Home | History | Annotate | Line # | Download | only in fpu
fpu_emu.h revision 1.9
      1  1.9     rin /*	$NetBSD: fpu_emu.h,v 1.9 2022/09/04 13:14:57 rin Exp $ */
      2  1.1  simonb 
      3  1.1  simonb /*
      4  1.1  simonb  * Copyright (c) 1992, 1993
      5  1.1  simonb  *	The Regents of the University of California.  All rights reserved.
      6  1.1  simonb  *
      7  1.1  simonb  * This software was developed by the Computer Systems Engineering group
      8  1.1  simonb  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  1.1  simonb  * contributed to Berkeley.
     10  1.1  simonb  *
     11  1.1  simonb  * All advertising materials mentioning features or use of this software
     12  1.1  simonb  * must display the following acknowledgement:
     13  1.1  simonb  *	This product includes software developed by the University of
     14  1.1  simonb  *	California, Lawrence Berkeley Laboratory.
     15  1.1  simonb  *
     16  1.1  simonb  * Redistribution and use in source and binary forms, with or without
     17  1.1  simonb  * modification, are permitted provided that the following conditions
     18  1.1  simonb  * are met:
     19  1.1  simonb  * 1. Redistributions of source code must retain the above copyright
     20  1.1  simonb  *    notice, this list of conditions and the following disclaimer.
     21  1.1  simonb  * 2. Redistributions in binary form must reproduce the above copyright
     22  1.1  simonb  *    notice, this list of conditions and the following disclaimer in the
     23  1.1  simonb  *    documentation and/or other materials provided with the distribution.
     24  1.2     agc  * 3. Neither the name of the University nor the names of its contributors
     25  1.1  simonb  *    may be used to endorse or promote products derived from this software
     26  1.1  simonb  *    without specific prior written permission.
     27  1.1  simonb  *
     28  1.1  simonb  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  1.1  simonb  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  1.1  simonb  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  1.1  simonb  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  1.1  simonb  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  1.1  simonb  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  1.1  simonb  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  1.1  simonb  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  1.1  simonb  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  1.1  simonb  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  1.1  simonb  * SUCH DAMAGE.
     39  1.1  simonb  *
     40  1.1  simonb  *	@(#)fpu_emu.h	8.1 (Berkeley) 6/11/93
     41  1.1  simonb  */
     42  1.1  simonb 
     43  1.1  simonb /*
     44  1.1  simonb  * Floating point emulator (tailored for SPARC, but structurally
     45  1.1  simonb  * machine-independent).
     46  1.1  simonb  *
     47  1.1  simonb  * Floating point numbers are carried around internally in an `expanded'
     48  1.1  simonb  * or `unpacked' form consisting of:
     49  1.1  simonb  *	- sign
     50  1.1  simonb  *	- unbiased exponent
     51  1.1  simonb  *	- mantissa (`1.' + 112-bit fraction + guard + round)
     52  1.1  simonb  *	- sticky bit
     53  1.1  simonb  * Any implied `1' bit is inserted, giving a 113-bit mantissa that is
     54  1.1  simonb  * always nonzero.  Additional low-order `guard' and `round' bits are
     55  1.1  simonb  * scrunched in, making the entire mantissa 115 bits long.  This is divided
     56  1.1  simonb  * into four 32-bit words, with `spare' bits left over in the upper part
     57  1.1  simonb  * of the top word (the high bits of fp_mant[0]).  An internal `exploded'
     58  1.1  simonb  * number is thus kept within the half-open interval [1.0,2.0) (but see
     59  1.1  simonb  * the `number classes' below).  This holds even for denormalized numbers:
     60  1.1  simonb  * when we explode an external denorm, we normalize it, introducing low-order
     61  1.1  simonb  * zero bits, so that the rest of the code always sees normalized values.
     62  1.1  simonb  *
     63  1.1  simonb  * Note that a number of our algorithms use the `spare' bits at the top.
     64  1.1  simonb  * The most demanding algorithm---the one for sqrt---depends on two such
     65  1.1  simonb  * bits, so that it can represent values up to (but not including) 8.0,
     66  1.1  simonb  * and then it needs a carry on top of that, so that we need three `spares'.
     67  1.1  simonb  *
     68  1.1  simonb  * The sticky-word is 32 bits so that we can use `OR' operators to goosh
     69  1.1  simonb  * whole words from the mantissa into it.
