Home | History | Annotate | Line # | Download | only in fpu
fpu_implode.c revision 1.10
      1  1.10     rin /*	$NetBSD: fpu_implode.c,v 1.10 2022/08/30 11:09:34 rin Exp $ */
      2   1.1  simonb 
      3   1.1  simonb /*
      4   1.1  simonb  * Copyright (c) 1992, 1993
      5   1.1  simonb  *	The Regents of the University of California.  All rights reserved.
      6   1.1  simonb  *
      7   1.1  simonb  * This software was developed by the Computer Systems Engineering group
      8   1.1  simonb  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9   1.1  simonb  * contributed to Berkeley.
     10   1.1  simonb  *
     11   1.1  simonb  * All advertising materials mentioning features or use of this software
     12   1.1  simonb  * must display the following acknowledgement:
     13   1.1  simonb  *	This product includes software developed by the University of
     14   1.1  simonb  *	California, Lawrence Berkeley Laboratory.
     15   1.1  simonb  *
     16   1.1  simonb  * Redistribution and use in source and binary forms, with or without
     17   1.1  simonb  * modification, are permitted provided that the following conditions
     18   1.1  simonb  * are met:
     19   1.1  simonb  * 1. Redistributions of source code must retain the above copyright
     20   1.1  simonb  *    notice, this list of conditions and the following disclaimer.
     21   1.1  simonb  * 2. Redistributions in binary form must reproduce the above copyright
     22   1.1  simonb  *    notice, this list of conditions and the following disclaimer in the
     23   1.1  simonb  *    documentation and/or other materials provided with the distribution.
     24   1.3     agc  * 3. Neither the name of the University nor the names of its contributors
     25   1.1  simonb  *    may be used to endorse or promote products derived from this software
     26   1.1  simonb  *    without specific prior written permission.
     27   1.1  simonb  *
     28   1.1  simonb  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29   1.1  simonb  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30   1.1  simonb  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31   1.1  simonb  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32   1.1  simonb  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33   1.1  simonb  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34   1.1  simonb  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35   1.1  simonb  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36   1.1  simonb  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37   1.1  simonb  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38   1.1  simonb  * SUCH DAMAGE.
     39   1.1  simonb  *
     40   1.1  simonb  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
     41   1.1  simonb  */
     42   1.1  simonb 
     43   1.1  simonb /*
     44   1.1  simonb  * FPU subroutines: `implode' internal format numbers into the machine's
     45   1.1  simonb  * `packed binary' format.
     46   1.1  simonb  */
     47   1.2   lukem 
     48   1.2   lukem #include <sys/cdefs.h>
     49  1.10     rin __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.10 2022/08/30 11:09:34 rin Exp $");
     50   1.1  simonb 
     51   1.1  simonb #include <sys/types.h>
     52   1.1  simonb #include <sys/systm.h>
     53   1.1  simonb 
     54   1.7     rin #include <powerpc/instr.h>
     55   1.7     rin #include <machine/fpu.h>
     56   1.1  simonb #include <machine/ieee.h>
     57   1.1  simonb #include <machine/reg.h>
     58   1.1  simonb 
     59   1.1  simonb #include <powerpc/fpu/fpu_arith.h>
     60   1.1  simonb #include <powerpc/fpu/fpu_emu.h>
     61   1.1  simonb #include <powerpc/fpu/fpu_extern.h>
     62   1.1  simonb 
     63   1.1  simonb static int round(struct fpemu *, struct fpn *);
     64   1.1  simonb static int toinf(struct fpemu *, int);
     65   1.1  simonb 
     66   1.1  simonb /*
     67   1.1  simonb  * Round a number (algorithm from Motorola MC68882 manual, modified for
     68   1.1  simonb  * our internal format).  Set inexact exception if rounding is required.
     69   1.1  simonb  * Return true iff we rounded up.
     70   1.1  simonb  *
     71   1.1  simonb  * After rounding, we discard the guard and round bits by shifting right
     72   1.1  simonb  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
     73   1.1  simonb  * This saves effort later.
