fpu_implode.c revision 1.12 1 1.12 rin /* $NetBSD: fpu_implode.c,v 1.12 2022/09/01 05:56:52 rin Exp $ */
2 1.1 simonb
3 1.1 simonb /*
4 1.1 simonb * Copyright (c) 1992, 1993
5 1.1 simonb * The Regents of the University of California. All rights reserved.
6 1.1 simonb *
7 1.1 simonb * This software was developed by the Computer Systems Engineering group
8 1.1 simonb * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 1.1 simonb * contributed to Berkeley.
10 1.1 simonb *
11 1.1 simonb * All advertising materials mentioning features or use of this software
12 1.1 simonb * must display the following acknowledgement:
13 1.1 simonb * This product includes software developed by the University of
14 1.1 simonb * California, Lawrence Berkeley Laboratory.
15 1.1 simonb *
16 1.1 simonb * Redistribution and use in source and binary forms, with or without
17 1.1 simonb * modification, are permitted provided that the following conditions
18 1.1 simonb * are met:
19 1.1 simonb * 1. Redistributions of source code must retain the above copyright
20 1.1 simonb * notice, this list of conditions and the following disclaimer.
21 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 simonb * notice, this list of conditions and the following disclaimer in the
23 1.1 simonb * documentation and/or other materials provided with the distribution.
24 1.3 agc * 3. Neither the name of the University nor the names of its contributors
25 1.1 simonb * may be used to endorse or promote products derived from this software
26 1.1 simonb * without specific prior written permission.
27 1.1 simonb *
28 1.1 simonb * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 simonb * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 simonb * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 simonb * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 simonb * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 simonb * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 simonb * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 simonb * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 simonb * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 simonb * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 simonb * SUCH DAMAGE.
39 1.1 simonb *
40 1.1 simonb * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
41 1.1 simonb */
42 1.1 simonb
43 1.1 simonb /*
44 1.1 simonb * FPU subroutines: `implode' internal format numbers into the machine's
45 1.1 simonb * `packed binary' format.
46 1.1 simonb */
47 1.2 lukem
48 1.2 lukem #include <sys/cdefs.h>
49 1.12 rin __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.12 2022/09/01 05:56:52 rin Exp $");
50 1.1 simonb
51 1.1 simonb #include <sys/types.h>
52 1.1 simonb #include <sys/systm.h>
53 1.1 simonb
54 1.7 rin #include <powerpc/instr.h>
55 1.7 rin #include <machine/fpu.h>
56 1.1 simonb #include <machine/ieee.h>
57 1.1 simonb #include <machine/reg.h>
58 1.1 simonb
59 1.1 simonb #include <powerpc/fpu/fpu_arith.h>
60 1.1 simonb #include <powerpc/fpu/fpu_emu.h>
61 1.1 simonb #include <powerpc/fpu/fpu_extern.h>
62 1.1 simonb
63 1.1 simonb static int round(struct fpemu *, struct fpn *);
64 1.1 simonb static int toinf(struct fpemu *, int);
65 1.12 rin static int round_int(struct fpn *, int *, int, int, int);
66 1.1 simonb
67 1.1 simonb /*
68 1.1 simonb * Round a number (algorithm from Motorola MC68882 manual, modified for
69 1.1 simonb * our internal format). Set inexact exception if rounding is required.
70 1.1 simonb * Return true iff we rounded up.
71 1.1 simonb *
72 1.1 simonb * After rounding, we discard the guard and round bits by shifting right
73 1.1 simonb * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
74 1.1 simonb * This saves effort later.
75 1.1 simonb *
76 1.1 simonb * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
77 1.1 simonb * responsibility to fix this if necessary.
