Home | History | Annotate | Line # | Download | only in fpu
      1  1.24     rin /*	$NetBSD: fpu_implode.c,v 1.24 2022/09/14 05:55:08 rin Exp $ */
      2   1.1  simonb 
      3   1.1  simonb /*
      4   1.1  simonb  * Copyright (c) 1992, 1993
      5   1.1  simonb  *	The Regents of the University of California.  All rights reserved.
      6   1.1  simonb  *
      7   1.1  simonb  * This software was developed by the Computer Systems Engineering group
      8   1.1  simonb  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9   1.1  simonb  * contributed to Berkeley.
     10   1.1  simonb  *
     11   1.1  simonb  * All advertising materials mentioning features or use of this software
     12   1.1  simonb  * must display the following acknowledgement:
     13   1.1  simonb  *	This product includes software developed by the University of
     14   1.1  simonb  *	California, Lawrence Berkeley Laboratory.
     15   1.1  simonb  *
     16   1.1  simonb  * Redistribution and use in source and binary forms, with or without
     17   1.1  simonb  * modification, are permitted provided that the following conditions
     18   1.1  simonb  * are met:
     19   1.1  simonb  * 1. Redistributions of source code must retain the above copyright
     20   1.1  simonb  *    notice, this list of conditions and the following disclaimer.
     21   1.1  simonb  * 2. Redistributions in binary form must reproduce the above copyright
     22   1.1  simonb  *    notice, this list of conditions and the following disclaimer in the
     23   1.1  simonb  *    documentation and/or other materials provided with the distribution.
     24   1.3     agc  * 3. Neither the name of the University nor the names of its contributors
     25   1.1  simonb  *    may be used to endorse or promote products derived from this software
     26   1.1  simonb  *    without specific prior written permission.
     27   1.1  simonb  *
     28   1.1  simonb  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29   1.1  simonb  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30   1.1  simonb  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31   1.1  simonb  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32   1.1  simonb  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33   1.1  simonb  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34   1.1  simonb  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35   1.1  simonb  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36   1.1  simonb  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37   1.1  simonb  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38   1.1  simonb  * SUCH DAMAGE.
     39   1.1  simonb  *
     40   1.1  simonb  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
     41   1.1  simonb  */
     42   1.1  simonb 
     43   1.1  simonb /*
     44   1.1  simonb  * FPU subroutines: `implode' internal format numbers into the machine's
     45   1.1  simonb  * `packed binary' format.
     46   1.1  simonb  */
     47   1.2   lukem 
     48   1.2   lukem #include <sys/cdefs.h>
     49  1.24     rin __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.24 2022/09/14 05:55:08 rin Exp $");
     50   1.1  simonb 
     51   1.1  simonb #include <sys/types.h>
     52   1.1  simonb #include <sys/systm.h>
     53   1.1  simonb 
     54   1.7     rin #include <powerpc/instr.h>
     55   1.7     rin #include <machine/fpu.h>
     56   1.1  simonb #include <machine/ieee.h>
     57   1.1  simonb #include <machine/reg.h>
     58   1.1  simonb 
     59   1.1  simonb #include <powerpc/fpu/fpu_arith.h>
     60   1.1  simonb #include <powerpc/fpu/fpu_emu.h>
     61   1.1  simonb #include <powerpc/fpu/fpu_extern.h>
     62   1.1  simonb 
     63  1.21     rin static int round(struct fpemu *, struct fpn *, int *);
     64   1.1  simonb static int toinf(struct fpemu *, int);
     65  1.12     rin static int round_int(struct fpn *, int *, int, int, int);
     66   1.1  simonb 
     67  1.21     rin static u_int fpu_ftoi(struct fpemu *, struct fpn *, int *, int);
     68  1.21     rin static uint64_t fpu_ftox(struct fpemu *, struct fpn *, int *, int);
     69  1.21     rin static u_int fpu_ftos(struct fpemu *, struct fpn *, int *);
     70  1.21     rin static uint64_t fpu_ftod(struct fpemu *, struct fpn *, int *);
     71  1.13     rin 
     72   1.1  simonb /*
     73   1.1  simonb  * Round a number (algorithm from Motorola MC68882 manual, modified for
     74   1.1  simonb  * our internal format).  Set inexact exception if rounding is required.