     74   1.1  simonb  *
     75   1.1  simonb  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
     76   1.1  simonb  * responsibility to fix this if necessary.
     77   1.1  simonb  */
     78   1.1  simonb static int
     79   1.1  simonb round(struct fpemu *fe, struct fpn *fp)
     80   1.1  simonb {
     81   1.1  simonb 	u_int m0, m1, m2, m3;
     82   1.1  simonb 	int gr, s;
     83   1.1  simonb 	FPU_DECL_CARRY;
     84   1.1  simonb 
     85   1.1  simonb 	m0 = fp->fp_mant[0];
     86   1.1  simonb 	m1 = fp->fp_mant[1];
     87   1.1  simonb 	m2 = fp->fp_mant[2];
     88   1.1  simonb 	m3 = fp->fp_mant[3];
     89   1.1  simonb 	gr = m3 & 3;
     90   1.1  simonb 	s = fp->fp_sticky;
     91   1.1  simonb 
     92   1.1  simonb 	/* mant >>= FP_NG */
     93   1.1  simonb 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
     94   1.1  simonb 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
     95   1.1  simonb 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
     96   1.1  simonb 	m0 >>= FP_NG;
     97   1.1  simonb 
     98   1.1  simonb 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
     99   1.1  simonb 		goto rounddown;
    100   1.1  simonb 
    101   1.1  simonb 	fe->fe_cx |= FPSCR_XX|FPSCR_FI;	/* inexact */
    102   1.1  simonb 
    103   1.1  simonb 	/* Go to rounddown to round down; break to round up. */
    104   1.1  simonb 	switch ((fe->fe_fpscr) & FPSCR_RN) {
    105   1.1  simonb 
    106   1.1  simonb 	case FSR_RD_RN:
    107   1.1  simonb 	default:
    108   1.1  simonb 		/*
    109   1.1  simonb 		 * Round only if guard is set (gr & 2).  If guard is set,
    110   1.1  simonb 		 * but round & sticky both clear, then we want to round
    111   1.1  simonb 		 * but have a tie, so round to even, i.e., add 1 iff odd.
    112   1.1  simonb 		 */
    113   1.1  simonb 		if ((gr & 2) == 0)
    114   1.1  simonb 			goto rounddown;
    115   1.1  simonb 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
    116   1.1  simonb 			break;
    117   1.1  simonb 		goto rounddown;
    118   1.1  simonb 
    119   1.1  simonb 	case FSR_RD_RZ:
    120   1.1  simonb 		/* Round towards zero, i.e., down. */
    121   1.1  simonb 		goto rounddown;
    122   1.1  simonb 
    123   1.1  simonb 	case FSR_RD_RM:
    124   1.1  simonb 		/* Round towards -Inf: up if negative, down if positive. */
    125   1.1  simonb 		if (fp->fp_sign)
    126   1.1  simonb 			break;
    127   1.1  simonb 		goto rounddown;
    128   1.1  simonb 
    129   1.1  simonb 	case FSR_RD_RP:
    130   1.1  simonb 		/* Round towards +Inf: up if positive, down otherwise. */
    131   1.1  simonb 		if (!fp->fp_sign)
    132   1.1  simonb 			break;
    133   1.1  simonb 		goto rounddown;
    134   1.1  simonb 	}
    135   1.1  simonb 
    136   1.1  simonb 	/* Bump low bit of mantissa, with carry. */
    137   1.1  simonb 	fe->fe_cx |= FPSCR_FR;
    138   1.1  simonb 
    139   1.1  simonb 	FPU_ADDS(m3, m3, 1);
    140   1.1  simonb 	FPU_ADDCS(m2, m2, 0);
    141   1.1  simonb 	FPU_ADDCS(m1, m1, 0);
    142   1.1  simonb 	FPU_ADDC(m0, m0, 0);
    143   1.1  simonb 	fp->fp_mant[0] = m0;
    144   1.1  simonb 	fp->fp_mant[1] = m1;
    145   1.1  simonb 	fp->fp_mant[2] = m2;
    146   1.1  simonb 	fp->fp_mant[3] = m3;
    147   1.1  simonb 	return (1);
    148   1.1  simonb 
    149   1.1  simonb rounddown:
    150   1.1  simonb 	fp->fp_mant[0] = m0;
    151   1.1  simonb 	fp->fp_mant[1] = m1;
    152   1.1  simonb 	fp->fp_mant[2] = m2;
    153   1.1  simonb 	fp->fp_mant[3] = m3;
    154   1.1  simonb 	return (0);
    155   1.1  simonb }
    156   1.1  simonb 
    157   1.1  simonb /*
    158   1.1  simonb  * For overflow: return true if overflow is to go to +/-Inf, according
    159   1.1  simonb  * to the sign of the overflowing result.  If false, overflow is to go
    160   1.1  simonb  * to the largest magnitude value instead.
