fpu_implode.c revision 1.1 1 /* $NetBSD: fpu_implode.c,v 1.1 2001/06/13 06:01:47 simonb Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
45 */
46
47 /*
48 * FPU subroutines: `implode' internal format numbers into the machine's
49 * `packed binary' format.
50 */
51
52 #include <sys/types.h>
53 #include <sys/systm.h>
54
55 #include <machine/ieee.h>
56 #include <powerpc/instr.h>
57 #include <machine/reg.h>
58 #include <machine/fpu.h>
59
60 #include <powerpc/fpu/fpu_arith.h>
61 #include <powerpc/fpu/fpu_emu.h>
62 #include <powerpc/fpu/fpu_extern.h>
63
64 static int round(struct fpemu *, struct fpn *);
65 static int toinf(struct fpemu *, int);
66
67 /*
68 * Round a number (algorithm from Motorola MC68882 manual, modified for
69 * our internal format). Set inexact exception if rounding is required.
70 * Return true iff we rounded up.
71 *
72 * After rounding, we discard the guard and round bits by shifting right
73 * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
74 * This saves effort later.
75 *
76 * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
77 * responsibility to fix this if necessary.
78 */
79 static int
80 round(struct fpemu *fe, struct fpn *fp)
81 {
82 u_int m0, m1, m2, m3;
83 int gr, s;
84 FPU_DECL_CARRY;
85
86 m0 = fp->fp_mant[0];
87 m1 = fp->fp_mant[1];
88 m2 = fp->fp_mant[2];
89 m3 = fp->fp_mant[3];
90 gr = m3 & 3;
91 s = fp->fp_sticky;
92
93 /* mant >>= FP_NG */
94 m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
95 m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
96 m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
97 m0 >>= FP_NG;
98
99 if ((gr | s) == 0) /* result is exact: no rounding needed */
100 goto rounddown;
101
102 fe->fe_cx |= FPSCR_XX|FPSCR_FI; /* inexact */
103
104 /* Go to rounddown to round down; break to round up. */
105 switch ((fe->fe_fpscr) & FPSCR_RN) {
106
107 case FSR_RD_RN:
108 default:
109 /*
110 * Round only if guard is set (gr & 2). If guard is set,
111 * but round & sticky both clear, then we want to round
112 * but have a tie, so round to even, i.e., add 1 iff odd.
113 */
114 if ((gr & 2) == 0)
115 goto rounddown;
116 if ((gr & 1) || fp->fp_sticky || (m3 & 1))
117 break;
118 goto rounddown;
119
120 case FSR_RD_RZ:
121 /* Round towards zero, i.e., down. */
122 goto rounddown;
123
124 case FSR_RD_RM:
125 /* Round towards -Inf: up if negative, down if positive. */
126 if (fp->fp_sign)
127 break;
128 goto rounddown;
129
130 case FSR_RD_RP:
131 /* Round towards +Inf: up if positive, down otherwise. */
132 if (!fp->fp_sign)
133 break;
134 goto rounddown;
135 }
136
137 /* Bump low bit of mantissa, with carry. */
138 fe->fe_cx |= FPSCR_FR;
139
140 FPU_ADDS(m3, m3, 1);
141 FPU_ADDCS(m2, m2, 0);
142 FPU_ADDCS(m1, m1, 0);
143 FPU_ADDC(m0, m0, 0);
144 fp->fp_mant[0] = m0;
145 fp->fp_mant[1] = m1;
146 fp->fp_mant[2] = m2;
147 fp->fp_mant[3] = m3;
148 return (1);
149
150 rounddown:
151 fp->fp_mant[0] = m0;
152 fp->fp_mant[1] = m1;
153 fp->fp_mant[2] = m2;
154 fp->fp_mant[3] = m3;
155 return (0);
156 }
157
158 /*
159 * For overflow: return true if overflow is to go to +/-Inf, according
160 * to the sign of the overflowing result. If false, overflow is to go
161 * to the largest magnitude value instead.