78 1.1 simonb */
79 1.1 simonb static int
80 1.1 simonb round(struct fpemu *fe, struct fpn *fp)
81 1.1 simonb {
82 1.1 simonb u_int m0, m1, m2, m3;
83 1.1 simonb int gr, s;
84 1.1 simonb FPU_DECL_CARRY;
85 1.1 simonb
86 1.1 simonb m0 = fp->fp_mant[0];
87 1.1 simonb m1 = fp->fp_mant[1];
88 1.1 simonb m2 = fp->fp_mant[2];
89 1.1 simonb m3 = fp->fp_mant[3];
90 1.1 simonb gr = m3 & 3;
91 1.1 simonb s = fp->fp_sticky;
92 1.1 simonb
93 1.1 simonb /* mant >>= FP_NG */
94 1.1 simonb m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
95 1.1 simonb m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
96 1.1 simonb m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
97 1.1 simonb m0 >>= FP_NG;
98 1.1 simonb
99 1.1 simonb if ((gr | s) == 0) /* result is exact: no rounding needed */
100 1.1 simonb goto rounddown;
101 1.1 simonb
102 1.1 simonb fe->fe_cx |= FPSCR_XX|FPSCR_FI; /* inexact */
103 1.1 simonb
104 1.1 simonb /* Go to rounddown to round down; break to round up. */
105 1.1 simonb switch ((fe->fe_fpscr) & FPSCR_RN) {
106 1.1 simonb
107 1.1 simonb case FSR_RD_RN:
108 1.1 simonb default:
109 1.1 simonb /*
110 1.1 simonb * Round only if guard is set (gr & 2). If guard is set,
111 1.1 simonb * but round & sticky both clear, then we want to round
112 1.1 simonb * but have a tie, so round to even, i.e., add 1 iff odd.
113 1.1 simonb */
114 1.1 simonb if ((gr & 2) == 0)
115 1.1 simonb goto rounddown;
116 1.1 simonb if ((gr & 1) || fp->fp_sticky || (m3 & 1))
117 1.1 simonb break;
118 1.1 simonb goto rounddown;
119 1.1 simonb
120 1.1 simonb case FSR_RD_RZ:
121 1.1 simonb /* Round towards zero, i.e., down. */
122 1.1 simonb goto rounddown;
123 1.1 simonb
124 1.1 simonb case FSR_RD_RM:
125 1.1 simonb /* Round towards -Inf: up if negative, down if positive. */
126 1.1 simonb if (fp->fp_sign)
127 1.1 simonb break;
128 1.1 simonb goto rounddown;
129 1.1 simonb
130 1.1 simonb case FSR_RD_RP:
131 1.1 simonb /* Round towards +Inf: up if positive, down otherwise. */
132 1.1 simonb if (!fp->fp_sign)
133 1.1 simonb break;
134 1.1 simonb goto rounddown;
135 1.1 simonb }
136 1.1 simonb
137 1.1 simonb /* Bump low bit of mantissa, with carry. */
138 1.1 simonb fe->fe_cx |= FPSCR_FR;
139 1.1 simonb
140 1.1 simonb FPU_ADDS(m3, m3, 1);
141 1.1 simonb FPU_ADDCS(m2, m2, 0);
142 1.1 simonb FPU_ADDCS(m1, m1, 0);
143 1.1 simonb FPU_ADDC(m0, m0, 0);
144 1.1 simonb fp->fp_mant[0] = m0;
145 1.1 simonb fp->fp_mant[1] = m1;
146 1.1 simonb fp->fp_mant[2] = m2;
147 1.1 simonb fp->fp_mant[3] = m3;
148 1.1 simonb return (1);
149 1.1 simonb
150 1.1 simonb rounddown:
151 1.1 simonb fp->fp_mant[0] = m0;
152 1.1 simonb fp->fp_mant[1] = m1;
153 1.1 simonb fp->fp_mant[2] = m2;
154 1.1 simonb fp->fp_mant[3] = m3;
155 1.1 simonb return (0);
156 1.1 simonb }
157 1.1 simonb
158 1.1 simonb /*
159 1.1 simonb * For overflow: return true if overflow is to go to +/-Inf, according
160 1.1 simonb * to the sign of the overflowing result. If false, overflow is to go
161 1.1 simonb * to the largest magnitude value instead.
