fpu_implode.c revision 1.13 1 /* $NetBSD: fpu_implode.c,v 1.13 2022/09/01 05:58:19 rin Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
41 */
42
43 /*
44 * FPU subroutines: `implode' internal format numbers into the machine's
45 * `packed binary' format.
46 */
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.13 2022/09/01 05:58:19 rin Exp $");
50
51 #include <sys/types.h>
52 #include <sys/systm.h>
53
54 #include <powerpc/instr.h>
55 #include <machine/fpu.h>
56 #include <machine/ieee.h>
57 #include <machine/reg.h>
58
59 #include <powerpc/fpu/fpu_arith.h>
60 #include <powerpc/fpu/fpu_emu.h>
61 #include <powerpc/fpu/fpu_extern.h>
62
63 static int round(struct fpemu *, struct fpn *);
64 static int toinf(struct fpemu *, int);
65 static int round_int(struct fpn *, int *, int, int, int);
66
67 static u_int fpu_ftoi(struct fpemu *, struct fpn *, int);
68 static uint64_t fpu_ftox(struct fpemu *, struct fpn *, int);
69 static u_int fpu_ftos(struct fpemu *, struct fpn *);
70 static u_int fpu_ftod(struct fpemu *, struct fpn *, u_int *);
71
72 /*
73 * Round a number (algorithm from Motorola MC68882 manual, modified for
74 * our internal format). Set inexact exception if rounding is required.
75 * Return true iff we rounded up.
76 *
77 * After rounding, we discard the guard and round bits by shifting right
78 * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
79 * This saves effort later.
80 *
81 * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
82 * responsibility to fix this if necessary.
83 */
84 static int
85 round(struct fpemu *fe, struct fpn *fp)
86 {
87 u_int m0, m1, m2, m3;
88 int gr, s;
89 FPU_DECL_CARRY;
90
91 m0 = fp->fp_mant[0];
92 m1 = fp->fp_mant[1];
93 m2 = fp->fp_mant[2];
94 m3 = fp->fp_mant[3];
95 gr = m3 & 3;
96 s = fp->fp_sticky;
97
98 /* mant >>= FP_NG */
99 m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
100 m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
101 m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
102 m0 >>= FP_NG;
103
104 if ((gr | s) == 0) /* result is exact: no rounding needed */
105 goto rounddown;
106
107 fe->fe_cx |= FPSCR_XX|FPSCR_FI; /* inexact */
108
109 /* Go to rounddown to round down; break to round up. */
110 switch ((fe->fe_fpscr) & FPSCR_RN) {
111
112 case FSR_RD_RN:
113 default:
114 /*
115 * Round only if guard is set (gr & 2). If guard is set,
116 * but round & sticky both clear, then we want to round
117 * but have a tie, so round to even, i.e., add 1 iff odd.
118 */
119 if ((gr & 2) == 0)
120 goto rounddown;
121 if ((gr & 1) || fp->fp_sticky || (m3 & 1))
122 break;
123 goto rounddown;
124
125 case FSR_RD_RZ:
126 /* Round towards zero, i.e., down. */
127 goto rounddown;
128
129 case FSR_RD_RM:
130 /* Round towards -Inf: up if negative, down if positive. */
131 if (fp->fp_sign)
132 break;
133 goto rounddown;
134
135 case FSR_RD_RP:
136 /* Round towards +Inf: up if positive, down otherwise. */
137 if (!fp->fp_sign)
138 break;
139 goto rounddown;
140 }
141
142 /* Bump low bit of mantissa, with carry. */
143 fe->fe_cx |= FPSCR_FR;
144
145 FPU_ADDS(m3, m3, 1);
146 FPU_ADDCS(m2, m2, 0);
147 FPU_ADDCS(m1, m1, 0);
148 FPU_ADDC(m0, m0, 0);
149 fp->fp_mant[0] = m0;
150 fp->fp_mant[1] = m1;
151 fp->fp_mant[2] = m2;
152 fp->fp_mant[3] = m3;
153 return (1);
154
155 rounddown:
156 fp->fp_mant[0] = m0;
157 fp->fp_mant[1] = m1;
158 fp->fp_mant[2] = m2;
159 fp->fp_mant[3] = m3;
160 return (0);
161 }
162
163 /*
164 * For overflow: return true if overflow is to go to +/-Inf, according
165 * to the sign of the overflowing result. If false, overflow is to go
166 * to the largest magnitude value instead.
