Home | History | Annotate | Line # | Download | only in fpu
fpu_sqrt.c revision 1.13
      1  1.13     rin /*	$NetBSD: fpu_sqrt.c,v 1.13 2022/09/06 23:12:42 rin Exp $ */
      2   1.1  simonb 
      3   1.1  simonb /*
      4   1.1  simonb  * Copyright (c) 1992, 1993
      5   1.1  simonb  *	The Regents of the University of California.  All rights reserved.
      6   1.1  simonb  *
      7   1.1  simonb  * This software was developed by the Computer Systems Engineering group
      8   1.1  simonb  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9   1.1  simonb  * contributed to Berkeley.
     10   1.1  simonb  *
     11   1.1  simonb  * All advertising materials mentioning features or use of this software
     12   1.1  simonb  * must display the following acknowledgement:
     13   1.1  simonb  *	This product includes software developed by the University of
     14   1.1  simonb  *	California, Lawrence Berkeley Laboratory.
     15   1.1  simonb  *
     16   1.1  simonb  * Redistribution and use in source and binary forms, with or without
     17   1.1  simonb  * modification, are permitted provided that the following conditions
     18   1.1  simonb  * are met:
     19   1.1  simonb  * 1. Redistributions of source code must retain the above copyright
     20   1.1  simonb  *    notice, this list of conditions and the following disclaimer.
     21   1.1  simonb  * 2. Redistributions in binary form must reproduce the above copyright
     22   1.1  simonb  *    notice, this list of conditions and the following disclaimer in the
     23   1.1  simonb  *    documentation and/or other materials provided with the distribution.
     24   1.3     agc  * 3. Neither the name of the University nor the names of its contributors
     25   1.1  simonb  *    may be used to endorse or promote products derived from this software
     26   1.1  simonb  *    without specific prior written permission.
     27   1.1  simonb  *
     28   1.1  simonb  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29   1.1  simonb  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30   1.1  simonb  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31   1.1  simonb  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32   1.1  simonb  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33   1.1  simonb  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34   1.1  simonb  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35   1.1  simonb  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36   1.1  simonb  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37   1.1  simonb  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38   1.1  simonb  * SUCH DAMAGE.
     39   1.1  simonb  *
     40   1.1  simonb  *	@(#)fpu_sqrt.c	8.1 (Berkeley) 6/11/93
     41   1.1  simonb  */
     42   1.1  simonb 
     43   1.1  simonb /*
     44   1.1  simonb  * Perform an FPU square root (return sqrt(x)).
     45   1.1  simonb  */
     46   1.2   lukem 
     47   1.2   lukem #include <sys/cdefs.h>
     48  1.13     rin __KERNEL_RCSID(0, "$NetBSD: fpu_sqrt.c,v 1.13 2022/09/06 23:12:42 rin Exp $");
     49   1.1  simonb 
     50   1.1  simonb #include <sys/types.h>
     51   1.1  simonb #if defined(DIAGNOSTIC)||defined(DEBUG)
     52   1.1  simonb #include <sys/systm.h>
     53   1.1  simonb #endif
     54   1.1  simonb 
     55   1.6     rin #include <machine/fpu.h>
     56   1.1  simonb #include <machine/reg.h>
     57   1.1  simonb 
     58   1.1  simonb #include <powerpc/fpu/fpu_arith.h>
     59   1.1  simonb #include <powerpc/fpu/fpu_emu.h>
     60   1.1  simonb 
     61   1.1  simonb /*
     62   1.1  simonb  * Our task is to calculate the square root of a floating point number x0.
     63   1.1  simonb  * This number x normally has the form:
     64   1.1  simonb  *
     65   1.1  simonb  *		    exp
     66   1.1  simonb  *	x = mant * 2		(where 1 <= mant < 2 and exp is an integer)
     67   1.1  simonb  *
     68   1.1  simonb  * This can be left as it stands, or the mantissa can be doubled and the
     69   1.1  simonb  * exponent decremented:
     70   1.1  simonb  *
     71   1.1  simonb  *			  exp-1
     72   1.1  simonb  *	x = (2 * mant) * 2	(where 2 <= 2 * mant < 4)
     73   1.1  simonb  *
     74   1.1  simonb  * If the exponent `exp' is even, the square root of the number is best
     75   1.1  simonb  * handled using the first form, and is by definition equal to:
     76   1.1  simonb  *
     77   1.1  simonb  *				exp/2
     78   1.1  simonb  *	sqrt(x) = sqrt(mant) * 2
     79   1.1  simonb  *
     80   1.1  simonb  * If exp is odd, on the other hand, it is convenient to use the second
     81   1.1  simonb  * form, giving:
     82   1.1  simonb  *
     83   1.1  simonb  *				    (exp-1)/2
     84   1.1  simonb  *	sqrt(x) = sqrt(2 * mant) * 2
     85   1.1  simonb  *
     86   1.1  simonb  * In the first case, we have
     87   1.1  simonb  *
     88   1.1  simonb  *	1 <= mant < 2
     89   1.1  simonb  *
     90   1.1  simonb  * and therefore
     91   1.1  simonb  *
     92   1.1  simonb  *	sqrt(1) <= sqrt(mant) < sqrt(2)
     93   1.1  simonb  *
     94   1.1  simonb  * while in the second case we have
     95   1.1  simonb  *
     96   1.1  simonb  *	2 <= 2*mant < 4
     97   1.1  simonb  *
     98   1.1  simonb  * and therefore
     99   1.1  simonb  *
    100   1.1  simonb  *	sqrt(2) <= sqrt(2*mant) < sqrt(4)
    101   1.1  simonb  *
    102   1.1  simonb  * so that in any case, we are sure that
    103   1.1  simonb  *
    104   1.1  simonb  *	sqrt(1) <= sqrt(n * mant) < sqrt(4),	n = 1 or 2
    105   1.1  simonb  *
    106   1.1  simonb  * or
    107   1.1  simonb  *
    108   1.1  simonb  *	1 <= sqrt(n * mant) < 2,		n = 1 or 2.