     75   1.1  simonb  * Return true iff we rounded up.
     76   1.1  simonb  *
     77   1.1  simonb  * After rounding, we discard the guard and round bits by shifting right
     78   1.1  simonb  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
     79   1.1  simonb  * This saves effort later.
     80   1.1  simonb  *
     81   1.1  simonb  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
     82   1.1  simonb  * responsibility to fix this if necessary.
     83   1.1  simonb  */
     84   1.1  simonb static int
     85  1.21     rin round(struct fpemu *fe, struct fpn *fp, int *cx)
     86   1.1  simonb {
     87   1.1  simonb 	u_int m0, m1, m2, m3;
     88   1.1  simonb 	int gr, s;
     89   1.1  simonb 	FPU_DECL_CARRY;
     90   1.1  simonb 
     91   1.1  simonb 	m0 = fp->fp_mant[0];
     92   1.1  simonb 	m1 = fp->fp_mant[1];
     93   1.1  simonb 	m2 = fp->fp_mant[2];
     94   1.1  simonb 	m3 = fp->fp_mant[3];
     95   1.1  simonb 	gr = m3 & 3;
     96   1.1  simonb 	s = fp->fp_sticky;
     97   1.1  simonb 
     98   1.1  simonb 	/* mant >>= FP_NG */
     99   1.1  simonb 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
    100   1.1  simonb 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
    101   1.1  simonb 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
    102   1.1  simonb 	m0 >>= FP_NG;
    103   1.1  simonb 
    104   1.1  simonb 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
    105   1.1  simonb 		goto rounddown;
    106   1.1  simonb 
    107  1.21     rin 	*cx |= FPSCR_FI;	/* inexact */
    108   1.1  simonb 
    109   1.1  simonb 	/* Go to rounddown to round down; break to round up. */
    110   1.1  simonb 	switch ((fe->fe_fpscr) & FPSCR_RN) {
    111   1.1  simonb 
    112   1.1  simonb 	case FSR_RD_RN:
    113   1.1  simonb 	default:
    114   1.1  simonb 		/*
    115   1.1  simonb 		 * Round only if guard is set (gr & 2).  If guard is set,
    116   1.1  simonb 		 * but round & sticky both clear, then we want to round
    117   1.1  simonb 		 * but have a tie, so round to even, i.e., add 1 iff odd.
    118   1.1  simonb 		 */
    119   1.1  simonb 		if ((gr & 2) == 0)
    120   1.1  simonb 			goto rounddown;
    121   1.1  simonb 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
    122   1.1  simonb 			break;
    123   1.1  simonb 		goto rounddown;
    124   1.1  simonb 
    125   1.1  simonb 	case FSR_RD_RZ:
    126   1.1  simonb 		/* Round towards zero, i.e., down. */
    127   1.1  simonb 		goto rounddown;
    128   1.1  simonb 
    129   1.1  simonb 	case FSR_RD_RM:
    130   1.1  simonb 		/* Round towards -Inf: up if negative, down if positive. */
    131   1.1  simonb 		if (fp->fp_sign)
    132   1.1  simonb 			break;
    133   1.1  simonb 		goto rounddown;
    134   1.1  simonb 
    135   1.1  simonb 	case FSR_RD_RP:
    136   1.1  simonb 		/* Round towards +Inf: up if positive, down otherwise. */
    137   1.1  simonb 		if (!fp->fp_sign)
    138   1.1  simonb 			break;
    139   1.1  simonb 		goto rounddown;
    140   1.1  simonb 	}
    141   1.1  simonb 
    142   1.1  simonb 	/* Bump low bit of mantissa, with carry. */
    143  1.21     rin 	*cx |= FPSCR_FR;
    144   1.1  simonb 
    145   1.1  simonb 	FPU_ADDS(m3, m3, 1);
    146   1.1  simonb 	FPU_ADDCS(m2, m2, 0);