162 */
163 static int
164 toinf(struct fpemu *fe, int sign)
165 {
166 int inf;
167
168 /* look at rounding direction */
169 switch ((fe->fe_fpscr) & FPSCR_RN) {
170
171 default:
172 case FSR_RD_RN: /* the nearest value is always Inf */
173 inf = 1;
174 break;
175
176 case FSR_RD_RZ: /* toward 0 => never towards Inf */
177 inf = 0;
178 break;
179
180 case FSR_RD_RP: /* toward +Inf iff positive */
181 inf = sign == 0;
182 break;
183
184 case FSR_RD_RM: /* toward -Inf iff negative */
185 inf = sign;
186 break;
187 }
188 if (inf) fe->fe_cx |= FPSCR_OX;
189 return (inf);
190 }
191
192 /*
193 * fpn -> int (int value returned as return value).
194 *
195 * N.B.: this conversion always rounds towards zero (this is a peculiarity
196 * of the SPARC instruction set).
197 */
198 u_int
199 fpu_ftoi(struct fpemu *fe, struct fpn *fp)
200 {
201 u_int i;
202 int sign, exp;
203
204 sign = fp->fp_sign;
205 switch (fp->fp_class) {
206
207 case FPC_ZERO:
208 return (0);
209
210 case FPC_NUM:
211 /*
212 * If exp >= 2^32, overflow. Otherwise shift value right
213 * into last mantissa word (this will not exceed 0xffffffff),
214 * shifting any guard and round bits out into the sticky
215 * bit. Then ``round'' towards zero, i.e., just set an
216 * inexact exception if sticky is set (see round()).
217 * If the result is > 0x80000000, or is positive and equals
218 * 0x80000000, overflow; otherwise the last fraction word
219 * is the result.
220 */
221 if ((exp = fp->fp_exp) >= 32)
222 break;
223 /* NB: the following includes exp < 0 cases */
224 if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
225 fe->fe_cx |= FPSCR_UX;
226 i = fp->fp_mant[3];
227 if (i >= ((u_int)0x80000000 + sign))
228 break;
229 return (sign ? -i : i);
230
231 default: /* Inf, qNaN, sNaN */
232 break;
233 }
234 /* overflow: replace any inexact exception with invalid */
235 fe->fe_cx |= FPSCR_VXCVI;
236 return (0x7fffffff + sign);
237 }
238
239 /*
240 * fpn -> extended int (high bits of int value returned as return value).
241 *
242 * N.B.: this conversion always rounds towards zero (this is a peculiarity
243 * of the SPARC instruction set).
244 */
245 u_int
246 fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *res)
247 {
248 u_int64_t i;
249 int sign, exp;
250
251 sign = fp->fp_sign;
252 switch (fp->fp_class) {
253
254 case FPC_ZERO:
255 res[1] = 0;
256 return (0);
257
258 case FPC_NUM:
259 /*
260 * If exp >= 2^64, overflow. Otherwise shift value right
261 * into last mantissa word (this will not exceed 0xffffffffffffffff),
262 * shifting any guard and round bits out into the sticky
263 * bit. Then ``round'' towards zero, i.e., just set an
264 * inexact exception if sticky is set (see round()).
265 * If the result is > 0x8000000000000000, or is positive and equals
266 * 0x8000000000000000, overflow; otherwise the last fraction word
267 * is the result.
268 */
269 if ((exp = fp->fp_exp) >= 64)
270 break;
271 /* NB: the following includes exp < 0 cases */
272 if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
273 fe->fe_cx |= FPSCR_UX;
274 i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
275 if (i >= ((u_int64_t)0x8000000000000000LL + sign))
276 break;
277 return (sign ? -i : i);
278
279 default: /* Inf, qNaN, sNaN */
280 break;
281 }
282 /* overflow: replace any inexact exception with invalid */
283 fe->fe_cx |= FPSCR_VXCVI;
284 return (0x7fffffffffffffffLL + sign);
285 }
286
287 /*
288 * fpn -> single (32 bit single returned as return value).
