Home | History | Annotate | Line # | Download | only in fpu
fpu_implode.c revision 1.3
      1 /*	$NetBSD: fpu_implode.c,v 1.3 2003/08/07 16:29:18 agc Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
     41  */
     42 
     43 /*
     44  * FPU subroutines: `implode' internal format numbers into the machine's
     45  * `packed binary' format.
     46  */
     47 
     48 #include <sys/cdefs.h>
     49 __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.3 2003/08/07 16:29:18 agc Exp $");
     50 
     51 #include <sys/types.h>
     52 #include <sys/systm.h>
     53 
     54 #include <machine/ieee.h>
     55 #include <powerpc/instr.h>
     56 #include <machine/reg.h>
     57 #include <machine/fpu.h>
     58 
     59 #include <powerpc/fpu/fpu_arith.h>
     60 #include <powerpc/fpu/fpu_emu.h>
     61 #include <powerpc/fpu/fpu_extern.h>
     62 
     63 static int round(struct fpemu *, struct fpn *);
     64 static int toinf(struct fpemu *, int);
     65 
     66 /*
     67  * Round a number (algorithm from Motorola MC68882 manual, modified for
     68  * our internal format).  Set inexact exception if rounding is required.
     69  * Return true iff we rounded up.
     70  *
     71  * After rounding, we discard the guard and round bits by shifting right
     72  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
     73  * This saves effort later.
     74  *
     75  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
     76  * responsibility to fix this if necessary.
     77  */
     78 static int
     79 round(struct fpemu *fe, struct fpn *fp)
     80 {
     81 	u_int m0, m1, m2, m3;
     82 	int gr, s;
     83 	FPU_DECL_CARRY;
     84 
     85 	m0 = fp->fp_mant[0];
     86 	m1 = fp->fp_mant[1];
     87 	m2 = fp->fp_mant[2];
     88 	m3 = fp->fp_mant[3];
     89 	gr = m3 & 3;
     90 	s = fp->fp_sticky;
     91 
     92 	/* mant >>= FP_NG */
     93 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
     94 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
     95 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
     96 	m0 >>= FP_NG;
     97 
     98 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
     99 		goto rounddown;
    100 
    101 	fe->fe_cx |= FPSCR_XX|FPSCR_FI;	/* inexact */
    102 
    103 	/* Go to rounddown to round down; break to round up. */
    104 	switch ((fe->fe_fpscr) & FPSCR_RN) {
    105 
    106 	case FSR_RD_RN:
    107 	default:
    108 		/*
    109 		 * Round only if guard is set (gr & 2).  If guard is set,
    110 		 * but round & sticky both clear, then we want to round
    111 		 * but have a tie, so round to even, i.e., add 1 iff odd.
    112 		 */
    113 		if ((gr & 2) == 0)
    114 			goto rounddown;
    115 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
    116 			break;
    117 		goto rounddown;
    118 
    119 	case FSR_RD_RZ:
    120 		/* Round towards zero, i.e., down. */
    121 		goto rounddown;
    122 
    123 	case FSR_RD_RM:
    124 		/* Round towards -Inf: up if negative, down if positive. */
    125 		if (fp->fp_sign)
    126 			break;
    127 		goto rounddown;
    128 
    129 	case FSR_RD_RP:
    130 		/* Round towards +Inf: up if positive, down otherwise. */
    131 		if (!fp->fp_sign)
    132 			break;
    133 		goto rounddown;
    134 	}
    135 
    136 	/* Bump low bit of mantissa, with carry. */
    137 	fe->fe_cx |= FPSCR_FR;
    138 
    139 	FPU_ADDS(m3, m3, 1);
    140 	FPU_ADDCS(m2, m2, 0);
    141 	FPU_ADDCS(m1, m1, 0);
    142 	FPU_ADDC(m0, m0, 0);
    143 	fp->fp_mant[0] = m0;
    144 	fp->fp_mant[1] = m1;
    145 	fp->fp_mant[2] = m2;
    146 	fp->fp_mant[3] = m3;
    147 	return (1);
    148 
    149 rounddown:
    150 	fp->fp_mant[0] = m0;
    151 	fp->fp_mant[1] = m1;
    152 	fp->fp_mant[2] = m2;
    153 	fp->fp_mant[3] = m3;
    154 	return (0);
    155 }
    156 
    157 /*
    158  * For overflow: return true if overflow is to go to +/-Inf, according
    159  * to the sign of the overflowing result.  If false, overflow is to go
    160  * to the largest magnitude value instead.
