Home | History | Annotate | Line # | Download | only in fpu
fpu_explode.c revision 1.10
      1  1.10     rin /*	$NetBSD: fpu_explode.c,v 1.10 2022/08/28 22:22:41 rin Exp $ */
      2   1.1  simonb 
      3   1.1  simonb /*
      4   1.1  simonb  * Copyright (c) 1992, 1993
      5   1.1  simonb  *	The Regents of the University of California.  All rights reserved.
      6   1.1  simonb  *
      7   1.1  simonb  * This software was developed by the Computer Systems Engineering group
      8   1.1  simonb  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9   1.1  simonb  * contributed to Berkeley.
     10   1.1  simonb  *
     11   1.1  simonb  * All advertising materials mentioning features or use of this software
     12   1.1  simonb  * must display the following acknowledgement:
     13   1.1  simonb  *	This product includes software developed by the University of
     14   1.1  simonb  *	California, Lawrence Berkeley Laboratory.
     15   1.1  simonb  *
     16   1.1  simonb  * Redistribution and use in source and binary forms, with or without
     17   1.1  simonb  * modification, are permitted provided that the following conditions
     18   1.1  simonb  * are met:
     19   1.1  simonb  * 1. Redistributions of source code must retain the above copyright
     20   1.1  simonb  *    notice, this list of conditions and the following disclaimer.
     21   1.1  simonb  * 2. Redistributions in binary form must reproduce the above copyright
     22   1.1  simonb  *    notice, this list of conditions and the following disclaimer in the
     23   1.1  simonb  *    documentation and/or other materials provided with the distribution.
     24   1.3     agc  * 3. Neither the name of the University nor the names of its contributors
     25   1.1  simonb  *    may be used to endorse or promote products derived from this software
     26   1.1  simonb  *    without specific prior written permission.
     27   1.1  simonb  *
     28   1.1  simonb  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29   1.1  simonb  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30   1.1  simonb  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31   1.1  simonb  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32   1.1  simonb  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33   1.1  simonb  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34   1.1  simonb  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35   1.1  simonb  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36   1.1  simonb  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37   1.1  simonb  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38   1.1  simonb  * SUCH DAMAGE.
     39   1.1  simonb  *
     40   1.1  simonb  *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
     41   1.1  simonb  */
     42   1.1  simonb 
     43   1.1  simonb /*
     44   1.1  simonb  * FPU subroutines: `explode' the machine's `packed binary' format numbers
     45   1.1  simonb  * into our internal format.
     46   1.1  simonb  */
     47   1.2   lukem 
     48   1.2   lukem #include <sys/cdefs.h>
     49  1.10     rin __KERNEL_RCSID(0, "$NetBSD: fpu_explode.c,v 1.10 2022/08/28 22:22:41 rin Exp $");
     50   1.1  simonb 
     51   1.1  simonb #include <sys/types.h>
     52   1.1  simonb #include <sys/systm.h>
     53   1.1  simonb 
     54   1.8     rin #include <powerpc/instr.h>
     55   1.8     rin #include <machine/fpu.h>
     56   1.1  simonb #include <machine/ieee.h>
     57   1.1  simonb #include <machine/reg.h>
     58   1.1  simonb 
     59   1.1  simonb #include <powerpc/fpu/fpu_arith.h>
     60   1.1  simonb #include <powerpc/fpu/fpu_emu.h>
     61   1.1  simonb #include <powerpc/fpu/fpu_extern.h>
     62   1.1  simonb 
     63   1.1  simonb /*
     64   1.1  simonb  * N.B.: in all of the following, we assume the FP format is
     65   1.1  simonb  *
     66   1.1  simonb  *	---------------------------
     67   1.1  simonb  *	| s | exponent | fraction |
     68   1.1  simonb  *	---------------------------
     69   1.1  simonb  *
     70   1.1  simonb  * (which represents -1**s * 1.fraction * 2**exponent), so that the
     71   1.1  simonb  * sign bit is way at the top (bit 31), the exponent is next, and
     72   1.1  simonb  * then the remaining bits mark the fraction.  A zero exponent means
     73   1.1  simonb  * zero or denormalized (0.fraction rather than 1.fraction), and the
     74   1.1  simonb  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
     75   1.1  simonb  *
     76   1.1  simonb  * Since the sign bit is always the topmost bit---this holds even for
     77   1.1  simonb  * integers---we set that outside all the *tof functions.  Each function
     78   1.1  simonb  * returns the class code for the new number (but note that we use
     79   1.1  simonb  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
     80   1.1  simonb  */
     81   1.1  simonb 
     82   1.1  simonb /*
     83   1.1  simonb  * int -> fpn.
