1 1.12 rin /* $NetBSD: fpu_emu.h,v 1.12 2022/09/07 02:41:39 rin Exp $ */ 2 1.1 simonb 3 1.1 simonb /* 4 1.1 simonb * Copyright (c) 1992, 1993 5 1.1 simonb * The Regents of the University of California. All rights reserved. 6 1.1 simonb * 7 1.1 simonb * This software was developed by the Computer Systems Engineering group 8 1.1 simonb * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 9 1.1 simonb * contributed to Berkeley. 10 1.1 simonb * 11 1.1 simonb * All advertising materials mentioning features or use of this software 12 1.1 simonb * must display the following acknowledgement: 13 1.1 simonb * This product includes software developed by the University of 14 1.1 simonb * California, Lawrence Berkeley Laboratory. 15 1.1 simonb * 16 1.1 simonb * Redistribution and use in source and binary forms, with or without 17 1.1 simonb * modification, are permitted provided that the following conditions 18 1.1 simonb * are met: 19 1.1 simonb * 1. Redistributions of source code must retain the above copyright 20 1.1 simonb * notice, this list of conditions and the following disclaimer. 21 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright 22 1.1 simonb * notice, this list of conditions and the following disclaimer in the 23 1.1 simonb * documentation and/or other materials provided with the distribution. 24 1.2 agc * 3. Neither the name of the University nor the names of its contributors 25 1.1 simonb * may be used to endorse or promote products derived from this software 26 1.1 simonb * without specific prior written permission. 27 1.1 simonb * 28 1.1 simonb * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 1.1 simonb * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 1.1 simonb * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 1.1 simonb * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 1.1 simonb * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 1.1 simonb * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 1.1 simonb * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 1.1 simonb * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 1.1 simonb * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 1.1 simonb * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 1.1 simonb * SUCH DAMAGE. 39 1.1 simonb * 40 1.1 simonb * @(#)fpu_emu.h 8.1 (Berkeley) 6/11/93 41 1.1 simonb */ 42 1.1 simonb 43 1.1 simonb /* 44 1.1 simonb * Floating point emulator (tailored for SPARC, but structurally 45 1.1 simonb * machine-independent). 46 1.1 simonb * 47 1.1 simonb * Floating point numbers are carried around internally in an `expanded' 48 1.1 simonb * or `unpacked' form consisting of: 49 1.1 simonb * - sign 50 1.1 simonb * - unbiased exponent 51 1.1 simonb * - mantissa (`1.' + 112-bit fraction + guard + round) 52 1.1 simonb * - sticky bit 53 1.1 simonb * Any implied `1' bit is inserted, giving a 113-bit mantissa that is 54 1.1 simonb * always nonzero. Additional low-order `guard' and `round' bits are 55 1.1 simonb * scrunched in, making the entire mantissa 115 bits long. This is divided 56 1.1 simonb * into four 32-bit words, with `spare' bits left over in the upper part 57 1.1 simonb * of the top word (the high bits of fp_mant[0]). An internal `exploded' 58 1.1 simonb * number is thus kept within the half-open interval [1.0,2.0) (but see 59 1.1 simonb * the `number classes' below). This holds even for denormalized numbers: 60 1.1 simonb * when we explode an external denorm, we normalize it, introducing low-order 61 1.1 simonb * zero bits, so that the rest of the code always sees normalized values. 