1 1.24 rin /* $NetBSD: fpu_implode.c,v 1.24 2022/09/14 05:55:08 rin Exp $ */ 2 1.1 simonb 3 1.1 simonb /* 4 1.1 simonb * Copyright (c) 1992, 1993 5 1.1 simonb * The Regents of the University of California. All rights reserved. 6 1.1 simonb * 7 1.1 simonb * This software was developed by the Computer Systems Engineering group 8 1.1 simonb * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 9 1.1 simonb * contributed to Berkeley. 10 1.1 simonb * 11 1.1 simonb * All advertising materials mentioning features or use of this software 12 1.1 simonb * must display the following acknowledgement: 13 1.1 simonb * This product includes software developed by the University of 14 1.1 simonb * California, Lawrence Berkeley Laboratory. 15 1.1 simonb * 16 1.1 simonb * Redistribution and use in source and binary forms, with or without 17 1.1 simonb * modification, are permitted provided that the following conditions 18 1.1 simonb * are met: 19 1.1 simonb * 1. Redistributions of source code must retain the above copyright 20 1.1 simonb * notice, this list of conditions and the following disclaimer. 21 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright 22 1.1 simonb * notice, this list of conditions and the following disclaimer in the 23 1.1 simonb * documentation and/or other materials provided with the distribution. 24 1.3 agc * 3. Neither the name of the University nor the names of its contributors 25 1.1 simonb * may be used to endorse or promote products derived from this software 26 1.1 simonb * without specific prior written permission. 27 1.1 simonb * 28 1.1 simonb * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 1.1 simonb * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 1.1 simonb * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 1.1 simonb * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 1.1 simonb * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 1.1 simonb * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 1.1 simonb * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 1.1 simonb * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 1.1 simonb * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 1.1 simonb * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 1.1 simonb * SUCH DAMAGE. 39 1.1 simonb * 40 1.1 simonb * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93 41 1.1 simonb */ 42 1.1 simonb 43 1.1 simonb /* 44 1.1 simonb * FPU subroutines: `implode' internal format numbers into the machine's 45 1.1 simonb * `packed binary' format. 46 1.1 simonb */ 47 1.2 lukem 48 1.2 lukem #include <sys/cdefs.h> 49 1.24 rin __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.24 2022/09/14 05:55:08 rin Exp $"); 50 1.1 simonb 51 1.1 simonb #include <sys/types.h> 52 1.1 simonb #include <sys/systm.h> 53 1.1 simonb 54 1.7 rin #include <powerpc/instr.h> 55 1.7 rin #include <machine/fpu.h> 56 1.1 simonb #include <machine/ieee.h> 57 1.1 simonb #include <machine/reg.h> 58 1.1 simonb 59 1.1 simonb #include <powerpc/fpu/fpu_arith.h> 60 1.1 simonb #include <powerpc/fpu/fpu_emu.h> 61 1.1 simonb #include <powerpc/fpu/fpu_extern.h> 62 1.1 simonb 63 1.21 rin static