162 1.1 simonb */
163 1.1 simonb static int
164 1.1 simonb toinf(struct fpemu *fe, int sign)
165 1.1 simonb {
166 1.1 simonb int inf;
167 1.1 simonb
168 1.1 simonb /* look at rounding direction */
169 1.1 simonb switch ((fe->fe_fpscr) & FPSCR_RN) {
170 1.1 simonb
171 1.1 simonb default:
172 1.1 simonb case FSR_RD_RN: /* the nearest value is always Inf */
173 1.1 simonb inf = 1;
174 1.1 simonb break;
175 1.1 simonb
176 1.1 simonb case FSR_RD_RZ: /* toward 0 => never towards Inf */
177 1.1 simonb inf = 0;
178 1.1 simonb break;
179 1.1 simonb
180 1.1 simonb case FSR_RD_RP: /* toward +Inf iff positive */
181 1.1 simonb inf = sign == 0;
182 1.1 simonb break;
183 1.1 simonb
184 1.1 simonb case FSR_RD_RM: /* toward -Inf iff negative */
185 1.1 simonb inf = sign;
186 1.1 simonb break;
187 1.1 simonb }
188 1.5 simonb if (inf)
189 1.5 simonb fe->fe_cx |= FPSCR_OX;
190 1.1 simonb return (inf);
191 1.1 simonb }
192 1.1 simonb
193 1.12 rin static int
194 1.12 rin round_int(struct fpn *fp, int *cx, int rn, int sign, int odd)
195 1.12 rin {
196 1.12 rin int g, rs;
197 1.12 rin
198 1.12 rin g = fp->fp_mant[3] & 0x80000000;
199 1.12 rin rs = (fp->fp_mant[3] & 0x7fffffff) | fp->fp_sticky;
200 1.12 rin
201 1.12 rin if ((g | rs) == 0)
202 1.12 rin return 0; /* exact */
203 1.12 rin
204 1.12 rin *cx |= FPSCR_XX | FPSCR_FI;
205 1.12 rin
206 1.12 rin switch (rn) {
207 1.12 rin case FSR_RD_RN:
208 1.12 rin if (g && (rs | odd))
209 1.12 rin break;
210 1.12 rin return 0;
211 1.12 rin case FSR_RD_RZ:
212 1.12 rin return 0;
213 1.12 rin case FSR_RD_RP:
214 1.12 rin if (!sign)
215 1.12 rin break;
216 1.12 rin return 0;
217 1.12 rin case FSR_RD_RM:
218 1.12 rin if (sign)
219 1.12 rin break;
220 1.12 rin return 0;
221 1.12 rin }
222 1.12 rin
223 1.12 rin *cx |= FPSCR_FR;
224 1.12 rin return 1;
225 1.12 rin }
226 1.12 rin
227 1.1 simonb /*
228 1.1 simonb * fpn -> int (int value returned as return value).
229 1.1 simonb */
230 1.1 simonb u_int
231 1.10 rin fpu_ftoi(struct fpemu *fe, struct fpn *fp, int rn)
232 1.1 simonb {
233 1.1 simonb u_int i;
234 1.12 rin int sign, exp, cx;
235 1.1 simonb
236 1.1 simonb sign = fp->fp_sign;
237 1.12 rin cx = 0;
238 1.1 simonb switch (fp->fp_class) {
239 1.12 rin case FPC_SNAN:
240 1.12 rin fe->fe_cx |= FPSCR_VXSNAN;
241 1.12 rin /* FALLTHROUGH */
242 1.12 rin case FPC_QNAN:
243 1.12 rin sign = 1;
244 1.12 rin break;
245 1.1 simonb
246 1.1 simonb case FPC_ZERO:
247 1.1 simonb return (0);
248 1.1 simonb
249 1.1 simonb case FPC_NUM:
250 1.1 simonb /*
251 1.1 simonb * If exp >= 2^32, overflow. Otherwise shift value right
252 1.1 simonb * into last mantissa word (this will not exceed 0xffffffff),
253 1.1 simonb * shifting any guard and round bits out into the sticky
254 1.1 simonb * bit. Then ``round'' towards zero, i.e., just set an
255 1.1 simonb * inexact exception if sticky is set (see round()).
256 1.1 simonb * If the result is > 0x80000000, or is positive and equals
257 1.1 simonb * 0x80000000, overflow; otherwise the last fraction word
258 1.1 simonb * is the result.
