Home | History | Annotate | Line # | Download | only in fpu
fpu_implode.c revision 1.7
      1  1.7     rin /*	$NetBSD: fpu_implode.c,v 1.7 2020/06/27 03:07:57 rin Exp $ */
      2  1.1  simonb 
      3  1.1  simonb /*
      4  1.1  simonb  * Copyright (c) 1992, 1993
      5  1.1  simonb  *	The Regents of the University of California.  All rights reserved.
      6  1.1  simonb  *
      7  1.1  simonb  * This software was developed by the Computer Systems Engineering group
      8  1.1  simonb  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  1.1  simonb  * contributed to Berkeley.
     10  1.1  simonb  *
     11  1.1  simonb  * All advertising materials mentioning features or use of this software
     12  1.1  simonb  * must display the following acknowledgement:
     13  1.1  simonb  *	This product includes software developed by the University of
     14  1.1  simonb  *	California, Lawrence Berkeley Laboratory.
     15  1.1  simonb  *
     16  1.1  simonb  * Redistribution and use in source and binary forms, with or without
     17  1.1  simonb  * modification, are permitted provided that the following conditions
     18  1.1  simonb  * are met:
     19  1.1  simonb  * 1. Redistributions of source code must retain the above copyright
     20  1.1  simonb  *    notice, this list of conditions and the following disclaimer.
     21  1.1  simonb  * 2. Redistributions in binary form must reproduce the above copyright
     22  1.1  simonb  *    notice, this list of conditions and the following disclaimer in the
     23  1.1  simonb  *    documentation and/or other materials provided with the distribution.
     24  1.3     agc  * 3. Neither the name of the University nor the names of its contributors
     25  1.1  simonb  *    may be used to endorse or promote products derived from this software
     26  1.1  simonb  *    without specific prior written permission.
     27  1.1  simonb  *
     28  1.1  simonb  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  1.1  simonb  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  1.1  simonb  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  1.1  simonb  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  1.1  simonb  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  1.1  simonb  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  1.1  simonb  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  1.1  simonb  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  1.1  simonb  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  1.1  simonb  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  1.1  simonb  * SUCH DAMAGE.
     39  1.1  simonb  *
     40  1.1  simonb  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
     41  1.1  simonb  */
     42  1.1  simonb 
     43  1.1  simonb /*
     44  1.1  simonb  * FPU subroutines: `implode' internal format numbers into the machine's
     45  1.1  simonb  * `packed binary' format.
     46  1.1  simonb  */
     47  1.2   lukem 
     48  1.2   lukem #include <sys/cdefs.h>
     49  1.7     rin __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.7 2020/06/27 03:07:57 rin Exp $");
     50  1.1  simonb 
     51  1.1  simonb #include <sys/types.h>
     52  1.1  simonb #include <sys/systm.h>
     53  1.1  simonb 
     54  1.7     rin #include <powerpc/instr.h>
     55  1.7     rin #include <machine/fpu.h>
     56  1.1  simonb #include <machine/ieee.h>
     57  1.1  simonb #include <machine/reg.h>
     58  1.1  simonb 
     59  1.1  simonb #include <powerpc/fpu/fpu_arith.h>
     60  1.1  simonb #include <powerpc/fpu/fpu_emu.h>
     61  1.1  simonb #include <powerpc/fpu/fpu_extern.h>
     62  1.1  simonb 
     63  1.1  simonb static int round(struct fpemu *, struct fpn *);
     64  1.1  simonb static int toinf(struct fpemu *, int);
     65  1.1  simonb 
     66  1.1  simonb /*
     67  1.1  simonb  * Round a number (algorithm from Motorola MC68882 manual, modified for
     68  1.1  simonb  * our internal format).  Set inexact exception if rounding is required.
     69  1.1  simonb  * Return true iff we rounded up.
     70  1.1  simonb  *
     71  1.1  simonb  * After rounding, we discard the guard and round bits by shifting right
     72  1.1  simonb  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
     73  1.1  simonb  * This saves effort later.
     74  1.1  simonb  *
     75  1.1  simonb  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
     76  1.1  simonb  * responsibility to fix this if necessary.