62 1.1 simonb * 63 1.1 simonb * Note that a number of our algorithms use the `spare' bits at the top. 64 1.1 simonb * The most demanding algorithm---the one for sqrt---depends on two such 65 1.1 simonb * bits, so that it can represent values up to (but not including) 8.0, 66 1.1 simonb * and then it needs a carry on top of that, so that we need three `spares'. 67 1.1 simonb * 68 1.1 simonb * The sticky-word is 32 bits so that we can use `OR' operators to goosh 69 1.1 simonb * whole words from the mantissa into it. 70 1.1 simonb * 71 1.1 simonb * All operations are done in this internal extended precision. According 72 1.1 simonb * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is, 73 1.1 simonb * it is OK to do a+b in extended precision and then round the result to 74 1.1 simonb * single precision---provided single, double, and extended precisions are 75 1.1 simonb * `far enough apart' (they always are), but we will try to avoid any such 76 1.1 simonb * extra work where possible. 77 1.1 simonb */ 78 1.1 simonb struct fpn { 79 1.1 simonb int fp_class; /* see below */ 80 1.1 simonb int fp_sign; /* 0 => positive, 1 => negative */ 81 1.1 simonb int fp_exp; /* exponent (unbiased) */ 82 1.1 simonb int fp_sticky; /* nonzero bits lost at right end */ 83 1.1 simonb u_int fp_mant[4]; /* 115-bit mantissa */ 84 1.1 simonb }; 85 1.1 simonb 86 1.1 simonb #define FP_NMANT 115 /* total bits in mantissa (incl g,r) */ 87 1.1 simonb #define FP_NG 2 /* number of low-order guard bits */ 88 1.1 simonb #define FP_LG ((FP_NMANT - 1) & 31) /* log2(1.0) for fp_mant[0] */ 89 1.1 simonb #define FP_LG2 ((FP_NMANT - 1) & 63) /* log2(1.0) for fp_mant[0] and fp_mant[1] */ 90 1.1 simonb #define FP_QUIETBIT (1 << (FP_LG - 1)) /* Quiet bit in NaNs (0.5) */ 91 1.1 simonb #define FP_1 (1 << FP_LG) /* 1.0 in fp_mant[0] */ 92 1.1 simonb #define FP_2 (1 << (FP_LG + 1)) /* 2.0 in fp_mant[0] */ 93 1.1 simonb 94 1.1 simonb /* 95 1.1 simonb * Number classes. Since zero, Inf, and NaN cannot be represented using 96 1.1 simonb * the above layout, we distinguish these from other numbers via a class. 97 1.1 simonb * In addition, to make computation easier and to follow Appendix N of 98 1.1 simonb * the SPARC Version 8 standard, we give each kind of NaN a separate class. 99 1.1 simonb */ 100 1.1 simonb #define FPC_SNAN -2 /* signalling NaN (sign irrelevant) */ 101 1.1 simonb #define FPC_QNAN -1 /* quiet NaN (sign irrelevant) */ 102 1.1 simonb #define FPC_ZERO 0 /* zero (sign matters) */ 103 1.1 simonb #define FPC_NUM 1 /* number (sign matters) */ 104 1.1 simonb #define FPC_INF 2 /* infinity (sign matters) */ 105 1.1 simonb 106 1.1 simonb #define ISSNAN(fp) ((fp)->fp_class == FPC_SNAN) 107 1.1 simonb #define ISQNAN(fp) ((fp)->fp_class == FPC_QNAN) 108 1.1 simonb #define ISNAN(fp) ((fp)->fp_class < 0) 109 1.1 simonb #define ISZERO(fp) ((fp)->fp_class == 0) 110 1.1 simonb #define ISINF(fp) ((fp)->fp_class == FPC_INF) 111 1.1 simonb 112 1.1 simonb /* 113 1.1 simonb * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points 114 1.1 simonb * to the `more significant' operand for our purposes. Appendix N says that 115 1.1 simonb * the result of a computation involving two numbers are: 116 1.1 simonb * 117 1.1 simonb * If both are SNaN: operand 2, converted to Quiet 118 1.1 simonb * If only one is SNaN: the SNaN operand, converted to Quiet 119 1.1 simonb * If both are QNaN: operand 2 120 1.1 simonb * If only one is QNaN: the QNaN operand 121 1.1 simonb * 122 1.1 simonb * In addition, in operations with an Inf operand, the result is usually 123 1.1 simonb * Inf. The class numbers are carefully arranged so that if 124 1.1 simonb * (unsigned)class(op1) > (unsigned)class(op2) 125 1.1 simonb * then op1 is the one we want; otherwise op2 is the one we want. 126 1.1 simonb */ 127 1.1 simonb #define ORDER(x, y) { \ 128 1.1 simonb if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \ 129 1.1 simonb SWAP(x, y); \ 130 1.1 simonb } 131 1.1 simonb #define SWAP(x, y) { \ 132 1.1 simonb struct fpn *swap; \ 133 1.1 simonb swap = (x), (x) = (y), (y) = swap; \ 134 1.1 simonb } 135 1.1 simonb 136 1.1 simonb /* 137 1.5 rin * FPU data types. 