int round(struct fpemu *, struct fpn *, int *); 64 1.1 simonb static int toinf(struct fpemu *, int); 65 1.12 rin static int round_int(struct fpn *, int *, int, int, int); 66 1.1 simonb 67 1.21 rin static u_int fpu_ftoi(struct fpemu *, struct fpn *, int *, int); 68 1.21 rin static uint64_t fpu_ftox(struct fpemu *, struct fpn *, int *, int); 69 1.21 rin static u_int fpu_ftos(struct fpemu *, struct fpn *, int *); 70 1.21 rin static uint64_t fpu_ftod(struct fpemu *, struct fpn *, int *); 71 1.13 rin 72 1.1 simonb /* 73 1.1 simonb * Round a number (algorithm from Motorola MC68882 manual, modified for 74 1.1 simonb * our internal format). Set inexact exception if rounding is required. 75 1.1 simonb * Return true iff we rounded up. 76 1.1 simonb * 77 1.1 simonb * After rounding, we discard the guard and round bits by shifting right 78 1.1 simonb * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky). 79 1.1 simonb * This saves effort later. 80 1.1 simonb * 81 1.1 simonb * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's 82 1.1 simonb * responsibility to fix this if necessary. 83 1.1 simonb */ 84 1.1 simonb static int 85 1.21 rin round(struct fpemu *fe, struct fpn *fp, int *cx) 86 1.1 simonb { 87 1.1 simonb u_int m0, m1, m2, m3; 88 1.1 simonb int gr, s; 89 1.1 simonb FPU_DECL_CARRY; 90 1.1 simonb 91 1.1 simonb m0 = fp->fp_mant[0]; 92 1.1 simonb m1 = fp->fp_mant[1]; 93 1.1 simonb m2 = fp->fp_mant[2]; 94 1.1 simonb m3 = fp->fp_mant[3]; 95 1.1 simonb gr = m3 & 3; 96 1.1 simonb s = fp->fp_sticky; 97 1.1 simonb 98 1.1 simonb /* mant >>= FP_NG */ 99 1.1 simonb m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG)); 100 1.1 simonb m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG)); 101 1.1 simonb m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG)); 102 1.1 simonb m0 >>= FP_NG; 103 1.1 simonb 104 1.1 simonb if ((gr | s) == 0) /* result is exact: no rounding needed */ 105 1.1 simonb goto rounddown; 106 1.1 simonb 107 1.21 rin *cx |= FPSCR_FI; /* inexact */ 108 1.1 simonb 109 1.1 simonb /* Go to rounddown to round down; break to round up. */ 110 1.1 simonb switch ((fe->fe_fpscr) & FPSCR_RN) { 111 1.1 simonb 112 1.1 simonb case FSR_RD_RN: 113 1.1 simonb default: 114 1.1 simonb /* 115 1.1 simonb * Round only if guard is set (gr & 2). If guard is set, 116 1.1 simonb * but round & sticky both clear, then we want to round 117 1.1 simonb * but have a tie, so round to even, i.e., add 1 iff odd. 118 1.1 simonb */ 119 1.1 simonb if ((gr & 2) == 0) 120 1.1 simonb goto rounddown; 121 1.1 simonb if ((gr & 1) || fp->fp_sticky || (m3 & 1)) 122 1.1 simonb break; 123 1.1 simonb goto rounddown; 124 1.1 simonb 125 1.1 simonb case FSR_RD_RZ: 126 1.1 simonb /* Round towards zero, i.e., down. */ 127 1.1 simonb goto rounddown; 128 1.1 simonb 129 1.1 simonb case FSR_RD_RM: 130 1.1 simonb /* Round towards -Inf: up if negative, down if positive. */ 131 1.1 simonb if (fp->fp_sign) 132 1.1 simonb break; 133 1.1 simonb goto rounddown; 134 1.1 simonb 135 1.1 simonb case FSR_RD_RP: 136 1.1 simonb /* Round towards +Inf: up if positive, down otherwise. */ 137 1.1 simonb if (!fp->fp_sign) 138 1.1 simonb break; 139 