289 * We assume <= 29 bits in a single-precision fraction (1.f part).
290 */
291 u_int
292 fpu_ftos(struct fpemu *fe, struct fpn *fp)
293 {
294 u_int sign = fp->fp_sign << 31;
295 int exp;
296
297 #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
298 #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
299
300 /* Take care of non-numbers first. */
301 if (ISNAN(fp)) {
302 /*
303 * Preserve upper bits of NaN, per SPARC V8 appendix N.
304 * Note that fp->fp_mant[0] has the quiet bit set,
305 * even if it is classified as a signalling NaN.
306 */
307 (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
308 exp = SNG_EXP_INFNAN;
309 goto done;
310 }
311 if (ISINF(fp))
312 return (sign | SNG_EXP(SNG_EXP_INFNAN));
313 if (ISZERO(fp))
314 return (sign);
315
316 /*
317 * Normals (including subnormals). Drop all the fraction bits
318 * (including the explicit ``implied'' 1 bit) down into the
319 * single-precision range. If the number is subnormal, move
320 * the ``implied'' 1 into the explicit range as well, and shift
321 * right to introduce leading zeroes. Rounding then acts
322 * differently for normals and subnormals: the largest subnormal
323 * may round to the smallest normal (1.0 x 2^minexp), or may
324 * remain subnormal. In the latter case, signal an underflow
325 * if the result was inexact or if underflow traps are enabled.
326 *
327 * Rounding a normal, on the other hand, always produces another
328 * normal (although either way the result might be too big for
329 * single precision, and cause an overflow). If rounding a
330 * normal produces 2.0 in the fraction, we need not adjust that
331 * fraction at all, since both 1.0 and 2.0 are zero under the
332 * fraction mask.
333 *
334 * Note that the guard and round bits vanish from the number after
335 * rounding.
336 */
337 if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
338 /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
339 (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
340 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
341 return (sign | SNG_EXP(1) | 0);
342 if ((fe->fe_cx & FPSCR_FI) ||
343 (fe->fe_fpscr & FPSCR_UX))
344 fe->fe_cx |= FPSCR_UX;
345 return (sign | SNG_EXP(0) | fp->fp_mant[3]);
346 }
347 /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
348 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
349 #ifdef DIAGNOSTIC
350 if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
351 panic("fpu_ftos");
352 #endif
353 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
354 exp++;
355 if (exp >= SNG_EXP_INFNAN) {
356 /* overflow to inf or to max single */
357 if (toinf(fe, sign))
358 return (sign | SNG_EXP(SNG_EXP_INFNAN));
359 return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
360 }
361 done:
362 /* phew, made it */
363 return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
364 }
365
366 /*
367 * fpn -> double (32 bit high-order result returned; 32-bit low order result
368 * left in res[1]). Assumes <= 61 bits in double precision fraction.
369 *
370 * This code mimics fpu_ftos; see it for comments.
371 */
372 u_int
373 fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res)
374 {
375 u_int sign = fp->fp_sign << 31;
376 int exp;
377
378 #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
379 #define DBL_MASK (DBL_EXP(1) - 1)
380
381 if (ISNAN(fp)) {
382 (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
383 exp = DBL_EXP_INFNAN;
384 goto done;
385 }
386 if (ISINF(fp)) {
387 sign |= DBL_EXP(DBL_EXP_INFNAN);
388 goto zero;
389 }
390 if (ISZERO(fp)) {
391 zero: res[1] = 0;
392 return (sign);
393 }
394
395 if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
396 (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
397 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
398 res[1] = 0;
399 return (sign | DBL_EXP(1) | 0);
400 }
401 if ((fe->fe_cx & FPSCR_FI) ||
402 (fe->fe_fpscr & FPSCR_UX))
403 fe->fe_cx |= FPSCR_UX;
404 exp = 0;
405 goto done;
406 }
407 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
408 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
409 exp++;
410 if (exp >= DBL_EXP_INFNAN) {
411 fe->fe_cx |= FPSCR_OX | FPSCR_UX;
412 if (toinf(fe, sign)) {
413 res[1] = 0;
414 return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
415 }
416 res[1] = ~0;
417 return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
418 }
419 done:
420 res[1] = fp->fp_mant[3];
421 return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
422 }
423
424 /*
425 * fpn -> extended (32 bit high-order result returned; low-order fraction
426 * words left in res[1]..res[3]). Like ftod, which is like ftos ... but
427 * our internal format *is* extended precision, plus 2 bits for guard/round,
428 * so we can avoid a small bit of work.