259 1.1 simonb */
260 1.1 simonb if ((exp = fp->fp_exp) >= 32)
261 1.1 simonb break;
262 1.1 simonb /* NB: the following includes exp < 0 cases */
263 1.12 rin (void)fpu_shr(fp, FP_NMANT - 32 - 1 - exp);
264 1.10 rin i = fp->fp_mant[2];
265 1.12 rin i += round_int(fp, &cx, rn, sign, i & 1);
266 1.1 simonb if (i >= ((u_int)0x80000000 + sign))
267 1.1 simonb break;
268 1.12 rin fe->fe_cx |= cx;
269 1.1 simonb return (sign ? -i : i);
270 1.1 simonb
271 1.12 rin case FPC_INF:
272 1.1 simonb break;
273 1.1 simonb }
274 1.1 simonb /* overflow: replace any inexact exception with invalid */
275 1.1 simonb fe->fe_cx |= FPSCR_VXCVI;
276 1.1 simonb return (0x7fffffff + sign);
277 1.1 simonb }
278 1.1 simonb
279 1.1 simonb /*
280 1.1 simonb * fpn -> extended int (high bits of int value returned as return value).
281 1.1 simonb */
282 1.10 rin uint64_t
283 1.10 rin fpu_ftox(struct fpemu *fe, struct fpn *fp, int rn)
284 1.1 simonb {
285 1.8 rin uint64_t i;
286 1.12 rin int sign, exp, cx;
287 1.1 simonb
288 1.1 simonb sign = fp->fp_sign;
289 1.12 rin cx = 0;
290 1.1 simonb switch (fp->fp_class) {
291 1.12 rin case FPC_SNAN:
292 1.12 rin fe->fe_cx |= FPSCR_VXSNAN;
293 1.12 rin /* FALLTHROUGH */
294 1.12 rin case FPC_QNAN:
295 1.12 rin sign = 1;
296 1.12 rin break;
297 1.1 simonb
298 1.1 simonb case FPC_ZERO:
299 1.1 simonb return (0);
300 1.1 simonb
301 1.1 simonb case FPC_NUM:
302 1.1 simonb /*
303 1.1 simonb * If exp >= 2^64, overflow. Otherwise shift value right
304 1.1 simonb * into last mantissa word (this will not exceed 0xffffffffffffffff),
305 1.1 simonb * shifting any guard and round bits out into the sticky
306 1.1 simonb * bit. Then ``round'' towards zero, i.e., just set an
307 1.1 simonb * inexact exception if sticky is set (see round()).
308 1.1 simonb * If the result is > 0x8000000000000000, or is positive and equals
309 1.1 simonb * 0x8000000000000000, overflow; otherwise the last fraction word
310 1.1 simonb * is the result.
311 1.1 simonb */
312 1.1 simonb if ((exp = fp->fp_exp) >= 64)
313 1.1 simonb break;
314 1.1 simonb /* NB: the following includes exp < 0 cases */
315 1.12 rin (void)fpu_shr(fp, FP_NMANT - 32 - 1 - exp);
316 1.10 rin i = ((uint64_t)fp->fp_mant[1] << 32) | fp->fp_mant[2];
317 1.12 rin i += round_int(fp, &cx, rn, sign, i & 1);
318 1.8 rin if (i >= ((uint64_t)0x8000000000000000LL + sign))
319 1.1 simonb break;
320 1.12 rin fe->fe_cx |= cx;
321 1.1 simonb return (sign ? -i : i);
322 1.1 simonb
323 1.12 rin case FPC_INF:
324 1.1 simonb break;
325 1.1 simonb }
326 1.1 simonb /* overflow: replace any inexact exception with invalid */
327 1.1 simonb fe->fe_cx |= FPSCR_VXCVI;
328 1.1 simonb return (0x7fffffffffffffffLL + sign);
329 1.1 simonb }
330 1.1 simonb
331 1.1 simonb /*
332 1.1 simonb * fpn -> single (32 bit single returned as return value).
333 1.1 simonb * We assume <= 29 bits in a single-precision fraction (1.f part).