     70  1.1  simonb  *
     71  1.1  simonb  * All operations are done in this internal extended precision.  According
     72  1.1  simonb  * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
     73  1.1  simonb  * it is OK to do a+b in extended precision and then round the result to
     74  1.1  simonb  * single precision---provided single, double, and extended precisions are
     75  1.1  simonb  * `far enough apart' (they always are), but we will try to avoid any such
     76  1.1  simonb  * extra work where possible.
     77  1.1  simonb  */
     78  1.1  simonb struct fpn {
     79  1.1  simonb 	int	fp_class;		/* see below */
     80  1.1  simonb 	int	fp_sign;		/* 0 => positive, 1 => negative */
     81  1.1  simonb 	int	fp_exp;			/* exponent (unbiased) */
     82  1.1  simonb 	int	fp_sticky;		/* nonzero bits lost at right end */
     83  1.1  simonb 	u_int	fp_mant[4];		/* 115-bit mantissa */
     84  1.1  simonb };
     85  1.1  simonb 
     86  1.1  simonb #define	FP_NMANT	115		/* total bits in mantissa (incl g,r) */
     87  1.1  simonb #define	FP_NG		2		/* number of low-order guard bits */
     88  1.1  simonb #define	FP_LG		((FP_NMANT - 1) & 31)	/* log2(1.0) for fp_mant[0] */
     89  1.1  simonb #define	FP_LG2		((FP_NMANT - 1) & 63)	/* log2(1.0) for fp_mant[0] and fp_mant[1] */
     90  1.1  simonb #define	FP_QUIETBIT	(1 << (FP_LG - 1))	/* Quiet bit in NaNs (0.5) */
     91  1.1  simonb #define	FP_1		(1 << FP_LG)		/* 1.0 in fp_mant[0] */
     92  1.1  simonb #define	FP_2		(1 << (FP_LG + 1))	/* 2.0 in fp_mant[0] */
     93  1.1  simonb 
     94  1.1  simonb /*
     95  1.1  simonb  * Number classes.  Since zero, Inf, and NaN cannot be represented using
     96  1.1  simonb  * the above layout, we distinguish these from other numbers via a class.
     97  1.1  simonb  * In addition, to make computation easier and to follow Appendix N of
     98  1.1  simonb  * the SPARC Version 8 standard, we give each kind of NaN a separate class.
     99  1.1  simonb  */
    100  1.1  simonb #define	FPC_SNAN	-2		/* signalling NaN (sign irrelevant) */
    101  1.1  simonb #define	FPC_QNAN	-1		/* quiet NaN (sign irrelevant) */
    102  1.1  simonb #define	FPC_ZERO	0		/* zero (sign matters) */
    103  1.1  simonb #define	FPC_NUM		1		/* number (sign matters) */
    104  1.1  simonb #define	FPC_INF		2		/* infinity (sign matters) */
    105  1.1  simonb 
    106  1.1  simonb #define	ISSNAN(fp)	((fp)->fp_class == FPC_SNAN)
    107  1.1  simonb #define	ISQNAN(fp)	((fp)->fp_class == FPC_QNAN)
    108  1.1  simonb #define	ISNAN(fp)	((fp)->fp_class < 0)
    109  1.1  simonb #define	ISZERO(fp)	((fp)->fp_class == 0)
    110  1.1  simonb #define	ISINF(fp)	((fp)->fp_class == FPC_INF)
    111  1.1  simonb 
    112  1.1  simonb /*
    113  1.1  simonb  * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
    114  1.1  simonb  * to the `more significant' operand for our purposes.  Appendix N says that
    115  1.1  simonb  * the result of a computation involving two numbers are:
    116  1.1  simonb  *
    117  1.1  simonb  *	If both are SNaN: operand 2, converted to Quiet
    118  1.1  simonb  *	If only one is SNaN: the SNaN operand, converted to Quiet
    119  1.1  simonb  *	If both are QNaN: operand 2
    120  1.1  simonb  *	If only one is QNaN: the QNaN operand
    121  1.1  simonb  *
    122  1.1  simonb  * In addition, in operations with an Inf operand, the result is usually
    123  1.1  simonb  * Inf.  The class numbers are carefully arranged so that if
    124  1.1  simonb  *	(unsigned)class(op1) > (unsigned)class(op2)
    125  1.1  simonb  * then op1 is the one we want; otherwise op2 is the one we want.
    126  1.1  simonb  */
    127  1.1  simonb #define	ORDER(x, y) { \
    128  1.1  simonb 	if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \
    129  1.1  simonb 		SWAP(x, y); \
    130  1.1  simonb }
    131  1.1  simonb #define	SWAP(x, y) { \
    132  1.1  simonb 	struct fpn *swap; \
    133  1.1  simonb 	swap = (x), (x) = (y), (y) = swap; \
    134  1.1  simonb }
    135  1.1  simonb 
    136  1.1  simonb /*
    137  1.5     rin  * FPU data types.