    147   1.1  simonb 	FPU_ADDCS(m1, m1, 0);
    148   1.1  simonb 	FPU_ADDC(m0, m0, 0);
    149   1.1  simonb 	fp->fp_mant[0] = m0;
    150   1.1  simonb 	fp->fp_mant[1] = m1;
    151   1.1  simonb 	fp->fp_mant[2] = m2;
    152   1.1  simonb 	fp->fp_mant[3] = m3;
    153   1.1  simonb 	return (1);
    154   1.1  simonb 
    155   1.1  simonb rounddown:
    156   1.1  simonb 	fp->fp_mant[0] = m0;
    157   1.1  simonb 	fp->fp_mant[1] = m1;
    158   1.1  simonb 	fp->fp_mant[2] = m2;
    159   1.1  simonb 	fp->fp_mant[3] = m3;
    160   1.1  simonb 	return (0);
    161   1.1  simonb }
    162   1.1  simonb 
    163   1.1  simonb /*
    164   1.1  simonb  * For overflow: return true if overflow is to go to +/-Inf, according
    165   1.1  simonb  * to the sign of the overflowing result.  If false, overflow is to go
    166   1.1  simonb  * to the largest magnitude value instead.
    167   1.1  simonb  */
    168   1.1  simonb static int
    169   1.1  simonb toinf(struct fpemu *fe, int sign)
    170   1.1  simonb {
    171   1.1  simonb 	int inf;
    172   1.1  simonb 
    173   1.1  simonb 	/* look at rounding direction */
    174   1.1  simonb 	switch ((fe->fe_fpscr) & FPSCR_RN) {
    175   1.1  simonb 
    176   1.1  simonb 	default:
    177   1.1  simonb 	case FSR_RD_RN:		/* the nearest value is always Inf */
    178   1.1  simonb 		inf = 1;
    179   1.1  simonb 		break;
    180   1.1  simonb 
    181   1.1  simonb 	case FSR_RD_RZ:		/* toward 0 => never towards Inf */
    182   1.1  simonb 		inf = 0;
    183   1.1  simonb 		break;
    184   1.1  simonb 
    185   1.1  simonb 	case FSR_RD_RP:		/* toward +Inf iff positive */
    186   1.1  simonb 		inf = sign == 0;
    187   1.1  simonb 		break;
    188   1.1  simonb 
    189   1.1  simonb 	case FSR_RD_RM:		/* toward -Inf iff negative */
    190   1.1  simonb 		inf = sign;
    191   1.1  simonb 		break;
    192   1.1  simonb 	}
    193   1.1  simonb 	return (inf);
    194   1.1  simonb }
    195   1.1  simonb 
    196  1.12     rin static int
    197  1.12     rin round_int(struct fpn *fp, int *cx, int rn, int sign, int odd)
    198  1.12     rin {
    199  1.12     rin 	int g, rs;
    200  1.12     rin 
    201  1.12     rin 	g =   fp->fp_mant[3] & 0x80000000;
    202  1.12     rin 	rs = (fp->fp_mant[3] & 0x7fffffff) | fp->fp_sticky;
    203  1.12     rin 
    204  1.12     rin 	if ((g | rs) == 0)
    205  1.12     rin 		return 0;	/* exact */
    206  1.12     rin 
    207  1.21     rin 	*cx |= FPSCR_FI;
    208  1.12     rin 
    209  1.12     rin 	switch (rn) {
    210  1.12     rin 	case FSR_RD_RN:
    211  1.12     rin 		if (g && (rs | odd))
    212  1.12     rin 			break;
    213  1.12     rin 		return 0;
    214  1.12     rin 	case FSR_RD_RZ:
    215  1.12     rin 		return 0;
    216  1.12     rin 	case FSR_RD_RP:
    217  1.12     rin 		if (!sign)
    218  1.12     rin 			break;
    219  1.12     rin 		return 0;
    220  1.12     rin 	case FSR_RD_RM:
    221  1.12     rin 		if (sign)
    222  1.12     rin 			break;
    223  1.12     rin 		return 0;
    224  1.12     rin 	}
    225  1.12     rin 
    226  1.12     rin 	*cx |= FPSCR_FR;
    227  1.12     rin 	return 1;
    228  1.12     rin }
    229  1.12     rin 
    230   1.1  simonb /*
    231   1.1  simonb  * fpn -> int (int value returned as return value).