1.1 simonb goto rounddown; 140 1.1 simonb } 141 1.1 simonb 142 1.1 simonb /* Bump low bit of mantissa, with carry. */ 143 1.21 rin *cx |= FPSCR_FR; 144 1.1 simonb 145 1.1 simonb FPU_ADDS(m3, m3, 1); 146 1.1 simonb FPU_ADDCS(m2, m2, 0); 147 1.1 simonb FPU_ADDCS(m1, m1, 0); 148 1.1 simonb FPU_ADDC(m0, m0, 0); 149 1.1 simonb fp->fp_mant[0] = m0; 150 1.1 simonb fp->fp_mant[1] = m1; 151 1.1 simonb fp->fp_mant[2] = m2; 152 1.1 simonb fp->fp_mant[3] = m3; 153 1.1 simonb return (1); 154 1.1 simonb 155 1.1 simonb rounddown: 156 1.1 simonb fp->fp_mant[0] = m0; 157 1.1 simonb fp->fp_mant[1] = m1; 158 1.1 simonb fp->fp_mant[2] = m2; 159 1.1 simonb fp->fp_mant[3] = m3; 160 1.1 simonb return (0); 161 1.1 simonb } 162 1.1 simonb 163 1.1 simonb /* 164 1.1 simonb * For overflow: return true if overflow is to go to +/-Inf, according 165 1.1 simonb * to the sign of the overflowing result. If false, overflow is to go 166 1.1 simonb * to the largest magnitude value instead. 167 1.1 simonb */ 168 1.1 simonb static int 169 1.1 simonb toinf(struct fpemu *fe, int sign) 170 1.1 simonb { 171 1.1 simonb int inf; 172 1.1 simonb 173 1.1 simonb /* look at rounding direction */ 174 1.1 simonb switch ((fe->fe_fpscr) & FPSCR_RN) { 175 1.1 simonb 176 1.1 simonb default: 177 1.1 simonb case FSR_RD_RN: /* the nearest value is always Inf */ 178 1.1 simonb inf = 1; 179 1.1 simonb break; 180 1.1 simonb 181 1.1 simonb case FSR_RD_RZ: /* toward 0 => never towards Inf */ 182 1.1 simonb inf = 0; 183 1.1 simonb break; 184 1.1 simonb 185 1.1 simonb case FSR_RD_RP: /* toward +Inf iff positive */ 186 1.1 simonb inf = sign == 0; 187 1.1 simonb break; 188 1.1 simonb 189 1.1 simonb case FSR_RD_RM: /* toward -Inf iff negative */ 190 1.1 simonb inf = sign; 191 1.1 simonb break; 192 1.1 simonb } 193 1.1 simonb return (inf); 194 1.1 simonb } 195 1.1 simonb 196 1.12 rin static int 197 1.12 rin round_int(struct fpn *fp, int *cx, int rn, int sign, int odd) 198 1.12 rin { 199 1.12 rin int g, rs; 200 1.12 rin 201 1.12 rin g = fp->fp_mant[3] & 0x80000000; 202 1.12 rin rs = (fp->fp_mant[3] & 0x7fffffff) | fp->fp_sticky; 203 1.12 rin 204 1.12 rin if ((g | rs) == 0) 205 1.12 rin return 0; /* exact */ 206 1.12 rin 207 1.21 rin *cx |= FPSCR_FI; 208 1.12 rin 209 1.12 rin switch (rn) { 210 1.12 rin case FSR_RD_RN: 211 1.12 rin if (g && (rs | odd)) 212 1.12 rin break; 213 1.12 rin return 0; 214 1.12 rin case FSR_RD_RZ: 215 1.12 rin return 0; 216 1.12 rin case FSR_RD_RP: 217 1.12 rin if (!sign) 218 1.12 rin break; 219 1.12 rin return 0; 220 1.12 rin case FSR_RD_RM: 221 1.12 rin if (sign) 222 1.12 rin break; 223 1.12 rin return 0; 224 1.12 rin } 225 1.12 rin 226 1.12 rin *cx |= FPSCR_FR; 227 1.12 rin return 1; 228 1.12 rin } 229 1.12 rin 230 1.1 simonb /* 231 1.1 simonb * fpn -> int (int value returned as return value). 