fpu_explode.c revision 1.14 1 1.14 rin /* $NetBSD: fpu_explode.c,v 1.14 2022/09/07 06:51:58 rin Exp $ */
2 1.1 simonb
3 1.1 simonb /*
4 1.1 simonb * Copyright (c) 1992, 1993
5 1.1 simonb * The Regents of the University of California. All rights reserved.
6 1.1 simonb *
7 1.1 simonb * This software was developed by the Computer Systems Engineering group
8 1.1 simonb * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 1.1 simonb * contributed to Berkeley.
10 1.1 simonb *
11 1.1 simonb * All advertising materials mentioning features or use of this software
12 1.1 simonb * must display the following acknowledgement:
13 1.1 simonb * This product includes software developed by the University of
14 1.1 simonb * California, Lawrence Berkeley Laboratory.
15 1.1 simonb *
16 1.1 simonb * Redistribution and use in source and binary forms, with or without
17 1.1 simonb * modification, are permitted provided that the following conditions
18 1.1 simonb * are met:
19 1.1 simonb * 1. Redistributions of source code must retain the above copyright
20 1.1 simonb * notice, this list of conditions and the following disclaimer.
21 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 simonb * notice, this list of conditions and the following disclaimer in the
23 1.1 simonb * documentation and/or other materials provided with the distribution.
24 1.3 agc * 3. Neither the name of the University nor the names of its contributors
25 1.1 simonb * may be used to endorse or promote products derived from this software
26 1.1 simonb * without specific prior written permission.
27 1.1 simonb *
28 1.1 simonb * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 simonb * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 simonb * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 simonb * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 simonb * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 simonb * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 simonb * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 simonb * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 simonb * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 simonb * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 simonb * SUCH DAMAGE.
39 1.1 simonb *
40 1.1 simonb * @(#)fpu_explode.c 8.1 (Berkeley) 6/11/93
41 1.1 simonb */
42 1.1 simonb
43 1.1 simonb /*
44 1.1 simonb * FPU subroutines: `explode' the machine's `packed binary' format numbers
45 1.1 simonb * into our internal format.
46 1.1 simonb */
47 1.2 lukem
48 1.2 lukem #include <sys/cdefs.h>
49 1.14 rin __KERNEL_RCSID(0, "$NetBSD: fpu_explode.c,v 1.14 2022/09/07 06:51:58 rin Exp $");
50 1.1 simonb
51 1.1 simonb #include <sys/types.h>
52 1.1 simonb #include <sys/systm.h>
53 1.1 simonb
54 1.8 rin #include <powerpc/instr.h>
55 1.8 rin #include <machine/fpu.h>
56 1.1 simonb #include <machine/ieee.h>
57 1.1 simonb #include <machine/reg.h>
58 1.1 simonb
59 1.1 simonb #include <powerpc/fpu/fpu_arith.h>
60 1.1 simonb #include <powerpc/fpu/fpu_emu.h>
61 1.1 simonb #include <powerpc/fpu/fpu_extern.h>
62 1.1 simonb
63 1.13 rin static int fpu_itof(struct fpn *, u_int);
64 1.13 rin static int fpu_xtof(struct fpn *, uint64_t);
65 1.13 rin static int fpu_stof(struct fpn *, u_int);
66 1.13 rin static int fpu_dtof(struct fpn *, u_int, u_int);
67 1.13 rin
68 1.1 simonb /*
69 1.1 simonb * N.B.: in all of the following, we assume the FP format is
70 1.1 simonb *
71 1.1 simonb * ---------------------------
72 1.1 simonb * | s | exponent | fraction |
73 1.1 simonb * ---------------------------
74 1.1 simonb *
75 1.1 simonb * (which represents -1**s * 1.fraction * 2**exponent), so that the
76 1.1 simonb * sign bit is way at the top (bit 31), the exponent is next, and
77 1.1 simonb * then the remaining bits mark the fraction. A zero exponent means
78 1.1 simonb * zero or denormalized (0.fraction rather than 1.fraction), and the
79 1.1 simonb * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
80 1.1 simonb *
81 1.1 simonb * Since the sign bit is always the topmost bit---this holds even for
82 1.1 simonb * integers---we set that outside all the *tof functions. Each function
83 1.1 simonb * returns the class code for the new number (but note that we use
84 1.1 simonb * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
85 1.1 simonb */
86 1.1 simonb
87 1.1 simonb /*
88 1.1 simonb * int -> fpn.