     84   1.1  simonb  */
     85   1.1  simonb int
     86   1.1  simonb fpu_itof(struct fpn *fp, u_int i)
     87   1.1  simonb {
     88   1.1  simonb 
     89   1.1  simonb 	if (i == 0)
     90   1.1  simonb 		return (FPC_ZERO);
     91   1.1  simonb 	/*
     92   1.1  simonb 	 * The value FP_1 represents 2^FP_LG, so set the exponent
     93   1.1  simonb 	 * there and let normalization fix it up.  Convert negative
     94   1.1  simonb 	 * numbers to sign-and-magnitude.  Note that this relies on
     95   1.1  simonb 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
     96   1.1  simonb 	 */
     97   1.1  simonb 	fp->fp_exp = FP_LG;
     98   1.1  simonb 	fp->fp_mant[0] = (int)i < 0 ? -i : i;
     99   1.1  simonb 	fp->fp_mant[1] = 0;
    100   1.1  simonb 	fp->fp_mant[2] = 0;
    101   1.1  simonb 	fp->fp_mant[3] = 0;
    102   1.1  simonb 	fpu_norm(fp);
    103   1.1  simonb 	return (FPC_NUM);
    104   1.1  simonb }
    105   1.1  simonb 
    106   1.1  simonb /*
    107   1.1  simonb  * 64-bit int -> fpn.
    108   1.1  simonb  */
    109   1.1  simonb int
    110  1.10     rin fpu_xtof(struct fpn *fp, uint64_t i)
    111   1.1  simonb {
    112   1.1  simonb 
    113   1.1  simonb 	if (i == 0)
    114   1.1  simonb 		return (FPC_ZERO);
    115   1.1  simonb 	/*
    116   1.1  simonb 	 * The value FP_1 represents 2^FP_LG, so set the exponent
    117   1.1  simonb 	 * there and let normalization fix it up.  Convert negative
    118   1.1  simonb 	 * numbers to sign-and-magnitude.  Note that this relies on
    119   1.1  simonb 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
    120   1.1  simonb 	 */
    121   1.1  simonb 	fp->fp_exp = FP_LG2;
    122   1.1  simonb 	*((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
    123   1.1  simonb 	fp->fp_mant[2] = 0;
    124   1.1  simonb 	fp->fp_mant[3] = 0;
    125   1.1  simonb 	fpu_norm(fp);
    126   1.1  simonb 	return (FPC_NUM);
    127   1.1  simonb }
    128   1.1  simonb 
    129   1.1  simonb #define	mask(nbits) ((1L << (nbits)) - 1)
    130   1.1  simonb 
    131   1.1  simonb /*
    132   1.1  simonb  * All external floating formats convert to internal in the same manner,
    133   1.1  simonb  * as defined here.  Note that only normals get an implied 1.0 inserted.
    134   1.1  simonb  */
    135   1.1  simonb #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
    136   1.1  simonb 	if (exp == 0) { \
    137   1.1  simonb 		if (allfrac == 0) \
    138   1.1  simonb 			return (FPC_ZERO); \
    139   1.1  simonb 		fp->fp_exp = 1 - expbias; \
    140   1.1  simonb 		fp->fp_mant[0] = f0; \
    141   1.1  simonb 		fp->fp_mant[1] = f1; \
    142   1.1  simonb 		fp->fp_mant[2] = f2; \
    143   1.1  simonb 		fp->fp_mant[3] = f3; \
    144   1.1  simonb 		fpu_norm(fp); \
    145   1.1  simonb 		return (FPC_NUM); \
    146   1.1  simonb 	} \
    147   1.1  simonb 	if (exp == (2 * expbias + 1)) { \
    148   1.1  simonb 		if (allfrac == 0) \
    149   1.1  simonb 			return (FPC_INF); \
    150   1.1  simonb 		fp->fp_mant[0] = f0; \
    151   1.1  simonb 		fp->fp_mant[1] = f1; \
    152   1.1  simonb 		fp->fp_mant[2] = f2; \
    153   1.1  simonb 		fp->fp_mant[3] = f3; \
    154   1.1  simonb 		return (FPC_QNAN); \
    155   1.1  simonb 	} \
    156   1.1  simonb 	fp->fp_exp = exp - expbias; \
    157   1.1  simonb 	fp->fp_mant[0] = FP_1 | f0; \
    158   1.1  simonb 	fp->fp_mant[1] = f1; \
    159   1.1  simonb 	fp->fp_mant[2] = f2; \
    160   1.1  simonb 	fp->fp_mant[3] = f3; \
    161   1.1  simonb 	return (FPC_NUM)
    162   1.1  simonb 
    163   1.1  simonb /*
    164   1.1  simonb  * 32-bit single precision -> fpn.
