Home | History | Annotate | Line # | Download | only in fpu
      1  1.9     rin /*	$NetBSD: fpu_div.c,v 1.9 2022/09/06 23:04:08 rin Exp $ */
      2  1.1  simonb 
      3  1.1  simonb /*
      4  1.1  simonb  * Copyright (c) 1992, 1993
      5  1.1  simonb  *	The Regents of the University of California.  All rights reserved.
      6  1.1  simonb  *
      7  1.1  simonb  * This software was developed by the Computer Systems Engineering group
      8  1.1  simonb  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  1.1  simonb  * contributed to Berkeley.
     10  1.1  simonb  *
     11  1.1  simonb  * All advertising materials mentioning features or use of this software
     12  1.1  simonb  * must display the following acknowledgement:
     13  1.1  simonb  *	This product includes software developed by the University of
     14  1.1  simonb  *	California, Lawrence Berkeley Laboratory.
     15  1.1  simonb  *
     16  1.1  simonb  * Redistribution and use in source and binary forms, with or without
     17  1.1  simonb  * modification, are permitted provided that the following conditions
     18  1.1  simonb  * are met:
     19  1.1  simonb  * 1. Redistributions of source code must retain the above copyright
     20  1.1  simonb  *    notice, this list of conditions and the following disclaimer.
     21  1.1  simonb  * 2. Redistributions in binary form must reproduce the above copyright
     22  1.1  simonb  *    notice, this list of conditions and the following disclaimer in the
     23  1.1  simonb  *    documentation and/or other materials provided with the distribution.
     24  1.3     agc  * 3. Neither the name of the University nor the names of its contributors
     25  1.1  simonb  *    may be used to endorse or promote products derived from this software
     26  1.1  simonb  *    without specific prior written permission.
     27  1.1  simonb  *
     28  1.1  simonb  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  1.1  simonb  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  1.1  simonb  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  1.1  simonb  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  1.1  simonb  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  1.1  simonb  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  1.1  simonb  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  1.1  simonb  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  1.1  simonb  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  1.1  simonb  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  1.1  simonb  * SUCH DAMAGE.
     39  1.1  simonb  *
     40  1.1  simonb  *	@(#)fpu_div.c	8.1 (Berkeley) 6/11/93
     41  1.1  simonb  */
     42  1.1  simonb 
     43  1.1  simonb /*
     44  1.1  simonb  * Perform an FPU divide (return x / y).
     45  1.1  simonb  */
     46  1.2   lukem 
     47  1.2   lukem #include <sys/cdefs.h>
     48  1.9     rin __KERNEL_RCSID(0, "$NetBSD: fpu_div.c,v 1.9 2022/09/06 23:04:08 rin Exp $");
     49  1.1  simonb 
     50  1.1  simonb #include <sys/types.h>
     51  1.1  simonb #if defined(DIAGNOSTIC)||defined(DEBUG)
     52  1.1  simonb #include <sys/systm.h>
     53  1.1  simonb #endif
     54  1.1  simonb 
     55  1.5     rin #include <machine/fpu.h>
     56  1.1  simonb #include <machine/reg.h>
     57  1.1  simonb 
     58  1.1  simonb #include <powerpc/fpu/fpu_arith.h>
     59  1.1  simonb #include <powerpc/fpu/fpu_emu.h>
     60  1.1  simonb 
     61  1.1  simonb /*
     62  1.1  simonb  * Division of normal numbers is done as follows:
     63  1.1  simonb  *
     64  1.1  simonb  * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e.
     65  1.1  simonb  * If X and Y are the mantissas (1.bbbb's), the quotient is then:
     66  1.1  simonb  *
     67  1.1  simonb  *	q = (X / Y) * 2^((x exponent) - (y exponent))
     68  1.1  simonb  *
     69  1.1  simonb  * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y)
     70  1.1  simonb  * will be in [0.5,2.0).  Moreover, it will be less than 1.0 if and only
     71  1.1  simonb  * if X < Y.  In that case, it will have to be shifted left one bit to
     72  1.1  simonb  * become a normal number, and the exponent decremented.  Thus, the
     73  1.1  simonb  * desired exponent is:
     74  1.1  simonb  *
     75  1.1  simonb  *	left_shift = x->fp_mant < y->fp_mant;
     76  1.1  simonb  *	result_exp = x->fp_exp - y->fp_exp - left_shift;
     77  1.1  simonb  *
     78  1.1  simonb  * The quotient mantissa X/Y can then be computed one bit at a time
     79  1.1  simonb  * using the following algorithm:
     80  1.1  simonb  *
     81  1.1  simonb  *	Q = 0;			-- Initial quotient.