232 1.1 simonb */ 233 1.13 rin static u_int 234 1.21 rin fpu_ftoi(struct fpemu *fe, struct fpn *fp, int *cx, int rn) 235 1.1 simonb { 236 1.1 simonb u_int i; 237 1.21 rin int sign, exp, tmp_cx; 238 1.1 simonb 239 1.1 simonb sign = fp->fp_sign; 240 1.1 simonb switch (fp->fp_class) { 241 1.12 rin case FPC_SNAN: 242 1.21 rin *cx |= FPSCR_VXSNAN; 243 1.12 rin /* FALLTHROUGH */ 244 1.12 rin case FPC_QNAN: 245 1.12 rin sign = 1; 246 1.12 rin break; 247 1.1 simonb 248 1.1 simonb case FPC_ZERO: 249 1.1 simonb return (0); 250 1.1 simonb 251 1.1 simonb case FPC_NUM: 252 1.1 simonb /* 253 1.1 simonb * If exp >= 2^32, overflow. Otherwise shift value right 254 1.1 simonb * into last mantissa word (this will not exceed 0xffffffff), 255 1.1 simonb * shifting any guard and round bits out into the sticky 256 1.1 simonb * bit. Then ``round'' towards zero, i.e., just set an 257 1.1 simonb * inexact exception if sticky is set (see round()). 258 1.1 simonb * If the result is > 0x80000000, or is positive and equals 259 1.1 simonb * 0x80000000, overflow; otherwise the last fraction word 260 1.1 simonb * is the result. 261 1.1 simonb */ 262 1.1 simonb if ((exp = fp->fp_exp) >= 32) 263 1.1 simonb break; 264 1.1 simonb /* NB: the following includes exp < 0 cases */ 265 1.12 rin (void)fpu_shr(fp, FP_NMANT - 32 - 1 - exp); 266 1.10 rin i = fp->fp_mant[2]; 267 1.21 rin tmp_cx = 0; 268 1.21 rin i += round_int(fp, &tmp_cx, rn, sign, i & 1); 269 1.1 simonb if (i >= ((u_int)0x80000000 + sign)) 270 1.1 simonb break; 271 1.21 rin *cx |= tmp_cx; 272 1.1 simonb return (sign ? -i : i); 273 1.1 simonb 274 1.12 rin case FPC_INF: 275 1.1 simonb break; 276 1.1 simonb } 277 1.1 simonb /* overflow: replace any inexact exception with invalid */ 278 1.21 rin *cx |= FPSCR_VXCVI; 279 1.1 simonb return (0x7fffffff + sign); 280 1.1 simonb } 281 1.1 simonb 282 1.1 simonb /* 283 1.1 simonb * fpn -> extended int (high bits of int value returned as return value). 284 1.1 simonb */ 285 1.13 rin static uint64_t 286 1.21 rin fpu_ftox(struct fpemu *fe, struct fpn *fp, int *cx, int rn) 287 1.1 simonb { 288 1.8 rin uint64_t i; 289 1.21 rin int sign, exp, tmp_cx; 290 1.1 simonb 291 1.1 simonb sign = fp->fp_sign; 292 1.1 simonb switch (fp->fp_class) { 293 1.12 rin case FPC_SNAN: 294 1.21 rin *cx |= FPSCR_VXSNAN; 295 1.12 rin /* FALLTHROUGH */ 296 1.12 rin case FPC_QNAN: 297 1.12 rin sign = 1; 298 1.12 rin break; 299 1.1 simonb 300 1.1 simonb case FPC_ZERO: 301 1.1 simonb return (0); 302 1.1 simonb 303 1.1 simonb case FPC_NUM: 304 1.1 simonb /* 305 1.1 simonb * If exp >= 2^64, overflow. Otherwise shift value right 306 1.1 simonb * into last mantissa word (this will not exceed 0xffffffffffffffff), 307 1.1 simonb * shifting any guard and round bits out into the sticky 308 1.1 simonb * bit. Then ``round'' towards zero, i.e., just set an 309 1.1 simonb * inexact exception if sticky is set (see round()). 310 1.1 simonb * If the result is > 0x8000000000000000, or is positive and equals 311 1.1 simonb * 0x8000000000000000, overflow; otherwise the last fraction word 312 1.1 simonb * is the result. 