Home | History | Annotate | Line # | Download | only in fpu
fpu_implode.c revision 1.1.24.3
      1  1.1.24.3   skrll /*	$NetBSD: fpu_implode.c,v 1.1.24.3 2004/09/21 13:20:34 skrll Exp $ */
      2       1.1  simonb 
      3       1.1  simonb /*
      4       1.1  simonb  * Copyright (c) 1992, 1993
      5       1.1  simonb  *	The Regents of the University of California.  All rights reserved.
      6       1.1  simonb  *
      7       1.1  simonb  * This software was developed by the Computer Systems Engineering group
      8       1.1  simonb  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9       1.1  simonb  * contributed to Berkeley.
     10       1.1  simonb  *
     11       1.1  simonb  * All advertising materials mentioning features or use of this software
     12       1.1  simonb  * must display the following acknowledgement:
     13       1.1  simonb  *	This product includes software developed by the University of
     14       1.1  simonb  *	California, Lawrence Berkeley Laboratory.
     15       1.1  simonb  *
     16       1.1  simonb  * Redistribution and use in source and binary forms, with or without
     17       1.1  simonb  * modification, are permitted provided that the following conditions
     18       1.1  simonb  * are met:
     19       1.1  simonb  * 1. Redistributions of source code must retain the above copyright
     20       1.1  simonb  *    notice, this list of conditions and the following disclaimer.
     21       1.1  simonb  * 2. Redistributions in binary form must reproduce the above copyright
     22       1.1  simonb  *    notice, this list of conditions and the following disclaimer in the
     23       1.1  simonb  *    documentation and/or other materials provided with the distribution.
     24  1.1.24.1   skrll  * 3. Neither the name of the University nor the names of its contributors
     25       1.1  simonb  *    may be used to endorse or promote products derived from this software
     26       1.1  simonb  *    without specific prior written permission.
     27       1.1  simonb  *
     28       1.1  simonb  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29       1.1  simonb  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30       1.1  simonb  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31       1.1  simonb  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32       1.1  simonb  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33       1.1  simonb  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34       1.1  simonb  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35       1.1  simonb  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36       1.1  simonb  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37       1.1  simonb  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38       1.1  simonb  * SUCH DAMAGE.
     39       1.1  simonb  *
     40       1.1  simonb  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
     41       1.1  simonb  */
     42       1.1  simonb 
     43       1.1  simonb /*
     44       1.1  simonb  * FPU subroutines: `implode' internal format numbers into the machine's
     45       1.1  simonb  * `packed binary' format.
     46       1.1  simonb  */
     47       1.1  simonb 
     48  1.1.24.1   skrll #include <sys/cdefs.h>
     49  1.1.24.3   skrll __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.1.24.3 2004/09/21 13:20:34 skrll Exp $");
     50  1.1.24.1   skrll 
     51       1.1  simonb #include <sys/types.h>
     52       1.1  simonb #include <sys/systm.h>
     53       1.1  simonb 
     54       1.1  simonb #include <machine/ieee.h>
     55       1.1  simonb #include <powerpc/instr.h>
     56       1.1  simonb #include <machine/reg.h>
     57       1.1  simonb #include <machine/fpu.h>
     58       1.1  simonb 
     59       1.1  simonb #include <powerpc/fpu/fpu_arith.h>
     60       1.1  simonb #include <powerpc/fpu/fpu_emu.h>
     61       1.1  simonb #include <powerpc/fpu/fpu_extern.h>
     62       1.1  simonb 
     63       1.1  simonb static int round(struct fpemu *, struct fpn *);
     64       1.1  simonb static int toinf(struct fpemu *, int);
     65       1.1  simonb 
     66       1.1  simonb /*
     67       1.1  simonb  * Round a number (algorithm from Motorola MC68882 manual, modified for
     68       1.1  simonb  * our internal format).  Set inexact exception if rounding is required.
     69       1.1  simonb  * Return true iff we rounded up.
     70       1.1  simonb  *
     71       1.1  simonb  * After rounding, we discard the guard and round bits by shifting right
     72       1.1  simonb  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
     73       1.1  simonb  * This saves effort later.
     74       1.1  simonb  *
     75       1.1  simonb  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
     76       1.1  simonb  * responsibility to fix this if necessary.
