Home | History | Annotate | Line # | Download | only in fpu
fpu_implode.c revision 1.2
      1 /*	$NetBSD: fpu_implode.c,v 1.2 2003/07/15 02:54:43 lukem Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by the University of
     27  *	California, Berkeley and its contributors.
     28  * 4. Neither the name of the University nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  *
     44  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
     45  */
     46 
     47 /*
     48  * FPU subroutines: `implode' internal format numbers into the machine's
     49  * `packed binary' format.
     50  */
     51 
     52 #include <sys/cdefs.h>
     53 __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.2 2003/07/15 02:54:43 lukem Exp $");
     54 
     55 #include <sys/types.h>
     56 #include <sys/systm.h>
     57 
     58 #include <machine/ieee.h>
     59 #include <powerpc/instr.h>
     60 #include <machine/reg.h>
     61 #include <machine/fpu.h>
     62 
     63 #include <powerpc/fpu/fpu_arith.h>
     64 #include <powerpc/fpu/fpu_emu.h>
     65 #include <powerpc/fpu/fpu_extern.h>
     66 
     67 static int round(struct fpemu *, struct fpn *);
     68 static int toinf(struct fpemu *, int);
     69 
     70 /*
     71  * Round a number (algorithm from Motorola MC68882 manual, modified for
     72  * our internal format).  Set inexact exception if rounding is required.
     73  * Return true iff we rounded up.
     74  *
     75  * After rounding, we discard the guard and round bits by shifting right
     76  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
     77  * This saves effort later.
     78  *
     79  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
     80  * responsibility to fix this if necessary.
     81  */
     82 static int
     83 round(struct fpemu *fe, struct fpn *fp)
     84 {
     85 	u_int m0, m1, m2, m3;
     86 	int gr, s;
     87 	FPU_DECL_CARRY;
     88 
     89 	m0 = fp->fp_mant[0];
     90 	m1 = fp->fp_mant[1];
     91 	m2 = fp->fp_mant[2];
     92 	m3 = fp->fp_mant[3];
     93 	gr = m3 & 3;
     94 	s = fp->fp_sticky;
     95 
     96 	/* mant >>= FP_NG */
     97 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
     98 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
     99 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
    100 	m0 >>= FP_NG;
    101 
    102 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
    103 		goto rounddown;
    104 
    105 	fe->fe_cx |= FPSCR_XX|FPSCR_FI;	/* inexact */
    106 
    107 	/* Go to rounddown to round down; break to round up. */
    108 	switch ((fe->fe_fpscr) & FPSCR_RN) {
    109 
    110 	case FSR_RD_RN:
    111 	default:
    112 		/*
    113 		 * Round only if guard is set (gr & 2).  If guard is set,
    114 		 * but round & sticky both clear, then we want to round
    115 		 * but have a tie, so round to even, i.e., add 1 iff odd.
    116 		 */
    117 		if ((gr & 2) == 0)
    118 			goto rounddown;
    119 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
    120 			break;
    121 		goto rounddown;
    122 
    123 	case FSR_RD_RZ:
    124 		/* Round towards zero, i.e., down. */
    125 		goto rounddown;
    126 
    127 	case FSR_RD_RM:
    128 		/* Round towards -Inf: up if negative, down if positive. */
    129 		if (fp->fp_sign)
    130 			break;
    131 		goto rounddown;
    132 
    133 	case FSR_RD_RP:
    134 		/* Round towards +Inf: up if positive, down otherwise. */
    135 		if (!fp->fp_sign)
    136 			break;
    137 		goto rounddown;
    138 	}
    139 
    140 	/* Bump low bit of mantissa, with carry. */
    141 	fe->fe_cx |= FPSCR_FR;
    142 
    143 	FPU_ADDS(m3, m3, 1);
    144 	FPU_ADDCS(m2, m2, 0);
    145 	FPU_ADDCS(m1, m1, 0);
    146 	FPU_ADDC(m0, m0, 0);
    147 	fp->fp_mant[0] = m0;
    148 	fp->fp_mant[1] = m1;
    149 	fp->fp_mant[2] = m2;
    150 	fp->fp_mant[3] = m3;
    151 	return (1);
    152 
    153 rounddown:
    154 	fp->fp_mant[0] = m0;
    155 	fp->fp_mant[1] = m1;
    156 	fp->fp_mant[2] = m2;
    157 	fp->fp_mant[3] = m3;
    158 	return (0);
    159 }
    160 
    161 /*
    162  * For overflow: return true if overflow is to go to +/-Inf, according
    163  * to the sign of the overflowing result.  If false, overflow is to go
    164  * to the largest magnitude value instead.
