Home | History | Annotate | Line # | Download | only in fpu
fpu_emu.h revision 1.12
      1  1.12     rin /*	$NetBSD: fpu_emu.h,v 1.12 2022/09/07 02:41:39 rin Exp $ */
      2   1.1  simonb 
      3   1.1  simonb /*
      4   1.1  simonb  * Copyright (c) 1992, 1993
      5   1.1  simonb  *	The Regents of the University of California.  All rights reserved.
      6   1.1  simonb  *
      7   1.1  simonb  * This software was developed by the Computer Systems Engineering group
      8   1.1  simonb  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9   1.1  simonb  * contributed to Berkeley.
     10   1.1  simonb  *
     11   1.1  simonb  * All advertising materials mentioning features or use of this software
     12   1.1  simonb  * must display the following acknowledgement:
     13   1.1  simonb  *	This product includes software developed by the University of
     14   1.1  simonb  *	California, Lawrence Berkeley Laboratory.
     15   1.1  simonb  *
     16   1.1  simonb  * Redistribution and use in source and binary forms, with or without
     17   1.1  simonb  * modification, are permitted provided that the following conditions
     18   1.1  simonb  * are met:
     19   1.1  simonb  * 1. Redistributions of source code must retain the above copyright
     20   1.1  simonb  *    notice, this list of conditions and the following disclaimer.
     21   1.1  simonb  * 2. Redistributions in binary form must reproduce the above copyright
     22   1.1  simonb  *    notice, this list of conditions and the following disclaimer in the
     23   1.1  simonb  *    documentation and/or other materials provided with the distribution.
     24   1.2     agc  * 3. Neither the name of the University nor the names of its contributors
     25   1.1  simonb  *    may be used to endorse or promote products derived from this software
     26   1.1  simonb  *    without specific prior written permission.
     27   1.1  simonb  *
     28   1.1  simonb  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29   1.1  simonb  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30   1.1  simonb  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31   1.1  simonb  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32   1.1  simonb  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33   1.1  simonb  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34   1.1  simonb  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35   1.1  simonb  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36   1.1  simonb  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37   1.1  simonb  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38   1.1  simonb  * SUCH DAMAGE.
     39   1.1  simonb  *
     40   1.1  simonb  *	@(#)fpu_emu.h	8.1 (Berkeley) 6/11/93
     41   1.1  simonb  */
     42   1.1  simonb 
     43   1.1  simonb /*
     44   1.1  simonb  * Floating point emulator (tailored for SPARC, but structurally
     45   1.1  simonb  * machine-independent).
     46   1.1  simonb  *
     47   1.1  simonb  * Floating point numbers are carried around internally in an `expanded'
     48   1.1  simonb  * or `unpacked' form consisting of:
     49   1.1  simonb  *	- sign
     50   1.1  simonb  *	- unbiased exponent
     51   1.1  simonb  *	- mantissa (`1.' + 112-bit fraction + guard + round)
     52   1.1  simonb  *	- sticky bit
     53   1.1  simonb  * Any implied `1' bit is inserted, giving a 113-bit mantissa that is
     54   1.1  simonb  * always nonzero.  Additional low-order `guard' and `round' bits are
     55   1.1  simonb  * scrunched in, making the entire mantissa 115 bits long.  This is divided
     56   1.1  simonb  * into four 32-bit words, with `spare' bits left over in the upper part
     57   1.1  simonb  * of the top word (the high bits of fp_mant[0]).  An internal `exploded'
     58   1.1  simonb  * number is thus kept within the half-open interval [1.0,2.0) (but see
     59   1.1  simonb  * the `number classes' below).  This holds even for denormalized numbers:
     60   1.1  simonb  * when we explode an external denorm, we normalize it, introducing low-order
     61   1.1  simonb  * zero bits, so that the rest of the code always sees normalized values.
     62   1.1  simonb  *
     63   1.1  simonb  * Note that a number of our algorithms use the `spare' bits at the top.
     64   1.1  simonb  * The most demanding algorithm---the one for sqrt---depends on two such
     65   1.1  simonb  * bits, so that it can represent values up to (but not including) 8.0,
     66   1.1  simonb  * and then it needs a carry on top of that, so that we need three `spares'.
     67   1.1  simonb  *
     68   1.1  simonb  * The sticky-word is 32 bits so that we can use `OR' operators to goosh
     69   1.1  simonb  * whole words from the mantissa into it.
     70   1.1  simonb  *
     71   1.1  simonb  * All operations are done in this internal extended precision.  According
     72   1.1  simonb  * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
     73   1.1  simonb  * it is OK to do a+b in extended precision and then round the result to
     74   1.1  simonb  * single precision---provided single, double, and extended precisions are
     75   1.1  simonb  * `far enough apart' (they always are), but we will try to avoid any such
     76   1.1  simonb  * extra work where possible.