     77  1.1  simonb  */
     78  1.1  simonb static int
     79  1.1  simonb round(struct fpemu *fe, struct fpn *fp)
     80  1.1  simonb {
     81  1.1  simonb 	u_int m0, m1, m2, m3;
     82  1.1  simonb 	int gr, s;
     83  1.1  simonb 	FPU_DECL_CARRY;
     84  1.1  simonb 
     85  1.1  simonb 	m0 = fp->fp_mant[0];
     86  1.1  simonb 	m1 = fp->fp_mant[1];
     87  1.1  simonb 	m2 = fp->fp_mant[2];
     88  1.1  simonb 	m3 = fp->fp_mant[3];
     89  1.1  simonb 	gr = m3 & 3;
     90  1.1  simonb 	s = fp->fp_sticky;
     91  1.1  simonb 
     92  1.1  simonb 	/* mant >>= FP_NG */
     93  1.1  simonb 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
     94  1.1  simonb 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
     95  1.1  simonb 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
     96  1.1  simonb 	m0 >>= FP_NG;
     97  1.1  simonb 
     98  1.1  simonb 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
     99  1.1  simonb 		goto rounddown;
    100  1.1  simonb 
    101  1.1  simonb 	fe->fe_cx |= FPSCR_XX|FPSCR_FI;	/* inexact */
    102  1.1  simonb 
    103  1.1  simonb 	/* Go to rounddown to round down; break to round up. */
    104  1.1  simonb 	switch ((fe->fe_fpscr) & FPSCR_RN) {
    105  1.1  simonb 
    106  1.1  simonb 	case FSR_RD_RN:
    107  1.1  simonb 	default:
    108  1.1  simonb 		/*
    109  1.1  simonb 		 * Round only if guard is set (gr & 2).  If guard is set,
    110  1.1  simonb 		 * but round & sticky both clear, then we want to round
    111  1.1  simonb 		 * but have a tie, so round to even, i.e., add 1 iff odd.
    112  1.1  simonb 		 */
    113  1.1  simonb 		if ((gr & 2) == 0)
    114  1.1  simonb 			goto rounddown;
    115  1.1  simonb 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
    116  1.1  simonb 			break;
    117  1.1  simonb 		goto rounddown;
    118  1.1  simonb 
    119  1.1  simonb 	case FSR_RD_RZ:
    120  1.1  simonb 		/* Round towards zero, i.e., down. */
    121  1.1  simonb 		goto rounddown;
    122  1.1  simonb 
    123  1.1  simonb 	case FSR_RD_RM:
    124  1.1  simonb 		/* Round towards -Inf: up if negative, down if positive. */
    125  1.1  simonb 		if (fp->fp_sign)
    126  1.1  simonb 			break;
    127  1.1  simonb 		goto rounddown;
    128  1.1  simonb 
    129  1.1  simonb 	case FSR_RD_RP:
    130  1.1  simonb 		/* Round towards +Inf: up if positive, down otherwise. */
    131  1.1  simonb 		if (!fp->fp_sign)
    132  1.1  simonb 			break;
    133  1.1  simonb 		goto rounddown;
    134  1.1  simonb 	}
    135  1.1  simonb 
    136  1.1  simonb 	/* Bump low bit of mantissa, with carry. */
    137  1.1  simonb 	fe->fe_cx |= FPSCR_FR;
    138  1.1  simonb 
    139  1.1  simonb 	FPU_ADDS(m3, m3, 1);
    140  1.1  simonb 	FPU_ADDCS(m2, m2, 0);
    141  1.1  simonb 	FPU_ADDCS(m1, m1, 0);
    142  1.1  simonb 	FPU_ADDC(m0, m0, 0);
    143  1.1  simonb 	fp->fp_mant[0] = m0;
    144  1.1  simonb 	fp->fp_mant[1] = m1;
    145  1.1  simonb 	fp->fp_mant[2] = m2;
    146  1.1  simonb 	fp->fp_mant[3] = m3;
    147  1.1  simonb 	return (1);
    148  1.1  simonb 
    149  1.1  simonb rounddown:
    150  1.1  simonb 	fp->fp_mant[0] = m0;
    151  1.1  simonb 	fp->fp_mant[1] = m1;
    152  1.1  simonb 	fp->fp_mant[2] = m2;
    153  1.1  simonb 	fp->fp_mant[3] = m3;
    154  1.1  simonb 	return (0);
    155  1.1  simonb }
    156  1.1  simonb 
    157  1.1  simonb /*
    158  1.1  simonb  * For overflow: return true if overflow is to go to +/-Inf, according
    159  1.1  simonb  * to the sign of the overflowing result.  If false, overflow is to go
    160  1.1  simonb  * to the largest magnitude value instead.