    161   1.1  simonb  */
    162   1.1  simonb static int
    163   1.1  simonb toinf(struct fpemu *fe, int sign)
    164   1.1  simonb {
    165   1.1  simonb 	int inf;
    166   1.1  simonb 
    167   1.1  simonb 	/* look at rounding direction */
    168   1.1  simonb 	switch ((fe->fe_fpscr) & FPSCR_RN) {
    169   1.1  simonb 
    170   1.1  simonb 	default:
    171   1.1  simonb 	case FSR_RD_RN:		/* the nearest value is always Inf */
    172   1.1  simonb 		inf = 1;
    173   1.1  simonb 		break;
    174   1.1  simonb 
    175   1.1  simonb 	case FSR_RD_RZ:		/* toward 0 => never towards Inf */
    176   1.1  simonb 		inf = 0;
    177   1.1  simonb 		break;
    178   1.1  simonb 
    179   1.1  simonb 	case FSR_RD_RP:		/* toward +Inf iff positive */
    180   1.1  simonb 		inf = sign == 0;
    181   1.1  simonb 		break;
    182   1.1  simonb 
    183   1.1  simonb 	case FSR_RD_RM:		/* toward -Inf iff negative */
    184   1.1  simonb 		inf = sign;
    185   1.1  simonb 		break;
    186   1.1  simonb 	}
    187   1.5  simonb 	if (inf)
    188   1.5  simonb 		fe->fe_cx |= FPSCR_OX;
    189   1.1  simonb 	return (inf);
    190   1.1  simonb }
    191   1.1  simonb 
    192   1.1  simonb /*
    193   1.1  simonb  * fpn -> int (int value returned as return value).
    194   1.1  simonb  */
    195   1.1  simonb u_int
    196  1.10     rin fpu_ftoi(struct fpemu *fe, struct fpn *fp, int rn)
    197   1.1  simonb {
    198   1.1  simonb 	u_int i;
    199  1.10     rin 	int sign, exp, g, rs;
    200   1.1  simonb 
    201   1.1  simonb 	sign = fp->fp_sign;
    202   1.1  simonb 	switch (fp->fp_class) {
    203   1.1  simonb 
    204   1.1  simonb 	case FPC_ZERO:
    205   1.1  simonb 		return (0);
    206   1.1  simonb 
    207   1.1  simonb 	case FPC_NUM:
    208   1.1  simonb 		/*
    209   1.1  simonb 		 * If exp >= 2^32, overflow.  Otherwise shift value right
    210   1.1  simonb 		 * into last mantissa word (this will not exceed 0xffffffff),
    211   1.1  simonb 		 * shifting any guard and round bits out into the sticky
    212   1.1  simonb 		 * bit.  Then ``round'' towards zero, i.e., just set an
    213   1.1  simonb 		 * inexact exception if sticky is set (see round()).
    214   1.1  simonb 		 * If the result is > 0x80000000, or is positive and equals
    215   1.1  simonb 		 * 0x80000000, overflow; otherwise the last fraction word
    216   1.1  simonb 		 * is the result.