167 */
168 static int
169 toinf(struct fpemu *fe, int sign)
170 {
171 int inf;
172
173 /* look at rounding direction */
174 switch ((fe->fe_fpscr) & FPSCR_RN) {
175
176 default:
177 case FSR_RD_RN: /* the nearest value is always Inf */
178 inf = 1;
179 break;
180
181 case FSR_RD_RZ: /* toward 0 => never towards Inf */
182 inf = 0;
183 break;
184
185 case FSR_RD_RP: /* toward +Inf iff positive */
186 inf = sign == 0;
187 break;
188
189 case FSR_RD_RM: /* toward -Inf iff negative */
190 inf = sign;
191 break;
192 }
193 if (inf)
194 fe->fe_cx |= FPSCR_OX;
195 return (inf);
196 }
197
198 static int
199 round_int(struct fpn *fp, int *cx, int rn, int sign, int odd)
200 {
201 int g, rs;
202
203 g = fp->fp_mant[3] & 0x80000000;
204 rs = (fp->fp_mant[3] & 0x7fffffff) | fp->fp_sticky;
205
206 if ((g | rs) == 0)
207 return 0; /* exact */
208
209 *cx |= FPSCR_XX | FPSCR_FI;
210
211 switch (rn) {
212 case FSR_RD_RN:
213 if (g && (rs | odd))
214 break;
215 return 0;
216 case FSR_RD_RZ:
217 return 0;
218 case FSR_RD_RP:
219 if (!sign)
220 break;
221 return 0;
222 case FSR_RD_RM:
223 if (sign)
224 break;
225 return 0;
226 }
227
228 *cx |= FPSCR_FR;
229 return 1;
230 }
231
232 /*
233 * fpn -> int (int value returned as return value).
234 */
235 static u_int
236 fpu_ftoi(struct fpemu *fe, struct fpn *fp, int rn)
237 {
238 u_int i;
239 int sign, exp, cx;
240
241 sign = fp->fp_sign;
242 cx = 0;
243 switch (fp->fp_class) {
244 case FPC_SNAN:
245 fe->fe_cx |= FPSCR_VXSNAN;
246 /* FALLTHROUGH */
247 case FPC_QNAN:
248 sign = 1;
249 break;
250
251 case FPC_ZERO:
252 return (0);
253
254 case FPC_NUM:
255 /*
256 * If exp >= 2^32, overflow. Otherwise shift value right
257 * into last mantissa word (this will not exceed 0xffffffff),
258 * shifting any guard and round bits out into the sticky
259 * bit. Then ``round'' towards zero, i.e., just set an
260 * inexact exception if sticky is set (see round()).
261 * If the result is > 0x80000000, or is positive and equals
262 * 0x80000000, overflow; otherwise the last fraction word
263 * is the result.
264 */
265 if ((exp = fp->fp_exp) >= 32)
266 break;
267 /* NB: the following includes exp < 0 cases */
268 (void)fpu_shr(fp, FP_NMANT - 32 - 1 - exp);
269 i = fp->fp_mant[2];
270 i += round_int(fp, &cx, rn, sign, i & 1);
271 if (i >= ((u_int)0x80000000 + sign))
272 break;
273 fe->fe_cx |= cx;
274 return (sign ? -i : i);
275
276 case FPC_INF:
277 break;
278 }
279 /* overflow: replace any inexact exception with invalid */
280 fe->fe_cx |= FPSCR_VXCVI;
281 return (0x7fffffff + sign);
282 }
283
284 /*
285 * fpn -> extended int (high bits of int value returned as return value).
286 */
287 static uint64_t
288 fpu_ftox(struct fpemu *fe, struct fpn *fp, int rn)
289 {
290 uint64_t i;
291 int sign, exp, cx;
292
293 sign = fp->fp_sign;
294 cx = 0;
295 switch (fp->fp_class) {
296 case FPC_SNAN:
297 fe->fe_cx |= FPSCR_VXSNAN;
298 /* FALLTHROUGH */
299 case FPC_QNAN:
300 sign = 1;
301 break;
302
303 case FPC_ZERO:
304 return (0);
305
306 case FPC_NUM:
307 /*
308 * If exp >= 2^64, overflow. Otherwise shift value right
309 * into last mantissa word (this will not exceed 0xffffffffffffffff),
310 * shifting any guard and round bits out into the sticky
311 * bit. Then ``round'' towards zero, i.e., just set an
312 * inexact exception if sticky is set (see round()).
313 * If the result is > 0x8000000000000000, or is positive and equals
314 * 0x8000000000000000, overflow; otherwise the last fraction word
315 * is the result.
316 */
317 if ((exp = fp->fp_exp) >= 64)
318 break;
319 /* NB: the following includes exp < 0 cases */
320 (void)fpu_shr(fp, FP_NMANT - 32 - 1 - exp);
321 i = ((uint64_t)fp->fp_mant[1] << 32) | fp->fp_mant[2];
322 i += round_int(fp, &cx, rn, sign, i & 1);
323 if (i >= ((uint64_t)0x8000000000000000LL + sign))
324 break;
325 fe->fe_cx |= cx;
326 return (sign ? -i : i);
327
328 case FPC_INF:
329 break;
330 }
331 /* overflow: replace any inexact exception with invalid */
332 fe->fe_cx |= FPSCR_VXCVI;
333 return (0x7fffffffffffffffLL + sign);
334 }
335
336 /*
337 * fpn -> single (32 bit single returned as return value).
338 * We assume <= 29 bits in a single-precision fraction (1.f part).
339 */
340 static u_int
341 fpu_ftos(struct fpemu *fe, struct fpn *fp)
342 {
343 u_int sign = fp->fp_sign << 31;
344 int exp;
345
346 #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
347 #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
348
349 /* Take care of non-numbers first. */
350 if (ISNAN(fp)) {
351 /*
352 * Preserve upper bits of NaN, per SPARC V8 appendix N.