    232   1.1  simonb  */
    233  1.13     rin static u_int
    234  1.21     rin fpu_ftoi(struct fpemu *fe, struct fpn *fp, int *cx, int rn)
    235   1.1  simonb {
    236   1.1  simonb 	u_int i;
    237  1.21     rin 	int sign, exp, tmp_cx;
    238   1.1  simonb 
    239   1.1  simonb 	sign = fp->fp_sign;
    240   1.1  simonb 	switch (fp->fp_class) {
    241  1.12     rin 	case FPC_SNAN:
    242  1.21     rin 		*cx |= FPSCR_VXSNAN;
    243  1.12     rin 		/* FALLTHROUGH */
    244  1.12     rin 	case FPC_QNAN:
    245  1.12     rin 		sign = 1;
    246  1.12     rin 		break;
    247   1.1  simonb 
    248   1.1  simonb 	case FPC_ZERO:
    249   1.1  simonb 		return (0);
    250   1.1  simonb 
    251   1.1  simonb 	case FPC_NUM:
    252   1.1  simonb 		/*
    253   1.1  simonb 		 * If exp >= 2^32, overflow.  Otherwise shift value right
    254   1.1  simonb 		 * into last mantissa word (this will not exceed 0xffffffff),
    255   1.1  simonb 		 * shifting any guard and round bits out into the sticky
    256   1.1  simonb 		 * bit.  Then ``round'' towards zero, i.e., just set an
    257   1.1  simonb 		 * inexact exception if sticky is set (see round()).
    258   1.1  simonb 		 * If the result is > 0x80000000, or is positive and equals
    259   1.1  simonb 		 * 0x80000000, overflow; otherwise the last fraction word
    260   1.1  simonb 		 * is the result.
    261   1.1  simonb 		 */
    262   1.1  simonb 		if ((exp = fp->fp_exp) >= 32)
    263   1.1  simonb 			break;
    264   1.1  simonb 		/* NB: the following includes exp < 0 cases */
    265  1.12     rin 		(void)fpu_shr(fp, FP_NMANT - 32 - 1 - exp);
    266  1.10     rin 		i = fp->fp_mant[2];
    267  1.21     rin 		tmp_cx = 0;
    268  1.21     rin 		i += round_int(fp, &tmp_cx, rn, sign, i & 1);
    269   1.1  simonb 		if (i >= ((u_int)0x80000000 + sign))
    270   1.1  simonb 			break;
    271  1.21     rin 		*cx |= tmp_cx;
    272   1.1  simonb 		return (sign ? -i : i);
    273   1.1  simonb 
    274  1.12     rin 	case FPC_INF:
    275   1.1  simonb 		break;
    276   1.1  simonb 	}
    277   1.1  simonb 	/* overflow: replace any inexact exception with invalid */
    278  1.21     rin 	*cx |= FPSCR_VXCVI;
    279   1.1  simonb 	return (0x7fffffff + sign);
    280   1.1  simonb }
    281   1.1  simonb 
    282   1.1  simonb /*
    283   1.1  simonb  * fpn -> extended int (high bits of int value returned as return value).