    217   1.1  simonb 		 */
    218   1.1  simonb 		if ((exp = fp->fp_exp) >= 32)
    219   1.1  simonb 			break;
    220   1.1  simonb 		/* NB: the following includes exp < 0 cases */
    221  1.10     rin 		if (fpu_shr(fp, FP_NMANT - 32 - 1 - exp) != 0)
    222   1.1  simonb 			fe->fe_cx |= FPSCR_UX;
    223  1.10     rin 		i = fp->fp_mant[2];
    224  1.10     rin 
    225  1.10     rin 		g  =  fp->fp_mant[3] & 0x80000000;
    226  1.10     rin 		rs = (fp->fp_mant[3] & 0x7fffffff) | fp->fp_sticky;
    227  1.10     rin 		switch (rn) {
    228  1.10     rin 		case FSR_RD_RN:
    229  1.10     rin 			if (g && (rs | (i & 1)))
    230  1.10     rin 				i++;
    231  1.10     rin 			break;
    232  1.10     rin 		case FSR_RD_RZ:
    233  1.10     rin 			break;
    234  1.10     rin 		case FSR_RD_RP:
    235  1.10     rin 			if (!sign && (g | rs))
    236  1.10     rin 				i++;
    237  1.10     rin 			break;
    238  1.10     rin 		case FSR_RD_RM:
    239  1.10     rin 			if (sign && (g | rs))
    240  1.10     rin 				i++;
    241  1.10     rin 			break;
    242  1.10     rin 		}
    243  1.10     rin 
    244   1.1  simonb 		if (i >= ((u_int)0x80000000 + sign))
    245   1.1  simonb 			break;
    246   1.1  simonb 		return (sign ? -i : i);
    247   1.1  simonb 
    248   1.1  simonb 	default:		/* Inf, qNaN, sNaN */
    249   1.1  simonb 		break;
    250   1.1  simonb 	}
    251   1.1  simonb 	/* overflow: replace any inexact exception with invalid */
    252   1.1  simonb 	fe->fe_cx |= FPSCR_VXCVI;
    253   1.1  simonb 	return (0x7fffffff + sign);
    254   1.1  simonb }
    255   1.1  simonb 
    256   1.1  simonb /*
    257   1.1  simonb  * fpn -> extended int (high bits of int value returned as return value).
    258   1.1  simonb  *
    259   1.1  simonb  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    260   1.1  simonb  * of the SPARC instruction set).
    261   1.1  simonb  */
    262  1.10     rin uint64_t
    263  1.10     rin fpu_ftox(struct fpemu *fe, struct fpn *fp, int rn)
    264   1.1  simonb {
    265   1.8     rin 	uint64_t i;
    266  1.10     rin 	int sign, exp, g, rs;
    267   1.1  simonb 
    268   1.1  simonb 	sign = fp->fp_sign;
    269   1.1  simonb 	switch (fp->fp_class) {
    270   1.1  simonb 
    271   1.1  simonb 	case FPC_ZERO:
    272   1.1  simonb 		return (0);
    273   1.1  simonb 
    274   1.1  simonb 	case FPC_NUM:
    275   1.1  simonb 		/*
    276   1.1  simonb 		 * If exp >= 2^64, overflow.  Otherwise shift value right
    277   1.1  simonb 		 * into last mantissa word (this will not exceed 0xffffffffffffffff),
    278   1.1  simonb 		 * shifting any guard and round bits out into the sticky
    279   1.1  simonb 		 * bit.  Then ``round'' towards zero, i.e., just set an
    280   1.1  simonb 		 * inexact exception if sticky is set (see round()).
    281   1.1  simonb 		 * If the result is > 0x8000000000000000, or is positive and equals
    282   1.1  simonb 		 * 0x8000000000000000, overflow; otherwise the last fraction word
    283   1.1  simonb 		 * is the result.