     82  1.1  simonb  *	R = X;			-- Initial remainder,
     83  1.1  simonb  *	if (left_shift)		--   but fixed up in advance.
     84  1.1  simonb  *		R *= 2;
     85  1.1  simonb  *	for (bit = FP_NMANT; --bit >= 0; R *= 2) {
     86  1.1  simonb  *		if (R >= Y) {
     87  1.1  simonb  *			Q |= 1 << bit;
     88  1.1  simonb  *			R -= Y;
     89  1.1  simonb  *		}
     90  1.1  simonb  *	}
     91  1.1  simonb  *
     92  1.1  simonb  * The subtraction R -= Y always removes the uppermost bit from R (and
     93  1.1  simonb  * can sometimes remove additional lower-order 1 bits); this proof is
     94  1.1  simonb  * left to the reader.
     95  1.1  simonb  *
     96  1.1  simonb  * This loop correctly calculates the guard and round bits since they are
     97  1.1  simonb  * included in the expanded internal representation.  The sticky bit
     98  1.1  simonb  * is to be set if and only if any other bits beyond guard and round
     99  1.1  simonb  * would be set.  From the above it is obvious that this is true if and
    100  1.1  simonb  * only if the remainder R is nonzero when the loop terminates.
    101  1.1  simonb  *
    102  1.1  simonb  * Examining the loop above, we can see that the quotient Q is built
    103  1.1  simonb  * one bit at a time ``from the top down''.  This means that we can
    104  1.1  simonb  * dispense with the multi-word arithmetic and just build it one word
    105  1.1  simonb  * at a time, writing each result word when it is done.
    106  1.1  simonb  *
    107  1.1  simonb  * Furthermore, since X and Y are both in [1.0,2.0), we know that,
    108  1.1  simonb  * initially, R >= Y.  (Recall that, if X < Y, R is set to X * 2 and
    109  1.1  simonb  * is therefore at in [2.0,4.0).)  Thus Q is sure to have bit FP_NMANT-1
    110  1.1  simonb  * set, and R can be set initially to either X - Y (when X >= Y) or
    111  1.1  simonb  * 2X - Y (when X < Y).  In addition, comparing R and Y is difficult,
    112  1.1  simonb  * so we will simply calculate R - Y and see if that underflows.
    113  1.1  simonb  * This leads to the following revised version of the algorithm:
    114  1.1  simonb  *
    115  1.1  simonb  *	R = X;
    116  1.1  simonb  *	bit = FP_1;
    117  1.1  simonb  *	D = R - Y;
    118  1.1  simonb  *	if (D >= 0) {
    119  1.1  simonb  *		result_exp = x->fp_exp - y->fp_exp;
    120  1.1  simonb  *		R = D;
    121  1.1  simonb  *		q = bit;
    122  1.1  simonb  *		bit >>= 1;
    123  1.1  simonb  *	} else {
    124  1.1  simonb  *		result_exp = x->fp_exp - y->fp_exp - 1;
    125  1.1  simonb  *		q = 0;
    126  1.1  simonb  *	}
    127  1.1  simonb  *	R <<= 1;
    128  1.1  simonb  *	do  {
    129  1.1  simonb  *		D = R - Y;
    130  1.1  simonb  *		if (D >= 0) {
    131  1.1  simonb  *			q |= bit;
    132  1.1  simonb  *			R = D;
    133  1.1  simonb  *		}
    134  1.1  simonb  *		R <<= 1;
    135  1.1  simonb  *	} while ((bit >>= 1) != 0);
    136  1.1  simonb  *	Q[0] = q;
    137  1.1  simonb  *	for (i = 1; i < 4; i++) {
    138  1.1  simonb  *		q = 0, bit = 1 << 31;
    139  1.1  simonb  *		do {
    140  1.1  simonb  *			D = R - Y;
    141  1.1  simonb  *			if (D >= 0) {
    142  1.1  simonb  *				q |= bit;
    143  1.1  simonb  *				R = D;
    144  1.1  simonb  *			}
    145  1.1  simonb  *			R <<= 1;
    146  1.1  simonb  *		} while ((bit >>= 1) != 0);
    147  1.1  simonb  *		Q[i] = q;
    148  1.1  simonb  *	}
    149  1.1  simonb  *
    150  1.1  simonb  * This can be refined just a bit further by moving the `R <<= 1'
    151  1.1  simonb  * calculations to the front of the do-loops and eliding the first one.