429 */
430 u_int
431 fpu_ftoq(struct fpemu *fe, struct fpn *fp, u_int *res)
432 {
433 u_int sign = fp->fp_sign << 31;
434 int exp;
435
436 #define EXT_EXP(e) ((e) << (EXT_FRACBITS & 31))
437 #define EXT_MASK (EXT_EXP(1) - 1)
438
439 if (ISNAN(fp)) {
440 (void) fpu_shr(fp, 2); /* since we are not rounding */
441 exp = EXT_EXP_INFNAN;
442 goto done;
443 }
444 if (ISINF(fp)) {
445 sign |= EXT_EXP(EXT_EXP_INFNAN);
446 goto zero;
447 }
448 if (ISZERO(fp)) {
449 zero: res[1] = res[2] = res[3] = 0;
450 return (sign);
451 }
452
453 if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
454 (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
455 if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
456 res[1] = res[2] = res[3] = 0;
457 return (sign | EXT_EXP(1) | 0);
458 }
459 if ((fe->fe_cx & FPSCR_FI) ||
460 (fe->fe_fpscr & FPSCR_UX))
461 fe->fe_cx |= FPSCR_UX;
462 exp = 0;
463 goto done;
464 }
465 /* Since internal == extended, no need to shift here. */
466 if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
467 exp++;
468 if (exp >= EXT_EXP_INFNAN) {
469 fe->fe_cx |= FPSCR_OX | FPSCR_UX;
470 if (toinf(fe, sign)) {
471 res[1] = res[2] = res[3] = 0;
472 return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
473 }
474 res[1] = res[2] = res[3] = ~0;
475 return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
476 }
477 done:
478 res[1] = fp->fp_mant[1];
479 res[2] = fp->fp_mant[2];
480 res[3] = fp->fp_mant[3];
481 return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
482 }
483
484 /*
485 * Implode an fpn, writing the result into the given space.
486 */
487 void
488 fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space)
489 {
490
491 switch (type) {
492
493 case FTYPE_LNG:
494 space[0] = fpu_ftox(fe, fp, space);
495 DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n",
496 space[0], space[1]));
497 break;
498
499 case FTYPE_INT:
500 space[0] = 0;
501 space[1] = fpu_ftoi(fe, fp);
502 DPRINTF(FPE_REG, ("fpu_implode: int %x\n",
503 space[1]));
504 break;
505
506 case FTYPE_SNG:
507 space[0] = fpu_ftos(fe, fp);
508 DPRINTF(FPE_REG, ("fpu_implode: single %x\n",
509 space[0]));
510 break;
511
512 case FTYPE_DBL:
513 space[0] = fpu_ftod(fe, fp, space);
514 DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n",
515 space[0], space[1]));
516 break; break;
517
518 case FTYPE_EXT:
519 /* funky rounding precision options ?? */
520 space[0] = fpu_ftoq(fe, fp, space);
521 DPRINTF(FPE_REG, ("fpu_implode: long double %x %x %x %x\n",
522 space[0], space[1], space[2], space[3]));
523 break; break;
524
525 default:
526 panic("fpu_implode: invalid type %d", type);
527 }
528 }
529