138 1.5 rin */ 139 1.7 rin #define FTYPE_INT 0x00 /* data = 32-bit signed integer */ 140 1.7 rin #define FTYPE_LNG 0x01 /* data = 64-bit signed long integer */ 141 1.7 rin #define FTYPE_SNG 0x02 /* data = 32-bit float */ 142 1.7 rin #define FTYPE_DBL 0x04 /* data = 64-bit double */ 143 1.7 rin #define FTYPE_RD_RZ 0x08 144 1.9 rin #define FTYPE_FPSCR 0x10 145 1.9 rin #define FTYPE_FLAG_MASK (FTYPE_RD_RZ | FTYPE_FPSCR) 146 1.5 rin 147 1.5 rin /* 148 1.1 simonb * Emulator state. 149 1.1 simonb */ 150 1.1 simonb struct fpemu { 151 1.1 simonb struct fpreg *fe_fpstate; /* registers, etc */ 152 1.1 simonb int fe_fpscr; /* fpscr copy (modified during op) */ 153 1.1 simonb int fe_cx; /* keep track of exceptions */ 154 1.1 simonb struct fpn fe_f1; /* operand 1 */ 155 1.1 simonb struct fpn fe_f2; /* operand 2, if required */ 156 1.1 simonb struct fpn fe_f3; /* available storage for result */ 157 1.4 matt vaddr_t fe_addr; /* last address accessed */ 158 1.1 simonb }; 159 1.1 simonb 160 1.1 simonb /* 161 1.1 simonb * Arithmetic functions. 162 1.1 simonb * Each of these may modify its inputs (f1,f2) and/or the temporary. 163 1.1 simonb * Each returns a pointer to the result and/or sets exceptions. 164 1.1 simonb */ 165 1.1 simonb struct fpn *fpu_add(struct fpemu *); 166 1.1 simonb struct fpn *fpu_mul(struct fpemu *); 167 1.1 simonb struct fpn *fpu_div(struct fpemu *); 168 1.1 simonb struct fpn *fpu_sqrt(struct fpemu *); 169 1.1 simonb 170 1.12 rin static inline struct fpn * 171 1.12 rin fpu_sub(struct fpemu *fe) 172 1.12 rin { 173 1.12 rin struct fpn *fp = &fe->fe_f2; 174 1.12 rin 175 1.12 rin if (!ISNAN(fp)) 176 1.12 rin fp->fp_sign ^= 1; 177 1.12 rin return fpu_add(fe); 178 1.12 rin } 179 1.12 rin 180 1.1 simonb /* 181 1.1 simonb * Other functions. 182 1.1 simonb */ 183 1.1 simonb 184 1.1 simonb /* Perform a compare instruction (with or without unordered exception). */ 185 1.1 simonb void fpu_compare(struct fpemu *, int); 186 1.1 simonb 187 1.1 simonb /* Build a new Quiet NaN (sign=0, frac=all 1's). */ 188 1.1 simonb struct fpn *fpu_newnan(struct fpemu *); 189 1.1 simonb 190 1.1 simonb /* 191 1.1 simonb * Shift a number right some number of bits, taking care of round/sticky. 192 1.1 simonb * Note that the result is probably not a well-formed number (it will lack 193 1.1 simonb * the normal 1-bit mant[0]&FP_1). 194 1.1 simonb */ 195 1.1 simonb int fpu_shr(struct fpn *, int); 196 1.1 simonb 197 1.10 rin void fpu_norm(struct fpn *); 198 1.10 rin 199 1.8 rin void fpu_explode(struct fpemu *, struct fpn *, int, uint64_t); 200 1.8 rin void fpu_implode(struct fpemu *, struct fpn *, int, uint64_t *); 201 1.1 simonb 202 1.1 simonb #ifdef DEBUG 203 1.1 simonb #define FPE_EX 0x1 204 1.1 simonb #define FPE_INSN 0x2 205 1.1 simonb #define FPE_OP 0x4 206 1.1 simonb #define FPE_REG 0x8 207 1.1 simonb extern int fpe_debug; 208 1.1 simonb void fpu_dumpfpn(struct fpn *); 209 1.1 simonb #define DPRINTF(x, y) if (fpe_debug & (x)) printf y 210 1.1 simonb #define DUMPFPN(x, f) if (fpe_debug & (x)) fpu_dumpfpn((f)) 211 1.1 simonb #else 212 1.1 simonb #define DPRINTF(x, y) 213 1.1 simonb #define DUMPFPN(x, f) 214 1.1 simonb #endif 215