Home | History | Annotate | Line # | Download | only in fpu
fpu_implode.c revision 1.1
      1 /*	$NetBSD: fpu_implode.c,v 1.1 2001/06/13 06:01:47 simonb Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by the University of
     27  *	California, Berkeley and its contributors.
     28  * 4. Neither the name of the University nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  *
     44  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
     45  */
     46 
     47 /*
     48  * FPU subroutines: `implode' internal format numbers into the machine's
     49  * `packed binary' format.
     50  */
     51 
     52 #include <sys/types.h>
     53 #include <sys/systm.h>
     54 
     55 #include <machine/ieee.h>
     56 #include <powerpc/instr.h>
     57 #include <machine/reg.h>
     58 #include <machine/fpu.h>
     59 
     60 #include <powerpc/fpu/fpu_arith.h>
     61 #include <powerpc/fpu/fpu_emu.h>
     62 #include <powerpc/fpu/fpu_extern.h>
     63 
     64 static int round(struct fpemu *, struct fpn *);
     65 static int toinf(struct fpemu *, int);
     66 
     67 /*
     68  * Round a number (algorithm from Motorola MC68882 manual, modified for
     69  * our internal format).  Set inexact exception if rounding is required.
     70  * Return true iff we rounded up.
     71  *
     72  * After rounding, we discard the guard and round bits by shifting right
     73  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
     74  * This saves effort later.
     75  *
     76  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
     77  * responsibility to fix this if necessary.
     78  */
     79 static int
     80 round(struct fpemu *fe, struct fpn *fp)
     81 {
     82 	u_int m0, m1, m2, m3;
     83 	int gr, s;
     84 	FPU_DECL_CARRY;
     85 
     86 	m0 = fp->fp_mant[0];
     87 	m1 = fp->fp_mant[1];
     88 	m2 = fp->fp_mant[2];
     89 	m3 = fp->fp_mant[3];
     90 	gr = m3 & 3;
     91 	s = fp->fp_sticky;
     92 
     93 	/* mant >>= FP_NG */
     94 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
     95 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
     96 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
     97 	m0 >>= FP_NG;
     98 
     99 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
    100 		goto rounddown;
    101 
    102 	fe->fe_cx |= FPSCR_XX|FPSCR_FI;	/* inexact */
    103 
    104 	/* Go to rounddown to round down; break to round up. */
    105 	switch ((fe->fe_fpscr) & FPSCR_RN) {
    106 
    107 	case FSR_RD_RN:
    108 	default:
    109 		/*
    110 		 * Round only if guard is set (gr & 2).  If guard is set,
    111 		 * but round & sticky both clear, then we want to round
    112 		 * but have a tie, so round to even, i.e., add 1 iff odd.
    113 		 */
    114 		if ((gr & 2) == 0)
    115 			goto rounddown;
    116 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
    117 			break;
    118 		goto rounddown;
    119 
    120 	case FSR_RD_RZ:
    121 		/* Round towards zero, i.e., down. */
    122 		goto rounddown;
    123 
    124 	case FSR_RD_RM:
    125 		/* Round towards -Inf: up if negative, down if positive. */
    126 		if (fp->fp_sign)
    127 			break;
    128 		goto rounddown;
    129 
    130 	case FSR_RD_RP:
    131 		/* Round towards +Inf: up if positive, down otherwise. */
    132 		if (!fp->fp_sign)
    133 			break;
    134 		goto rounddown;
    135 	}
    136 
    137 	/* Bump low bit of mantissa, with carry. */
    138 	fe->fe_cx |= FPSCR_FR;
    139 
    140 	FPU_ADDS(m3, m3, 1);
    141 	FPU_ADDCS(m2, m2, 0);
    142 	FPU_ADDCS(m1, m1, 0);
    143 	FPU_ADDC(m0, m0, 0);
    144 	fp->fp_mant[0] = m0;
    145 	fp->fp_mant[1] = m1;
    146 	fp->fp_mant[2] = m2;
    147 	fp->fp_mant[3] = m3;
    148 	return (1);
    149 
    150 rounddown:
    151 	fp->fp_mant[0] = m0;
    152 	fp->fp_mant[1] = m1;
    153 	fp->fp_mant[2] = m2;
    154 	fp->fp_mant[3] = m3;
    155 	return (0);
    156 }
    157 
    158 /*
    159  * For overflow: return true if overflow is to go to +/-Inf, according
    160  * to the sign of the overflowing result.  If false, overflow is to go
    161  * to the largest magnitude value instead.