    284   1.1  simonb 		 */
    285   1.1  simonb 		if ((exp = fp->fp_exp) >= 64)
    286   1.1  simonb 			break;
    287   1.1  simonb 		/* NB: the following includes exp < 0 cases */
    288  1.10     rin 		if (fpu_shr(fp, FP_NMANT - 32 - 1 - exp) != 0)
    289   1.1  simonb 			fe->fe_cx |= FPSCR_UX;
    290  1.10     rin 		i = ((uint64_t)fp->fp_mant[1] << 32) | fp->fp_mant[2];
    291  1.10     rin 
    292  1.10     rin 		g  =  fp->fp_mant[3] & 0x80000000;
    293  1.10     rin 		rs = (fp->fp_mant[3] & 0x7fffffff) | fp->fp_sticky;
    294  1.10     rin 		switch (rn) {
    295  1.10     rin 		case FSR_RD_RN:
    296  1.10     rin 			if (g && (rs | (i & 1)))
    297  1.10     rin 				i++;
    298  1.10     rin 			break;
    299  1.10     rin 		case FSR_RD_RZ:
    300  1.10     rin 			break;
    301  1.10     rin 		case FSR_RD_RP:
    302  1.10     rin 			if (!sign && (g | rs))
    303  1.10     rin 				i++;
    304  1.10     rin 			break;
    305  1.10     rin 		case FSR_RD_RM:
    306  1.10     rin 			if (sign && (g | rs))
    307  1.10     rin 				i++;
    308  1.10     rin 			break;
    309  1.10     rin 		}
    310  1.10     rin 
    311   1.8     rin 		if (i >= ((uint64_t)0x8000000000000000LL + sign))
    312   1.1  simonb 			break;
    313   1.1  simonb 		return (sign ? -i : i);
    314   1.1  simonb 
    315   1.1  simonb 	default:		/* Inf, qNaN, sNaN */
    316   1.1  simonb 		break;
    317   1.1  simonb 	}
    318   1.1  simonb 	/* overflow: replace any inexact exception with invalid */
    319   1.1  simonb 	fe->fe_cx |= FPSCR_VXCVI;
    320   1.1  simonb 	return (0x7fffffffffffffffLL + sign);
    321   1.1  simonb }
    322   1.1  simonb 
    323   1.1  simonb /*
    324   1.1  simonb  * fpn -> single (32 bit single returned as return value).
    325   1.1  simonb  * We assume <= 29 bits in a single-precision fraction (1.f part).
    326   1.1  simonb  */
    327   1.1  simonb u_int
    328   1.1  simonb fpu_ftos(struct fpemu *fe, struct fpn *fp)
    329   1.1  simonb {
    330   1.1  simonb 	u_int sign = fp->fp_sign << 31;
    331   1.1  simonb 	int exp;
    332   1.1  simonb 
    333   1.1  simonb #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
    334   1.1  simonb #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
    335   1.1  simonb 
    336   1.1  simonb 	/* Take care of non-numbers first. */
    337   1.1  simonb 	if (ISNAN(fp)) {
    338   1.1  simonb 		/*
    339   1.1  simonb 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
    340   1.1  simonb 		 * Note that fp->fp_mant[0] has the quiet bit set,
    341   1.1  simonb 		 * even if it is classified as a signalling NaN.
    342   1.1  simonb 		 */
    343   1.1  simonb 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
    344   1.1  simonb 		exp = SNG_EXP_INFNAN;
    345   1.1  simonb 		goto done;
    346   1.1  simonb 	}
    347   1.1  simonb 	if (ISINF(fp))
    348   1.1  simonb 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
    349   1.1  simonb 	if (ISZERO(fp))
    350   1.1  simonb 		return (sign);
    351   1.1  simonb 
    352   1.1  simonb 	/*
    353   1.1  simonb 	 * Normals (including subnormals).  Drop all the fraction bits
    354   1.1  simonb 	 * (including the explicit ``implied'' 1 bit) down into the
    355   1.1  simonb 	 * single-precision range.  If the number is subnormal, move
    356   1.1  simonb 	 * the ``implied'' 1 into the explicit range as well, and shift
    357   1.1  simonb 	 * right to introduce leading zeroes.  Rounding then acts
    358   1.1  simonb 	 * differently for normals and subnormals: the largest subnormal
    359   1.1  simonb 	 * may round to the smallest normal (1.0 x 2^minexp), or may
    360   1.1  simonb 	 * remain subnormal.  In the latter case, signal an underflow
    361   1.1  simonb 	 * if the result was inexact or if underflow traps are enabled.
