fpu_explode.c revision 1.3 1 /* $NetBSD: fpu_explode.c,v 1.3 2003/08/07 16:29:18 agc Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)fpu_explode.c 8.1 (Berkeley) 6/11/93
41 */
42
43 /*
44 * FPU subroutines: `explode' the machine's `packed binary' format numbers
45 * into our internal format.
46 */
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: fpu_explode.c,v 1.3 2003/08/07 16:29:18 agc Exp $");
50
51 #include <sys/types.h>
52 #include <sys/systm.h>
53
54 #include <machine/ieee.h>
55 #include <powerpc/instr.h>
56 #include <machine/reg.h>
57 #include <machine/fpu.h>
58
59 #include <powerpc/fpu/fpu_arith.h>
60 #include <powerpc/fpu/fpu_emu.h>
61 #include <powerpc/fpu/fpu_extern.h>
62
63 /*
64 * N.B.: in all of the following, we assume the FP format is
65 *
66 * ---------------------------
67 * | s | exponent | fraction |
68 * ---------------------------
69 *
70 * (which represents -1**s * 1.fraction * 2**exponent), so that the
71 * sign bit is way at the top (bit 31), the exponent is next, and
72 * then the remaining bits mark the fraction. A zero exponent means
73 * zero or denormalized (0.fraction rather than 1.fraction), and the
74 * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
75 *
76 * Since the sign bit is always the topmost bit---this holds even for
77 * integers---we set that outside all the *tof functions. Each function
78 * returns the class code for the new number (but note that we use
79 * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
80 */
81
82 /*
83 * int -> fpn.
84 */
85 int
86 fpu_itof(struct fpn *fp, u_int i)
87 {
88
89 if (i == 0)
90 return (FPC_ZERO);
91 /*
92 * The value FP_1 represents 2^FP_LG, so set the exponent
93 * there and let normalization fix it up. Convert negative
94 * numbers to sign-and-magnitude. Note that this relies on
95 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
96 */
97 fp->fp_exp = FP_LG;
98 fp->fp_mant[0] = (int)i < 0 ? -i : i;
99 fp->fp_mant[1] = 0;
100 fp->fp_mant[2] = 0;
101 fp->fp_mant[3] = 0;
102 fpu_norm(fp);
103 return (FPC_NUM);
104 }
105
106 /*
107 * 64-bit int -> fpn.
108 */
109 int
110 fpu_xtof(struct fpn *fp, u_int64_t i)
111 {
112
113 if (i == 0)
114 return (FPC_ZERO);
115 /*
116 * The value FP_1 represents 2^FP_LG, so set the exponent
117 * there and let normalization fix it up. Convert negative
118 * numbers to sign-and-magnitude. Note that this relies on
119 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
120 */
121 fp->fp_exp = FP_LG2;
122 *((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
123 fp->fp_mant[2] = 0;
124 fp->fp_mant[3] = 0;
125 fpu_norm(fp);
126 return (FPC_NUM);
127 }
128
129 #define mask(nbits) ((1L << (nbits)) - 1)
130
131 /*
132 * All external floating formats convert to internal in the same manner,
133 * as defined here. Note that only normals get an implied 1.0 inserted.
134 */
135 #define FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
136 if (exp == 0) { \
137 if (allfrac == 0) \
138 return (FPC_ZERO); \
139 fp->fp_exp = 1 - expbias; \
140 fp->fp_mant[0] = f0; \
141 fp->fp_mant[1] = f1; \
142 fp->fp_mant[2] = f2; \
143 fp->fp_mant[3] = f3; \
144 fpu_norm(fp); \
145 return (FPC_NUM); \
146 } \
147 if (exp == (2 * expbias + 1)) { \
148 if (allfrac == 0) \
149 return (FPC_INF); \
150 fp->fp_mant[0] = f0; \
151 fp->fp_mant[1] = f1; \
152 fp->fp_mant[2] = f2; \
153 fp->fp_mant[3] = f3; \
154 return (FPC_QNAN); \
155 } \
156 fp->fp_exp = exp - expbias; \
157 fp->fp_mant[0] = FP_1 | f0; \
158 fp->fp_mant[1] = f1; \
159 fp->fp_mant[2] = f2; \
160 fp->fp_mant[3] = f3; \
161 return (FPC_NUM)
162
163 /*
164 * 32-bit single precision -> fpn.