     77       1.1  simonb  */
     78       1.1  simonb static int
     79       1.1  simonb round(struct fpemu *fe, struct fpn *fp)
     80       1.1  simonb {
     81       1.1  simonb 	u_int m0, m1, m2, m3;
     82       1.1  simonb 	int gr, s;
     83       1.1  simonb 	FPU_DECL_CARRY;
     84       1.1  simonb 
     85       1.1  simonb 	m0 = fp->fp_mant[0];
     86       1.1  simonb 	m1 = fp->fp_mant[1];
     87       1.1  simonb 	m2 = fp->fp_mant[2];
     88       1.1  simonb 	m3 = fp->fp_mant[3];
     89       1.1  simonb 	gr = m3 & 3;
     90       1.1  simonb 	s = fp->fp_sticky;
     91       1.1  simonb 
     92       1.1  simonb 	/* mant >>= FP_NG */
     93       1.1  simonb 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
     94       1.1  simonb 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
     95       1.1  simonb 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
     96       1.1  simonb 	m0 >>= FP_NG;
     97       1.1  simonb 
     98       1.1  simonb 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
     99       1.1  simonb 		goto rounddown;
    100       1.1  simonb 
    101       1.1  simonb 	fe->fe_cx |= FPSCR_XX|FPSCR_FI;	/* inexact */
    102       1.1  simonb 
    103       1.1  simonb 	/* Go to rounddown to round down; break to round up. */
    104       1.1  simonb 	switch ((fe->fe_fpscr) & FPSCR_RN) {
    105       1.1  simonb 
    106       1.1  simonb 	case FSR_RD_RN:
    107       1.1  simonb 	default:
    108       1.1  simonb 		/*
    109       1.1  simonb 		 * Round only if guard is set (gr & 2).  If guard is set,
    110       1.1  simonb 		 * but round & sticky both clear, then we want to round
    111       1.1  simonb 		 * but have a tie, so round to even, i.e., add 1 iff odd.
    112       1.1  simonb 		 */
    113       1.1  simonb 		if ((gr & 2) == 0)
    114       1.1  simonb 			goto rounddown;
    115       1.1  simonb 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
    116       1.1  simonb 			break;
    117       1.1  simonb 		goto rounddown;
    118       1.1  simonb 
    119       1.1  simonb 	case FSR_RD_RZ:
    120       1.1  simonb 		/* Round towards zero, i.e., down. */
    121       1.1  simonb 		goto rounddown;
    122       1.1  simonb 
    123       1.1  simonb 	case FSR_RD_RM:
    124       1.1  simonb 		/* Round towards -Inf: up if negative, down if positive. */
    125       1.1  simonb 		if (fp->fp_sign)
    126       1.1  simonb 			break;
    127       1.1  simonb 		goto rounddown;
    128       1.1  simonb 
    129       1.1  simonb 	case FSR_RD_RP:
    130       1.1  simonb 		/* Round towards +Inf: up if positive, down otherwise. */
    131       1.1  simonb 		if (!fp->fp_sign)
    132       1.1  simonb 			break;
    133       1.1  simonb 		goto rounddown;
    134       1.1  simonb 	}
    135       1.1  simonb 
    136       1.1  simonb 	/* Bump low bit of mantissa, with carry. */
    137       1.1  simonb 	fe->fe_cx |= FPSCR_FR;
    138       1.1  simonb 
    139       1.1  simonb 	FPU_ADDS(m3, m3, 1);
    140       1.1  simonb 	FPU_ADDCS(m2, m2, 0);
    141       1.1  simonb 	FPU_ADDCS(m1, m1, 0);
    142       1.1  simonb 	FPU_ADDC(m0, m0, 0);
    143       1.1  simonb 	fp->fp_mant[0] = m0;
    144       1.1  simonb 	fp->fp_mant[1] = m1;
    145       1.1  simonb 	fp->fp_mant[2] = m2;
    146       1.1  simonb 	fp->fp_mant[3] = m3;
    147       1.1  simonb 	return (1);
    148       1.1  simonb 
    149       1.1  simonb rounddown:
    150       1.1  simonb 	fp->fp_mant[0] = m0;
    151       1.1  simonb 	fp->fp_mant[1] = m1;
    152       1.1  simonb 	fp->fp_mant[2] = m2;
    153       1.1  simonb 	fp->fp_mant[3] = m3;
    154       1.1  simonb 	return (0);
    155       1.1  simonb }
    156       1.1  simonb 
    157       1.1  simonb /*
    158       1.1  simonb  * For overflow: return true if overflow is to go to +/-Inf, according
    159       1.1  simonb  * to the sign of the overflowing result.  If false, overflow is to go
    160       1.1  simonb  * to the largest magnitude value instead.