    362   1.1  simonb 	 *
    363   1.1  simonb 	 * Rounding a normal, on the other hand, always produces another
    364   1.1  simonb 	 * normal (although either way the result might be too big for
    365   1.1  simonb 	 * single precision, and cause an overflow).  If rounding a
    366   1.1  simonb 	 * normal produces 2.0 in the fraction, we need not adjust that
    367   1.1  simonb 	 * fraction at all, since both 1.0 and 2.0 are zero under the
    368   1.1  simonb 	 * fraction mask.
    369   1.1  simonb 	 *
    370   1.1  simonb 	 * Note that the guard and round bits vanish from the number after
    371   1.1  simonb 	 * rounding.
    372   1.1  simonb 	 */
    373   1.1  simonb 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
    374   1.1  simonb 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
    375   1.1  simonb 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
    376   1.1  simonb 		if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
    377   1.1  simonb 			return (sign | SNG_EXP(1) | 0);
    378   1.1  simonb 		if ((fe->fe_cx & FPSCR_FI) ||
    379   1.1  simonb 		    (fe->fe_fpscr & FPSCR_UX))
    380   1.1  simonb 			fe->fe_cx |= FPSCR_UX;
    381   1.1  simonb 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
    382   1.1  simonb 	}
    383   1.1  simonb 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
    384   1.1  simonb 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
    385   1.1  simonb #ifdef DIAGNOSTIC
    386   1.1  simonb 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
    387   1.1  simonb 		panic("fpu_ftos");
    388   1.1  simonb #endif
    389   1.1  simonb 	if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
    390   1.1  simonb 		exp++;
    391   1.1  simonb 	if (exp >= SNG_EXP_INFNAN) {
    392   1.1  simonb 		/* overflow to inf or to max single */
    393   1.1  simonb 		if (toinf(fe, sign))
    394   1.1  simonb 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
    395   1.1  simonb 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
    396   1.1  simonb 	}
    397   1.1  simonb done:
    398   1.1  simonb 	/* phew, made it */
    399   1.1  simonb 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
    400   1.1  simonb }
    401   1.1  simonb 
    402   1.1  simonb /*
    403   1.1  simonb  * fpn -> double (32 bit high-order result returned; 32-bit low order result
    404   1.1  simonb  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
    405   1.1  simonb  *
    406   1.1  simonb  * This code mimics fpu_ftos; see it for comments.