165 * We assume a single occupies at most (64-FP_LG) bits in the internal
166 * format: i.e., needs at most fp_mant[0] and fp_mant[1].
167 */
168 int
169 fpu_stof(struct fpn *fp, u_int i)
170 {
171 int exp;
172 u_int frac, f0, f1;
173 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
174
175 exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
176 frac = i & mask(SNG_FRACBITS);
177 f0 = frac >> SNG_SHIFT;
178 f1 = frac << (32 - SNG_SHIFT);
179 FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
180 }
181
182 /*
183 * 64-bit double -> fpn.
184 * We assume this uses at most (96-FP_LG) bits.
185 */
186 int
187 fpu_dtof(struct fpn *fp, u_int i, u_int j)
188 {
189 int exp;
190 u_int frac, f0, f1, f2;
191 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
192
193 exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
194 frac = i & mask(DBL_FRACBITS - 32);
195 f0 = frac >> DBL_SHIFT;
196 f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
197 f2 = j << (32 - DBL_SHIFT);
198 frac |= j;
199 FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
200 }
201
202 /*
203 * 128-bit extended -> fpn.
204 */
205 int
206 fpu_qtof(struct fpn *fp, u_int i, u_int j, u_int k, u_int l)
207 {
208 int exp;
209 u_int frac, f0, f1, f2, f3;
210 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG)) /* left shift! */
211
212 /*
213 * Note that ext and fpn `line up', hence no shifting needed.
214 */
215 exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
216 frac = i & mask(EXT_FRACBITS - 3 * 32);
217 f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
218 f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
219 f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
220 f3 = l << EXT_SHIFT;
221 frac |= j | k | l;
222 FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
223 }
224
225 /*
226 * Explode the contents of a register / regpair / regquad.
227 * If the input is a signalling NaN, an NV (invalid) exception
228 * will be set. (Note that nothing but NV can occur until ALU
229 * operations are performed.)
230 */
231 void
232 fpu_explode(struct fpemu *fe, struct fpn *fp, int type, int reg)
233 {
234 u_int s, *space;
235 u_int64_t l, *xspace;
236
237 xspace = (u_int64_t *)&fe->fe_fpstate->fpreg[reg];
238 l = xspace[0];
239 space = (u_int *)&fe->fe_fpstate->fpreg[reg];
240 s = space[0];
241 fp->fp_sign = s >> 31;
242 fp->fp_sticky = 0;
243 switch (type) {
244
245 case FTYPE_LNG:
246 s = fpu_xtof(fp, l);
247 break;
248
249 case FTYPE_INT:
250 s = fpu_itof(fp, space[1]);
251 break;
252
253 case FTYPE_SNG:
254 s = fpu_stof(fp, s);
255 break;
256
257 case FTYPE_DBL:
258 s = fpu_dtof(fp, s, space[1]);
259 break;
260
261 case FTYPE_EXT:
262 s = fpu_qtof(fp, s, space[1], space[2], space[3]);
263 break;
264
265 default:
266 panic("fpu_explode");
267 }
268
269 if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
270 /*
271 * Input is a signalling NaN. All operations that return
272 * an input NaN operand put it through a ``NaN conversion'',
273 * which basically just means ``turn on the quiet bit''.
274 * We do this here so that all NaNs internally look quiet
275 * (we can tell signalling ones by their class).
276 */
277 fp->fp_mant[0] |= FP_QUIETBIT;
278 fe->fe_cx = FPSCR_VXSNAN; /* assert invalid operand */
279 s = FPC_SNAN;
280 }
281 fp->fp_class = s;
282 DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
283 ((type == FTYPE_INT) ? 'i' :
284 ((type == FTYPE_SNG) ? 's' :
285 ((type == FTYPE_DBL) ? 'd' :
286 ((type == FTYPE_EXT) ? 'q' : '?')))),
287 reg));
288 DUMPFPN(FPE_REG, fp);
289 DPRINTF(FPE_REG, ("\n"));
290 }
291