334 1.1 simonb */
335 1.1 simonb u_int
336 1.1 simonb fpu_ftos(struct fpemu *fe, struct fpn *fp)
337 1.1 simonb {
338 1.1 simonb u_int sign = fp->fp_sign << 31;
339 1.1 simonb int exp;
340 1.1 simonb
341 1.1 simonb #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
342 1.1 simonb #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
343 1.1 simonb
344 1.1 simonb /* Take care of non-numbers first. */
345 1.1 simonb if (ISNAN(fp)) {
346 1.1 simonb /*
347 1.1 simonb * Preserve upper bits of NaN, per SPARC V8 appendix N.
348 1.1 simonb * Note that fp->fp_mant[0] has the quiet bit set,
349 1.1 simonb * even if it is classified as a signalling NaN.
350 1.1 simonb */
351 1.1 simonb (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
352 1.1 simonb exp = SNG_EXP_INFNAN;
353 1.1 simonb goto done;
354 1.1 simonb }
355 1.1 simonb if (ISINF(fp))
356 1.1 simonb return (sign | SNG_EXP(SNG_EXP_INFNAN));
357 1.1 simonb if (ISZERO(fp))
358 1.1 simonb return (sign);
359 1.1 simonb
360 1.1 simonb /*
361 1.1 simonb * Normals (including subnormals). Drop all the fraction bits
362 1.1 simonb * (including the explicit ``implied'' 1 bit) down into the
363 1.1 simonb * single-precision range. If the number is subnormal, move
364 1.1 simonb * the ``implied'' 1 into the explicit range as well, and shift
365 1.1 simonb * right to introduce leading zeroes. Rounding then acts
366 1.1 simonb * differently for normals and subnormals: the largest subnormal
367 1.1 simonb * may round to the smallest normal (1.0 x 2^minexp), or may
368 1.1 simonb * remain subnormal. In the latter case, signal an underflow
369 1.1 simonb * if the result was inexact or if underflow traps are enabled.
370 1.1 simonb *
371 1.1 simonb * Rounding a normal, on the other hand, always produces another
372 1.1 simonb * normal (although either way the result might be too big for
373 1.1 simonb * single precision, and cause an overflow). If rounding a
374 1.1 simonb * normal produces 2.0 in the fraction, we need not adjust that
375 1.1 simonb * fraction at all, since both 1.0 and 2.0 are zero under the
376 1.1 simonb * fraction mask.
377 1.1 simonb *
378 1.1 simonb * Note that the guard and round bits vanish from the number after
379 1.1 simonb * rounding.
380 1.1 simonb */
381 1.1 simonb if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
382 1.1 simonb /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
383 1.1 simonb (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
384 1.1 simonb if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
385 1.1 simonb return (sign | SNG_EXP(1) | 0);
386 1.1 simonb if ((fe->fe_cx & FPSCR_FI) ||
387 1.1 simonb (fe->fe_fpscr & FPSCR_UX))
388 1.1 simonb fe->fe_cx |= FPSCR_UX;
389 1.1 simonb return (sign | SNG_EXP(0) | fp->fp_mant[3]);
390 1.1 simonb }
391 1.1 simonb /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
392 1.1 simonb (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
393 1.1 simonb #ifdef DIAGNOSTIC
394 1.1 simonb if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
395 1.1 simonb panic("fpu_ftos");
396 1.1 simonb #endif
397 1.1 simonb if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
398 1.1 simonb exp++;
399 1.1 simonb if (exp >= SNG_EXP_INFNAN) {
400 1.1 simonb /* overflow to inf or to max single */
401 1.1 simonb if (toinf(fe, sign))
402 1.1 simonb return (sign | SNG_EXP(SNG_EXP_INFNAN));
403 1.1 simonb return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
404 1.1 simonb }
405 1.1 simonb done:
406 1.1 simonb /* phew, made it */
407 1.1 simonb return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
408 1.1 simonb }
409 1.1 simonb
410 1.1 simonb /*
411 1.1 simonb * fpn -> double (32 bit high-order result returned; 32-bit low order result
412 1.1 simonb * left in res[1]). Assumes <= 61 bits in double precision fraction.
413 1.1 simonb *
414 1.1 simonb * This code mimics fpu_ftos; see it for comments.