     77   1.1  simonb  */
     78   1.1  simonb struct fpn {
     79   1.1  simonb 	int	fp_class;		/* see below */
     80   1.1  simonb 	int	fp_sign;		/* 0 => positive, 1 => negative */
     81   1.1  simonb 	int	fp_exp;			/* exponent (unbiased) */
     82   1.1  simonb 	int	fp_sticky;		/* nonzero bits lost at right end */
     83   1.1  simonb 	u_int	fp_mant[4];		/* 115-bit mantissa */
     84   1.1  simonb };
     85   1.1  simonb 
     86   1.1  simonb #define	FP_NMANT	115		/* total bits in mantissa (incl g,r) */
     87   1.1  simonb #define	FP_NG		2		/* number of low-order guard bits */
     88   1.1  simonb #define	FP_LG		((FP_NMANT - 1) & 31)	/* log2(1.0) for fp_mant[0] */
     89   1.1  simonb #define	FP_LG2		((FP_NMANT - 1) & 63)	/* log2(1.0) for fp_mant[0] and fp_mant[1] */
     90   1.1  simonb #define	FP_QUIETBIT	(1 << (FP_LG - 1))	/* Quiet bit in NaNs (0.5) */
     91   1.1  simonb #define	FP_1		(1 << FP_LG)		/* 1.0 in fp_mant[0] */
     92   1.1  simonb #define	FP_2		(1 << (FP_LG + 1))	/* 2.0 in fp_mant[0] */
     93   1.1  simonb 
     94   1.1  simonb /*
     95   1.1  simonb  * Number classes.  Since zero, Inf, and NaN cannot be represented using
     96   1.1  simonb  * the above layout, we distinguish these from other numbers via a class.
     97   1.1  simonb  * In addition, to make computation easier and to follow Appendix N of
     98   1.1  simonb  * the SPARC Version 8 standard, we give each kind of NaN a separate class.
     99   1.1  simonb  */
    100   1.1  simonb #define	FPC_SNAN	-2		/* signalling NaN (sign irrelevant) */
    101   1.1  simonb #define	FPC_QNAN	-1		/* quiet NaN (sign irrelevant) */
    102   1.1  simonb #define	FPC_ZERO	0		/* zero (sign matters) */
    103   1.1  simonb #define	FPC_NUM		1		/* number (sign matters) */
    104   1.1  simonb #define	FPC_INF		2		/* infinity (sign matters) */
    105   1.1  simonb 
    106   1.1  simonb #define	ISSNAN(fp)	((fp)->fp_class == FPC_SNAN)
    107   1.1  simonb #define	ISQNAN(fp)	((fp)->fp_class == FPC_QNAN)
    108   1.1  simonb #define	ISNAN(fp)	((fp)->fp_class < 0)
    109   1.1  simonb #define	ISZERO(fp)	((fp)->fp_class == 0)
    110   1.1  simonb #define	ISINF(fp)	((fp)->fp_class == FPC_INF)
    111   1.1  simonb 
    112   1.1  simonb /*
    113   1.1  simonb  * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
    114   1.1  simonb  * to the `more significant' operand for our purposes.  Appendix N says that
    115   1.1  simonb  * the result of a computation involving two numbers are:
    116   1.1  simonb  *
    117   1.1  simonb  *	If both are SNaN: operand 2, converted to Quiet
    118   1.1  simonb  *	If only one is SNaN: the SNaN operand, converted to Quiet
    119   1.1  simonb  *	If both are QNaN: operand 2
    120   1.1  simonb  *	If only one is QNaN: the QNaN operand
    121   1.1  simonb  *
    122   1.1  simonb  * In addition, in operations with an Inf operand, the result is usually
    123   1.1  simonb  * Inf.  The class numbers are carefully arranged so that if
    124   1.1  simonb  *	(unsigned)class(op1) > (unsigned)class(op2)
    125   1.1  simonb  * then op1 is the one we want; otherwise op2 is the one we want.
    126   1.1  simonb  */
    127   1.1  simonb #define	ORDER(x, y) { \
    128   1.1  simonb 	if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \
    129   1.1  simonb 		SWAP(x, y); \
    130   1.1  simonb }
    131   1.1  simonb #define	SWAP(x, y) { \
    132   1.1  simonb 	struct fpn *swap; \
    133   1.1  simonb 	swap = (x), (x) = (y), (y) = swap; \
    134   1.1  simonb }
    135   1.1  simonb 
    136   1.1  simonb /*
    137   1.5     rin  * FPU data types.