    165  */
    166 static int
    167 toinf(struct fpemu *fe, int sign)
    168 {
    169 	int inf;
    170 
    171 	/* look at rounding direction */
    172 	switch ((fe->fe_fpscr) & FPSCR_RN) {
    173 
    174 	default:
    175 	case FSR_RD_RN:		/* the nearest value is always Inf */
    176 		inf = 1;
    177 		break;
    178 
    179 	case FSR_RD_RZ:		/* toward 0 => never towards Inf */
    180 		inf = 0;
    181 		break;
    182 
    183 	case FSR_RD_RP:		/* toward +Inf iff positive */
    184 		inf = sign == 0;
    185 		break;
    186 
    187 	case FSR_RD_RM:		/* toward -Inf iff negative */
    188 		inf = sign;
    189 		break;
    190 	}
    191 	if (inf) fe->fe_cx |= FPSCR_OX;
    192 	return (inf);
    193 }
    194 
    195 /*
    196  * fpn -> int (int value returned as return value).
    197  *
    198  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    199  * of the SPARC instruction set).
    200  */
    201 u_int
    202 fpu_ftoi(struct fpemu *fe, struct fpn *fp)
    203 {
    204 	u_int i;
    205 	int sign, exp;
    206 
    207 	sign = fp->fp_sign;
    208 	switch (fp->fp_class) {
    209 
    210 	case FPC_ZERO:
    211 		return (0);
    212 
    213 	case FPC_NUM:
    214 		/*
    215 		 * If exp >= 2^32, overflow.  Otherwise shift value right
    216 		 * into last mantissa word (this will not exceed 0xffffffff),
    217 		 * shifting any guard and round bits out into the sticky
    218 		 * bit.  Then ``round'' towards zero, i.e., just set an
    219 		 * inexact exception if sticky is set (see round()).
    220 		 * If the result is > 0x80000000, or is positive and equals
    221 		 * 0x80000000, overflow; otherwise the last fraction word
    222 		 * is the result.
    223 		 */
    224 		if ((exp = fp->fp_exp) >= 32)
    225 			break;
    226 		/* NB: the following includes exp < 0 cases */
    227 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    228 			fe->fe_cx |= FPSCR_UX;
    229 		i = fp->fp_mant[3];
    230 		if (i >= ((u_int)0x80000000 + sign))
    231 			break;
    232 		return (sign ? -i : i);
    233 
    234 	default:		/* Inf, qNaN, sNaN */
    235 		break;
    236 	}
    237 	/* overflow: replace any inexact exception with invalid */
    238 	fe->fe_cx |= FPSCR_VXCVI;
    239 	return (0x7fffffff + sign);
    240 }
    241 
    242 /*
    243  * fpn -> extended int (high bits of int value returned as return value).
    244  *
    245  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    246  * of the SPARC instruction set).
    247  */
    248 u_int
    249 fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *res)
    250 {
    251 	u_int64_t i;
    252 	int sign, exp;
    253 
    254 	sign = fp->fp_sign;
    255 	switch (fp->fp_class) {
    256 
    257 	case FPC_ZERO:
    258 		res[1] = 0;
    259 		return (0);
    260 
    261 	case FPC_NUM:
    262 		/*
    263 		 * If exp >= 2^64, overflow.  Otherwise shift value right
    264 		 * into last mantissa word (this will not exceed 0xffffffffffffffff),
    265 		 * shifting any guard and round bits out into the sticky
    266 		 * bit.  Then ``round'' towards zero, i.e., just set an
    267 		 * inexact exception if sticky is set (see round()).
    268 		 * If the result is > 0x8000000000000000, or is positive and equals
    269 		 * 0x8000000000000000, overflow; otherwise the last fraction word
    270 		 * is the result.
    271 		 */
    272 		if ((exp = fp->fp_exp) >= 64)
    273 			break;
    274 		/* NB: the following includes exp < 0 cases */
    275 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    276 			fe->fe_cx |= FPSCR_UX;
    277 		i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
    278 		if (i >= ((u_int64_t)0x8000000000000000LL + sign))
    279 			break;
    280 		return (sign ? -i : i);
    281 
    282 	default:		/* Inf, qNaN, sNaN */
    283 		break;
    284 	}
    285 	/* overflow: replace any inexact exception with invalid */
    286 	fe->fe_cx |= FPSCR_VXCVI;
    287 	return (0x7fffffffffffffffLL + sign);
    288 }
    289 
    290 /*
    291  * fpn -> single (32 bit single returned as return value).
