 if and only 71 1.1 simonb * if X < Y. In that case, it will have to be shifted left one bit to 72 1.1 simonb * become a normal number, and the exponent decremented. Thus, the 73 1.1 simonb * desired exponent is: 74 1.1 simonb * 75 1.1 simonb * left_shift = x->fp_mant < y->fp_mant; 76 1.1 simonb * result_exp = x->fp_exp - y->fp_exp - left_shift; 77 1.1 simonb * 78 1.1 simonb * The quotient mantissa X/Y can then be computed one bit at a time 79 1.1 simonb * using the following algorithm: 80 1.1 simonb * 81 1.1 simonb * Q = 0; -- Initial quotient. 82 1.1 simonb * R = X; -- Initial remainder, 83 1.1 simonb * if (left_shift) -- but fixed up in advance. 84 1.1 simonb * R *= 2; 85 1.1 simonb * for (bit = FP_NMANT; --bit >= 0; R *= 2) { 86 1.1 simonb * if (R >= Y) { 87 1.1 simonb * Q |= 1 << bit; 88 1.1 simonb * R -= Y; 89 1.1 simonb * } 90 1.1 simonb * } 91 1.1 simonb * 92 1.1 simonb * The subtraction R -= Y always removes the uppermost bit from R (and 93 1.1 simonb * can sometimes remove additional lower-order 1 bits); this proof is 94 1.1 simonb * left to the reader. 95 1.1 simonb * 96 1.1 simonb * This loop correctly calculates the guard and round bits since they are 97 1.1 simonb * included in the expanded internal representation. The sticky bit 98 1.1 simonb * is to be set if and only if any other bits beyond guard and round 99 1.1 simonb * would be set. From the above it is obvious that this is true if and 100 1.1 simonb * only if the remainder R is nonzero when the loop terminates. 101 1.1 simonb * 102 1.1 simonb * Examining the loop above, we can see that the quotient Q is built 103 1.1 simonb * one bit at a time ``from the top down''. This means that we can 104 1.1 simonb * dispense with the multi-word arithmetic and just build it one word 105 1.1 simonb * at a time, writing each result word when it is done. 106 1.1 simonb * 107 1.1 simonb * Furthermore, since X and Y are both in [1.0,2.0), we know that, 108 1.1 simonb * initially, R >= Y. (Recall that, if X < Y, R is set to X * 2 and 109 1.1 simonb * is therefore at in [2.0,4.0).) Thus Q is sure to have bit FP_NMANT-1 110 1.1 simonb * set, and R can be set initially to either X - Y (when X >= Y) or 111 1.1 simonb * 2X - Y (when X < Y). In addition, comparing R and Y is difficult, 112 1.1 simonb * so we will simply calculate R - Y and see if that underflows. 113 1.1 simonb * This leads to the following revised version of the algorithm: 114 1.1 simonb * 115 1.1 simonb * R = X; 116 1.1 simonb * bit = FP_1; 117 1.1 simonb * D = R - Y; 118 1.1 simonb * if (D >= 0) { 119 1.1 simonb * result_exp = x->fp_exp - y->fp_exp; 120 1.1 simonb * R = D; 121 1.1 simonb * q = bit; 122 1.1 simonb * bit >>= 1; 123 1.1 simonb * } else { 124 1.1 simonb * result_exp = x->fp_exp - y->fp_exp - 1; 125 1.1 simonb * q = 0; 126 1.1 simonb * } 127 1.1 simonb * R <<= 1; 128 1.1 simonb * do { 129 1.1 simonb * D = R - Y; 130 1.1 simonb * if (D >= 0) { 131 1.1 simonb * q |= bit; 132 