    284   1.1  simonb  */
    285  1.13     rin static uint64_t
    286  1.21     rin fpu_ftox(struct fpemu *fe, struct fpn *fp, int *cx, int rn)
    287   1.1  simonb {
    288   1.8     rin 	uint64_t i;
    289  1.21     rin 	int sign, exp, tmp_cx;
    290   1.1  simonb 
    291   1.1  simonb 	sign = fp->fp_sign;
    292   1.1  simonb 	switch (fp->fp_class) {
    293  1.12     rin 	case FPC_SNAN:
    294  1.21     rin 		*cx |= FPSCR_VXSNAN;
    295  1.12     rin 		/* FALLTHROUGH */
    296  1.12     rin 	case FPC_QNAN:
    297  1.12     rin 		sign = 1;
    298  1.12     rin 		break;
    299   1.1  simonb 
    300   1.1  simonb 	case FPC_ZERO:
    301   1.1  simonb 		return (0);
    302   1.1  simonb 
    303   1.1  simonb 	case FPC_NUM:
    304   1.1  simonb 		/*
    305   1.1  simonb 		 * If exp >= 2^64, overflow.  Otherwise shift value right
    306   1.1  simonb 		 * into last mantissa word (this will not exceed 0xffffffffffffffff),
    307   1.1  simonb 		 * shifting any guard and round bits out into the sticky
    308   1.1  simonb 		 * bit.  Then ``round'' towards zero, i.e., just set an
    309   1.1  simonb 		 * inexact exception if sticky is set (see round()).
    310   1.1  simonb 		 * If the result is > 0x8000000000000000, or is positive and equals
    311   1.1  simonb 		 * 0x8000000000000000, overflow; otherwise the last fraction word
    312   1.1  simonb 		 * is the result.
    313   1.1  simonb 		 */
    314   1.1  simonb 		if ((exp = fp->fp_exp) >= 64)
    315   1.1  simonb 			break;
    316   1.1  simonb 		/* NB: the following includes exp < 0 cases */
    317  1.12     rin 		(void)fpu_shr(fp, FP_NMANT - 32 - 1 - exp);
    318  1.10     rin 		i = ((uint64_t)fp->fp_mant[1] << 32) | fp->fp_mant[2];
    319  1.21     rin 		tmp_cx = 0;
    320  1.21     rin 		i += round_int(fp, &tmp_cx, rn, sign, i & 1);
    321   1.8     rin 		if (i >= ((uint64_t)0x8000000000000000LL + sign))
    322   1.1  simonb 			break;
    323  1.21     rin 		*cx |= tmp_cx;
    324   1.1  simonb 		return (sign ? -i : i);
    325   1.1  simonb 
    326  1.12     rin 	case FPC_INF:
    327   1.1  simonb 		break;
    328   1.1  simonb 	}
    329   1.1  simonb 	/* overflow: replace any inexact exception with invalid */
    330  1.21     rin 	*cx |= FPSCR_VXCVI;
    331   1.1  simonb 	return (0x7fffffffffffffffLL + sign);
    332   1.1  simonb }
    333   1.1  simonb 
    334  1.14     rin #define	FPRF_SIGN(sign)	((sign) ? FPSCR_FL : FPSCR_FG)
    335  1.14     rin 
    336   1.1  simonb /*
    337   1.1  simonb  * fpn -> single (32 bit single returned as return value).
    338   1.1  simonb  * We assume <= 29 bits in a single-precision fraction (1.f part).
    339   1.1  simonb  */
    340  1.13     rin static u_int
    341  1.21     rin fpu_ftos(struct fpemu *fe, struct fpn *fp, int *cx)
    342   1.1  simonb {
    343   1.1  simonb 	u_int sign = fp->fp_sign << 31;
    344   1.1  simonb 	int exp;
    345   1.1  simonb 
    346   1.1  simonb #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
    347   1.1  simonb #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
    348   1.1  simonb 
    349   1.1  simonb 	/* Take care of non-numbers first. */
    350   1.1  simonb 	if (ISNAN(fp)) {
    351  1.21     rin 		*cx |= FPSCR_C | FPSCR_FU;
    352   1.1  simonb 		/*
    353   1.1  simonb 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
    354   1.1  simonb 		 * Note that fp->fp_mant[0] has the quiet bit set,
    355   1.1  simonb 		 * even if it is classified as a signalling NaN.
