fpu_implode.c revision 1.3 1 /* $NetBSD: fpu_implode.c,v 1.3 2003/08/07 16:29:18 agc Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
41 */
42
43 /*
44 * FPU subroutines: `implode' internal format numbers into the machine's
45 * `packed binary' format.
46 */
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.3 2003/08/07 16:29:18 agc Exp $");
50
51 #include <sys/types.h>
52 #include <sys/systm.h>
53
54 #include <machine/ieee.h>
55 #include <powerpc/instr.h>
56 #include <machine/reg.h>
57 #include <machine/fpu.h>
58
59 #include <powerpc/fpu/fpu_arith.h>
60 #include <powerpc/fpu/fpu_emu.h>
61 #include <powerpc/fpu/fpu_extern.h>
62
63 static int round(struct fpemu *, struct fpn *);
64 static int toinf(struct fpemu *, int);
65
66 /*
67 * Round a number (algorithm from Motorola MC68882 manual, modified for
68 * our internal format). Set inexact exception if rounding is required.
69 * Return true iff we rounded up.
70 *
71 * After rounding, we discard the guard and round bits by shifting right
72 * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
73 * This saves effort later.
74 *
75 * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
76 * responsibility to fix this if necessary.
77 */
78 static int
79 round(struct fpemu *fe, struct fpn *fp)
80 {
81 u_int m0, m1, m2, m3;
82 int gr, s;
83 FPU_DECL_CARRY;
84
85 m0 = fp->fp_mant[0];
86 m1 = fp->fp_mant[1];
87 m2 = fp->fp_mant[2];
88 m3 = fp->fp_mant[3];
89 gr = m3 & 3;
90 s = fp->fp_sticky;
91
92 /* mant >>= FP_NG */
93 m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
94 m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
95 m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
96 m0 >>= FP_NG;
97
98 if ((gr | s) == 0) /* result is exact: no rounding needed */
99 goto rounddown;
100
101 fe->fe_cx |= FPSCR_XX|FPSCR_FI; /* inexact */
102
103 /* Go to rounddown to round down; break to round up. */
104 switch ((fe->fe_fpscr) & FPSCR_RN) {
105
106 case FSR_RD_RN:
107 default:
108 /*
109 * Round only if guard is set (gr & 2). If guard is set,
110 * but round & sticky both clear, then we want to round
111 * but have a tie, so round to even, i.e., add 1 iff odd.
112 */
113 if ((gr & 2) == 0)
114 goto rounddown;
115 if ((gr & 1) || fp->fp_sticky || (m3 & 1))
116 break;
117 goto rounddown;
118
119 case FSR_RD_RZ:
120 /* Round towards zero, i.e., down. */
121 goto rounddown;
122
123 case FSR_RD_RM:
124 /* Round towards -Inf: up if negative, down if positive. */
125 if (fp->fp_sign)
126 break;
127 goto rounddown;
128
129 case FSR_RD_RP:
130 /* Round towards +Inf: up if positive, down otherwise. */
131 if (!fp->fp_sign)
132 break;
133 goto rounddown;
134 }
135
136 /* Bump low bit of mantissa, with carry. */
137 fe->fe_cx |= FPSCR_FR;
138
139 FPU_ADDS(m3, m3, 1);
140 FPU_ADDCS(m2, m2, 0);
141 FPU_ADDCS(m1, m1, 0);
142 FPU_ADDC(m0, m0, 0);
143 fp->fp_mant[0] = m0;
144 fp->fp_mant[1] = m1;
145 fp->fp_mant[2] = m2;
146 fp->fp_mant[3] = m3;
147 return (1);
148
149 rounddown:
150 fp->fp_mant[0] = m0;
151 fp->fp_mant[1] = m1;
152 fp->fp_mant[2] = m2;
153 fp->fp_mant[3] = m3;
154 return (0);
155 }
156
157 /*
158 * For overflow: return true if overflow is to go to +/-Inf, according
159 * to the sign of the overflowing result. If false, overflow is to go
160 * to the largest magnitude value instead.