    161  */
    162 static int
    163 toinf(struct fpemu *fe, int sign)
    164 {
    165 	int inf;
    166 
    167 	/* look at rounding direction */
    168 	switch ((fe->fe_fpscr) & FPSCR_RN) {
    169 
    170 	default:
    171 	case FSR_RD_RN:		/* the nearest value is always Inf */
    172 		inf = 1;
    173 		break;
    174 
    175 	case FSR_RD_RZ:		/* toward 0 => never towards Inf */
    176 		inf = 0;
    177 		break;
    178 
    179 	case FSR_RD_RP:		/* toward +Inf iff positive */
    180 		inf = sign == 0;
    181 		break;
    182 
    183 	case FSR_RD_RM:		/* toward -Inf iff negative */
    184 		inf = sign;
    185 		break;
    186 	}
    187 	if (inf) fe->fe_cx |= FPSCR_OX;
    188 	return (inf);
    189 }
    190 
    191 /*
    192  * fpn -> int (int value returned as return value).
    193  *
    194  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    195  * of the SPARC instruction set).
    196  */
    197 u_int
    198 fpu_ftoi(struct fpemu *fe, struct fpn *fp)
    199 {
    200 	u_int i;
    201 	int sign, exp;
    202 
    203 	sign = fp->fp_sign;
    204 	switch (fp->fp_class) {
    205 
    206 	case FPC_ZERO:
    207 		return (0);
    208 
    209 	case FPC_NUM:
    210 		/*
    211 		 * If exp >= 2^32, overflow.  Otherwise shift value right
    212 		 * into last mantissa word (this will not exceed 0xffffffff),
    213 		 * shifting any guard and round bits out into the sticky
    214 		 * bit.  Then ``round'' towards zero, i.e., just set an
    215 		 * inexact exception if sticky is set (see round()).
    216 		 * If the result is > 0x80000000, or is positive and equals
    217 		 * 0x80000000, overflow; otherwise the last fraction word
    218 		 * is the result.
    219 		 */
    220 		if ((exp = fp->fp_exp) >= 32)
    221 			break;
    222 		/* NB: the following includes exp < 0 cases */
    223 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    224 			fe->fe_cx |= FPSCR_UX;
    225 		i = fp->fp_mant[3];
    226 		if (i >= ((u_int)0x80000000 + sign))
    227 			break;
    228 		return (sign ? -i : i);
    229 
    230 	default:		/* Inf, qNaN, sNaN */
    231 		break;
    232 	}
    233 	/* overflow: replace any inexact exception with invalid */
    234 	fe->fe_cx |= FPSCR_VXCVI;
    235 	return (0x7fffffff + sign);
    236 }
    237 
    238 /*
    239  * fpn -> extended int (high bits of int value returned as return value).
    240  *
    241  * N.B.: this conversion always rounds towards zero (this is a peculiarity
    242  * of the SPARC instruction set).
    243  */
    244 u_int
    245 fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *res)
    246 {
    247 	u_int64_t i;
    248 	int sign, exp;
    249 
    250 	sign = fp->fp_sign;
    251 	switch (fp->fp_class) {
    252 
    253 	case FPC_ZERO:
    254 		res[1] = 0;
    255 		return (0);
    256 
    257 	case FPC_NUM:
    258 		/*
    259 		 * If exp >= 2^64, overflow.  Otherwise shift value right
    260 		 * into last mantissa word (this will not exceed 0xffffffffffffffff),
    261 		 * shifting any guard and round bits out into the sticky
    262 		 * bit.  Then ``round'' towards zero, i.e., just set an
    263 		 * inexact exception if sticky is set (see round()).
    264 		 * If the result is > 0x8000000000000000, or is positive and equals
    265 		 * 0x8000000000000000, overflow; otherwise the last fraction word
    266 		 * is the result.
    267 		 */
    268 		if ((exp = fp->fp_exp) >= 64)
    269 			break;
    270 		/* NB: the following includes exp < 0 cases */
    271 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
    272 			fe->fe_cx |= FPSCR_UX;
    273 		i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
    274 		if (i >= ((u_int64_t)0x8000000000000000LL + sign))
    275 			break;
    276 		return (sign ? -i : i);
    277 
    278 	default:		/* Inf, qNaN, sNaN */
    279 		break;
    280 	}
    281 	/* overflow: replace any inexact exception with invalid */
    282 	fe->fe_cx |= FPSCR_VXCVI;
    283 	return (0x7fffffffffffffffLL + sign);
    284 }
    285 
    286 /*
    287  * fpn -> single (32 bit single returned as return value).