    356   1.1  simonb 		 */
    357   1.1  simonb 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
    358   1.1  simonb 		exp = SNG_EXP_INFNAN;
    359   1.1  simonb 		goto done;
    360   1.1  simonb 	}
    361  1.14     rin 	if (ISINF(fp)) {
    362  1.21     rin 		*cx |= FPRF_SIGN(sign) | FPSCR_FU;
    363   1.1  simonb 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
    364  1.14     rin 	}
    365  1.14     rin 	if (ISZERO(fp)) {
    366  1.21     rin 		*cx |= FPSCR_FE;
    367  1.21     rin 		if (sign)
    368  1.21     rin 			*cx |= FPSCR_C;
    369   1.1  simonb 		return (sign);
    370  1.14     rin 	}
    371   1.1  simonb 
    372   1.1  simonb 	/*
    373   1.1  simonb 	 * Normals (including subnormals).  Drop all the fraction bits
    374   1.1  simonb 	 * (including the explicit ``implied'' 1 bit) down into the
    375   1.1  simonb 	 * single-precision range.  If the number is subnormal, move
    376   1.1  simonb 	 * the ``implied'' 1 into the explicit range as well, and shift
    377   1.1  simonb 	 * right to introduce leading zeroes.  Rounding then acts
    378   1.1  simonb 	 * differently for normals and subnormals: the largest subnormal
    379   1.1  simonb 	 * may round to the smallest normal (1.0 x 2^minexp), or may
    380   1.1  simonb 	 * remain subnormal.  In the latter case, signal an underflow
    381   1.1  simonb 	 * if the result was inexact or if underflow traps are enabled.
    382   1.1  simonb 	 *
    383   1.1  simonb 	 * Rounding a normal, on the other hand, always produces another
    384   1.1  simonb 	 * normal (although either way the result might be too big for
    385   1.1  simonb 	 * single precision, and cause an overflow).  If rounding a
    386   1.1  simonb 	 * normal produces 2.0 in the fraction, we need not adjust that
    387   1.1  simonb 	 * fraction at all, since both 1.0 and 2.0 are zero under the
    388   1.1  simonb 	 * fraction mask.
    389   1.1  simonb 	 *
    390   1.1  simonb 	 * Note that the guard and round bits vanish from the number after
    391   1.1  simonb 	 * rounding.
    392   1.1  simonb 	 */
    393   1.1  simonb 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
    394   1.1  simonb 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
    395   1.1  simonb 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
    396  1.21     rin 		if (round(fe, fp, cx) && fp->fp_mant[3] == SNG_EXP(1)) {
    397  1.21     rin 			*cx |= FPRF_SIGN(sign);
    398   1.1  simonb 			return (sign | SNG_EXP(1) | 0);
    399  1.14     rin 		}
    400  1.23     rin 		if (*cx & FPSCR_FI) {
    401  1.23     rin 			*cx |= FPSCR_UX;
    402  1.23     rin 			if (fp->fp_mant[3] == 0) {
    403  1.23     rin 				*cx |= FPSCR_FE;
    404  1.23     rin 				return sign;
    405  1.23     rin 			}
    406  1.23     rin 		}
    407  1.21     rin 		*cx |= FPSCR_C | FPRF_SIGN(sign);
    408   1.1  simonb 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
    409   1.1  simonb 	}
    410   1.1  simonb 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
    411   1.1  simonb 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
    412   1.1  simonb #ifdef DIAGNOSTIC
    413   1.1  simonb 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
    414   1.1  simonb 		panic("fpu_ftos");
    415   1.1  simonb #endif
    416  1.21     rin 	if (round(fe, fp, cx) && fp->fp_mant[3] == SNG_EXP(2))
    417   1.1  simonb 		exp++;
    418   1.1  simonb 	if (exp >= SNG_EXP_INFNAN) {
    419  1.24     rin 		*cx |= FPSCR_OX | FPSCR_FI;
    420   1.1  simonb 		/* overflow to inf or to max single */
    421  1.14     rin 		if (toinf(fe, sign)) {
    422  1.21     rin 			*cx |= FPRF_SIGN(sign) | FPSCR_FU;
    423   1.1  simonb 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
    424  1.14     rin 		}
    425  1.21     rin 		*cx |= FPRF_SIGN(sign);
    426   1.1  simonb 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
    427   1.1  simonb 	}
    428  1.21     rin 	*cx |= FPRF_SIGN(sign);
    429   1.1  simonb done:
    430   1.1  simonb 	/* phew, made it */
    431   1.1  simonb 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
    432   1.1  simonb }
    433   1.1  simonb 
    434   1.1  simonb /*
    435  1.15     rin  * fpn -> double.  Assumes <= 61 bits in double precision fraction.