353 * Note that fp->fp_mant[0] has the quiet bit set,
354 * even if it is classified as a signalling NaN.
355 */
356 (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
357 exp = SNG_EXP_INFNAN;
358 goto done;
359 }
360 if (ISINF(fp))
361 return (sign | SNG_EXP(SNG_EXP_INFNAN));
362 if (ISZERO(fp))
363 return (sign);
364
365 /*
366 * Normals (including subnormals). Drop all the fraction bits
367 * (including the explicit ``implied'' 1 bit) down into the
368 * single-precision range. If the number is subnormal, move
369 * the ``implied'' 1 into the explicit range as well, and shift
370 * right to introduce leading zeroes. Rounding then acts
371 * differently for normals and subnormals: the largest subnormal
372 * may round to the smallest normal (1.0 x 2^minexp), or may
373 * remain subnormal. In the latter case, signal an underflow
374 * if the result was inexact or if underflow traps are enabled.
375 *
376 * Rounding a normal, on the other hand, always produces another
377 * normal (although either way the result might be too big for
378 * single precision, and cause an overflow). If rounding a
379 * normal produces 2.0 in the fraction, we need not adjust that
380 * fraction at all, since both 1.0 and 2.0 are zero under the
381 * fraction mask.
382 *
383 * Note that the guard and round bits vanish from the number after
384 * rounding.
385 */
386 if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
387 /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
388 (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
389 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
390 return (sign | SNG_EXP(1) | 0);
391 if ((fe->fe_cx & FPSCR_FI) ||
392 (fe->fe_fpscr & FPSCR_UX))
393 fe->fe_cx |= FPSCR_UX;
394 return (sign | SNG_EXP(0) | fp->fp_mant[3]);
395 }
396 /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
397 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
398 #ifdef DIAGNOSTIC
399 if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
400 panic("fpu_ftos");
401 #endif
402 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
403 exp++;
404 if (exp >= SNG_EXP_INFNAN) {
405 /* overflow to inf or to max single */
406 if (toinf(fe, sign))
407 return (sign | SNG_EXP(SNG_EXP_INFNAN));
408 return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
409 }
410 done:
411 /* phew, made it */
412 return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
413 }
414
415 /*
416 * fpn -> double (32 bit high-order result returned; 32-bit low order result
417 * left in res[1]). Assumes <= 61 bits in double precision fraction.
418 *
419 * This code mimics fpu_ftos; see it for comments.
420 */
421 static u_int
422 fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res)
423 {
424 u_int sign = fp->fp_sign << 31;
425 int exp;
426
427 #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
428 #define DBL_MASK (DBL_EXP(1) - 1)
429
430 if (ISNAN(fp)) {
431 (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
432 exp = DBL_EXP_INFNAN;
433 goto done;
434 }
435 if (ISINF(fp)) {
436 sign |= DBL_EXP(DBL_EXP_INFNAN);
437 goto zero;
438 }
439 if (ISZERO(fp)) {
440 zero: res[1] = 0;
441 return (sign);
442 }
443
444 if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
445 (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
446 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
447 res[1] = 0;
448 return (sign | DBL_EXP(1) | 0);
449 }
450 if ((fe->fe_cx & FPSCR_FI) ||
451 (fe->fe_fpscr & FPSCR_UX))
452 fe->fe_cx |= FPSCR_UX;
453 exp = 0;
454 goto done;
455 }
456 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
457 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
458 exp++;
459 if (exp >= DBL_EXP_INFNAN) {
460 fe->fe_cx |= FPSCR_OX;
461 if (toinf(fe, sign)) {
462 res[1] = 0;
463 return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
464 }
465 res[1] = ~0;
466 return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
467 }
468 done:
469 res[1] = fp->fp_mant[3];
470 return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
471 }
472
473 /*
474 * Implode an fpn, writing the result into the given space.
475 */
476 void
477 fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space)
478 {
479 int rn;
480
481 if (type & FTYPE_RD_RZ)
482 rn = FSR_RD_RZ;
483 else
484 rn = fe->fe_fpscr & FPSCR_RN;
485 type &= ~FTYPE_RD_MASK;
486
487 switch (type) {
488
489 case FTYPE_LNG:
490 *(uint64_t *)space = fpu_ftox(fe, fp, rn);
491 DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n",
492 space[0], space[1]));
493 break;
494
495 case FTYPE_INT:
496 space[0] = 0;
497 space[1] = fpu_ftoi(fe, fp, rn);
498 DPRINTF(FPE_REG, ("fpu_implode: int %x\n",
499 space[1]));
500 break;
501
502 case FTYPE_SNG:
503 space[0] = fpu_ftos(fe, fp);
504 DPRINTF(FPE_REG, ("fpu_implode: single %x\n",
505 space[0]));
506 break;
507
508 case FTYPE_DBL:
509 space[0] = fpu_ftod(fe, fp, space);
510 DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n",
511 space[0], space[1]));
512 break; break;
513
514 default:
515 panic("fpu_implode: invalid type %d", type);
516 }
517 }
518