fpu_explode.c revision 1.1 1 /* $NetBSD: fpu_explode.c,v 1.1 2001/06/13 06:01:47 simonb Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)fpu_explode.c 8.1 (Berkeley) 6/11/93
45 */
46
47 /*
48 * FPU subroutines: `explode' the machine's `packed binary' format numbers
49 * into our internal format.
50 */
51
52 #include <sys/types.h>
53 #include <sys/systm.h>
54
55 #include <machine/ieee.h>
56 #include <powerpc/instr.h>
57 #include <machine/reg.h>
58 #include <machine/fpu.h>
59
60 #include <powerpc/fpu/fpu_arith.h>
61 #include <powerpc/fpu/fpu_emu.h>
62 #include <powerpc/fpu/fpu_extern.h>
63
64 /*
65 * N.B.: in all of the following, we assume the FP format is
66 *
67 * ---------------------------
68 * | s | exponent | fraction |
69 * ---------------------------
70 *
71 * (which represents -1**s * 1.fraction * 2**exponent), so that the
72 * sign bit is way at the top (bit 31), the exponent is next, and
73 * then the remaining bits mark the fraction. A zero exponent means
74 * zero or denormalized (0.fraction rather than 1.fraction), and the
75 * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
76 *
77 * Since the sign bit is always the topmost bit---this holds even for
78 * integers---we set that outside all the *tof functions. Each function
79 * returns the class code for the new number (but note that we use
80 * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
81 */
82
83 /*
84 * int -> fpn.
85 */
86 int
87 fpu_itof(struct fpn *fp, u_int i)
88 {
89
90 if (i == 0)
91 return (FPC_ZERO);
92 /*
93 * The value FP_1 represents 2^FP_LG, so set the exponent
94 * there and let normalization fix it up. Convert negative
95 * numbers to sign-and-magnitude. Note that this relies on
96 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
97 */
98 fp->fp_exp = FP_LG;
99 fp->fp_mant[0] = (int)i < 0 ? -i : i;
100 fp->fp_mant[1] = 0;
101 fp->fp_mant[2] = 0;
102 fp->fp_mant[3] = 0;
103 fpu_norm(fp);
104 return (FPC_NUM);
105 }
106
107 /*
108 * 64-bit int -> fpn.
109 */
110 int
111 fpu_xtof(struct fpn *fp, u_int64_t i)
112 {
113
114 if (i == 0)
115 return (FPC_ZERO);
116 /*
117 * The value FP_1 represents 2^FP_LG, so set the exponent
118 * there and let normalization fix it up. Convert negative
119 * numbers to sign-and-magnitude. Note that this relies on
120 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
121 */
122 fp->fp_exp = FP_LG2;
123 *((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
124 fp->fp_mant[2] = 0;
125 fp->fp_mant[3] = 0;
126 fpu_norm(fp);
127 return (FPC_NUM);
128 }
129
130 #define mask(nbits) ((1L << (nbits)) - 1)
131
132 /*
133 * All external floating formats convert to internal in the same manner,
134 * as defined here. Note that only normals get an implied 1.0 inserted.
135 */
136 #define FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
137 if (exp == 0) { \
138 if (allfrac == 0) \
139 return (FPC_ZERO); \
140 fp->fp_exp = 1 - expbias; \
141 fp->fp_mant[0] = f0; \
142 fp->fp_mant[1] = f1; \
143 fp->fp_mant[2] = f2; \
144 fp->fp_mant[3] = f3; \
145 fpu_norm(fp); \
146 return (FPC_NUM); \
147 } \
148 if (exp == (2 * expbias + 1)) { \
149 if (allfrac == 0) \
150 return (FPC_INF); \
151 fp->fp_mant[0] = f0; \
152 fp->fp_mant[1] = f1; \
153 fp->fp_mant[2] = f2; \
154 fp->fp_mant[3] = f3; \
155 return (FPC_QNAN); \
156 } \
157 fp->fp_exp = exp - expbias; \
158 fp->fp_mant[0] = FP_1 | f0; \
159 fp->fp_mant[1] = f1; \
160 fp->fp_mant[2] = f2; \
161 fp->fp_mant[3] = f3; \
162 return (FPC_NUM)
163
164 /*
165 * 32-bit single precision -> fpn.