    152  1.1  simonb  * The process can be terminated immediately whenever R becomes 0, but
    153  1.1  simonb  * this is relatively rare, and we do not bother.
    154  1.1  simonb  */
    155  1.1  simonb 
    156  1.1  simonb struct fpn *
    157  1.1  simonb fpu_div(struct fpemu *fe)
    158  1.1  simonb {
    159  1.1  simonb 	struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
    160  1.1  simonb 	u_int q, bit;
    161  1.1  simonb 	u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3;
    162  1.1  simonb 	FPU_DECL_CARRY
    163  1.1  simonb 
    164  1.1  simonb 	/*
    165  1.1  simonb 	 * Since divide is not commutative, we cannot just use ORDER.
    166  1.1  simonb 	 * Check either operand for NaN first; if there is at least one,
    167  1.1  simonb 	 * order the signalling one (if only one) onto the right, then
    168  1.1  simonb 	 * return it.  Otherwise we have the following cases:
    169  1.1  simonb 	 *
    170  1.1  simonb 	 *	Inf / Inf = NaN, plus NV exception
    171  1.1  simonb 	 *	Inf / num = Inf [i.e., return x]
    172  1.1  simonb 	 *	Inf / 0   = Inf [i.e., return x]
    173  1.1  simonb 	 *	0 / Inf = 0 [i.e., return x]
    174  1.1  simonb 	 *	0 / num = 0 [i.e., return x]
    175  1.1  simonb 	 *	0 / 0   = NaN, plus NV exception
    176  1.1  simonb 	 *	num / Inf = 0
    177  1.1  simonb 	 *	num / num = num (do the divide)
    178  1.1  simonb 	 *	num / 0   = Inf, plus DZ exception
    179  1.1  simonb 	 */
    180  1.1  simonb 	DPRINTF(FPE_REG, ("fpu_div:\n"));
    181  1.1  simonb 	DUMPFPN(FPE_REG, x);
    182  1.1  simonb 	DUMPFPN(FPE_REG, y);
    183  1.1  simonb 	DPRINTF(FPE_REG, ("=>\n"));
    184  1.1  simonb 	if (ISNAN(x) || ISNAN(y)) {
    185  1.7     rin 		if (ISSNAN(x) || ISSNAN(y))
    186  1.7     rin 			fe->fe_cx |= FPSCR_VXSNAN;
    187  1.9     rin 		if (ISNAN(x))
    188  1.9     rin 			y = x;
    189  1.1  simonb 		DUMPFPN(FPE_REG, y);
    190  1.1  simonb 		return (y);
    191  1.1  simonb 	}
    192  1.1  simonb 	/*
    193  1.1  simonb 	 * Need to split the following out cause they generate different
    194  1.8     rin 	 * exceptions.
    195  1.1  simonb 	 */
    196  1.1  simonb 	if (ISINF(x)) {
    197  1.1  simonb 		if (x->fp_class == y->fp_class) {
    198  1.1  simonb 			fe->fe_cx |= FPSCR_VXIDI;
    199  1.1  simonb 			return (fpu_newnan(fe));
    200  1.1  simonb 		}
    201  1.1  simonb 		DUMPFPN(FPE_REG, x);
    202  1.1  simonb 		return (x);
    203  1.1  simonb 	}
    204  1.1  simonb 	if (ISZERO(x)) {
    205  1.1  simonb 		if (x->fp_class == y->fp_class) {
    206  1.1  simonb 			fe->fe_cx |= FPSCR_VXZDZ;
    207  1.1  simonb 			return (fpu_newnan(fe));
    208  1.1  simonb 		}
    209  1.1  simonb 		DUMPFPN(FPE_REG, x);
    210  1.1  simonb 		return (x);
    211  1.1  simonb 	}
    212  1.1  simonb 
    213  1.1  simonb 	/* all results at this point use XOR of operand signs */
    214  1.1  simonb 	x->fp_sign ^= y->fp_sign;
    215  1.1  simonb 	if (ISINF(y)) {
    216  1.1  simonb 		x->fp_class = FPC_ZERO;
    217  1.1  simonb 		DUMPFPN(FPE_REG, x);
    218  1.1  simonb 		return (x);
    219  1.1  simonb 	}
    220  1.1  simonb 	if (ISZERO(y)) {
    221  1.1  simonb 		fe->fe_cx = FPSCR_ZX;
    222  1.1  simonb 		x->fp_class = FPC_INF;
    223  1.1  simonb 		DUMPFPN(FPE_REG, x);
    224  1.1  simonb 		return (x);
    225  1.1  simonb 	}
    226  1.1  simonb 
    227  1.1  simonb 	/*
    228  1.1  simonb 	 * Macros for the divide.  See comments at top for algorithm.
