fpu_implode.c revision 1.2 1 /* $NetBSD: fpu_implode.c,v 1.2 2003/07/15 02:54:43 lukem Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
45 */
46
47 /*
48 * FPU subroutines: `implode' internal format numbers into the machine's
49 * `packed binary' format.
50 */
51
52 #include <sys/cdefs.h>
53 __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.2 2003/07/15 02:54:43 lukem Exp $");
54
55 #include <sys/types.h>
56 #include <sys/systm.h>
57
58 #include <machine/ieee.h>
59 #include <powerpc/instr.h>
60 #include <machine/reg.h>
61 #include <machine/fpu.h>
62
63 #include <powerpc/fpu/fpu_arith.h>
64 #include <powerpc/fpu/fpu_emu.h>
65 #include <powerpc/fpu/fpu_extern.h>
66
67 static int round(struct fpemu *, struct fpn *);
68 static int toinf(struct fpemu *, int);
69
70 /*
71 * Round a number (algorithm from Motorola MC68882 manual, modified for
72 * our internal format). Set inexact exception if rounding is required.
73 * Return true iff we rounded up.
74 *
75 * After rounding, we discard the guard and round bits by shifting right
76 * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
77 * This saves effort later.
78 *
79 * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
80 * responsibility to fix this if necessary.
81 */
82 static int
83 round(struct fpemu *fe, struct fpn *fp)
84 {
85 u_int m0, m1, m2, m3;
86 int gr, s;
87 FPU_DECL_CARRY;
88
89 m0 = fp->fp_mant[0];
90 m1 = fp->fp_mant[1];
91 m2 = fp->fp_mant[2];
92 m3 = fp->fp_mant[3];
93 gr = m3 & 3;
94 s = fp->fp_sticky;
95
96 /* mant >>= FP_NG */
97 m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
98 m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
99 m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
100 m0 >>= FP_NG;
101
102 if ((gr | s) == 0) /* result is exact: no rounding needed */
103 goto rounddown;
104
105 fe->fe_cx |= FPSCR_XX|FPSCR_FI; /* inexact */
106
107 /* Go to rounddown to round down; break to round up. */
108 switch ((fe->fe_fpscr) & FPSCR_RN) {
109
110 case FSR_RD_RN:
111 default:
112 /*
113 * Round only if guard is set (gr & 2). If guard is set,
114 * but round & sticky both clear, then we want to round
115 * but have a tie, so round to even, i.e., add 1 iff odd.
116 */
117 if ((gr & 2) == 0)
118 goto rounddown;
119 if ((gr & 1) || fp->fp_sticky || (m3 & 1))
120 break;
121 goto rounddown;
122
123 case FSR_RD_RZ:
124 /* Round towards zero, i.e., down. */
125 goto rounddown;
126
127 case FSR_RD_RM:
128 /* Round towards -Inf: up if negative, down if positive. */
129 if (fp->fp_sign)
130 break;
131 goto rounddown;
132
133 case FSR_RD_RP:
134 /* Round towards +Inf: up if positive, down otherwise. */
135 if (!fp->fp_sign)
136 break;
137 goto rounddown;
138 }
139
140 /* Bump low bit of mantissa, with carry. */
141 fe->fe_cx |= FPSCR_FR;
142
143 FPU_ADDS(m3, m3, 1);
144 FPU_ADDCS(m2, m2, 0);
145 FPU_ADDCS(m1, m1, 0);
146 FPU_ADDC(m0, m0, 0);
147 fp->fp_mant[0] = m0;
148 fp->fp_mant[1] = m1;
149 fp->fp_mant[2] = m2;
150 fp->fp_mant[3] = m3;
151 return (1);
152
153 rounddown:
154 fp->fp_mant[0] = m0;
155 fp->fp_mant[1] = m1;
156 fp->fp_mant[2] = m2;
157 fp->fp_mant[3] = m3;
158 return (0);
159 }
160
161 /*
162 * For overflow: return true if overflow is to go to +/-Inf, according
163 * to the sign of the overflowing result. If false, overflow is to go
164 * to the largest magnitude value instead.