166 * We assume a single occupies at most (64-FP_LG) bits in the internal
167 * format: i.e., needs at most fp_mant[0] and fp_mant[1].
168 */
169 int
170 fpu_stof(struct fpn *fp, u_int i)
171 {
172 int exp;
173 u_int frac, f0, f1;
174 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
175
176 exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
177 frac = i & mask(SNG_FRACBITS);
178 f0 = frac >> SNG_SHIFT;
179 f1 = frac << (32 - SNG_SHIFT);
180 FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
181 }
182
183 /*
184 * 64-bit double -> fpn.
185 * We assume this uses at most (96-FP_LG) bits.
186 */
187 int
188 fpu_dtof(struct fpn *fp, u_int i, u_int j)
189 {
190 int exp;
191 u_int frac, f0, f1, f2;
192 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
193
194 exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
195 frac = i & mask(DBL_FRACBITS - 32);
196 f0 = frac >> DBL_SHIFT;
197 f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
198 f2 = j << (32 - DBL_SHIFT);
199 frac |= j;
200 FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
201 }
202
203 /*
204 * 128-bit extended -> fpn.
205 */
206 int
207 fpu_qtof(struct fpn *fp, u_int i, u_int j, u_int k, u_int l)
208 {
209 int exp;
210 u_int frac, f0, f1, f2, f3;
211 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG)) /* left shift! */
212
213 /*
214 * Note that ext and fpn `line up', hence no shifting needed.
215 */
216 exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
217 frac = i & mask(EXT_FRACBITS - 3 * 32);
218 f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
219 f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
220 f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
221 f3 = l << EXT_SHIFT;
222 frac |= j | k | l;
223 FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
224 }
225
226 /*
227 * Explode the contents of a register / regpair / regquad.
228 * If the input is a signalling NaN, an NV (invalid) exception
229 * will be set. (Note that nothing but NV can occur until ALU
230 * operations are performed.)
231 */
232 void
233 fpu_explode(struct fpemu *fe, struct fpn *fp, int type, int reg)
234 {
235 u_int s, *space;
236 u_int64_t l, *xspace;
237
238 xspace = (u_int64_t *)&fe->fe_fpstate->fpreg[reg];
239 l = xspace[0];
240 space = (u_int *)&fe->fe_fpstate->fpreg[reg];
241 s = space[0];
242 fp->fp_sign = s >> 31;
243 fp->fp_sticky = 0;
244 switch (type) {
245
246 case FTYPE_LNG:
247 s = fpu_xtof(fp, l);
248 break;
249
250 case FTYPE_INT:
251 s = fpu_itof(fp, space[1]);
252 break;
253
254 case FTYPE_SNG:
255 s = fpu_stof(fp, s);
256 break;
257
258 case FTYPE_DBL:
259 s = fpu_dtof(fp, s, space[1]);
260 break;
261
262 case FTYPE_EXT:
263 s = fpu_qtof(fp, s, space[1], space[2], space[3]);
264 break;
265
266 default:
267 panic("fpu_explode");
268 }
269
270 if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
271 /*
272 * Input is a signalling NaN. All operations that return
273 * an input NaN operand put it through a ``NaN conversion'',
274 * which basically just means ``turn on the quiet bit''.
275 * We do this here so that all NaNs internally look quiet
276 * (we can tell signalling ones by their class).
277 */
278 fp->fp_mant[0] |= FP_QUIETBIT;
279 fe->fe_cx = FPSCR_VXSNAN; /* assert invalid operand */
280 s = FPC_SNAN;
281 }
282 fp->fp_class = s;
283 DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
284 ((type == FTYPE_INT) ? 'i' :
285 ((type == FTYPE_SNG) ? 's' :
286 ((type == FTYPE_DBL) ? 'd' :
287 ((type == FTYPE_EXT) ? 'q' : '?')))),
288 reg));
289 DUMPFPN(FPE_REG, fp);
290 DPRINTF(FPE_REG, ("\n"));
291 }
292