    162  */
    163 static int
    164 toinf(struct fpemu *fe, int sign)
    165 {
    166 	int inf;
    167 
    168 	/* look at rounding direction */
    169 	switch ((fe->fe_fpscr) & FPSCR_RN) {
    170 
    171 	default:
    172 	case FSR_RD_RN:		/* the nearest value is always Inf */
    173 		inf = 1;
    174 		break;
    175 
    176 	case FSR_RD_RZ:		/* toward 0 => never towards Inf */
    177 		inf = 0;
    178 		break;
    179 
    180 	case FSR_RD_RP:		/* toward +Inf iff positive */
    181 		inf = sign == 0;
    182 		break;
    183 
    184 	case FSR_RD_RM:		/* toward -Inf iff negative */
    185 		inf = sign;
    186 		break;
    187 	}
    188 	if (inf) fe->fe_cx |= FPSCR_OX;
    189 	return (inf);
    190 }
    191 
    192 /*
    193  * fpn -> int (int value returned as return value).
    194  *
    195  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    196  * of the SPARC instruction set).
    197  */
    198 u_int
    199 fpu_ftoi(struct fpemu *fe, struct fpn *fp)
    200 {
    201 	u_int i;
    202 	int sign, exp;
    203 
    204 	sign = fp->fp_sign;
    205 	switch (fp->fp_class) {
    206 
    207 	case FPC_ZERO:
    208 		return (0);
    209 
    210 	case FPC_NUM:
    211 		/*
    212 		 * If exp >= 2^32, overflow.  Otherwise shift value right
    213 		 * into last mantissa word (this will not exceed 0xffffffff),
    214 		 * shifting any guard and round bits out into the sticky
    215 		 * bit.  Then ``round'' towards zero, i.e., just set an
    216 		 * inexact exception if sticky is set (see round()).
    217 		 * If the result is > 0x80000000, or is positive and equals
    218 		 * 0x80000000, overflow; otherwise the last fraction word
    219 		 * is the result.
    220 		 */
    221 		if ((exp = fp->fp_exp) >= 32)
    222 			break;
    223 		/* NB: the following includes exp < 0 cases */
    224 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    225 			fe->fe_cx |= FPSCR_UX;
    226 		i = fp->fp_mant[3];
    227 		if (i >= ((u_int)0x80000000 + sign))
    228 			break;
    229 		return (sign ? -i : i);
    230 
    231 	default:		/* Inf, qNaN, sNaN */
    232 		break;
    233 	}
    234 	/* overflow: replace any inexact exception with invalid */
    235 	fe->fe_cx |= FPSCR_VXCVI;
    236 	return (0x7fffffff + sign);
    237 }
    238 
    239 /*
    240  * fpn -> extended int (high bits of int value returned as return value).
    241  *
    242  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    243  * of the SPARC instruction set).
    244  */
    245 u_int
    246 fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *res)
    247 {
    248 	u_int64_t i;
    249 	int sign, exp;
    250 
    251 	sign = fp->fp_sign;
    252 	switch (fp->fp_class) {
    253 
    254 	case FPC_ZERO:
    255 		res[1] = 0;
    256 		return (0);
    257 
    258 	case FPC_NUM:
    259 		/*
    260 		 * If exp >= 2^64, overflow.  Otherwise shift value right
    261 		 * into last mantissa word (this will not exceed 0xffffffffffffffff),
    262 		 * shifting any guard and round bits out into the sticky
    263 		 * bit.  Then ``round'' towards zero, i.e., just set an
    264 		 * inexact exception if sticky is set (see round()).
    265 		 * If the result is > 0x8000000000000000, or is positive and equals
    266 		 * 0x8000000000000000, overflow; otherwise the last fraction word
    267 		 * is the result.
    268 		 */
    269 		if ((exp = fp->fp_exp) >= 64)
    270 			break;
    271 		/* NB: the following includes exp < 0 cases */
    272 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    273 			fe->fe_cx |= FPSCR_UX;
    274 		i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
    275 		if (i >= ((u_int64_t)0x8000000000000000LL + sign))
    276 			break;
    277 		return (sign ? -i : i);
    278 
    279 	default:		/* Inf, qNaN, sNaN */
    280 		break;
    281 	}
    282 	/* overflow: replace any inexact exception with invalid */
    283 	fe->fe_cx |= FPSCR_VXCVI;
    284 	return (0x7fffffffffffffffLL + sign);
    285 }
    286 
    287 /*
    288  * fpn -> single (32 bit single returned as return value).