165 */
166 static int
167 toinf(struct fpemu *fe, int sign)
168 {
169 int inf;
170
171 /* look at rounding direction */
172 switch ((fe->fe_fpscr) & FPSCR_RN) {
173
174 default:
175 case FSR_RD_RN: /* the nearest value is always Inf */
176 inf = 1;
177 break;
178
179 case FSR_RD_RZ: /* toward 0 => never towards Inf */
180 inf = 0;
181 break;
182
183 case FSR_RD_RP: /* toward +Inf iff positive */
184 inf = sign == 0;
185 break;
186
187 case FSR_RD_RM: /* toward -Inf iff negative */
188 inf = sign;
189 break;
190 }
191 if (inf) fe->fe_cx |= FPSCR_OX;
192 return (inf);
193 }
194
195 /*
196 * fpn -> int (int value returned as return value).
197 *
198 * N.B.: this conversion always rounds towards zero (this is a peculiarity
199 * of the SPARC instruction set).
200 */
201 u_int
202 fpu_ftoi(struct fpemu *fe, struct fpn *fp)
203 {
204 u_int i;
205 int sign, exp;
206
207 sign = fp->fp_sign;
208 switch (fp->fp_class) {
209
210 case FPC_ZERO:
211 return (0);
212
213 case FPC_NUM:
214 /*
215 * If exp >= 2^32, overflow. Otherwise shift value right
216 * into last mantissa word (this will not exceed 0xffffffff),
217 * shifting any guard and round bits out into the sticky
218 * bit. Then ``round'' towards zero, i.e., just set an
219 * inexact exception if sticky is set (see round()).
220 * If the result is > 0x80000000, or is positive and equals
221 * 0x80000000, overflow; otherwise the last fraction word
222 * is the result.
223 */
224 if ((exp = fp->fp_exp) >= 32)
225 break;
226 /* NB: the following includes exp < 0 cases */
227 if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
228 fe->fe_cx |= FPSCR_UX;
229 i = fp->fp_mant[3];
230 if (i >= ((u_int)0x80000000 + sign))
231 break;
232 return (sign ? -i : i);
233
234 default: /* Inf, qNaN, sNaN */
235 break;
236 }
237 /* overflow: replace any inexact exception with invalid */
238 fe->fe_cx |= FPSCR_VXCVI;
239 return (0x7fffffff + sign);
240 }
241
242 /*
243 * fpn -> extended int (high bits of int value returned as return value).
244 *
245 * N.B.: this conversion always rounds towards zero (this is a peculiarity
246 * of the SPARC instruction set).
247 */
248 u_int
249 fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *res)
250 {
251 u_int64_t i;
252 int sign, exp;
253
254 sign = fp->fp_sign;
255 switch (fp->fp_class) {
256
257 case FPC_ZERO:
258 res[1] = 0;
259 return (0);
260
261 case FPC_NUM:
262 /*
263 * If exp >= 2^64, overflow. Otherwise shift value right
264 * into last mantissa word (this will not exceed 0xffffffffffffffff),
265 * shifting any guard and round bits out into the sticky
266 * bit. Then ``round'' towards zero, i.e., just set an
267 * inexact exception if sticky is set (see round()).
268 * If the result is > 0x8000000000000000, or is positive and equals
269 * 0x8000000000000000, overflow; otherwise the last fraction word
270 * is the result.
271 */
272 if ((exp = fp->fp_exp) >= 64)
273 break;
274 /* NB: the following includes exp < 0 cases */
275 if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
276 fe->fe_cx |= FPSCR_UX;
277 i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
278 if (i >= ((u_int64_t)0x8000000000000000LL + sign))
279 break;
280 return (sign ? -i : i);
281
282 default: /* Inf, qNaN, sNaN */
283 break;
284 }
285 /* overflow: replace any inexact exception with invalid */
286 fe->fe_cx |= FPSCR_VXCVI;
287 return (0x7fffffffffffffffLL + sign);
288 }
289
290 /*
291 * fpn -> single (32 bit single returned as return value).