    161  1.1  simonb  */
    162  1.1  simonb static int
    163  1.1  simonb toinf(struct fpemu *fe, int sign)
    164  1.1  simonb {
    165  1.1  simonb 	int inf;
    166  1.1  simonb 
    167  1.1  simonb 	/* look at rounding direction */
    168  1.1  simonb 	switch ((fe->fe_fpscr) & FPSCR_RN) {
    169  1.1  simonb 
    170  1.1  simonb 	default:
    171  1.1  simonb 	case FSR_RD_RN:		/* the nearest value is always Inf */
    172  1.1  simonb 		inf = 1;
    173  1.1  simonb 		break;
    174  1.1  simonb 
    175  1.1  simonb 	case FSR_RD_RZ:		/* toward 0 => never towards Inf */
    176  1.1  simonb 		inf = 0;
    177  1.1  simonb 		break;
    178  1.1  simonb 
    179  1.1  simonb 	case FSR_RD_RP:		/* toward +Inf iff positive */
    180  1.1  simonb 		inf = sign == 0;
    181  1.1  simonb 		break;
    182  1.1  simonb 
    183  1.1  simonb 	case FSR_RD_RM:		/* toward -Inf iff negative */
    184  1.1  simonb 		inf = sign;
    185  1.1  simonb 		break;
    186  1.1  simonb 	}
    187  1.5  simonb 	if (inf)
    188  1.5  simonb 		fe->fe_cx |= FPSCR_OX;
    189  1.1  simonb 	return (inf);
    190  1.1  simonb }
    191  1.1  simonb 
    192  1.1  simonb /*
    193  1.1  simonb  * fpn -> int (int value returned as return value).
    194  1.1  simonb  *
    195  1.1  simonb  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    196  1.1  simonb  * of the SPARC instruction set).
    197  1.1  simonb  */
    198  1.1  simonb u_int
    199  1.1  simonb fpu_ftoi(struct fpemu *fe, struct fpn *fp)
    200  1.1  simonb {
    201  1.1  simonb 	u_int i;
    202  1.1  simonb 	int sign, exp;
    203  1.1  simonb 
    204  1.1  simonb 	sign = fp->fp_sign;
    205  1.1  simonb 	switch (fp->fp_class) {
    206  1.1  simonb 
    207  1.1  simonb 	case FPC_ZERO:
    208  1.1  simonb 		return (0);
    209  1.1  simonb 
    210  1.1  simonb 	case FPC_NUM:
    211  1.1  simonb 		/*
    212  1.1  simonb 		 * If exp >= 2^32, overflow.  Otherwise shift value right
    213  1.1  simonb 		 * into last mantissa word (this will not exceed 0xffffffff),
    214  1.1  simonb 		 * shifting any guard and round bits out into the sticky
    215  1.1  simonb 		 * bit.  Then ``round'' towards zero, i.e., just set an
    216  1.1  simonb 		 * inexact exception if sticky is set (see round()).
    217  1.1  simonb 		 * If the result is > 0x80000000, or is positive and equals
    218  1.1  simonb 		 * 0x80000000, overflow; otherwise the last fraction word
    219  1.1  simonb 		 * is the result.