    407   1.1  simonb  */
    408   1.1  simonb u_int
    409   1.1  simonb fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res)
    410   1.1  simonb {
    411   1.1  simonb 	u_int sign = fp->fp_sign << 31;
    412   1.1  simonb 	int exp;
    413   1.1  simonb 
    414   1.1  simonb #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
    415   1.1  simonb #define	DBL_MASK	(DBL_EXP(1) - 1)
    416   1.1  simonb 
    417   1.1  simonb 	if (ISNAN(fp)) {
    418   1.1  simonb 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
    419   1.1  simonb 		exp = DBL_EXP_INFNAN;
    420   1.1  simonb 		goto done;
    421   1.1  simonb 	}
    422   1.1  simonb 	if (ISINF(fp)) {
    423   1.1  simonb 		sign |= DBL_EXP(DBL_EXP_INFNAN);
    424   1.1  simonb 		goto zero;
    425   1.1  simonb 	}
    426   1.1  simonb 	if (ISZERO(fp)) {
    427   1.1  simonb zero:		res[1] = 0;
    428   1.1  simonb 		return (sign);
    429   1.1  simonb 	}
    430   1.1  simonb 
    431   1.1  simonb 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
    432   1.1  simonb 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
    433   1.1  simonb 		if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
    434   1.1  simonb 			res[1] = 0;
    435   1.1  simonb 			return (sign | DBL_EXP(1) | 0);
    436   1.1  simonb 		}
    437   1.1  simonb 		if ((fe->fe_cx & FPSCR_FI) ||
    438   1.1  simonb 		    (fe->fe_fpscr & FPSCR_UX))
    439   1.1  simonb 			fe->fe_cx |= FPSCR_UX;
    440   1.1  simonb 		exp = 0;
    441   1.1  simonb 		goto done;
    442   1.1  simonb 	}
    443   1.1  simonb 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
    444   1.1  simonb 	if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
    445   1.1  simonb 		exp++;
    446   1.1  simonb 	if (exp >= DBL_EXP_INFNAN) {
    447   1.9     rin 		fe->fe_cx |= FPSCR_OX;
    448   1.1  simonb 		if (toinf(fe, sign)) {
    449   1.1  simonb 			res[1] = 0;
    450   1.1  simonb 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
    451   1.1  simonb 		}
    452   1.1  simonb 		res[1] = ~0;
    453   1.1  simonb 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
    454   1.1  simonb 	}
    455   1.1  simonb done:
    456   1.1  simonb 	res[1] = fp->fp_mant[3];
    457   1.1  simonb 	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
    458   1.1  simonb }
    459   1.1  simonb 
    460   1.1  simonb /*
    461   1.1  simonb  * Implode an fpn, writing the result into the given space.
    462   1.1  simonb  */
    463   1.1  simonb void
    464   1.1  simonb fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space)
    465   1.1  simonb {
    466  1.10     rin 	int rn;
    467  1.10     rin 
    468  1.10     rin 	if (type & FTYPE_RD_RZ)
    469  1.10     rin 		rn = FSR_RD_RZ;
    470  1.10     rin 	else
    471  1.10     rin 		rn = fe->fe_fpscr & FPSCR_RN;
    472  1.10     rin 	type &= ~FTYPE_RD_MASK;
    473   1.1  simonb 
    474   1.1  simonb 	switch (type) {
    475   1.1  simonb 
    476   1.1  simonb 	case FTYPE_LNG:
    477  1.10     rin 		*(uint64_t *)space = fpu_ftox(fe, fp, rn);
    478   1.1  simonb 		DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n",
    479   1.1  simonb 			space[0], space[1]));
    480   1.1  simonb 		break;
    481   1.1  simonb 
    482   1.1  simonb 	case FTYPE_INT:
    483   1.1  simonb 		space[0] = 0;
    484  1.10     rin 		space[1] = fpu_ftoi(fe, fp, rn);
    485   1.1  simonb 		DPRINTF(FPE_REG, ("fpu_implode: int %x\n",
    486   1.1  simonb 			space[1]));
    487   1.1  simonb 		break;
    488   1.1  simonb 
    489   1.1  simonb 	case FTYPE_SNG:
    490   1.1  simonb 		space[0] = fpu_ftos(fe, fp);
    491   1.1  simonb 		DPRINTF(FPE_REG, ("fpu_implode: single %x\n",
    492   1.1  simonb 			space[0]));
    493   1.1  simonb 		break;
    494   1.1  simonb 
    495   1.1  simonb 	case FTYPE_DBL:
    496   1.1  simonb 		space[0] = fpu_ftod(fe, fp, space);
    497   1.1  simonb 		DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n",
    498   1.1  simonb 			space[0], space[1]));
    499   1.1  simonb 		break;		break;
    500   1.1  simonb 
    501   1.1  simonb 	default:
    502   1.1  simonb 		panic("fpu_implode: invalid type %d", type);
    503   1.1  simonb 	}
    504   1.1  simonb }
    505