89 1.1 simonb */
90 1.13 rin static int
91 1.11 rin fpu_itof(struct fpn *fp, u_int lo)
92 1.1 simonb {
93 1.1 simonb
94 1.11 rin if (lo == 0)
95 1.1 simonb return (FPC_ZERO);
96 1.1 simonb /*
97 1.1 simonb * The value FP_1 represents 2^FP_LG, so set the exponent
98 1.1 simonb * there and let normalization fix it up. Convert negative
99 1.1 simonb * numbers to sign-and-magnitude. Note that this relies on
100 1.1 simonb * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
101 1.1 simonb */
102 1.1 simonb fp->fp_exp = FP_LG;
103 1.11 rin fp->fp_mant[0] = (int)lo < 0 ? -lo : lo;
104 1.1 simonb fp->fp_mant[1] = 0;
105 1.1 simonb fp->fp_mant[2] = 0;
106 1.1 simonb fp->fp_mant[3] = 0;
107 1.1 simonb fpu_norm(fp);
108 1.1 simonb return (FPC_NUM);
109 1.1 simonb }
110 1.1 simonb
111 1.1 simonb /*
112 1.1 simonb * 64-bit int -> fpn.
113 1.1 simonb */
114 1.13 rin static int
115 1.10 rin fpu_xtof(struct fpn *fp, uint64_t i)
116 1.1 simonb {
117 1.1 simonb
118 1.1 simonb if (i == 0)
119 1.1 simonb return (FPC_ZERO);
120 1.1 simonb /*
121 1.1 simonb * The value FP_1 represents 2^FP_LG, so set the exponent
122 1.1 simonb * there and let normalization fix it up. Convert negative
123 1.1 simonb * numbers to sign-and-magnitude. Note that this relies on
124 1.1 simonb * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
125 1.1 simonb */
126 1.1 simonb fp->fp_exp = FP_LG2;
127 1.1 simonb *((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
128 1.1 simonb fp->fp_mant[2] = 0;
129 1.1 simonb fp->fp_mant[3] = 0;
130 1.1 simonb fpu_norm(fp);
131 1.1 simonb return (FPC_NUM);
132 1.1 simonb }
133 1.1 simonb
134 1.1 simonb #define mask(nbits) ((1L << (nbits)) - 1)
135 1.1 simonb
136 1.1 simonb /*
137 1.1 simonb * All external floating formats convert to internal in the same manner,
138 1.1 simonb * as defined here. Note that only normals get an implied 1.0 inserted.
139 1.1 simonb */
140 1.1 simonb #define FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
141 1.1 simonb if (exp == 0) { \
142 1.1 simonb if (allfrac == 0) \
143 1.1 simonb return (FPC_ZERO); \
144 1.1 simonb fp->fp_exp = 1 - expbias; \
145 1.1 simonb fp->fp_mant[0] = f0; \
146 1.1 simonb fp->fp_mant[1] = f1; \
147 1.1 simonb fp->fp_mant[2] = f2; \
148 1.1 simonb fp->fp_mant[3] = f3; \
149 1.1 simonb fpu_norm(fp); \
150 1.1 simonb return (FPC_NUM); \
151 1.1 simonb } \
152 1.1 simonb if (exp == (2 * expbias + 1)) { \
153 1.1 simonb if (allfrac == 0) \
154 1.1 simonb return (FPC_INF); \
155 1.1 simonb fp->fp_mant[0] = f0; \
156 1.1 simonb fp->fp_mant[1] = f1; \
157 1.1 simonb fp->fp_mant[2] = f2; \
158 1.1 simonb fp->fp_mant[3] = f3; \
159 1.1 simonb return (FPC_QNAN); \
160 1.1 simonb } \
161 1.1 simonb fp->fp_exp = exp - expbias; \
162 1.1 simonb fp->fp_mant[0] = FP_1 | f0; \
163 1.1 simonb fp->fp_mant[1] = f1; \
164 1.1 simonb fp->fp_mant[2] = f2; \
165 1.1 simonb fp->fp_mant[3] = f3; \
166 1.1 simonb return (FPC_NUM)
167 1.1 simonb
168 1.1 simonb /*
169 1.1 simonb * 32-bit single precision -> fpn.
170 1.1 simonb * We assume a single occupies at most (64-FP_LG) bits in the internal
171 1.1 simonb * format: i.e., needs at most fp_mant[0] and fp_mant[1].