    220  1.1  simonb 		 */
    221  1.1  simonb 		if ((exp = fp->fp_exp) >= 32)
    222  1.1  simonb 			break;
    223  1.1  simonb 		/* NB: the following includes exp < 0 cases */
    224  1.1  simonb 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    225  1.1  simonb 			fe->fe_cx |= FPSCR_UX;
    226  1.1  simonb 		i = fp->fp_mant[3];
    227  1.1  simonb 		if (i >= ((u_int)0x80000000 + sign))
    228  1.1  simonb 			break;
    229  1.1  simonb 		return (sign ? -i : i);
    230  1.1  simonb 
    231  1.1  simonb 	default:		/* Inf, qNaN, sNaN */
    232  1.1  simonb 		break;
    233  1.1  simonb 	}
    234  1.1  simonb 	/* overflow: replace any inexact exception with invalid */
    235  1.1  simonb 	fe->fe_cx |= FPSCR_VXCVI;
    236  1.1  simonb 	return (0x7fffffff + sign);
    237  1.1  simonb }
    238  1.1  simonb 
    239  1.1  simonb /*
    240  1.1  simonb  * fpn -> extended int (high bits of int value returned as return value).
    241  1.1  simonb  *
    242  1.1  simonb  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    243  1.1  simonb  * of the SPARC instruction set).
    244  1.1  simonb  */
    245  1.1  simonb u_int
    246  1.1  simonb fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *res)
    247  1.1  simonb {
    248  1.1  simonb 	u_int64_t i;
    249  1.1  simonb 	int sign, exp;
    250  1.1  simonb 
    251  1.1  simonb 	sign = fp->fp_sign;
    252  1.1  simonb 	switch (fp->fp_class) {
    253  1.1  simonb 
    254  1.1  simonb 	case FPC_ZERO:
    255  1.1  simonb 		res[1] = 0;
    256  1.1  simonb 		return (0);
    257  1.1  simonb 
    258  1.1  simonb 	case FPC_NUM:
    259  1.1  simonb 		/*
    260  1.1  simonb 		 * If exp >= 2^64, overflow.  Otherwise shift value right
    261  1.1  simonb 		 * into last mantissa word (this will not exceed 0xffffffffffffffff),
    262  1.1  simonb 		 * shifting any guard and round bits out into the sticky
    263  1.1  simonb 		 * bit.  Then ``round'' towards zero, i.e., just set an
    264  1.1  simonb 		 * inexact exception if sticky is set (see round()).
    265  1.1  simonb 		 * If the result is > 0x8000000000000000, or is positive and equals
    266  1.1  simonb 		 * 0x8000000000000000, overflow; otherwise the last fraction word
    267  1.1  simonb 		 * is the result.
    268  1.1  simonb 		 */
    269  1.1  simonb 		if ((exp = fp->fp_exp) >= 64)
    270  1.1  simonb 			break;
    271  1.1  simonb 		/* NB: the following includes exp < 0 cases */
    272  1.1  simonb 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    273  1.1  simonb 			fe->fe_cx |= FPSCR_UX;
    274  1.1  simonb 		i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
    275  1.1  simonb 		if (i >= ((u_int64_t)0x8000000000000000LL + sign))
    276  1.1  simonb 			break;
    277  1.1  simonb 		return (sign ? -i : i);
    278  1.1  simonb 
    279  1.1  simonb 	default:		/* Inf, qNaN, sNaN */
    280  1.1  simonb 		break;
    281  1.1  simonb 	}
    282  1.1  simonb 	/* overflow: replace any inexact exception with invalid */
    283  1.1  simonb 	fe->fe_cx |= FPSCR_VXCVI;
    284  1.1  simonb 	return (0x7fffffffffffffffLL + sign);
    285  1.1  simonb }
    286  1.1  simonb 
    287  1.1  simonb /*
    288  1.1  simonb  * fpn -> single (32 bit single returned as return value).
    289  1.1  simonb  * We assume <= 29 bits in a single-precision fraction (1.f part).
    290  1.1  simonb  */
    291  1.1  simonb u_int
    292  1.1  simonb fpu_ftos(struct fpemu *fe, struct fpn *fp)
    293  1.1  simonb {
    294  1.1  simonb 	u_int sign = fp->fp_sign << 31;
    295  1.1  simonb 	int exp;
    296  1.1  simonb 
    297  1.1  simonb #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
    298  1.1  simonb #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
    299  1.1  simonb 
    300  1.1  simonb 	/* Take care of non-numbers first. */
    301  1.1  simonb 	if (ISNAN(fp)) {
    302  1.1  simonb 		/*
    303  1.1  simonb 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
    304  1.1  simonb 		 * Note that fp->fp_mant[0] has the quiet bit set,
    305  1.1  simonb 		 * even if it is classified as a signalling NaN.
