Home | History | Annotate | Line # | Download | only in fpu
fpu_explode.c revision 1.1
      1 /*	$NetBSD: fpu_explode.c,v 1.1 2001/06/13 06:01:47 simonb Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by the University of
     27  *	California, Berkeley and its contributors.
     28  * 4. Neither the name of the University nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  *
     44  *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
     45  */
     46 
     47 /*
     48  * FPU subroutines: `explode' the machine's `packed binary' format numbers
     49  * into our internal format.
     50  */
     51 
     52 #include <sys/types.h>
     53 #include <sys/systm.h>
     54 
     55 #include <machine/ieee.h>
     56 #include <powerpc/instr.h>
     57 #include <machine/reg.h>
     58 #include <machine/fpu.h>
     59 
     60 #include <powerpc/fpu/fpu_arith.h>
     61 #include <powerpc/fpu/fpu_emu.h>
     62 #include <powerpc/fpu/fpu_extern.h>
     63 
     64 /*
     65  * N.B.: in all of the following, we assume the FP format is
     66  *
     67  *	---------------------------
     68  *	| s | exponent | fraction |
     69  *	---------------------------
     70  *
     71  * (which represents -1**s * 1.fraction * 2**exponent), so that the
     72  * sign bit is way at the top (bit 31), the exponent is next, and
     73  * then the remaining bits mark the fraction.  A zero exponent means
     74  * zero or denormalized (0.fraction rather than 1.fraction), and the
     75  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
     76  *
     77  * Since the sign bit is always the topmost bit---this holds even for
     78  * integers---we set that outside all the *tof functions.  Each function
     79  * returns the class code for the new number (but note that we use
     80  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
     81  */
     82 
     83 /*
     84  * int -> fpn.
     85  */
     86 int
     87 fpu_itof(struct fpn *fp, u_int i)
     88 {
     89 
     90 	if (i == 0)
     91 		return (FPC_ZERO);
     92 	/*
     93 	 * The value FP_1 represents 2^FP_LG, so set the exponent
     94 	 * there and let normalization fix it up.  Convert negative
     95 	 * numbers to sign-and-magnitude.  Note that this relies on
     96 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
     97 	 */
     98 	fp->fp_exp = FP_LG;
     99 	fp->fp_mant[0] = (int)i < 0 ? -i : i;
    100 	fp->fp_mant[1] = 0;
    101 	fp->fp_mant[2] = 0;
    102 	fp->fp_mant[3] = 0;
    103 	fpu_norm(fp);
    104 	return (FPC_NUM);
    105 }
    106 
    107 /*
    108  * 64-bit int -> fpn.
    109  */
    110 int
    111 fpu_xtof(struct fpn *fp, u_int64_t i)
    112 {
    113 
    114 	if (i == 0)
    115 		return (FPC_ZERO);
    116 	/*
    117 	 * The value FP_1 represents 2^FP_LG, so set the exponent
    118 	 * there and let normalization fix it up.  Convert negative
    119 	 * numbers to sign-and-magnitude.  Note that this relies on
    120 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
    121 	 */
    122 	fp->fp_exp = FP_LG2;
    123 	*((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
    124 	fp->fp_mant[2] = 0;
    125 	fp->fp_mant[3] = 0;
    126 	fpu_norm(fp);
    127 	return (FPC_NUM);
    128 }
    129 
    130 #define	mask(nbits) ((1L << (nbits)) - 1)
    131 
    132 /*
    133  * All external floating formats convert to internal in the same manner,
    134  * as defined here.  Note that only normals get an implied 1.0 inserted.
    135  */
    136 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
    137 	if (exp == 0) { \
    138 		if (allfrac == 0) \
    139 			return (FPC_ZERO); \
    140 		fp->fp_exp = 1 - expbias; \
    141 		fp->fp_mant[0] = f0; \
    142 		fp->fp_mant[1] = f1; \
    143 		fp->fp_mant[2] = f2; \
    144 		fp->fp_mant[3] = f3; \
    145 		fpu_norm(fp); \
    146 		return (FPC_NUM); \
    147 	} \
    148 	if (exp == (2 * expbias + 1)) { \
    149 		if (allfrac == 0) \
    150 			return (FPC_INF); \
    151 		fp->fp_mant[0] = f0; \
    152 		fp->fp_mant[1] = f1; \
    153 		fp->fp_mant[2] = f2; \
    154 		fp->fp_mant[3] = f3; \
    155 		return (FPC_QNAN); \
    156 	} \
    157 	fp->fp_exp = exp - expbias; \
    158 	fp->fp_mant[0] = FP_1 | f0; \
    159 	fp->fp_mant[1] = f1; \
    160 	fp->fp_mant[2] = f2; \
    161 	fp->fp_mant[3] = f3; \
    162 	return (FPC_NUM)
    163 
    164 /*
    165  * 32-bit single precision -> fpn.