1.1 simonb * R = D; 133 1.1 simonb * } 134 1.1 simonb * R <<= 1; 135 1.1 simonb * } while ((bit >>= 1) != 0); 136 1.1 simonb * Q[0] = q; 137 1.1 simonb * for (i = 1; i < 4; i++) { 138 1.1 simonb * q = 0, bit = 1 << 31; 139 1.1 simonb * do { 140 1.1 simonb * D = R - Y; 141 1.1 simonb * if (D >= 0) { 142 1.1 simonb * q |= bit; 143 1.1 simonb * R = D; 144 1.1 simonb * } 145 1.1 simonb * R <<= 1; 146 1.1 simonb * } while ((bit >>= 1) != 0); 147 1.1 simonb * Q[i] = q; 148 1.1 simonb * } 149 1.1 simonb * 150 1.1 simonb * This can be refined just a bit further by moving the `R <<= 1' 151 1.1 simonb * calculations to the front of the do-loops and eliding the first one. 152 1.1 simonb * The process can be terminated immediately whenever R becomes 0, but 153 1.1 simonb * this is relatively rare, and we do not bother. 154 1.1 simonb */ 155 1.1 simonb 156 1.1 simonb struct fpn * 157 1.1 simonb fpu_div(struct fpemu *fe) 158 1.1 simonb { 159 1.1 simonb struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2; 160 1.1 simonb u_int q, bit; 161 1.1 simonb u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3; 162 1.1 simonb FPU_DECL_CARRY 163 1.1 simonb 164 1.1 simonb /* 165 1.1 simonb * Since divide is not commutative, we cannot just use ORDER. 166 1.1 simonb * Check either operand for NaN first; if there is at least one, 167 1.1 simonb * order the signalling one (if only one) onto the right, then 168 1.1 simonb * return it. Otherwise we have the following cases: 169 1.1 simonb * 170 1.1 simonb * Inf / Inf = NaN, plus NV exception 171 1.1 simonb * Inf / num = Inf [i.e., return x] 172 1.1 simonb * Inf / 0 = Inf [i.e., return x] 173 1.1 simonb * 0 / Inf = 0 [i.e., return x] 174 1.1 simonb * 0 / num = 0 [i.e., return x] 175 1.1 simonb * 0 / 0 = NaN, plus NV exception 176 1.1 simonb * num / Inf = 0 177 1.1 simonb * num / num = num (do the divide) 178 1.1 simonb * num / 0 = Inf, plus DZ exception 179 1.1 simonb */ 180 1.1 simonb DPRINTF(FPE_REG, ("fpu_div:\n")); 181 1.1 simonb DUMPFPN(FPE_REG, x); 182 1.1 simonb DUMPFPN(FPE_REG, y); 183 1.1 simonb DPRINTF(FPE_REG, ("=>\n")); 184 1.1 simonb if (ISNAN(x) || ISNAN(y)) { 185 1.7 rin if (ISSNAN(x) || ISSNAN(y)) 186 1.7 rin fe->fe_cx |= FPSCR_VXSNAN; 187 1.9 rin if (ISNAN(x)) 188 1.9 rin y = x; 189 1.1 simonb DUMPFPN(FPE_REG, y); 190 1.1 simonb return (y); 191 1.1 simonb } 192 1.1 simonb /* 193 1.1 simonb * Need to split the following out cause they generate different 194 1.8 rin * exceptions. 195 1.1 simonb */ 196 1.1 simonb if (ISINF(x)) { 197 1.1 simonb if (x->fp_class == y->fp_class) { 198 1.1 simonb fe->fe_cx |= FPSCR_VXIDI; 199 1.1 simonb return (fpu_newnan(fe)); 200 1.1 simonb } 201 1.1 simonb DUMPFPN(FPE_REG, x); 202 1.1 simonb return (x); 203 1.1 simonb } 204 1.1 simonb if (ISZERO(x)) { 205 1.1 simonb if (x->fp_class == y->fp_class) { 206 1.1 simonb fe->fe_cx |= FPSCR_VXZDZ; 207 1.1 simonb return (fpu_newnan(fe)); 208 1.1 simonb } 209 1.1 simonb DUMPFPN(FPE_REG, x); 