    306  1.1  simonb 		 */
    307  1.1  simonb 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
    308  1.1  simonb 		exp = SNG_EXP_INFNAN;
    309  1.1  simonb 		goto done;
    310  1.1  simonb 	}
    311  1.1  simonb 	if (ISINF(fp))
    312  1.1  simonb 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
    313  1.1  simonb 	if (ISZERO(fp))
    314  1.1  simonb 		return (sign);
    315  1.1  simonb 
    316  1.1  simonb 	/*
    317  1.1  simonb 	 * Normals (including subnormals).  Drop all the fraction bits
    318  1.1  simonb 	 * (including the explicit ``implied'' 1 bit) down into the
    319  1.1  simonb 	 * single-precision range.  If the number is subnormal, move
    320  1.1  simonb 	 * the ``implied'' 1 into the explicit range as well, and shift
    321  1.1  simonb 	 * right to introduce leading zeroes.  Rounding then acts
    322  1.1  simonb 	 * differently for normals and subnormals: the largest subnormal
    323  1.1  simonb 	 * may round to the smallest normal (1.0 x 2^minexp), or may
    324  1.1  simonb 	 * remain subnormal.  In the latter case, signal an underflow
    325  1.1  simonb 	 * if the result was inexact or if underflow traps are enabled.
    326  1.1  simonb 	 *
    327  1.1  simonb 	 * Rounding a normal, on the other hand, always produces another
    328  1.1  simonb 	 * normal (although either way the result might be too big for
    329  1.1  simonb 	 * single precision, and cause an overflow).  If rounding a
    330  1.1  simonb 	 * normal produces 2.0 in the fraction, we need not adjust that
    331  1.1  simonb 	 * fraction at all, since both 1.0 and 2.0 are zero under the
    332  1.1  simonb 	 * fraction mask.
    333  1.1  simonb 	 *
    334  1.1  simonb 	 * Note that the guard and round bits vanish from the number after
    335  1.1  simonb 	 * rounding.
    336  1.1  simonb 	 */
    337  1.1  simonb 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
    338  1.1  simonb 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
    339  1.1  simonb 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
    340  1.1  simonb 		if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
    341  1.1  simonb 			return (sign | SNG_EXP(1) | 0);
    342  1.1  simonb 		if ((fe->fe_cx & FPSCR_FI) ||
    343  1.1  simonb 		    (fe->fe_fpscr & FPSCR_UX))
    344  1.1  simonb 			fe->fe_cx |= FPSCR_UX;
    345  1.1  simonb 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
    346  1.1  simonb 	}
    347  1.1  simonb 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
    348  1.1  simonb 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
    349  1.1  simonb #ifdef DIAGNOSTIC
    350  1.1  simonb 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
    351  1.1  simonb 		panic("fpu_ftos");
    352  1.1  simonb #endif
    353  1.1  simonb 	if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
    354  1.1  simonb 		exp++;
    355  1.1  simonb 	if (exp >= SNG_EXP_INFNAN) {
    356  1.1  simonb 		/* overflow to inf or to max single */
    357  1.1  simonb 		if (toinf(fe, sign))
    358  1.1  simonb 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
    359  1.1  simonb 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
    360  1.1  simonb 	}
    361  1.1  simonb done:
    362  1.1  simonb 	/* phew, made it */
    363  1.1  simonb 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
    364  1.1  simonb }
    365  1.1  simonb 
    366  1.1  simonb /*
    367  1.1  simonb  * fpn -> double (32 bit high-order result returned; 32-bit low order result
    368  1.1  simonb  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
    369  1.1  simonb  *
    370  1.1  simonb  * This code mimics fpu_ftos; see it for comments.