161 */
162 static int
163 toinf(struct fpemu *fe, int sign)
164 {
165 int inf;
166
167 /* look at rounding direction */
168 switch ((fe->fe_fpscr) & FPSCR_RN) {
169
170 default:
171 case FSR_RD_RN: /* the nearest value is always Inf */
172 inf = 1;
173 break;
174
175 case FSR_RD_RZ: /* toward 0 => never towards Inf */
176 inf = 0;
177 break;
178
179 case FSR_RD_RP: /* toward +Inf iff positive */
180 inf = sign == 0;
181 break;
182
183 case FSR_RD_RM: /* toward -Inf iff negative */
184 inf = sign;
185 break;
186 }
187 if (inf) fe->fe_cx |= FPSCR_OX;
188 return (inf);
189 }
190
191 /*
192 * fpn -> int (int value returned as return value).
193 *
194 * N.B.: this conversion always rounds towards zero (this is a peculiarity
195 * of the SPARC instruction set).
196 */
197 u_int
198 fpu_ftoi(struct fpemu *fe, struct fpn *fp)
199 {
200 u_int i;
201 int sign, exp;
202
203 sign = fp->fp_sign;
204 switch (fp->fp_class) {
205
206 case FPC_ZERO:
207 return (0);
208
209 case FPC_NUM:
210 /*
211 * If exp >= 2^32, overflow. Otherwise shift value right
212 * into last mantissa word (this will not exceed 0xffffffff),
213 * shifting any guard and round bits out into the sticky
214 * bit. Then ``round'' towards zero, i.e., just set an
215 * inexact exception if sticky is set (see round()).
216 * If the result is > 0x80000000, or is positive and equals
217 * 0x80000000, overflow; otherwise the last fraction word
218 * is the result.
219 */
220 if ((exp = fp->fp_exp) >= 32)
221 break;
222 /* NB: the following includes exp < 0 cases */
223 if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
224 fe->fe_cx |= FPSCR_UX;
225 i = fp->fp_mant[3];
226 if (i >= ((u_int)0x80000000 + sign))
227 break;
228 return (sign ? -i : i);
229
230 default: /* Inf, qNaN, sNaN */
231 break;
232 }
233 /* overflow: replace any inexact exception with invalid */
234 fe->fe_cx |= FPSCR_VXCVI;
235 return (0x7fffffff + sign);
236 }
237
238 /*
239 * fpn -> extended int (high bits of int value returned as return value).
240 *
241 * N.B.: this conversion always rounds towards zero (this is a peculiarity
242 * of the SPARC instruction set).
243 */
244 u_int
245 fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *res)
246 {
247 u_int64_t i;
248 int sign, exp;
249
250 sign = fp->fp_sign;
251 switch (fp->fp_class) {
252
253 case FPC_ZERO:
254 res[1] = 0;
255 return (0);
256
257 case FPC_NUM:
258 /*
259 * If exp >= 2^64, overflow. Otherwise shift value right
260 * into last mantissa word (this will not exceed 0xffffffffffffffff),
261 * shifting any guard and round bits out into the sticky
262 * bit. Then ``round'' towards zero, i.e., just set an
263 * inexact exception if sticky is set (see round()).
264 * If the result is > 0x8000000000000000, or is positive and equals
265 * 0x8000000000000000, overflow; otherwise the last fraction word
266 * is the result.
267 */
268 if ((exp = fp->fp_exp) >= 64)
269 break;
270 /* NB: the following includes exp < 0 cases */
271 if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
272 fe->fe_cx |= FPSCR_UX;
273 i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
274 if (i >= ((u_int64_t)0x8000000000000000LL + sign))
275 break;
276 return (sign ? -i : i);
277
278 default: /* Inf, qNaN, sNaN */
279 break;
280 }
281 /* overflow: replace any inexact exception with invalid */
282 fe->fe_cx |= FPSCR_VXCVI;
283 return (0x7fffffffffffffffLL + sign);
284 }
285
286 /*
287 * fpn -> single (32 bit single returned as return value).