    138   1.5     rin  */
    139   1.7     rin #define	FTYPE_INT	0x00	/* data = 32-bit signed integer */
    140   1.7     rin #define	FTYPE_LNG	0x01	/* data = 64-bit signed long integer */
    141   1.7     rin #define	FTYPE_SNG	0x02	/* data = 32-bit float */
    142   1.7     rin #define	FTYPE_DBL	0x04	/* data = 64-bit double */
    143   1.7     rin #define	FTYPE_RD_RZ	0x08
    144   1.9     rin #define	FTYPE_FPSCR	0x10
    145   1.9     rin #define	FTYPE_FLAG_MASK	(FTYPE_RD_RZ | FTYPE_FPSCR)
    146   1.5     rin 
    147   1.5     rin /*
    148   1.1  simonb  * Emulator state.
    149   1.1  simonb  */
    150   1.1  simonb struct fpemu {
    151   1.1  simonb 	struct	fpreg *fe_fpstate;	/* registers, etc */
    152   1.1  simonb 	int	fe_fpscr;		/* fpscr copy (modified during op) */
    153   1.1  simonb 	int	fe_cx;			/* keep track of exceptions */
    154   1.1  simonb 	struct	fpn fe_f1;		/* operand 1 */
    155   1.1  simonb 	struct	fpn fe_f2;		/* operand 2, if required */
    156   1.1  simonb 	struct	fpn fe_f3;		/* available storage for result */
    157   1.4    matt 	vaddr_t fe_addr;		/* last address accessed */
    158   1.1  simonb };
    159   1.1  simonb 
    160   1.1  simonb /*
    161   1.1  simonb  * Arithmetic functions.
    162   1.1  simonb  * Each of these may modify its inputs (f1,f2) and/or the temporary.
    163   1.1  simonb  * Each returns a pointer to the result and/or sets exceptions.
    164   1.1  simonb  */
    165   1.1  simonb struct	fpn *fpu_add(struct fpemu *);
    166   1.1  simonb struct	fpn *fpu_mul(struct fpemu *);
    167   1.1  simonb struct	fpn *fpu_div(struct fpemu *);
    168   1.1  simonb struct	fpn *fpu_sqrt(struct fpemu *);
    169   1.1  simonb 
    170  1.12     rin static inline struct fpn *
    171  1.12     rin fpu_sub(struct fpemu *fe)
    172  1.12     rin {
    173  1.12     rin 	struct fpn *fp = &fe->fe_f2;
    174  1.12     rin 
    175  1.12     rin 	if (!ISNAN(fp))
    176  1.12     rin 		fp->fp_sign ^= 1;
    177  1.12     rin 	return fpu_add(fe);
    178  1.12     rin }
    179  1.12     rin 
    180   1.1  simonb /*
    181   1.1  simonb  * Other functions.
    182   1.1  simonb  */
    183   1.1  simonb 
    184   1.1  simonb /* Perform a compare instruction (with or without unordered exception). */
    185   1.1  simonb void	fpu_compare(struct fpemu *, int);
    186   1.1  simonb 
    187   1.1  simonb /* Build a new Quiet NaN (sign=0, frac=all 1's). */
    188   1.1  simonb struct	fpn *fpu_newnan(struct fpemu *);
    189   1.1  simonb 
    190   1.1  simonb /*
    191   1.1  simonb  * Shift a number right some number of bits, taking care of round/sticky.
    192   1.1  simonb  * Note that the result is probably not a well-formed number (it will lack
    193   1.1  simonb  * the normal 1-bit mant[0]&FP_1).
    194   1.1  simonb  */
    195   1.1  simonb int	fpu_shr(struct fpn *, int);
    196   1.1  simonb 
    197  1.10     rin void	fpu_norm(struct fpn *);
    198  1.10     rin 
    199   1.8     rin void	fpu_explode(struct fpemu *, struct fpn *, int, uint64_t);
    200   1.8     rin void	fpu_implode(struct fpemu *, struct fpn *, int, uint64_t *);
    201   1.1  simonb 
    202   1.1  simonb #ifdef DEBUG
    203   1.1  simonb #define	FPE_EX		0x1
    204   1.1  simonb #define	FPE_INSN	0x2
    205   1.1  simonb #define	FPE_OP		0x4
    206   1.1  simonb #define	FPE_REG		0x8
    207   1.1  simonb extern int fpe_debug;
    208   1.1  simonb void	fpu_dumpfpn(struct fpn *);
    209   1.1  simonb #define	DPRINTF(x, y)	if (fpe_debug & (x)) printf y
    210   1.1  simonb #define DUMPFPN(x, f)	if (fpe_debug & (x)) fpu_dumpfpn((f))
    211   1.1  simonb #else
    212   1.1  simonb #define	DPRINTF(x, y)
    213   1.1  simonb #define DUMPFPN(x, f)
    214   1.1  simonb #endif
    215