313 1.1 simonb */ 314 1.1 simonb if ((exp = fp->fp_exp) >= 64) 315 1.1 simonb break; 316 1.1 simonb /* NB: the following includes exp < 0 cases */ 317 1.12 rin (void)fpu_shr(fp, FP_NMANT - 32 - 1 - exp); 318 1.10 rin i = ((uint64_t)fp->fp_mant[1] << 32) | fp->fp_mant[2]; 319 1.21 rin tmp_cx = 0; 320 1.21 rin i += round_int(fp, &tmp_cx, rn, sign, i & 1); 321 1.8 rin if (i >= ((uint64_t)0x8000000000000000LL + sign)) 322 1.1 simonb break; 323 1.21 rin *cx |= tmp_cx; 324 1.1 simonb return (sign ? -i : i); 325 1.1 simonb 326 1.12 rin case FPC_INF: 327 1.1 simonb break; 328 1.1 simonb } 329 1.1 simonb /* overflow: replace any inexact exception with invalid */ 330 1.21 rin *cx |= FPSCR_VXCVI; 331 1.1 simonb return (0x7fffffffffffffffLL + sign); 332 1.1 simonb } 333 1.1 simonb 334 1.14 rin #define FPRF_SIGN(sign) ((sign) ? FPSCR_FL : FPSCR_FG) 335 1.14 rin 336 1.1 simonb /* 337 1.1 simonb * fpn -> single (32 bit single returned as return value). 338 1.1 simonb * We assume <= 29 bits in a single-precision fraction (1.f part). 339 1.1 simonb */ 340 1.13 rin static u_int 341 1.21 rin fpu_ftos(struct fpemu *fe, struct fpn *fp, int *cx) 342 1.1 simonb { 343 1.1 simonb u_int sign = fp->fp_sign << 31; 344 1.1 simonb int exp; 345 1.1 simonb 346 1.1 simonb #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */ 347 1.1 simonb #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */ 348 1.1 simonb 349 1.1 simonb /* Take care of non-numbers first. */ 350 1.1 simonb if (ISNAN(fp)) { 351 1.21 rin *cx |= FPSCR_C | FPSCR_FU; 352 1.1 simonb /* 353 1.1 simonb * Preserve upper bits of NaN, per SPARC V8 appendix N. 354 1.1 simonb * Note that fp->fp_mant[0] has the quiet bit set, 355 1.1 simonb * even if it is classified as a signalling NaN. 356 1.1 simonb */ 357 1.1 simonb (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS); 358 1.1 simonb exp = SNG_EXP_INFNAN; 359 1.1 simonb goto done; 360 1.1 simonb } 361 1.14 rin if (ISINF(fp)) { 362 1.21 rin *cx |= FPRF_SIGN(sign) | FPSCR_FU; 363 1.1 simonb return (sign | SNG_EXP(SNG_EXP_INFNAN)); 364 1.14 rin } 365 1.14 rin if (ISZERO(fp)) { 366 1.21 rin *cx |= FPSCR_FE; 367 1.21 rin if (sign) 368 1.21 rin *cx |= FPSCR_C; 369 1.1 simonb return (sign); 370 1.14 rin } 371 1.1 simonb 372 1.1 simonb /* 373 1.1 simonb * Normals (including subnormals). Drop all the fraction bits 374 1.1 simonb * (including the explicit ``implied'' 1 bit) down into the 375 1.1 simonb * single-precision range. If the number is subnormal, move 376 1.1 simonb * the ``implied'' 1 into the explicit range as well, and shift 377 1.1 simonb * right to introduce leading zeroes. Rounding then acts 378 1.1 simonb * differently for normals and subnormals: the largest subnormal 379 1.1 simonb * may round to the smallest normal (1.0 x 2^minexp), or may 380 1.1 simonb * remain subnormal. In the latter case, signal an underflow 381 1.1 simonb * if the result was inexact or if underflow traps are enabled. 382 1.1 simonb * 383 1.1 simonb * Rounding a normal, on the other hand, always produces another 384 1.1 simonb * normal (although either way the result might be too big for 385 1.1 simonb * single precision, and cause an overflow). If rounding a 386 1.1 simonb * normal produces 2.0 in the fraction, we need not adjust that 387 1.1 simonb * fraction at all, since both 1.0 and 2.0 are zero under the 388 1.1 simonb * fraction mask. 389 1.1 simonb * 390 1.1 simonb * Note that the guard and round bits vanish from the number after 391 1.1 simonb * rounding. 