292 * We assume <= 29 bits in a single-precision fraction (1.f part).
293 */
294 u_int
295 fpu_ftos(struct fpemu *fe, struct fpn *fp)
296 {
297 u_int sign = fp->fp_sign << 31;
298 int exp;
299
300 #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
301 #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
302
303 /* Take care of non-numbers first. */
304 if (ISNAN(fp)) {
305 /*
306 * Preserve upper bits of NaN, per SPARC V8 appendix N.
307 * Note that fp->fp_mant[0] has the quiet bit set,
308 * even if it is classified as a signalling NaN.
309 */
310 (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
311 exp = SNG_EXP_INFNAN;
312 goto done;
313 }
314 if (ISINF(fp))
315 return (sign | SNG_EXP(SNG_EXP_INFNAN));
316 if (ISZERO(fp))
317 return (sign);
318
319 /*
320 * Normals (including subnormals). Drop all the fraction bits
321 * (including the explicit ``implied'' 1 bit) down into the
322 * single-precision range. If the number is subnormal, move
323 * the ``implied'' 1 into the explicit range as well, and shift
324 * right to introduce leading zeroes. Rounding then acts
325 * differently for normals and subnormals: the largest subnormal
326 * may round to the smallest normal (1.0 x 2^minexp), or may
327 * remain subnormal. In the latter case, signal an underflow
328 * if the result was inexact or if underflow traps are enabled.
329 *
330 * Rounding a normal, on the other hand, always produces another
331 * normal (although either way the result might be too big for
332 * single precision, and cause an overflow). If rounding a
333 * normal produces 2.0 in the fraction, we need not adjust that
334 * fraction at all, since both 1.0 and 2.0 are zero under the
335 * fraction mask.
336 *
337 * Note that the guard and round bits vanish from the number after
338 * rounding.
339 */
340 if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
341 /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
342 (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
343 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
344 return (sign | SNG_EXP(1) | 0);
345 if ((fe->fe_cx & FPSCR_FI) ||
346 (fe->fe_fpscr & FPSCR_UX))
347 fe->fe_cx |= FPSCR_UX;
348 return (sign | SNG_EXP(0) | fp->fp_mant[3]);
349 }
350 /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
351 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
352 #ifdef DIAGNOSTIC
353 if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
354 panic("fpu_ftos");
355 #endif
356 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
357 exp++;
358 if (exp >= SNG_EXP_INFNAN) {
359 /* overflow to inf or to max single */
360 if (toinf(fe, sign))
361 return (sign | SNG_EXP(SNG_EXP_INFNAN));
362 return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
363 }
364 done:
365 /* phew, made it */
366 return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
367 }
368
369 /*
370 * fpn -> double (32 bit high-order result returned; 32-bit low order result
371 * left in res[1]). Assumes <= 61 bits in double precision fraction.
372 *
373 * This code mimics fpu_ftos; see it for comments.
374 */
375 u_int
376 fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res)
377 {
378 u_int sign = fp->fp_sign << 31;
379 int exp;
380
381 #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
382 #define DBL_MASK (DBL_EXP(1) - 1)
383
384 if (ISNAN(fp)) {
385 (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
386 exp = DBL_EXP_INFNAN;
387 goto done;
388 }
389 if (ISINF(fp)) {
390 sign |= DBL_EXP(DBL_EXP_INFNAN);
391 goto zero;
392 }
393 if (ISZERO(fp)) {
394 zero: res[1] = 0;
395 return (sign);
396 }
397
398 if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
399 (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
400 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
401 res[1] = 0;
402 return (sign | DBL_EXP(1) | 0);
403 }
404 if ((fe->fe_cx & FPSCR_FI) ||
405 (fe->fe_fpscr & FPSCR_UX))
406 fe->fe_cx |= FPSCR_UX;
407 exp = 0;
408 goto done;
409 }
410 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
411 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
412 exp++;
413 if (exp >= DBL_EXP_INFNAN) {
414 fe->fe_cx |= FPSCR_OX | FPSCR_UX;
415 if (toinf(fe, sign)) {
416 res[1] = 0;
417 return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
418 }
419 res[1] = ~0;
420 return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
421 }
422 done:
423 res[1] = fp->fp_mant[3];
424 return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
425 }
426
427 /*
428 * fpn -> extended (32 bit high-order result returned; low-order fraction
429 * words left in res[1]..res[3]). Like ftod, which is like ftos ... but
430 * our internal format *is* extended precision, plus 2 bits for guard/round,
431 * so we can avoid a small bit of work.