172 1.1 simonb */
173 1.13 rin static int
174 1.11 rin fpu_stof(struct fpn *fp, u_int hi)
175 1.1 simonb {
176 1.1 simonb int exp;
177 1.1 simonb u_int frac, f0, f1;
178 1.1 simonb #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
179 1.1 simonb
180 1.11 rin exp = (hi >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
181 1.11 rin frac = hi & mask(SNG_FRACBITS);
182 1.1 simonb f0 = frac >> SNG_SHIFT;
183 1.1 simonb f1 = frac << (32 - SNG_SHIFT);
184 1.1 simonb FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
185 1.1 simonb }
186 1.1 simonb
187 1.1 simonb /*
188 1.1 simonb * 64-bit double -> fpn.
189 1.1 simonb * We assume this uses at most (96-FP_LG) bits.
190 1.1 simonb */
191 1.13 rin static int
192 1.11 rin fpu_dtof(struct fpn *fp, u_int hi, u_int lo)
193 1.1 simonb {
194 1.1 simonb int exp;
195 1.1 simonb u_int frac, f0, f1, f2;
196 1.1 simonb #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
197 1.1 simonb
198 1.11 rin exp = (hi >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
199 1.11 rin frac = hi & mask(DBL_FRACBITS - 32);
200 1.1 simonb f0 = frac >> DBL_SHIFT;
201 1.11 rin f1 = (frac << (32 - DBL_SHIFT)) | (lo >> DBL_SHIFT);
202 1.11 rin f2 = lo << (32 - DBL_SHIFT);
203 1.11 rin frac |= lo;
204 1.1 simonb FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
205 1.1 simonb }
206 1.1 simonb
207 1.1 simonb /*
208 1.1 simonb * Explode the contents of a register / regpair / regquad.
209 1.1 simonb * If the input is a signalling NaN, an NV (invalid) exception
210 1.1 simonb * will be set. (Note that nothing but NV can occur until ALU
211 1.1 simonb * operations are performed.)
212 1.1 simonb */
213 1.1 simonb void
214 1.12 rin fpu_explode(struct fpemu *fe, struct fpn *fp, int type, uint64_t i)
215 1.1 simonb {
216 1.12 rin u_int hi, lo;
217 1.12 rin int class;
218 1.1 simonb
219 1.12 rin hi = (u_int)(i >> 32);
220 1.12 rin lo = (u_int)i;
221 1.12 rin fp->fp_sign = hi >> 31;
222 1.1 simonb fp->fp_sticky = 0;
223 1.1 simonb switch (type) {
224 1.1 simonb
225 1.1 simonb case FTYPE_LNG:
226 1.12 rin class = fpu_xtof(fp, i);
227 1.1 simonb break;
228 1.1 simonb
229 1.1 simonb case FTYPE_INT:
230 1.14 rin fp->fp_sign = lo >> 31;
231 1.12 rin class = fpu_itof(fp, lo);
232 1.1 simonb break;
233 1.1 simonb
234 1.1 simonb case FTYPE_SNG:
235 1.12 rin class = fpu_stof(fp, hi);
236 1.1 simonb break;
237 1.1 simonb
238 1.1 simonb case FTYPE_DBL:
239 1.12 rin class = fpu_dtof(fp, hi, lo);
240 1.1 simonb break;
241 1.1 simonb
242 1.7 rin default:
243 1.4 simonb panic("fpu_explode: invalid type %d", type);
244 1.1 simonb }
245 1.1 simonb
246 1.12 rin if (class == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
247 1.1 simonb /*
248 1.1 simonb * Input is a signalling NaN. All operations that return
249 1.1 simonb * an input NaN operand put it through a ``NaN conversion'',
250 1.1 simonb * which basically just means ``turn on the quiet bit''.
251 1.1 simonb * We do this here so that all NaNs internally look quiet
252 1.1 simonb * (we can tell signalling ones by their class).
253 1.1 simonb */
254 1.1 simonb fp->fp_mant[0] |= FP_QUIETBIT;
255 1.1 simonb fe->fe_cx = FPSCR_VXSNAN; /* assert invalid operand */
256 1.12 rin class = FPC_SNAN;
257 1.1 simonb }
258 1.12 rin fp->fp_class = class;
259 1.1 simonb DUMPFPN(FPE_REG, fp);
260 1.1 simonb }
261