392 1.1 simonb */ 393 1.1 simonb if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */ 394 1.1 simonb /* -NG for g,r; -SNG_FRACBITS-exp for fraction */ 395 1.1 simonb (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp); 396 1.21 rin if (round(fe, fp, cx) && fp->fp_mant[3] == SNG_EXP(1)) { 397 1.21 rin *cx |= FPRF_SIGN(sign); 398 1.1 simonb return (sign | SNG_EXP(1) | 0); 399 1.14 rin } 400 1.23 rin if (*cx & FPSCR_FI) { 401 1.23 rin *cx |= FPSCR_UX; 402 1.23 rin if (fp->fp_mant[3] == 0) { 403 1.23 rin *cx |= FPSCR_FE; 404 1.23 rin return sign; 405 1.23 rin } 406 1.23 rin } 407 1.21 rin *cx |= FPSCR_C | FPRF_SIGN(sign); 408 1.1 simonb return (sign | SNG_EXP(0) | fp->fp_mant[3]); 409 1.1 simonb } 410 1.1 simonb /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */ 411 1.1 simonb (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS); 412 1.1 simonb #ifdef DIAGNOSTIC 413 1.1 simonb if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0) 414 1.1 simonb panic("fpu_ftos"); 415 1.1 simonb #endif 416 1.21 rin if (round(fe, fp, cx) && fp->fp_mant[3] == SNG_EXP(2)) 417 1.1 simonb exp++; 418 1.1 simonb if (exp >= SNG_EXP_INFNAN) { 419 1.24 rin *cx |= FPSCR_OX | FPSCR_FI; 420 1.1 simonb /* overflow to inf or to max single */ 421 1.14 rin if (toinf(fe, sign)) { 422 1.21 rin *cx |= FPRF_SIGN(sign) | FPSCR_FU; 423 1.1 simonb return (sign | SNG_EXP(SNG_EXP_INFNAN)); 424 1.14 rin } 425 1.21 rin *cx |= FPRF_SIGN(sign); 426 1.1 simonb return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK); 427 1.1 simonb } 428 1.21 rin *cx |= FPRF_SIGN(sign); 429 1.1 simonb done: 430 1.1 simonb /* phew, made it */ 431 1.1 simonb return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK)); 432 1.1 simonb } 433 1.1 simonb 434 1.1 simonb /* 435 1.15 rin * fpn -> double. Assumes <= 61 bits in double precision fraction. 436 1.1 simonb * 437 1.1 simonb * This code mimics fpu_ftos; see it for comments. 438 1.1 simonb */ 439 1.15 rin static uint64_t 440 1.21 rin fpu_ftod(struct fpemu *fe, struct fpn *fp, int *cx) 441 1.1 simonb { 442 1.1 simonb u_int sign = fp->fp_sign << 31; 443 1.1 simonb int exp; 444 1.1 simonb 445 1.1 simonb #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31)) 446 1.1 simonb #define DBL_MASK (DBL_EXP(1) - 1) 447 1.15 rin #define HI_WORD(i) ((uint64_t)(i) << 32) 448 1.15 rin #define LO_WORD(i) ((uint32_t)(i)) 449 1.1 simonb 450 1.1 simonb if (ISNAN(fp)) { 451 1.21 rin *cx |= FPSCR_C | FPSCR_FU; 452 1.1 simonb (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS); 453 1.1 simonb exp = DBL_EXP_INFNAN; 454 1.1 simonb goto done; 455 1.1 simonb } 456 1.1 simonb if (ISINF(fp)) { 457 1.21 rin *cx |= FPRF_SIGN(sign) | FPSCR_FU; 458 1.22 rin return HI_WORD(sign | DBL_EXP(DBL_EXP_INFNAN)); 459 1.1 simonb } 460 1.1 simonb if (ISZERO(fp)) { 461 1.21 rin *cx |= FPSCR_FE; 462 1.21 rin if (sign) 463 1.21 rin *cx |= FPSCR_C; 464 1.22 rin return HI_WORD(sign); 465 1.1 simonb } 466 1.1 simonb 467 1.1 simonb if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) { 468 1.1 simonb (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp); 469 1.21 rin if (round(fe, fp, cx) && fp->fp_mant[2] == DBL_EXP(1)) { 470 1.21 rin *cx |= FPRF_SIGN(sign); 471 