415 1.1 simonb */
416 1.1 simonb u_int
417 1.1 simonb fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res)
418 1.1 simonb {
419 1.1 simonb u_int sign = fp->fp_sign << 31;
420 1.1 simonb int exp;
421 1.1 simonb
422 1.1 simonb #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
423 1.1 simonb #define DBL_MASK (DBL_EXP(1) - 1)
424 1.1 simonb
425 1.1 simonb if (ISNAN(fp)) {
426 1.1 simonb (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
427 1.1 simonb exp = DBL_EXP_INFNAN;
428 1.1 simonb goto done;
429 1.1 simonb }
430 1.1 simonb if (ISINF(fp)) {
431 1.1 simonb sign |= DBL_EXP(DBL_EXP_INFNAN);
432 1.1 simonb goto zero;
433 1.1 simonb }
434 1.1 simonb if (ISZERO(fp)) {
435 1.1 simonb zero: res[1] = 0;
436 1.1 simonb return (sign);
437 1.1 simonb }
438 1.1 simonb
439 1.1 simonb if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
440 1.1 simonb (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
441 1.1 simonb if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
442 1.1 simonb res[1] = 0;
443 1.1 simonb return (sign | DBL_EXP(1) | 0);
444 1.1 simonb }
445 1.1 simonb if ((fe->fe_cx & FPSCR_FI) ||
446 1.1 simonb (fe->fe_fpscr & FPSCR_UX))
447 1.1 simonb fe->fe_cx |= FPSCR_UX;
448 1.1 simonb exp = 0;
449 1.1 simonb goto done;
450 1.1 simonb }
451 1.1 simonb (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
452 1.1 simonb if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
453 1.1 simonb exp++;
454 1.1 simonb if (exp >= DBL_EXP_INFNAN) {
455 1.9 rin fe->fe_cx |= FPSCR_OX;
456 1.1 simonb if (toinf(fe, sign)) {
457 1.1 simonb res[1] = 0;
458 1.1 simonb return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
459 1.1 simonb }
460 1.1 simonb res[1] = ~0;
461 1.1 simonb return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
462 1.1 simonb }
463 1.1 simonb done:
464 1.1 simonb res[1] = fp->fp_mant[3];
465 1.1 simonb return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
466 1.1 simonb }
467 1.1 simonb
468 1.1 simonb /*
469 1.1 simonb * Implode an fpn, writing the result into the given space.
470 1.1 simonb */
471 1.1 simonb void
472 1.1 simonb fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space)
473 1.1 simonb {
474 1.10 rin int rn;
475 1.10 rin
476 1.10 rin if (type & FTYPE_RD_RZ)
477 1.10 rin rn = FSR_RD_RZ;
478 1.10 rin else
479 1.10 rin rn = fe->fe_fpscr & FPSCR_RN;
480 1.10 rin type &= ~FTYPE_RD_MASK;
481 1.1 simonb
482 1.1 simonb switch (type) {
483 1.1 simonb
484 1.1 simonb case FTYPE_LNG:
485 1.10 rin *(uint64_t *)space = fpu_ftox(fe, fp, rn);
486 1.1 simonb DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n",
487 1.1 simonb space[0], space[1]));
488 1.1 simonb break;
489 1.1 simonb
490 1.1 simonb case FTYPE_INT:
491 1.1 simonb space[0] = 0;
492 1.10 rin space[1] = fpu_ftoi(fe, fp, rn);
493 1.1 simonb DPRINTF(FPE_REG, ("fpu_implode: int %x\n",
494 1.1 simonb space[1]));
495 1.1 simonb break;
496 1.1 simonb
497 1.1 simonb case FTYPE_SNG:
498 1.1 simonb space[0] = fpu_ftos(fe, fp);
499 1.1 simonb DPRINTF(FPE_REG, ("fpu_implode: single %x\n",
500 1.1 simonb space[0]));
501 1.1 simonb break;
502 1.1 simonb
503 1.1 simonb case FTYPE_DBL:
504 1.1 simonb space[0] = fpu_ftod(fe, fp, space);
505 1.1 simonb DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n",
506 1.1 simonb space[0], space[1]));
507 1.1 simonb break; break;
508 1.1 simonb
509 1.1 simonb default:
510 1.1 simonb panic("fpu_implode: invalid type %d", type);
511 1.1 simonb }
512 1.1 simonb }
513