    371  1.1  simonb  */
    372  1.1  simonb u_int
    373  1.1  simonb fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res)
    374  1.1  simonb {
    375  1.1  simonb 	u_int sign = fp->fp_sign << 31;
    376  1.1  simonb 	int exp;
    377  1.1  simonb 
    378  1.1  simonb #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
    379  1.1  simonb #define	DBL_MASK	(DBL_EXP(1) - 1)
    380  1.1  simonb 
    381  1.1  simonb 	if (ISNAN(fp)) {
    382  1.1  simonb 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
    383  1.1  simonb 		exp = DBL_EXP_INFNAN;
    384  1.1  simonb 		goto done;
    385  1.1  simonb 	}
    386  1.1  simonb 	if (ISINF(fp)) {
    387  1.1  simonb 		sign |= DBL_EXP(DBL_EXP_INFNAN);
    388  1.1  simonb 		goto zero;
    389  1.1  simonb 	}
    390  1.1  simonb 	if (ISZERO(fp)) {
    391  1.1  simonb zero:		res[1] = 0;
    392  1.1  simonb 		return (sign);
    393  1.1  simonb 	}
    394  1.1  simonb 
    395  1.1  simonb 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
    396  1.1  simonb 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
    397  1.1  simonb 		if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
    398  1.1  simonb 			res[1] = 0;
    399  1.1  simonb 			return (sign | DBL_EXP(1) | 0);
    400  1.1  simonb 		}
    401  1.1  simonb 		if ((fe->fe_cx & FPSCR_FI) ||
    402  1.1  simonb 		    (fe->fe_fpscr & FPSCR_UX))
    403  1.1  simonb 			fe->fe_cx |= FPSCR_UX;
    404  1.1  simonb 		exp = 0;
    405  1.1  simonb 		goto done;
    406  1.1  simonb 	}
    407  1.1  simonb 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
    408  1.1  simonb 	if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
    409  1.1  simonb 		exp++;
    410  1.1  simonb 	if (exp >= DBL_EXP_INFNAN) {
    411  1.1  simonb 		fe->fe_cx |= FPSCR_OX | FPSCR_UX;
    412  1.1  simonb 		if (toinf(fe, sign)) {
    413  1.1  simonb 			res[1] = 0;
    414  1.1  simonb 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
    415  1.1  simonb 		}
    416  1.1  simonb 		res[1] = ~0;
    417  1.1  simonb 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
    418  1.1  simonb 	}
    419  1.1  simonb done:
    420  1.1  simonb 	res[1] = fp->fp_mant[3];
    421  1.1  simonb 	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
    422  1.1  simonb }
    423  1.1  simonb 
    424  1.1  simonb /*
    425  1.1  simonb  * Implode an fpn, writing the result into the given space.
    426  1.1  simonb  */
    427  1.1  simonb void
    428  1.1  simonb fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space)
    429  1.1  simonb {
    430  1.1  simonb 
    431  1.1  simonb 	switch (type) {
    432  1.1  simonb 
    433  1.1  simonb 	case FTYPE_LNG:
    434  1.1  simonb 		space[0] = fpu_ftox(fe, fp, space);
    435  1.1  simonb 		DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n",
    436  1.1  simonb 			space[0], space[1]));
    437  1.1  simonb 		break;
    438  1.1  simonb 
    439  1.1  simonb 	case FTYPE_INT:
    440  1.1  simonb 		space[0] = 0;
    441  1.1  simonb 		space[1] = fpu_ftoi(fe, fp);
    442  1.1  simonb 		DPRINTF(FPE_REG, ("fpu_implode: int %x\n",
    443  1.1  simonb 			space[1]));
    444  1.1  simonb 		break;
    445  1.1  simonb 
    446  1.1  simonb 	case FTYPE_SNG:
    447  1.1  simonb 		space[0] = fpu_ftos(fe, fp);
    448  1.1  simonb 		DPRINTF(FPE_REG, ("fpu_implode: single %x\n",
    449  1.1  simonb 			space[0]));
    450  1.1  simonb 		break;
    451  1.1  simonb 
    452  1.1  simonb 	case FTYPE_DBL:
    453  1.1  simonb 		space[0] = fpu_ftod(fe, fp, space);
    454  1.1  simonb 		DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n",
    455  1.1  simonb 			space[0], space[1]));
    456  1.1  simonb 		break;		break;
    457  1.1  simonb 
    458  1.1  simonb 	default:
    459  1.1  simonb 		panic("fpu_implode: invalid type %d", type);
    460  1.1  simonb 	}
    461  1.1  simonb }
    462