    436   1.1  simonb  *
    437   1.1  simonb  * This code mimics fpu_ftos; see it for comments.
    438   1.1  simonb  */
    439  1.15     rin static uint64_t
    440  1.21     rin fpu_ftod(struct fpemu *fe, struct fpn *fp, int *cx)
    441   1.1  simonb {
    442   1.1  simonb 	u_int sign = fp->fp_sign << 31;
    443   1.1  simonb 	int exp;
    444   1.1  simonb 
    445   1.1  simonb #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
    446   1.1  simonb #define	DBL_MASK	(DBL_EXP(1) - 1)
    447  1.15     rin #define	HI_WORD(i)	((uint64_t)(i) << 32)
    448  1.15     rin #define	LO_WORD(i)	((uint32_t)(i))
    449   1.1  simonb 
    450   1.1  simonb 	if (ISNAN(fp)) {
    451  1.21     rin 		*cx |= FPSCR_C | FPSCR_FU;
    452   1.1  simonb 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
    453   1.1  simonb 		exp = DBL_EXP_INFNAN;
    454   1.1  simonb 		goto done;
    455   1.1  simonb 	}
    456   1.1  simonb 	if (ISINF(fp)) {
    457  1.21     rin 		*cx |= FPRF_SIGN(sign) | FPSCR_FU;
    458  1.22     rin 		return HI_WORD(sign | DBL_EXP(DBL_EXP_INFNAN));
    459   1.1  simonb 	}
    460   1.1  simonb 	if (ISZERO(fp)) {
    461  1.21     rin 		*cx |= FPSCR_FE;
    462  1.21     rin 		if (sign)
    463  1.21     rin 			*cx |= FPSCR_C;
    464  1.22     rin 		return HI_WORD(sign);
    465   1.1  simonb 	}
    466   1.1  simonb 
    467   1.1  simonb 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
    468   1.1  simonb 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
    469  1.21     rin 		if (round(fe, fp, cx) && fp->fp_mant[2] == DBL_EXP(1)) {
    470  1.21     rin 			*cx |= FPRF_SIGN(sign);
    471  1.15     rin 			return HI_WORD(sign | DBL_EXP(1) | 0);
    472   1.1  simonb 		}
    473  1.23     rin 		if (*cx & FPSCR_FI) {
    474  1.23     rin 			*cx |= FPSCR_UX;
    475  1.23     rin 			if ((fp->fp_mant[2] & DBL_MASK) == 0 &&
    476  1.23     rin 			     fp->fp_mant[3] == 0) {
    477  1.23     rin 				*cx |= FPSCR_FE;
    478  1.23     rin 				return HI_WORD(sign);
    479  1.23     rin 			}
    480  1.23     rin 		}
    481  1.21     rin 		*cx |= FPSCR_C | FPRF_SIGN(sign);
    482   1.1  simonb 		exp = 0;
    483   1.1  simonb 		goto done;
    484   1.1  simonb 	}
    485   1.1  simonb 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
    486  1.21     rin 	if (round(fe, fp, cx) && fp->fp_mant[2] == DBL_EXP(2))
    487   1.1  simonb 		exp++;
    488   1.1  simonb 	if (exp >= DBL_EXP_INFNAN) {
    489  1.24     rin 		*cx |= FPSCR_OX | FPSCR_FI;
    490  1.21     rin 		/* overflow to inf or to max double */
    491   1.1  simonb 		if (toinf(fe, sign)) {
    492  1.21     rin 			*cx |= FPRF_SIGN(sign) | FPSCR_FU;
    493  1.15     rin 			return HI_WORD(sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
    494   1.1  simonb 		}
    495  1.21     rin 		*cx |= FPRF_SIGN(sign);
    496  1.16     rin 		return HI_WORD(sign | DBL_EXP(DBL_EXP_INFNAN - 1) | DBL_MASK) |
    497  1.15     rin 		       LO_WORD(~0);
    498   1.1  simonb 	}
    499  1.21     rin 	*cx |= FPRF_SIGN(sign);
    500   1.1  simonb done:
    501  1.15     rin 	return HI_WORD(sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK)) |
    502  1.15     rin 	       LO_WORD(fp->fp_mant[3]);
    503   1.1  simonb }
    504   1.1  simonb 
    505   1.1  simonb /*
    506   1.1  simonb  * Implode an fpn, writing the result into the given space.