288 * We assume <= 29 bits in a single-precision fraction (1.f part).
289 */
290 u_int
291 fpu_ftos(struct fpemu *fe, struct fpn *fp)
292 {
293 u_int sign = fp->fp_sign << 31;
294 int exp;
295
296 #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
297 #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
298
299 /* Take care of non-numbers first. */
300 if (ISNAN(fp)) {
301 /*
302 * Preserve upper bits of NaN, per SPARC V8 appendix N.
303 * Note that fp->fp_mant[0] has the quiet bit set,
304 * even if it is classified as a signalling NaN.
305 */
306 (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
307 exp = SNG_EXP_INFNAN;
308 goto done;
309 }
310 if (ISINF(fp))
311 return (sign | SNG_EXP(SNG_EXP_INFNAN));
312 if (ISZERO(fp))
313 return (sign);
314
315 /*
316 * Normals (including subnormals). Drop all the fraction bits
317 * (including the explicit ``implied'' 1 bit) down into the
318 * single-precision range. If the number is subnormal, move
319 * the ``implied'' 1 into the explicit range as well, and shift
320 * right to introduce leading zeroes. Rounding then acts
321 * differently for normals and subnormals: the largest subnormal
322 * may round to the smallest normal (1.0 x 2^minexp), or may
323 * remain subnormal. In the latter case, signal an underflow
324 * if the result was inexact or if underflow traps are enabled.
325 *
326 * Rounding a normal, on the other hand, always produces another
327 * normal (although either way the result might be too big for
328 * single precision, and cause an overflow). If rounding a
329 * normal produces 2.0 in the fraction, we need not adjust that
330 * fraction at all, since both 1.0 and 2.0 are zero under the
331 * fraction mask.
332 *
333 * Note that the guard and round bits vanish from the number after
334 * rounding.
335 */
336 if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
337 /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
338 (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
339 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
340 return (sign | SNG_EXP(1) | 0);
341 if ((fe->fe_cx & FPSCR_FI) ||
342 (fe->fe_fpscr & FPSCR_UX))
343 fe->fe_cx |= FPSCR_UX;
344 return (sign | SNG_EXP(0) | fp->fp_mant[3]);
345 }
346 /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
347 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
348 #ifdef DIAGNOSTIC
349 if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
350 panic("fpu_ftos");
351 #endif
352 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
353 exp++;
354 if (exp >= SNG_EXP_INFNAN) {
355 /* overflow to inf or to max single */
356 if (toinf(fe, sign))
357 return (sign | SNG_EXP(SNG_EXP_INFNAN));
358 return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
359 }
360 done:
361 /* phew, made it */
362 return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
363 }
364
365 /*
366 * fpn -> double (32 bit high-order result returned; 32-bit low order result
367 * left in res[1]). Assumes <= 61 bits in double precision fraction.
368 *
369 * This code mimics fpu_ftos; see it for comments.
370 */
371 u_int
372 fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res)
373 {
374 u_int sign = fp->fp_sign << 31;
375 int exp;
376
377 #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
378 #define DBL_MASK (DBL_EXP(1) - 1)
379
380 if (ISNAN(fp)) {
381 (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
382 exp = DBL_EXP_INFNAN;
383 goto done;
384 }
385 if (ISINF(fp)) {
386 sign |= DBL_EXP(DBL_EXP_INFNAN);
387 goto zero;
388 }
389 if (ISZERO(fp)) {
390 zero: res[1] = 0;
391 return (sign);
392 }
393
394 if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
395 (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
396 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
397 res[1] = 0;
398 return (sign | DBL_EXP(1) | 0);
399 }
400 if ((fe->fe_cx & FPSCR_FI) ||
401 (fe->fe_fpscr & FPSCR_UX))
402 fe->fe_cx |= FPSCR_UX;
403 exp = 0;
404 goto done;
405 }
406 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
407 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
408 exp++;
409 if (exp >= DBL_EXP_INFNAN) {
410 fe->fe_cx |= FPSCR_OX | FPSCR_UX;
411 if (toinf(fe, sign)) {
412 res[1] = 0;
413 return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
414 }
415 res[1] = ~0;
416 return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
417 }
418 done:
419 res[1] = fp->fp_mant[3];
420 return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
421 }
422
423 /*
424 * fpn -> extended (32 bit high-order result returned; low-order fraction
425 * words left in res[1]..res[3]). Like ftod, which is like ftos ... but
426 * our internal format *is* extended precision, plus 2 bits for guard/round,
427 * so we can avoid a small bit of work.