    229  1.1  simonb 	 * Note that we expand R, D, and Y here.
    230  1.1  simonb 	 */
    231  1.1  simonb 
    232  1.1  simonb #define	SUBTRACT		/* D = R - Y */ \
    233  1.1  simonb 	FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \
    234  1.1  simonb 	FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0)
    235  1.1  simonb 
    236  1.1  simonb #define	NONNEGATIVE		/* D >= 0 */ \
    237  1.1  simonb 	((int)d0 >= 0)
    238  1.1  simonb 
    239  1.1  simonb #ifdef FPU_SHL1_BY_ADD
    240  1.1  simonb #define	SHL1			/* R <<= 1 */ \
    241  1.1  simonb 	FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \
    242  1.1  simonb 	FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0)
    243  1.1  simonb #else
    244  1.1  simonb #define	SHL1 \
    245  1.1  simonb 	r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \
    246  1.1  simonb 	r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1
    247  1.1  simonb #endif
    248  1.1  simonb 
    249  1.1  simonb #define	LOOP			/* do ... while (bit >>= 1) */ \
    250  1.1  simonb 	do { \
    251  1.1  simonb 		SHL1; \
    252  1.1  simonb 		SUBTRACT; \
    253  1.1  simonb 		if (NONNEGATIVE) { \
    254  1.1  simonb 			q |= bit; \
    255  1.1  simonb 			r0 = d0, r1 = d1, r2 = d2, r3 = d3; \
    256  1.1  simonb 		} \
    257  1.1  simonb 	} while ((bit >>= 1) != 0)
    258  1.1  simonb 
    259  1.1  simonb #define	WORD(r, i)			/* calculate r->fp_mant[i] */ \
    260  1.1  simonb 	q = 0; \
    261  1.1  simonb 	bit = 1 << 31; \
    262  1.1  simonb 	LOOP; \
    263  1.1  simonb 	(x)->fp_mant[i] = q
    264  1.1  simonb 
    265  1.1  simonb 	/* Setup.  Note that we put our result in x. */
    266  1.1  simonb 	r0 = x->fp_mant[0];
    267  1.1  simonb 	r1 = x->fp_mant[1];
    268  1.1  simonb 	r2 = x->fp_mant[2];
    269  1.1  simonb 	r3 = x->fp_mant[3];
    270  1.1  simonb 	y0 = y->fp_mant[0];
    271  1.1  simonb 	y1 = y->fp_mant[1];
    272  1.1  simonb 	y2 = y->fp_mant[2];
    273  1.1  simonb 	y3 = y->fp_mant[3];
    274  1.1  simonb 
    275  1.1  simonb 	bit = FP_1;
    276  1.1  simonb 	SUBTRACT;
    277  1.1  simonb 	if (NONNEGATIVE) {
    278  1.1  simonb 		x->fp_exp -= y->fp_exp;
    279  1.1  simonb 		r0 = d0, r1 = d1, r2 = d2, r3 = d3;
    280  1.1  simonb 		q = bit;
    281  1.1  simonb 		bit >>= 1;
    282  1.1  simonb 	} else {
    283  1.1  simonb 		x->fp_exp -= y->fp_exp + 1;
    284  1.1  simonb 		q = 0;
    285  1.1  simonb 	}
    286  1.1  simonb 	LOOP;
    287  1.1  simonb 	x->fp_mant[0] = q;
    288  1.1  simonb 	WORD(x, 1);
    289  1.1  simonb 	WORD(x, 2);
    290  1.1  simonb 	WORD(x, 3);
    291  1.1  simonb 	x->fp_sticky = r0 | r1 | r2 | r3;
    292  1.1  simonb 
    293  1.1  simonb 	DUMPFPN(FPE_REG, x);
    294  1.1  simonb 	return (x);
    295  1.1  simonb }
    296