    507   1.1  simonb  */
    508   1.1  simonb void
    509  1.17     rin fpu_implode(struct fpemu *fe, struct fpn *fp, int type, uint64_t *p)
    510   1.1  simonb {
    511  1.17     rin 	u_int *hi, *lo;
    512  1.21     rin 	int cx, rn;
    513  1.21     rin 	bool fpscr;
    514  1.10     rin 
    515  1.17     rin 	hi = (u_int *)p;
    516  1.17     rin 	lo = hi + 1;
    517  1.17     rin 
    518  1.10     rin 	if (type & FTYPE_RD_RZ)
    519  1.10     rin 		rn = FSR_RD_RZ;
    520  1.10     rin 	else
    521  1.10     rin 		rn = fe->fe_fpscr & FPSCR_RN;
    522  1.21     rin 	fpscr = type & FTYPE_FPSCR;
    523  1.14     rin 	type &= ~FTYPE_FLAG_MASK;
    524   1.1  simonb 
    525  1.21     rin 	cx = 0;
    526   1.1  simonb 	switch (type) {
    527   1.1  simonb 
    528   1.1  simonb 	case FTYPE_LNG:
    529  1.14     rin 		/* FPRF is undefined. */
    530  1.21     rin 		*p = fpu_ftox(fe, fp, &cx, rn);
    531  1.20     rin 		DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n", *hi, *lo));
    532   1.1  simonb 		break;
    533   1.1  simonb 
    534   1.1  simonb 	case FTYPE_INT:
    535  1.14     rin 		/* FPRF is undefined. */
    536  1.17     rin 		*hi = 0;
    537  1.21     rin 		*lo = fpu_ftoi(fe, fp, &cx, rn);
    538  1.20     rin 		DPRINTF(FPE_REG, ("fpu_implode: int %x\n", *lo));
    539   1.1  simonb 		break;
    540   1.1  simonb 
    541   1.1  simonb 	case FTYPE_SNG:
    542  1.21     rin 		*hi = fpu_ftos(fe, fp, &cx);
    543  1.18     rin 		*lo = 0;
    544  1.20     rin 		DPRINTF(FPE_REG, ("fpu_implode: single %x\n", *hi));
    545   1.1  simonb 		break;
    546   1.1  simonb 
    547   1.1  simonb 	case FTYPE_DBL:
    548  1.21     rin 		*p = fpu_ftod(fe, fp, &cx);
    549  1.20     rin 		DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n", *hi, *lo));
    550  1.19     rin 		break;
    551   1.1  simonb 
    552   1.1  simonb 	default:
    553   1.1  simonb 		panic("fpu_implode: invalid type %d", type);
    554   1.1  simonb 	}
    555  1.21     rin 
    556  1.21     rin 	if (fpscr) {
    557  1.21     rin 		fe->fe_fpscr &= ~(FPSCR_FR | FPSCR_FI | FPSCR_FPRF);
    558  1.21     rin 		fe->fe_cx |= cx;
    559  1.21     rin 		if (cx & FPSCR_FI)
    560  1.21     rin 			fe->fe_cx |= FPSCR_XX;
    561  1.21     rin 	}
    562   1.1  simonb }
    563