210 1.1 simonb return (x); 211 1.1 simonb } 212 1.1 simonb 213 1.1 simonb /* all results at this point use XOR of operand signs */ 214 1.1 simonb x->fp_sign ^= y->fp_sign; 215 1.1 simonb if (ISINF(y)) { 216 1.1 simonb x->fp_class = FPC_ZERO; 217 1.1 simonb DUMPFPN(FPE_REG, x); 218 1.1 simonb return (x); 219 1.1 simonb } 220 1.1 simonb if (ISZERO(y)) { 221 1.1 simonb fe->fe_cx = FPSCR_ZX; 222 1.1 simonb x->fp_class = FPC_INF; 223 1.1 simonb DUMPFPN(FPE_REG, x); 224 1.1 simonb return (x); 225 1.1 simonb } 226 1.1 simonb 227 1.1 simonb /* 228 1.1 simonb * Macros for the divide. See comments at top for algorithm. 229 1.1 simonb * Note that we expand R, D, and Y here. 230 1.1 simonb */ 231 1.1 simonb 232 1.1 simonb #define SUBTRACT /* D = R - Y */ \ 233 1.1 simonb FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \ 234 1.1 simonb FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0) 235 1.1 simonb 236 1.1 simonb #define NONNEGATIVE /* D >= 0 */ \ 237 1.1 simonb ((int)d0 >= 0) 238 1.1 simonb 239 1.1 simonb #ifdef FPU_SHL1_BY_ADD 240 1.1 simonb #define SHL1 /* R <<= 1 */ \ 241 1.1 simonb FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \ 242 1.1 simonb FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0) 243 1.1 simonb #else 244 1.1 simonb #define SHL1 \ 245 1.1 simonb r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \ 246 1.1 simonb r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1 247 1.1 simonb #endif 248 1.1 simonb 249 1.1 simonb #define LOOP /* do ... while (bit >>= 1) */ \ 250 1.1 simonb do { \ 251 1.1 simonb SHL1; \ 252 1.1 simonb SUBTRACT; \ 253 1.1 simonb if (NONNEGATIVE) { \ 254 1.1 simonb q |= bit; \ 255 1.1 simonb r0 = d0, r1 = d1, r2 = d2, r3 = d3; \ 256 1.1 simonb } \ 257 1.1 simonb } while ((bit >>= 1) != 0) 258 1.1 simonb 259 1.1 simonb #define WORD(r, i) /* calculate r->fp_mant[i] */ \ 260 1.1 simonb q = 0; \ 261 1.1 simonb bit = 1 << 31; \ 262 1.1 simonb LOOP; \ 263 1.1 simonb (x)->fp_mant[i] = q 264 1.1 simonb 265 1.1 simonb /* Setup. Note that we put our result in x. */ 266 1.1 simonb r0 = x->fp_mant[0]; 267 1.1 simonb r1 = x->fp_mant[1]; 268 1.1 simonb r2 = x->fp_mant[2]; 269 1.1 simonb r3 = x->fp_mant[3]; 270 1.1 simonb y0 = y->fp_mant[0]; 271 1.1 simonb y1 = y->fp_mant[1]; 272 1.1 simonb y2 = y->fp_mant[2]; 273 1.1 simonb y3 = y->fp_mant[3]; 274 1.1 simonb 275 1.1 simonb bit = FP_1; 276 1.1 simonb SUBTRACT; 277 1.1 simonb if (NONNEGATIVE) { 278 1.1 simonb x->fp_exp -= y->fp_exp; 279 1.1 simonb r0 = d0, r1 = d1, r2 = d2, r3 = d3; 280 1.1 simonb q = bit; 281 1.1 simonb bit >>= 1; 282 1.1 simonb } else { 283 1.1 simonb x->fp_exp -= y->fp_exp + 1; 284 1.1 simonb q = 0; 285 1.1 simonb } 286 1.1 simonb LOOP; 287 1.1 simonb x->fp_mant[0] = q; 288 1.1 simonb WORD(x, 1); 289 1.1 simonb WORD(x, 2); 290 1.1 simonb WORD(x, 3); 291 1.1 simonb x->fp_sticky = r0 | r1 | r2 | r3; 292 1.1 simonb 293 1.1 simonb DUMPFPN(FPE_REG, x); 294 1.1 simonb return (x); 295 1.1 simonb } 296