    161       1.1  simonb  */
    162       1.1  simonb static int
    163       1.1  simonb toinf(struct fpemu *fe, int sign)
    164       1.1  simonb {
    165       1.1  simonb 	int inf;
    166       1.1  simonb 
    167       1.1  simonb 	/* look at rounding direction */
    168       1.1  simonb 	switch ((fe->fe_fpscr) & FPSCR_RN) {
    169       1.1  simonb 
    170       1.1  simonb 	default:
    171       1.1  simonb 	case FSR_RD_RN:		/* the nearest value is always Inf */
    172       1.1  simonb 		inf = 1;
    173       1.1  simonb 		break;
    174       1.1  simonb 
    175       1.1  simonb 	case FSR_RD_RZ:		/* toward 0 => never towards Inf */
    176       1.1  simonb 		inf = 0;
    177       1.1  simonb 		break;
    178       1.1  simonb 
    179       1.1  simonb 	case FSR_RD_RP:		/* toward +Inf iff positive */
    180       1.1  simonb 		inf = sign == 0;
    181       1.1  simonb 		break;
    182       1.1  simonb 
    183       1.1  simonb 	case FSR_RD_RM:		/* toward -Inf iff negative */
    184       1.1  simonb 		inf = sign;
    185       1.1  simonb 		break;
    186       1.1  simonb 	}
    187       1.1  simonb 	if (inf) fe->fe_cx |= FPSCR_OX;
    188       1.1  simonb 	return (inf);
    189       1.1  simonb }
    190       1.1  simonb 
    191       1.1  simonb /*
    192       1.1  simonb  * fpn -> int (int value returned as return value).
    193       1.1  simonb  *
    194       1.1  simonb  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    195       1.1  simonb  * of the SPARC instruction set).
    196       1.1  simonb  */
    197       1.1  simonb u_int
    198       1.1  simonb fpu_ftoi(struct fpemu *fe, struct fpn *fp)
    199       1.1  simonb {
    200       1.1  simonb 	u_int i;
    201       1.1  simonb 	int sign, exp;
    202       1.1  simonb 
    203       1.1  simonb 	sign = fp->fp_sign;
    204       1.1  simonb 	switch (fp->fp_class) {
    205       1.1  simonb 
    206       1.1  simonb 	case FPC_ZERO:
    207       1.1  simonb 		return (0);
    208       1.1  simonb 
    209       1.1  simonb 	case FPC_NUM:
    210       1.1  simonb 		/*
    211       1.1  simonb 		 * If exp >= 2^32, overflow.  Otherwise shift value right
    212       1.1  simonb 		 * into last mantissa word (this will not exceed 0xffffffff),
    213       1.1  simonb 		 * shifting any guard and round bits out into the sticky
    214       1.1  simonb 		 * bit.  Then ``round'' towards zero, i.e., just set an
    215       1.1  simonb 		 * inexact exception if sticky is set (see round()).
    216       1.1  simonb 		 * If the result is > 0x80000000, or is positive and equals
    217       1.1  simonb 		 * 0x80000000, overflow; otherwise the last fraction word
    218       1.1  simonb 		 * is the result.