428 */
429 u_int
430 fpu_ftoq(struct fpemu *fe, struct fpn *fp, u_int *res)
431 {
432 u_int sign = fp->fp_sign << 31;
433 int exp;
434
435 #define EXT_EXP(e) ((e) << (EXT_FRACBITS & 31))
436 #define EXT_MASK (EXT_EXP(1) - 1)
437
438 if (ISNAN(fp)) {
439 (void) fpu_shr(fp, 2); /* since we are not rounding */
440 exp = EXT_EXP_INFNAN;
441 goto done;
442 }
443 if (ISINF(fp)) {
444 sign |= EXT_EXP(EXT_EXP_INFNAN);
445 goto zero;
446 }
447 if (ISZERO(fp)) {
448 zero: res[1] = res[2] = res[3] = 0;
449 return (sign);
450 }
451
452 if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
453 (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
454 if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
455 res[1] = res[2] = res[3] = 0;
456 return (sign | EXT_EXP(1) | 0);
457 }
458 if ((fe->fe_cx & FPSCR_FI) ||
459 (fe->fe_fpscr & FPSCR_UX))
460 fe->fe_cx |= FPSCR_UX;
461 exp = 0;
462 goto done;
463 }
464 /* Since internal == extended, no need to shift here. */
465 if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
466 exp++;
467 if (exp >= EXT_EXP_INFNAN) {
468 fe->fe_cx |= FPSCR_OX | FPSCR_UX;
469 if (toinf(fe, sign)) {
470 res[1] = res[2] = res[3] = 0;
471 return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
472 }
473 res[1] = res[2] = res[3] = ~0;
474 return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
475 }
476 done:
477 res[1] = fp->fp_mant[1];
478 res[2] = fp->fp_mant[2];
479 res[3] = fp->fp_mant[3];
480 return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
481 }
482
483 /*
484 * Implode an fpn, writing the result into the given space.
485 */
486 void
487 fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space)
488 {
489
490 switch (type) {
491
492 case FTYPE_LNG:
493 space[0] = fpu_ftox(fe, fp, space);
494 DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n",
495 space[0], space[1]));
496 break;
497
498 case FTYPE_INT:
499 space[0] = 0;
500 space[1] = fpu_ftoi(fe, fp);
501 DPRINTF(FPE_REG, ("fpu_implode: int %x\n",
502 space[1]));
503 break;
504
505 case FTYPE_SNG:
506 space[0] = fpu_ftos(fe, fp);
507 DPRINTF(FPE_REG, ("fpu_implode: single %x\n",
508 space[0]));
509 break;
510
511 case FTYPE_DBL:
512 space[0] = fpu_ftod(fe, fp, space);
513 DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n",
514 space[0], space[1]));
515 break; break;
516
517 case FTYPE_EXT:
518 /* funky rounding precision options ?? */
519 space[0] = fpu_ftoq(fe, fp, space);
520 DPRINTF(FPE_REG, ("fpu_implode: long double %x %x %x %x\n",
521 space[0], space[1], space[2], space[3]));
522 break; break;
523
524 default:
525 panic("fpu_implode: invalid type %d", type);
526 }
527 }
528