432 */
433 u_int
434 fpu_ftoq(struct fpemu *fe, struct fpn *fp, u_int *res)
435 {
436 u_int sign = fp->fp_sign << 31;
437 int exp;
438
439 #define EXT_EXP(e) ((e) << (EXT_FRACBITS & 31))
440 #define EXT_MASK (EXT_EXP(1) - 1)
441
442 if (ISNAN(fp)) {
443 (void) fpu_shr(fp, 2); /* since we are not rounding */
444 exp = EXT_EXP_INFNAN;
445 goto done;
446 }
447 if (ISINF(fp)) {
448 sign |= EXT_EXP(EXT_EXP_INFNAN);
449 goto zero;
450 }
451 if (ISZERO(fp)) {
452 zero: res[1] = res[2] = res[3] = 0;
453 return (sign);
454 }
455
456 if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
457 (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
458 if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
459 res[1] = res[2] = res[3] = 0;
460 return (sign | EXT_EXP(1) | 0);
461 }
462 if ((fe->fe_cx & FPSCR_FI) ||
463 (fe->fe_fpscr & FPSCR_UX))
464 fe->fe_cx |= FPSCR_UX;
465 exp = 0;
466 goto done;
467 }
468 /* Since internal == extended, no need to shift here. */
469 if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
470 exp++;
471 if (exp >= EXT_EXP_INFNAN) {
472 fe->fe_cx |= FPSCR_OX | FPSCR_UX;
473 if (toinf(fe, sign)) {
474 res[1] = res[2] = res[3] = 0;
475 return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
476 }
477 res[1] = res[2] = res[3] = ~0;
478 return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
479 }
480 done:
481 res[1] = fp->fp_mant[1];
482 res[2] = fp->fp_mant[2];
483 res[3] = fp->fp_mant[3];
484 return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
485 }
486
487 /*
488 * Implode an fpn, writing the result into the given space.
489 */
490 void
491 fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space)
492 {
493
494 switch (type) {
495
496 case FTYPE_LNG:
497 space[0] = fpu_ftox(fe, fp, space);
498 DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n",
499 space[0], space[1]));
500 break;
501
502 case FTYPE_INT:
503 space[0] = 0;
504 space[1] = fpu_ftoi(fe, fp);
505 DPRINTF(FPE_REG, ("fpu_implode: int %x\n",
506 space[1]));
507 break;
508
509 case FTYPE_SNG:
510 space[0] = fpu_ftos(fe, fp);
511 DPRINTF(FPE_REG, ("fpu_implode: single %x\n",
512 space[0]));
513 break;
514
515 case FTYPE_DBL:
516 space[0] = fpu_ftod(fe, fp, space);
517 DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n",
518 space[0], space[1]));
519 break; break;
520
521 case FTYPE_EXT:
522 /* funky rounding precision options ?? */
523 space[0] = fpu_ftoq(fe, fp, space);
524 DPRINTF(FPE_REG, ("fpu_implode: long double %x %x %x %x\n",
525 space[0], space[1], space[2], space[3]));
526 break; break;
527
528 default:
529 panic("fpu_implode: invalid type %d", type);
530 }
531 }
532