    288  * We assume <= 29 bits in a single-precision fraction (1.f part).
    289  */
    290 u_int
    291 fpu_ftos(struct fpemu *fe, struct fpn *fp)
    292 {
    293 	u_int sign = fp->fp_sign << 31;
    294 	int exp;
    295 
    296 #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
    297 #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
    298 
    299 	/* Take care of non-numbers first. */
    300 	if (ISNAN(fp)) {
    301 		/*
    302 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
    303 		 * Note that fp->fp_mant[0] has the quiet bit set,
    304 		 * even if it is classified as a signalling NaN.
    305 		 */
    306 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
    307 		exp = SNG_EXP_INFNAN;
    308 		goto done;
    309 	}
    310 	if (ISINF(fp))
    311 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
    312 	if (ISZERO(fp))
    313 		return (sign);
    314 
    315 	/*
    316 	 * Normals (including subnormals).  Drop all the fraction bits
    317 	 * (including the explicit ``implied'' 1 bit) down into the
    318 	 * single-precision range.  If the number is subnormal, move
    319 	 * the ``implied'' 1 into the explicit range as well, and shift
    320 	 * right to introduce leading zeroes.  Rounding then acts
    321 	 * differently for normals and subnormals: the largest subnormal
    322 	 * may round to the smallest normal (1.0 x 2^minexp), or may
    323 	 * remain subnormal.  In the latter case, signal an underflow
    324 	 * if the result was inexact or if underflow traps are enabled.
    325 	 *
    326 	 * Rounding a normal, on the other hand, always produces another
    327 	 * normal (although either way the result might be too big for
    328 	 * single precision, and cause an overflow).  If rounding a
    329 	 * normal produces 2.0 in the fraction, we need not adjust that
    330 	 * fraction at all, since both 1.0 and 2.0 are zero under the
    331 	 * fraction mask.
    332 	 *
    333 	 * Note that the guard and round bits vanish from the number after
    334 	 * rounding.
    335 	 */
    336 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
    337 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
    338 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
    339 		if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
    340 			return (sign | SNG_EXP(1) | 0);
    341 		if ((fe->fe_cx & FPSCR_FI) ||
    342 		    (fe->fe_fpscr & FPSCR_UX))
    343 			fe->fe_cx |= FPSCR_UX;
    344 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
    345 	}
    346 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
    347 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
    348 #ifdef DIAGNOSTIC
    349 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
    350 		panic("fpu_ftos");
    351 #endif
    352 	if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
    353 		exp++;
    354 	if (exp >= SNG_EXP_INFNAN) {
    355 		/* overflow to inf or to max single */
    356 		if (toinf(fe, sign))
    357 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
    358 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
    359 	}
    360 done:
    361 	/* phew, made it */
    362 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
    363 }
    364 
    365 /*
    366  * fpn -> double (32 bit high-order result returned; 32-bit low order result
    367  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
    368  *
    369  * This code mimics fpu_ftos; see it for comments.
    370  */
    371 u_int
    372 fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res)
    373 {
    374 	u_int sign = fp->fp_sign << 31;
    375 	int exp;
    376 
    377 #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
    378 #define	DBL_MASK	(DBL_EXP(1) - 1)
    379 
    380 	if (ISNAN(fp)) {
    381 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
    382 		exp = DBL_EXP_INFNAN;
    383 		goto done;
    384 	}
    385 	if (ISINF(fp)) {
    386 		sign |= DBL_EXP(DBL_EXP_INFNAN);
    387 		goto zero;
    388 	}
    389 	if (ISZERO(fp)) {
    390 zero:		res[1] = 0;
    391 		return (sign);
    392 	}
    393 
    394 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
    395 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
    396 		if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
    397 			res[1] = 0;
    398 			return (sign | DBL_EXP(1) | 0);
    399 		}
    400 		if ((fe->fe_cx & FPSCR_FI) ||
    401 		    (fe->fe_fpscr & FPSCR_UX))
    402 			fe->fe_cx |= FPSCR_UX;
    403 		exp = 0;
    404 		goto done;
    405 	}
    406 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
    407 	if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
    408 		exp++;
    409 	if (exp >= DBL_EXP_INFNAN) {
    410 		fe->fe_cx |= FPSCR_OX | FPSCR_UX;
    411 		if (toinf(fe, sign)) {
    412 			res[1] = 0;
    413 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
    414 		}
    415 		res[1] = ~0;
    416 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
    417 	}
    418 done:
    419 	res[1] = fp->fp_mant[3];
    420 	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
    421 }
    422 
    423 /*
    424  * fpn -> extended (32 bit high-order result returned; low-order fraction
    425  * words left in res[1]..res[3]).  Like ftod, which is like ftos ... but
    426  * our internal format *is* extended precision, plus 2 bits for guard/round,
    427  * so we can avoid a small bit of work.