    165   1.1  simonb  * We assume a single occupies at most (64-FP_LG) bits in the internal
    166   1.1  simonb  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
    167   1.1  simonb  */
    168   1.1  simonb int
    169   1.1  simonb fpu_stof(struct fpn *fp, u_int i)
    170   1.1  simonb {
    171   1.1  simonb 	int exp;
    172   1.1  simonb 	u_int frac, f0, f1;
    173   1.1  simonb #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
    174   1.1  simonb 
    175   1.1  simonb 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
    176   1.1  simonb 	frac = i & mask(SNG_FRACBITS);
    177   1.1  simonb 	f0 = frac >> SNG_SHIFT;
    178   1.1  simonb 	f1 = frac << (32 - SNG_SHIFT);
    179   1.1  simonb 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
    180   1.1  simonb }
    181   1.1  simonb 
    182   1.1  simonb /*
    183   1.1  simonb  * 64-bit double -> fpn.
    184   1.1  simonb  * We assume this uses at most (96-FP_LG) bits.
    185   1.1  simonb  */
    186   1.1  simonb int
    187   1.1  simonb fpu_dtof(struct fpn *fp, u_int i, u_int j)
    188   1.1  simonb {
    189   1.1  simonb 	int exp;
    190   1.1  simonb 	u_int frac, f0, f1, f2;
    191   1.1  simonb #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
    192   1.1  simonb 
    193   1.1  simonb 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
    194   1.1  simonb 	frac = i & mask(DBL_FRACBITS - 32);
    195   1.1  simonb 	f0 = frac >> DBL_SHIFT;
    196   1.1  simonb 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
    197   1.1  simonb 	f2 = j << (32 - DBL_SHIFT);
    198   1.1  simonb 	frac |= j;
    199   1.1  simonb 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
    200   1.1  simonb }
    201   1.1  simonb 
    202   1.1  simonb /*
    203   1.1  simonb  * Explode the contents of a register / regpair / regquad.
    204   1.1  simonb  * If the input is a signalling NaN, an NV (invalid) exception
    205   1.1  simonb  * will be set.  (Note that nothing but NV can occur until ALU
    206   1.1  simonb  * operations are performed.)
    207   1.1  simonb  */
    208   1.1  simonb void
    209   1.1  simonb fpu_explode(struct fpemu *fe, struct fpn *fp, int type, int reg)
    210   1.1  simonb {
    211   1.1  simonb 	u_int s, *space;
    212  1.10     rin 	uint64_t l, *xspace;
    213   1.1  simonb 
    214  1.10     rin 	xspace = (uint64_t *)&fe->fe_fpstate->fpreg[reg];
    215   1.1  simonb 	l = xspace[0];
    216   1.1  simonb 	space = (u_int *)&fe->fe_fpstate->fpreg[reg];
    217   1.1  simonb 	s = space[0];
    218   1.1  simonb 	fp->fp_sign = s >> 31;
    219   1.1  simonb 	fp->fp_sticky = 0;
    220   1.1  simonb 	switch (type) {
    221   1.1  simonb 
    222   1.1  simonb 	case FTYPE_LNG:
    223   1.1  simonb 		s = fpu_xtof(fp, l);
    224   1.1  simonb 		break;
    225   1.1  simonb 
    226   1.1  simonb 	case FTYPE_INT:
    227   1.1  simonb 		s = fpu_itof(fp, space[1]);
    228   1.1  simonb 		break;
    229   1.1  simonb 
    230   1.1  simonb 	case FTYPE_SNG:
    231   1.1  simonb 		s = fpu_stof(fp, s);
    232   1.1  simonb 		break;
    233   1.1  simonb 
    234   1.1  simonb 	case FTYPE_DBL:
    235   1.1  simonb 		s = fpu_dtof(fp, s, space[1]);
    236   1.1  simonb 		break;
    237   1.1  simonb 
    238   1.7     rin 	default:
    239   1.4  simonb 		panic("fpu_explode: invalid type %d", type);
    240   1.1  simonb 	}
    241   1.1  simonb 
    242   1.1  simonb 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
    243   1.1  simonb 		/*
    244   1.1  simonb 		 * Input is a signalling NaN.  All operations that return
    245   1.1  simonb 		 * an input NaN operand put it through a ``NaN conversion'',
    246   1.1  simonb 		 * which basically just means ``turn on the quiet bit''.
    247   1.1  simonb 		 * We do this here so that all NaNs internally look quiet
    248   1.1  simonb 		 * (we can tell signalling ones by their class).
    249   1.1  simonb 		 */
    250   1.1  simonb 		fp->fp_mant[0] |= FP_QUIETBIT;
    251   1.1  simonb 		fe->fe_cx = FPSCR_VXSNAN;	/* assert invalid operand */
    252   1.1  simonb 		s = FPC_SNAN;
    253   1.1  simonb 	}
    254   1.1  simonb 	fp->fp_class = s;
    255   1.1  simonb 	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
    256   1.1  simonb 		((type == FTYPE_INT) ? 'i' :
    257   1.1  simonb 			((type == FTYPE_SNG) ? 's' :
    258   1.5     chs 				((type == FTYPE_DBL) ? 'd' : '?'))),
    259   1.1  simonb 		reg));
    260   1.1  simonb 	DUMPFPN(FPE_REG, fp);
    261   1.1  simonb }
    262