    219       1.1  simonb 		 */
    220       1.1  simonb 		if ((exp = fp->fp_exp) >= 32)
    221       1.1  simonb 			break;
    222       1.1  simonb 		/* NB: the following includes exp < 0 cases */
    223       1.1  simonb 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    224       1.1  simonb 			fe->fe_cx |= FPSCR_UX;
    225       1.1  simonb 		i = fp->fp_mant[3];
    226       1.1  simonb 		if (i >= ((u_int)0x80000000 + sign))
    227       1.1  simonb 			break;
    228       1.1  simonb 		return (sign ? -i : i);
    229       1.1  simonb 
    230       1.1  simonb 	default:		/* Inf, qNaN, sNaN */
    231       1.1  simonb 		break;
    232       1.1  simonb 	}
    233       1.1  simonb 	/* overflow: replace any inexact exception with invalid */
    234       1.1  simonb 	fe->fe_cx |= FPSCR_VXCVI;
    235       1.1  simonb 	return (0x7fffffff + sign);
    236       1.1  simonb }
    237       1.1  simonb 
    238       1.1  simonb /*
    239       1.1  simonb  * fpn -> extended int (high bits of int value returned as return value).
    240       1.1  simonb  *
    241       1.1  simonb  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    242       1.1  simonb  * of the SPARC instruction set).
    243       1.1  simonb  */
    244       1.1  simonb u_int
    245       1.1  simonb fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *res)
    246       1.1  simonb {
    247       1.1  simonb 	u_int64_t i;
    248       1.1  simonb 	int sign, exp;
    249       1.1  simonb 
    250       1.1  simonb 	sign = fp->fp_sign;
    251       1.1  simonb 	switch (fp->fp_class) {
    252       1.1  simonb 
    253       1.1  simonb 	case FPC_ZERO:
    254       1.1  simonb 		res[1] = 0;
    255       1.1  simonb 		return (0);
    256       1.1  simonb 
    257       1.1  simonb 	case FPC_NUM:
    258       1.1  simonb 		/*
    259       1.1  simonb 		 * If exp >= 2^64, overflow.  Otherwise shift value right
    260       1.1  simonb 		 * into last mantissa word (this will not exceed 0xffffffffffffffff),
    261       1.1  simonb 		 * shifting any guard and round bits out into the sticky
    262       1.1  simonb 		 * bit.  Then ``round'' towards zero, i.e., just set an
    263       1.1  simonb 		 * inexact exception if sticky is set (see round()).
    264       1.1  simonb 		 * If the result is > 0x8000000000000000, or is positive and equals
    265       1.1  simonb 		 * 0x8000000000000000, overflow; otherwise the last fraction word
    266       1.1  simonb 		 * is the result.
    267       1.1  simonb 		 */
    268       1.1  simonb 		if ((exp = fp->fp_exp) >= 64)
    269       1.1  simonb 			break;
    270       1.1  simonb 		/* NB: the following includes exp < 0 cases */
    271       1.1  simonb 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    272       1.1  simonb 			fe->fe_cx |= FPSCR_UX;
    273       1.1  simonb 		i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
    274       1.1  simonb 		if (i >= ((u_int64_t)0x8000000000000000LL + sign))
    275       1.1  simonb 			break;
    276       1.1  simonb 		return (sign ? -i : i);
    277       1.1  simonb 
    278       1.1  simonb 	default:		/* Inf, qNaN, sNaN */
    279       1.1  simonb 		break;
    280       1.1  simonb 	}
    281       1.1  simonb 	/* overflow: replace any inexact exception with invalid */
    282       1.1  simonb 	fe->fe_cx |= FPSCR_VXCVI;
    283       1.1  simonb 	return (0x7fffffffffffffffLL + sign);
    284       1.1  simonb }
    285       1.1  simonb 
    286       1.1  simonb /*
    287       1.1  simonb  * fpn -> single (32 bit single returned as return value).
    288       1.1  simonb  * We assume <= 29 bits in a single-precision fraction (1.f part).
    289       1.1  simonb  */
    290       1.1  simonb u_int
    291       1.1  simonb fpu_ftos(struct fpemu *fe, struct fpn *fp)
    292       1.1  simonb {
    293       1.1  simonb 	u_int sign = fp->fp_sign << 31;
    294       1.1  simonb 	int exp;
    295       1.1  simonb 
    296       1.1  simonb #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
    297       1.1  simonb #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
    298       1.1  simonb 
    299       1.1  simonb 	/* Take care of non-numbers first. */
    300       1.1  simonb 	if (ISNAN(fp)) {
    301       1.1  simonb 		/*
    302       1.1  simonb 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
    303       1.1  simonb 		 * Note that fp->fp_mant[0] has the quiet bit set,
    304       1.1  simonb 		 * even if it is classified as a signalling NaN.