    289  * We assume <= 29 bits in a single-precision fraction (1.f part).
    290  */
    291 u_int
    292 fpu_ftos(struct fpemu *fe, struct fpn *fp)
    293 {
    294 	u_int sign = fp->fp_sign << 31;
    295 	int exp;
    296 
    297 #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
    298 #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
    299 
    300 	/* Take care of non-numbers first. */
    301 	if (ISNAN(fp)) {
    302 		/*
    303 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
    304 		 * Note that fp->fp_mant[0] has the quiet bit set,
    305 		 * even if it is classified as a signalling NaN.
    306 		 */
    307 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
    308 		exp = SNG_EXP_INFNAN;
    309 		goto done;
    310 	}
    311 	if (ISINF(fp))
    312 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
    313 	if (ISZERO(fp))
    314 		return (sign);
    315 
    316 	/*
    317 	 * Normals (including subnormals).  Drop all the fraction bits
    318 	 * (including the explicit ``implied'' 1 bit) down into the
    319 	 * single-precision range.  If the number is subnormal, move
    320 	 * the ``implied'' 1 into the explicit range as well, and shift
    321 	 * right to introduce leading zeroes.  Rounding then acts
    322 	 * differently for normals and subnormals: the largest subnormal
    323 	 * may round to the smallest normal (1.0 x 2^minexp), or may
    324 	 * remain subnormal.  In the latter case, signal an underflow
    325 	 * if the result was inexact or if underflow traps are enabled.
    326 	 *
    327 	 * Rounding a normal, on the other hand, always produces another
    328 	 * normal (although either way the result might be too big for
    329 	 * single precision, and cause an overflow).  If rounding a
    330 	 * normal produces 2.0 in the fraction, we need not adjust that
    331 	 * fraction at all, since both 1.0 and 2.0 are zero under the
    332 	 * fraction mask.
    333 	 *
    334 	 * Note that the guard and round bits vanish from the number after
    335 	 * rounding.
    336 	 */
    337 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
    338 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
    339 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
    340 		if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
    341 			return (sign | SNG_EXP(1) | 0);
    342 		if ((fe->fe_cx & FPSCR_FI) ||
    343 		    (fe->fe_fpscr & FPSCR_UX))
    344 			fe->fe_cx |= FPSCR_UX;
    345 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
    346 	}
    347 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
    348 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
    349 #ifdef DIAGNOSTIC
    350 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
    351 		panic("fpu_ftos");
    352 #endif
    353 	if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
    354 		exp++;
    355 	if (exp >= SNG_EXP_INFNAN) {
    356 		/* overflow to inf or to max single */
    357 		if (toinf(fe, sign))
    358 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
    359 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
    360 	}
    361 done:
    362 	/* phew, made it */
    363 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
    364 }
    365 
    366 /*
    367  * fpn -> double (32 bit high-order result returned; 32-bit low order result
    368  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
    369  *
    370  * This code mimics fpu_ftos; see it for comments.
    371  */
    372 u_int
    373 fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res)
    374 {
    375 	u_int sign = fp->fp_sign << 31;
    376 	int exp;
    377 
    378 #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
    379 #define	DBL_MASK	(DBL_EXP(1) - 1)
    380 
    381 	if (ISNAN(fp)) {
    382 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
    383 		exp = DBL_EXP_INFNAN;
    384 		goto done;
    385 	}
    386 	if (ISINF(fp)) {
    387 		sign |= DBL_EXP(DBL_EXP_INFNAN);
    388 		goto zero;
    389 	}
    390 	if (ISZERO(fp)) {
    391 zero:		res[1] = 0;
    392 		return (sign);
    393 	}
    394 
    395 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
    396 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
    397 		if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
    398 			res[1] = 0;
    399 			return (sign | DBL_EXP(1) | 0);
    400 		}
    401 		if ((fe->fe_cx & FPSCR_FI) ||
    402 		    (fe->fe_fpscr & FPSCR_UX))
    403 			fe->fe_cx |= FPSCR_UX;
    404 		exp = 0;
    405 		goto done;
    406 	}
    407 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
    408 	if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
    409 		exp++;
    410 	if (exp >= DBL_EXP_INFNAN) {
    411 		fe->fe_cx |= FPSCR_OX | FPSCR_UX;
    412 		if (toinf(fe, sign)) {
    413 			res[1] = 0;
    414 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
    415 		}
    416 		res[1] = ~0;
    417 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
    418 	}
    419 done:
    420 	res[1] = fp->fp_mant[3];
    421 	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
    422 }
    423 
    424 /*
    425  * fpn -> extended (32 bit high-order result returned; low-order fraction
    426  * words left in res[1]..res[3]).  Like ftod, which is like ftos ... but
    427  * our internal format *is* extended precision, plus 2 bits for guard/round,
    428  * so we can avoid a small bit of work.