    292  * We assume <= 29 bits in a single-precision fraction (1.f part).
    293  */
    294 u_int
    295 fpu_ftos(struct fpemu *fe, struct fpn *fp)
    296 {
    297 	u_int sign = fp->fp_sign << 31;
    298 	int exp;
    299 
    300 #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
    301 #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
    302 
    303 	/* Take care of non-numbers first. */
    304 	if (ISNAN(fp)) {
    305 		/*
    306 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
    307 		 * Note that fp->fp_mant[0] has the quiet bit set,
    308 		 * even if it is classified as a signalling NaN.
    309 		 */
    310 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
    311 		exp = SNG_EXP_INFNAN;
    312 		goto done;
    313 	}
    314 	if (ISINF(fp))
    315 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
    316 	if (ISZERO(fp))
    317 		return (sign);
    318 
    319 	/*
    320 	 * Normals (including subnormals).  Drop all the fraction bits
    321 	 * (including the explicit ``implied'' 1 bit) down into the
    322 	 * single-precision range.  If the number is subnormal, move
    323 	 * the ``implied'' 1 into the explicit range as well, and shift
    324 	 * right to introduce leading zeroes.  Rounding then acts
    325 	 * differently for normals and subnormals: the largest subnormal
    326 	 * may round to the smallest normal (1.0 x 2^minexp), or may
    327 	 * remain subnormal.  In the latter case, signal an underflow
    328 	 * if the result was inexact or if underflow traps are enabled.
    329 	 *
    330 	 * Rounding a normal, on the other hand, always produces another
    331 	 * normal (although either way the result might be too big for
    332 	 * single precision, and cause an overflow).  If rounding a
    333 	 * normal produces 2.0 in the fraction, we need not adjust that
    334 	 * fraction at all, since both 1.0 and 2.0 are zero under the
    335 	 * fraction mask.
    336 	 *
    337 	 * Note that the guard and round bits vanish from the number after
    338 	 * rounding.
    339 	 */
    340 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
    341 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
    342 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
    343 		if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
    344 			return (sign | SNG_EXP(1) | 0);
    345 		if ((fe->fe_cx & FPSCR_FI) ||
    346 		    (fe->fe_fpscr & FPSCR_UX))
    347 			fe->fe_cx |= FPSCR_UX;
    348 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
    349 	}
    350 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
    351 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
    352 #ifdef DIAGNOSTIC
    353 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
    354 		panic("fpu_ftos");
    355 #endif
    356 	if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
    357 		exp++;
    358 	if (exp >= SNG_EXP_INFNAN) {
    359 		/* overflow to inf or to max single */
    360 		if (toinf(fe, sign))
    361 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
    362 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
    363 	}
    364 done:
    365 	/* phew, made it */
    366 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
    367 }
    368 
    369 /*
    370  * fpn -> double (32 bit high-order result returned; 32-bit low order result
    371  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
    372  *
    373  * This code mimics fpu_ftos; see it for comments.
    374  */
    375 u_int
    376 fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res)
    377 {
    378 	u_int sign = fp->fp_sign << 31;
    379 	int exp;
    380 
    381 #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
    382 #define	DBL_MASK	(DBL_EXP(1) - 1)
    383 
    384 	if (ISNAN(fp)) {
    385 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
    386 		exp = DBL_EXP_INFNAN;
    387 		goto done;
    388 	}
    389 	if (ISINF(fp)) {
    390 		sign |= DBL_EXP(DBL_EXP_INFNAN);
    391 		goto zero;
    392 	}
    393 	if (ISZERO(fp)) {
    394 zero:		res[1] = 0;
    395 		return (sign);
    396 	}
    397 
    398 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
    399 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
    400 		if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
    401 			res[1] = 0;
    402 			return (sign | DBL_EXP(1) | 0);
    403 		}
    404 		if ((fe->fe_cx & FPSCR_FI) ||
    405 		    (fe->fe_fpscr & FPSCR_UX))
    406 			fe->fe_cx |= FPSCR_UX;
    407 		exp = 0;
    408 		goto done;
    409 	}
    410 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
    411 	if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
    412 		exp++;
    413 	if (exp >= DBL_EXP_INFNAN) {
    414 		fe->fe_cx |= FPSCR_OX | FPSCR_UX;
    415 		if (toinf(fe, sign)) {
    416 			res[1] = 0;
    417 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
    418 		}
    419 		res[1] = ~0;
    420 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
    421 	}
    422 done:
    423 	res[1] = fp->fp_mant[3];
    424 	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
    425 }
    426 
    427 /*
    428  * fpn -> extended (32 bit high-order result returned; low-order fraction
    429  * words left in res[1]..res[3]).  Like ftod, which is like ftos ... but
    430  * our internal format *is* extended precision, plus 2 bits for guard/round,
    431  * so we can avoid a small bit of work.