    305       1.1  simonb 		 */
    306       1.1  simonb 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
    307       1.1  simonb 		exp = SNG_EXP_INFNAN;
    308       1.1  simonb 		goto done;
    309       1.1  simonb 	}
    310       1.1  simonb 	if (ISINF(fp))
    311       1.1  simonb 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
    312       1.1  simonb 	if (ISZERO(fp))
    313       1.1  simonb 		return (sign);
    314       1.1  simonb 
    315       1.1  simonb 	/*
    316       1.1  simonb 	 * Normals (including subnormals).  Drop all the fraction bits
    317       1.1  simonb 	 * (including the explicit ``implied'' 1 bit) down into the
    318       1.1  simonb 	 * single-precision range.  If the number is subnormal, move
    319       1.1  simonb 	 * the ``implied'' 1 into the explicit range as well, and shift
    320       1.1  simonb 	 * right to introduce leading zeroes.  Rounding then acts
    321       1.1  simonb 	 * differently for normals and subnormals: the largest subnormal
    322       1.1  simonb 	 * may round to the smallest normal (1.0 x 2^minexp), or may
    323       1.1  simonb 	 * remain subnormal.  In the latter case, signal an underflow
    324       1.1  simonb 	 * if the result was inexact or if underflow traps are enabled.
    325       1.1  simonb 	 *
    326       1.1  simonb 	 * Rounding a normal, on the other hand, always produces another
    327       1.1  simonb 	 * normal (although either way the result might be too big for
    328       1.1  simonb 	 * single precision, and cause an overflow).  If rounding a
    329       1.1  simonb 	 * normal produces 2.0 in the fraction, we need not adjust that
    330       1.1  simonb 	 * fraction at all, since both 1.0 and 2.0 are zero under the
    331       1.1  simonb 	 * fraction mask.
    332       1.1  simonb 	 *
    333       1.1  simonb 	 * Note that the guard and round bits vanish from the number after
    334       1.1  simonb 	 * rounding.
    335       1.1  simonb 	 */
    336       1.1  simonb 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
    337       1.1  simonb 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
    338       1.1  simonb 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
    339       1.1  simonb 		if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
    340       1.1  simonb 			return (sign | SNG_EXP(1) | 0);
    341       1.1  simonb 		if ((fe->fe_cx & FPSCR_FI) ||
    342       1.1  simonb 		    (fe->fe_fpscr & FPSCR_UX))
    343       1.1  simonb 			fe->fe_cx |= FPSCR_UX;
    344       1.1  simonb 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
    345       1.1  simonb 	}
    346       1.1  simonb 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
    347       1.1  simonb 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
    348       1.1  simonb #ifdef DIAGNOSTIC
    349       1.1  simonb 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
    350       1.1  simonb 		panic("fpu_ftos");
    351       1.1  simonb #endif
    352       1.1  simonb 	if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
    353       1.1  simonb 		exp++;
    354       1.1  simonb 	if (exp >= SNG_EXP_INFNAN) {
    355       1.1  simonb 		/* overflow to inf or to max single */
    356       1.1  simonb 		if (toinf(fe, sign))
    357       1.1  simonb 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
    358       1.1  simonb 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
    359       1.1  simonb 	}
    360       1.1  simonb done:
    361       1.1  simonb 	/* phew, made it */
    362       1.1  simonb 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
    363       1.1  simonb }
    364       1.1  simonb 
    365       1.1  simonb /*
    366       1.1  simonb  * fpn -> double (32 bit high-order result returned; 32-bit low order result
    367       1.1  simonb  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
    368       1.1  simonb  *
    369       1.1  simonb  * This code mimics fpu_ftos; see it for comments.