    166  * We assume a single occupies at most (64-FP_LG) bits in the internal
    167  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
    168  */
    169 int
    170 fpu_stof(struct fpn *fp, u_int i)
    171 {
    172 	int exp;
    173 	u_int frac, f0, f1;
    174 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
    175 
    176 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
    177 	frac = i & mask(SNG_FRACBITS);
    178 	f0 = frac >> SNG_SHIFT;
    179 	f1 = frac << (32 - SNG_SHIFT);
    180 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
    181 }
    182 
    183 /*
    184  * 64-bit double -> fpn.
    185  * We assume this uses at most (96-FP_LG) bits.
    186  */
    187 int
    188 fpu_dtof(struct fpn *fp, u_int i, u_int j)
    189 {
    190 	int exp;
    191 	u_int frac, f0, f1, f2;
    192 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
    193 
    194 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
    195 	frac = i & mask(DBL_FRACBITS - 32);
    196 	f0 = frac >> DBL_SHIFT;
    197 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
    198 	f2 = j << (32 - DBL_SHIFT);
    199 	frac |= j;
    200 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
    201 }
    202 
    203 /*
    204  * 128-bit extended -> fpn.
    205  */
    206 int
    207 fpu_qtof(struct fpn *fp, u_int i, u_int j, u_int k, u_int l)
    208 {
    209 	int exp;
    210 	u_int frac, f0, f1, f2, f3;
    211 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG))	/* left shift! */
    212 
    213 	/*
    214 	 * Note that ext and fpn `line up', hence no shifting needed.
    215 	 */
    216 	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
    217 	frac = i & mask(EXT_FRACBITS - 3 * 32);
    218 	f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
    219 	f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
    220 	f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
    221 	f3 = l << EXT_SHIFT;
    222 	frac |= j | k | l;
    223 	FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
    224 }
    225 
    226 /*
    227  * Explode the contents of a register / regpair / regquad.
    228  * If the input is a signalling NaN, an NV (invalid) exception
    229  * will be set.  (Note that nothing but NV can occur until ALU
    230  * operations are performed.)
    231  */
    232 void
    233 fpu_explode(struct fpemu *fe, struct fpn *fp, int type, int reg)
    234 {
    235 	u_int s, *space;
    236 	u_int64_t l, *xspace;
    237 
    238 	xspace = (u_int64_t *)&fe->fe_fpstate->fpreg[reg];
    239 	l = xspace[0];
    240 	space = (u_int *)&fe->fe_fpstate->fpreg[reg];
    241 	s = space[0];
    242 	fp->fp_sign = s >> 31;
    243 	fp->fp_sticky = 0;
    244 	switch (type) {
    245 
    246 	case FTYPE_LNG:
    247 		s = fpu_xtof(fp, l);
    248 		break;
    249 
    250 	case FTYPE_INT:
    251 		s = fpu_itof(fp, space[1]);
    252 		break;
    253 
    254 	case FTYPE_SNG:
    255 		s = fpu_stof(fp, s);
    256 		break;
    257 
    258 	case FTYPE_DBL:
    259 		s = fpu_dtof(fp, s, space[1]);
    260 		break;
    261 
    262 	case FTYPE_EXT:
    263 		s = fpu_qtof(fp, s, space[1], space[2], space[3]);
    264 		break;
    265 
    266 	default:
    267 		panic("fpu_explode");
    268 	}
    269 
    270 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
    271 		/*
    272 		 * Input is a signalling NaN.  All operations that return
    273 		 * an input NaN operand put it through a ``NaN conversion'',
    274 		 * which basically just means ``turn on the quiet bit''.
    275 		 * We do this here so that all NaNs internally look quiet
    276 		 * (we can tell signalling ones by their class).
    277 		 */
    278 		fp->fp_mant[0] |= FP_QUIETBIT;
    279 		fe->fe_cx = FPSCR_VXSNAN;	/* assert invalid operand */
    280 		s = FPC_SNAN;
    281 	}
    282 	fp->fp_class = s;
    283 	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
    284 		((type == FTYPE_INT) ? 'i' :
    285 			((type == FTYPE_SNG) ? 's' :
    286 				((type == FTYPE_DBL) ? 'd' :
    287 					((type == FTYPE_EXT) ? 'q' : '?')))),
    288 		reg));
    289 	DUMPFPN(FPE_REG, fp);
    290 	DPRINTF(FPE_REG, ("\n"));
    291 }
    292