    432  */
    433 u_int
    434 fpu_ftoq(struct fpemu *fe, struct fpn *fp, u_int *res)
    435 {
    436 	u_int sign = fp->fp_sign << 31;
    437 	int exp;
    438 
    439 #define	EXT_EXP(e)	((e) << (EXT_FRACBITS & 31))
    440 #define	EXT_MASK	(EXT_EXP(1) - 1)
    441 
    442 	if (ISNAN(fp)) {
    443 		(void) fpu_shr(fp, 2);	/* since we are not rounding */
    444 		exp = EXT_EXP_INFNAN;
    445 		goto done;
    446 	}
    447 	if (ISINF(fp)) {
    448 		sign |= EXT_EXP(EXT_EXP_INFNAN);
    449 		goto zero;
    450 	}
    451 	if (ISZERO(fp)) {
    452 zero:		res[1] = res[2] = res[3] = 0;
    453 		return (sign);
    454 	}
    455 
    456 	if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
    457 		(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
    458 		if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
    459 			res[1] = res[2] = res[3] = 0;
    460 			return (sign | EXT_EXP(1) | 0);
    461 		}
    462 		if ((fe->fe_cx & FPSCR_FI) ||
    463 		    (fe->fe_fpscr & FPSCR_UX))
    464 			fe->fe_cx |= FPSCR_UX;
    465 		exp = 0;
    466 		goto done;
    467 	}
    468 	/* Since internal == extended, no need to shift here. */
    469 	if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
    470 		exp++;
    471 	if (exp >= EXT_EXP_INFNAN) {
    472 		fe->fe_cx |= FPSCR_OX | FPSCR_UX;
    473 		if (toinf(fe, sign)) {
    474 			res[1] = res[2] = res[3] = 0;
    475 			return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
    476 		}
    477 		res[1] = res[2] = res[3] = ~0;
    478 		return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
    479 	}
    480 done:
    481 	res[1] = fp->fp_mant[1];
    482 	res[2] = fp->fp_mant[2];
    483 	res[3] = fp->fp_mant[3];
    484 	return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
    485 }
    486 
    487 /*
    488  * Implode an fpn, writing the result into the given space.
    489  */
    490 void
    491 fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space)
    492 {
    493 
    494 	switch (type) {
    495 
    496 	case FTYPE_LNG:
    497 		space[0] = fpu_ftox(fe, fp, space);
    498 		DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n",
    499 			space[0], space[1]));
    500 		break;
    501 
    502 	case FTYPE_INT:
    503 		space[0] = 0;
    504 		space[1] = fpu_ftoi(fe, fp);
    505 		DPRINTF(FPE_REG, ("fpu_implode: int %x\n",
    506 			space[1]));
    507 		break;
    508 
    509 	case FTYPE_SNG:
    510 		space[0] = fpu_ftos(fe, fp);
    511 		DPRINTF(FPE_REG, ("fpu_implode: single %x\n",
    512 			space[0]));
    513 		break;
    514 
    515 	case FTYPE_DBL:
    516 		space[0] = fpu_ftod(fe, fp, space);
    517 		DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n",
    518 			space[0], space[1]));
    519 		break;		break;
    520 
    521 	case FTYPE_EXT:
    522 		/* funky rounding precision options ?? */
    523 		space[0] = fpu_ftoq(fe, fp, space);
    524 		DPRINTF(FPE_REG, ("fpu_implode: long double %x %x %x %x\n",
    525 			space[0], space[1], space[2], space[3]));
    526 		break;		break;
    527 
    528 	default:
    529 		panic("fpu_implode: invalid type %d", type);
    530 	}
    531 }
    532