    429  */
    430 u_int
    431 fpu_ftoq(struct fpemu *fe, struct fpn *fp, u_int *res)
    432 {
    433 	u_int sign = fp->fp_sign << 31;
    434 	int exp;
    435 
    436 #define	EXT_EXP(e)	((e) << (EXT_FRACBITS & 31))
    437 #define	EXT_MASK	(EXT_EXP(1) - 1)
    438 
    439 	if (ISNAN(fp)) {
    440 		(void) fpu_shr(fp, 2);	/* since we are not rounding */
    441 		exp = EXT_EXP_INFNAN;
    442 		goto done;
    443 	}
    444 	if (ISINF(fp)) {
    445 		sign |= EXT_EXP(EXT_EXP_INFNAN);
    446 		goto zero;
    447 	}
    448 	if (ISZERO(fp)) {
    449 zero:		res[1] = res[2] = res[3] = 0;
    450 		return (sign);
    451 	}
    452 
    453 	if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
    454 		(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
    455 		if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
    456 			res[1] = res[2] = res[3] = 0;
    457 			return (sign | EXT_EXP(1) | 0);
    458 		}
    459 		if ((fe->fe_cx & FPSCR_FI) ||
    460 		    (fe->fe_fpscr & FPSCR_UX))
    461 			fe->fe_cx |= FPSCR_UX;
    462 		exp = 0;
    463 		goto done;
    464 	}
    465 	/* Since internal == extended, no need to shift here. */
    466 	if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
    467 		exp++;
    468 	if (exp >= EXT_EXP_INFNAN) {
    469 		fe->fe_cx |= FPSCR_OX | FPSCR_UX;
    470 		if (toinf(fe, sign)) {
    471 			res[1] = res[2] = res[3] = 0;
    472 			return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
    473 		}
    474 		res[1] = res[2] = res[3] = ~0;
    475 		return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
    476 	}
    477 done:
    478 	res[1] = fp->fp_mant[1];
    479 	res[2] = fp->fp_mant[2];
    480 	res[3] = fp->fp_mant[3];
    481 	return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
    482 }
    483 
    484 /*
    485  * Implode an fpn, writing the result into the given space.
    486  */
    487 void
    488 fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space)
    489 {
    490 
    491 	switch (type) {
    492 
    493 	case FTYPE_LNG:
    494 		space[0] = fpu_ftox(fe, fp, space);
    495 		DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n",
    496 			space[0], space[1]));
    497 		break;
    498 
    499 	case FTYPE_INT:
    500 		space[0] = 0;
    501 		space[1] = fpu_ftoi(fe, fp);
    502 		DPRINTF(FPE_REG, ("fpu_implode: int %x\n",
    503 			space[1]));
    504 		break;
    505 
    506 	case FTYPE_SNG:
    507 		space[0] = fpu_ftos(fe, fp);
    508 		DPRINTF(FPE_REG, ("fpu_implode: single %x\n",
    509 			space[0]));
    510 		break;
    511 
    512 	case FTYPE_DBL:
    513 		space[0] = fpu_ftod(fe, fp, space);
    514 		DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n",
    515 			space[0], space[1]));
    516 		break;		break;
    517 
    518 	case FTYPE_EXT:
    519 		/* funky rounding precision options ?? */
    520 		space[0] = fpu_ftoq(fe, fp, space);
    521 		DPRINTF(FPE_REG, ("fpu_implode: long double %x %x %x %x\n",
    522 			space[0], space[1], space[2], space[3]));
    523 		break;		break;
    524 
    525 	default:
    526 		panic("fpu_implode: invalid type %d", type);
    527 	}
    528 }
    529