    138  1.5     rin  */
    139  1.7     rin #define	FTYPE_INT	0x00	/* data = 32-bit signed integer */
    140  1.7     rin #define	FTYPE_LNG	0x01	/* data = 64-bit signed long integer */
    141  1.7     rin #define	FTYPE_SNG	0x02	/* data = 32-bit float */
    142  1.7     rin #define	FTYPE_DBL	0x04	/* data = 64-bit double */
    143  1.7     rin #define	FTYPE_RD_RZ	0x08
    144  1.9     rin #define	FTYPE_FPSCR	0x10
    145  1.9     rin #define	FTYPE_FLAG_MASK	(FTYPE_RD_RZ | FTYPE_FPSCR)
    146  1.5     rin 
    147  1.5     rin /*
    148  1.1  simonb  * Emulator state.
    149  1.1  simonb  */
    150  1.1  simonb struct fpemu {
    151  1.1  simonb 	struct	fpreg *fe_fpstate;	/* registers, etc */
    152  1.1  simonb 	int	fe_fpscr;		/* fpscr copy (modified during op) */
    153  1.1  simonb 	int	fe_cx;			/* keep track of exceptions */
    154  1.1  simonb 	struct	fpn fe_f1;		/* operand 1 */
    155  1.1  simonb 	struct	fpn fe_f2;		/* operand 2, if required */
    156  1.1  simonb 	struct	fpn fe_f3;		/* available storage for result */
    157  1.4    matt 	vaddr_t fe_addr;		/* last address accessed */
    158  1.1  simonb };
    159  1.1  simonb 
    160  1.1  simonb /*
    161  1.1  simonb  * Arithmetic functions.
    162  1.1  simonb  * Each of these may modify its inputs (f1,f2) and/or the temporary.
    163  1.1  simonb  * Each returns a pointer to the result and/or sets exceptions.
    164  1.1  simonb  */
    165  1.1  simonb struct	fpn *fpu_add(struct fpemu *);
    166  1.1  simonb #define	fpu_sub(fe) ((fe)->fe_f2.fp_sign ^= 1, fpu_add(fe))
    167  1.1  simonb struct	fpn *fpu_mul(struct fpemu *);
    168  1.1  simonb struct	fpn *fpu_div(struct fpemu *);
    169  1.1  simonb struct	fpn *fpu_sqrt(struct fpemu *);
    170  1.1  simonb 
    171  1.1  simonb /*
    172  1.1  simonb  * Other functions.
    173  1.1  simonb  */
    174  1.1  simonb 
    175  1.1  simonb /* Perform a compare instruction (with or without unordered exception). */
    176  1.1  simonb void	fpu_compare(struct fpemu *, int);
    177  1.1  simonb 
    178  1.1  simonb /* Build a new Quiet NaN (sign=0, frac=all 1's). */
    179  1.1  simonb struct	fpn *fpu_newnan(struct fpemu *);
    180  1.1  simonb 
    181  1.1  simonb /*
    182  1.1  simonb  * Shift a number right some number of bits, taking care of round/sticky.
    183  1.1  simonb  * Note that the result is probably not a well-formed number (it will lack
    184  1.1  simonb  * the normal 1-bit mant[0]&FP_1).
    185  1.1  simonb  */
    186  1.1  simonb int	fpu_shr(struct fpn *, int);
    187  1.1  simonb 
    188  1.8     rin void	fpu_explode(struct fpemu *, struct fpn *, int, uint64_t);
    189  1.8     rin void	fpu_implode(struct fpemu *, struct fpn *, int, uint64_t *);
    190  1.1  simonb 
    191  1.1  simonb #ifdef DEBUG
    192  1.1  simonb #define	FPE_EX		0x1
    193  1.1  simonb #define	FPE_INSN	0x2
    194  1.1  simonb #define	FPE_OP		0x4
    195  1.1  simonb #define	FPE_REG		0x8
    196  1.1  simonb extern int fpe_debug;
    197  1.1  simonb void	fpu_dumpfpn(struct fpn *);
    198  1.1  simonb #define	DPRINTF(x, y)	if (fpe_debug & (x)) printf y
    199  1.1  simonb #define DUMPFPN(x, f)	if (fpe_debug & (x)) fpu_dumpfpn((f))
    200  1.1  simonb #else
    201  1.1  simonb #define	DPRINTF(x, y)
    202  1.1  simonb #define DUMPFPN(x, f)
    203  1.1  simonb #endif
    204