    428  */
    429 u_int
    430 fpu_ftoq(struct fpemu *fe, struct fpn *fp, u_int *res)
    431 {
    432 	u_int sign = fp->fp_sign << 31;
    433 	int exp;
    434 
    435 #define	EXT_EXP(e)	((e) << (EXT_FRACBITS & 31))
    436 #define	EXT_MASK	(EXT_EXP(1) - 1)
    437 
    438 	if (ISNAN(fp)) {
    439 		(void) fpu_shr(fp, 2);	/* since we are not rounding */
    440 		exp = EXT_EXP_INFNAN;
    441 		goto done;
    442 	}
    443 	if (ISINF(fp)) {
    444 		sign |= EXT_EXP(EXT_EXP_INFNAN);
    445 		goto zero;
    446 	}
    447 	if (ISZERO(fp)) {
    448 zero:		res[1] = res[2] = res[3] = 0;
    449 		return (sign);
    450 	}
    451 
    452 	if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
    453 		(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
    454 		if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
    455 			res[1] = res[2] = res[3] = 0;
    456 			return (sign | EXT_EXP(1) | 0);
    457 		}
    458 		if ((fe->fe_cx & FPSCR_FI) ||
    459 		    (fe->fe_fpscr & FPSCR_UX))
    460 			fe->fe_cx |= FPSCR_UX;
    461 		exp = 0;
    462 		goto done;
    463 	}
    464 	/* Since internal == extended, no need to shift here. */
    465 	if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
    466 		exp++;
    467 	if (exp >= EXT_EXP_INFNAN) {
    468 		fe->fe_cx |= FPSCR_OX | FPSCR_UX;
    469 		if (toinf(fe, sign)) {
    470 			res[1] = res[2] = res[3] = 0;
    471 			return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
    472 		}
    473 		res[1] = res[2] = res[3] = ~0;
    474 		return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
    475 	}
    476 done:
    477 	res[1] = fp->fp_mant[1];
    478 	res[2] = fp->fp_mant[2];
    479 	res[3] = fp->fp_mant[3];
    480 	return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
    481 }
    482 
    483 /*
    484  * Implode an fpn, writing the result into the given space.
    485  */
    486 void
    487 fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space)
    488 {
    489 
    490 	switch (type) {
    491 
    492 	case FTYPE_LNG:
    493 		space[0] = fpu_ftox(fe, fp, space);
    494 		DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n",
    495 			space[0], space[1]));
    496 		break;
    497 
    498 	case FTYPE_INT:
    499 		space[0] = 0;
    500 		space[1] = fpu_ftoi(fe, fp);
    501 		DPRINTF(FPE_REG, ("fpu_implode: int %x\n",
    502 			space[1]));
    503 		break;
    504 
    505 	case FTYPE_SNG:
    506 		space[0] = fpu_ftos(fe, fp);
    507 		DPRINTF(FPE_REG, ("fpu_implode: single %x\n",
    508 			space[0]));
    509 		break;
    510 
    511 	case FTYPE_DBL:
    512 		space[0] = fpu_ftod(fe, fp, space);
    513 		DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n",
    514 			space[0], space[1]));
    515 		break;		break;
    516 
    517 	case FTYPE_EXT:
    518 		/* funky rounding precision options ?? */
    519 		space[0] = fpu_ftoq(fe, fp, space);
    520 		DPRINTF(FPE_REG, ("fpu_implode: long double %x %x %x %x\n",
    521 			space[0], space[1], space[2], space[3]));
    522 		break;		break;
    523 
    524 	default:
    525 		panic("fpu_implode: invalid type %d", type);
    526 	}
    527 }
    528