1.15 rin return HI_WORD(sign | DBL_EXP(1) | 0); 472 1.1 simonb } 473 1.23 rin if (*cx & FPSCR_FI) { 474 1.23 rin *cx |= FPSCR_UX; 475 1.23 rin if ((fp->fp_mant[2] & DBL_MASK) == 0 && 476 1.23 rin fp->fp_mant[3] == 0) { 477 1.23 rin *cx |= FPSCR_FE; 478 1.23 rin return HI_WORD(sign); 479 1.23 rin } 480 1.23 rin } 481 1.21 rin *cx |= FPSCR_C | FPRF_SIGN(sign); 482 1.1 simonb exp = 0; 483 1.1 simonb goto done; 484 1.1 simonb } 485 1.1 simonb (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS); 486 1.21 rin if (round(fe, fp, cx) && fp->fp_mant[2] == DBL_EXP(2)) 487 1.1 simonb exp++; 488 1.1 simonb if (exp >= DBL_EXP_INFNAN) { 489 1.24 rin *cx |= FPSCR_OX | FPSCR_FI; 490 1.21 rin /* overflow to inf or to max double */ 491 1.1 simonb if (toinf(fe, sign)) { 492 1.21 rin *cx |= FPRF_SIGN(sign) | FPSCR_FU; 493 1.15 rin return HI_WORD(sign | DBL_EXP(DBL_EXP_INFNAN) | 0); 494 1.1 simonb } 495 1.21 rin *cx |= FPRF_SIGN(sign); 496 1.16 rin return HI_WORD(sign | DBL_EXP(DBL_EXP_INFNAN - 1) | DBL_MASK) | 497 1.15 rin LO_WORD(~0); 498 1.1 simonb } 499 1.21 rin *cx |= FPRF_SIGN(sign); 500 1.1 simonb done: 501 1.15 rin return HI_WORD(sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK)) | 502 1.15 rin LO_WORD(fp->fp_mant[3]); 503 1.1 simonb } 504 1.1 simonb 505 1.1 simonb /* 506 1.1 simonb * Implode an fpn, writing the result into the given space. 507 1.1 simonb */ 508 1.1 simonb void 509 1.17 rin fpu_implode(struct fpemu *fe, struct fpn *fp, int type, uint64_t *p) 510 1.1 simonb { 511 1.17 rin u_int *hi, *lo; 512 1.21 rin int cx, rn; 513 1.21 rin bool fpscr; 514 1.10 rin 515 1.17 rin hi = (u_int *)p; 516 1.17 rin lo = hi + 1; 517 1.17 rin 518 1.10 rin if (type & FTYPE_RD_RZ) 519 1.10 rin rn = FSR_RD_RZ; 520 1.10 rin else 521 1.10 rin rn = fe->fe_fpscr & FPSCR_RN; 522 1.21 rin fpscr = type & FTYPE_FPSCR; 523 1.14 rin type &= ~FTYPE_FLAG_MASK; 524 1.1 simonb 525 1.21 rin cx = 0; 526 1.1 simonb switch (type) { 527 1.1 simonb 528 1.1 simonb case FTYPE_LNG: 529 1.14 rin /* FPRF is undefined. */ 530 1.21 rin *p = fpu_ftox(fe, fp, &cx, rn); 531 1.20 rin DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n", *hi, *lo)); 532 1.1 simonb break; 533 1.1 simonb 534 1.1 simonb case FTYPE_INT: 535 1.14 rin /* FPRF is undefined. */ 536 1.17 rin *hi = 0; 537 1.21 rin *lo = fpu_ftoi(fe, fp, &cx, rn); 538 1.20 rin DPRINTF(FPE_REG, ("fpu_implode: int %x\n", *lo)); 539 1.1 simonb break; 540 1.1 simonb 541 1.1 simonb case FTYPE_SNG: 542 1.21 rin *hi = fpu_ftos(fe, fp, &cx); 543 1.18 rin *lo = 0; 544 1.20 rin DPRINTF(FPE_REG, ("fpu_implode: single %x\n", *hi)); 545 1.1 simonb break; 546 1.1 simonb 547 1.1 simonb case FTYPE_DBL: 548 1.21 rin *p = fpu_ftod(fe, fp, &cx); 549 1.20 rin DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n", *hi, *lo)); 550 1.19 rin break; 551 1.1 simonb 552 1.1 simonb default: 553 1.1 simonb panic("fpu_implode: invalid type %d", type); 554 1.1 simonb } 555 1.21 rin 556 1.21 rin if (fpscr) { 557 1.21 rin fe->fe_fpscr &= ~(FPSCR_FR | FPSCR_FI | FPSCR_FPRF); 558 1.21 rin fe->fe_cx |= cx; 559 1.21 rin if (cx & FPSCR_FI) 560 1.21 rin fe->fe_cx |= FPSCR_XX; 561 1.21 rin } 562 1.1 simonb } 563