    370       1.1  simonb  */
    371       1.1  simonb u_int
    372       1.1  simonb fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res)
    373       1.1  simonb {
    374       1.1  simonb 	u_int sign = fp->fp_sign << 31;
    375       1.1  simonb 	int exp;
    376       1.1  simonb 
    377       1.1  simonb #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
    378       1.1  simonb #define	DBL_MASK	(DBL_EXP(1) - 1)
    379       1.1  simonb 
    380       1.1  simonb 	if (ISNAN(fp)) {
    381       1.1  simonb 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
    382       1.1  simonb 		exp = DBL_EXP_INFNAN;
    383       1.1  simonb 		goto done;
    384       1.1  simonb 	}
    385       1.1  simonb 	if (ISINF(fp)) {
    386       1.1  simonb 		sign |= DBL_EXP(DBL_EXP_INFNAN);
    387       1.1  simonb 		goto zero;
    388       1.1  simonb 	}
    389       1.1  simonb 	if (ISZERO(fp)) {
    390       1.1  simonb zero:		res[1] = 0;
    391       1.1  simonb 		return (sign);
    392       1.1  simonb 	}
    393       1.1  simonb 
    394       1.1  simonb 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
    395       1.1  simonb 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
    396       1.1  simonb 		if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
    397       1.1  simonb 			res[1] = 0;
    398       1.1  simonb 			return (sign | DBL_EXP(1) | 0);
    399       1.1  simonb 		}
    400       1.1  simonb 		if ((fe->fe_cx & FPSCR_FI) ||
    401       1.1  simonb 		    (fe->fe_fpscr & FPSCR_UX))
    402       1.1  simonb 			fe->fe_cx |= FPSCR_UX;
    403       1.1  simonb 		exp = 0;
    404       1.1  simonb 		goto done;
    405       1.1  simonb 	}
    406       1.1  simonb 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
    407       1.1  simonb 	if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
    408       1.1  simonb 		exp++;
    409       1.1  simonb 	if (exp >= DBL_EXP_INFNAN) {
    410       1.1  simonb 		fe->fe_cx |= FPSCR_OX | FPSCR_UX;
    411       1.1  simonb 		if (toinf(fe, sign)) {
    412       1.1  simonb 			res[1] = 0;
    413       1.1  simonb 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
    414       1.1  simonb 		}
    415       1.1  simonb 		res[1] = ~0;
    416       1.1  simonb 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
    417       1.1  simonb 	}
    418       1.1  simonb done:
    419       1.1  simonb 	res[1] = fp->fp_mant[3];
    420       1.1  simonb 	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
    421       1.1  simonb }
    422       1.1  simonb 
    423       1.1  simonb /*
    424       1.1  simonb  * Implode an fpn, writing the result into the given space.
    425       1.1  simonb  */
    426       1.1  simonb void
    427       1.1  simonb fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space)
    428       1.1  simonb {
    429       1.1  simonb 
    430       1.1  simonb 	switch (type) {
    431       1.1  simonb 
    432       1.1  simonb 	case FTYPE_LNG:
    433       1.1  simonb 		space[0] = fpu_ftox(fe, fp, space);
    434       1.1  simonb 		DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n",
    435       1.1  simonb 			space[0], space[1]));
    436       1.1  simonb 		break;
    437       1.1  simonb 
    438       1.1  simonb 	case FTYPE_INT:
    439       1.1  simonb 		space[0] = 0;
    440       1.1  simonb 		space[1] = fpu_ftoi(fe, fp);
    441       1.1  simonb 		DPRINTF(FPE_REG, ("fpu_implode: int %x\n",
    442       1.1  simonb 			space[1]));
    443       1.1  simonb 		break;
    444       1.1  simonb 
    445       1.1  simonb 	case FTYPE_SNG:
    446       1.1  simonb 		space[0] = fpu_ftos(fe, fp);
    447       1.1  simonb 		DPRINTF(FPE_REG, ("fpu_implode: single %x\n",
    448       1.1  simonb 			space[0]));
    449       1.1  simonb 		break;
    450       1.1  simonb 
    451       1.1  simonb 	case FTYPE_DBL:
    452       1.1  simonb 		space[0] = fpu_ftod(fe, fp, space);
    453       1.1  simonb 		DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n",
    454       1.1  simonb 			space[0], space[1]));
    455       1.1  simonb 		break;		break;
    456       1.1  simonb 
    457       1.1  simonb 	default:
    458       1.1  simonb 		panic("fpu_implode: invalid type %d", type);
    459       1.1  simonb 	}
    460       1.1  simonb }
    461