    109   1.1  simonb  *
    110   1.1  simonb  * This root is therefore a properly formed mantissa for a floating
    111   1.1  simonb  * point number.  The exponent of sqrt(x) is either exp/2 or (exp-1)/2
    112   1.1  simonb  * as above.  This leaves us with the problem of finding the square root
    113   1.1  simonb  * of a fixed-point number in the range [1..4).
    114   1.1  simonb  *
    115   1.1  simonb  * Though it may not be instantly obvious, the following square root
    116   1.1  simonb  * algorithm works for any integer x of an even number of bits, provided
    117   1.1  simonb  * that no overflows occur:
    118   1.1  simonb  *
    119   1.1  simonb  *	let q = 0
    120   1.1  simonb  *	for k = NBITS-1 to 0 step -1 do -- for each digit in the answer...
    121   1.1  simonb  *		x *= 2			-- multiply by radix, for next digit
    122   1.1  simonb  *		if x >= 2q + 2^k then	-- if adding 2^k does not
    123   1.1  simonb  *			x -= 2q + 2^k	-- exceed the correct root,
    124   1.1  simonb  *			q += 2^k	-- add 2^k and adjust x
    125   1.1  simonb  *		fi
    126   1.1  simonb  *	done
    127   1.1  simonb  *	sqrt = q / 2^(NBITS/2)		-- (and any remainder is in x)
    128   1.1  simonb  *
    129   1.1  simonb  * If NBITS is odd (so that k is initially even), we can just add another
    130   1.1  simonb  * zero bit at the top of x.  Doing so means that q is not going to acquire
    131   1.1  simonb  * a 1 bit in the first trip around the loop (since x0 < 2^NBITS).  If the
    132   1.1  simonb  * final value in x is not needed, or can be off by a factor of 2, this is
    133  1.10  andvar  * equivalent to moving the `x *= 2' step to the bottom of the loop:
    134   1.1  simonb  *
    135   1.1  simonb  *	for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done
    136   1.1  simonb  *
    137   1.1  simonb  * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2).
    138   1.1  simonb  * (Since the algorithm is destructive on x, we will call x's initial
    139   1.1  simonb  * value, for which q is some power of two times its square root, x0.)
    140   1.1  simonb  *
    141   1.1  simonb  * If we insert a loop invariant y = 2q, we can then rewrite this using
    142   1.1  simonb  * C notation as:
    143   1.1  simonb  *
    144   1.1  simonb  *	q = y = 0; x = x0;
    145   1.1  simonb  *	for (k = NBITS; --k >= 0;) {
    146   1.1  simonb  * #if (NBITS is even)
    147   1.1  simonb  *		x *= 2;
    148   1.1  simonb  * #endif
    149   1.1  simonb  *		t = y + (1 << k);
    150   1.1  simonb  *		if (x >= t) {
    151   1.1  simonb  *			x -= t;
    152   1.1  simonb  *			q += 1 << k;
    153   1.1  simonb  *			y += 1 << (k + 1);
    154   1.1  simonb  *		}
    155   1.1  simonb  * #if (NBITS is odd)
    156   1.1  simonb  *		x *= 2;
    157   1.1  simonb  * #endif
    158   1.1  simonb  *	}
    159   1.1  simonb  *
    160   1.1  simonb  * If x0 is fixed point, rather than an integer, we can simply alter the
    161   1.1  simonb  * scale factor between q and sqrt(x0).  As it happens, we can easily arrange
    162   1.1  simonb  * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q.
    163   1.1  simonb  *
    164   1.1  simonb  * In our case, however, x0 (and therefore x, y, q, and t) are multiword
    165   1.1  simonb  * integers, which adds some complication.  But note that q is built one
    166   1.1  simonb  * bit at a time, from the top down, and is not used itself in the loop
    167   1.1  simonb  * (we use 2q as held in y instead).  This means we can build our answer
    168   1.1  simonb  * in an integer, one word at a time, which saves a bit of work.  Also,
    169   1.1  simonb  * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are
    170   1.1  simonb  * `new' bits in y and we can set them with an `or' operation rather than
    171   1.1  simonb  * a full-blown multiword add.
    172   1.1  simonb  *
    173   1.1  simonb  * We are almost done, except for one snag.  We must prove that none of our
    174   1.1  simonb  * intermediate calculations can overflow.  We know that x0 is in [1..4)
    175   1.1  simonb  * and therefore the square root in q will be in [1..2), but what about x,
    176   1.1  simonb  * y, and t?
    177   1.1  simonb  *
    178   1.1  simonb  * We know that y = 2q at the beginning of each loop.  (The relation only
    179   1.1  simonb  * fails temporarily while y and q are being updated.)  Since q < 2, y < 4.
    180   1.1  simonb  * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and.
    181   1.1  simonb  * Furthermore, we can prove with a bit of work that x never exceeds y by
    182   1.1  simonb  * more than 2, so that even after doubling, 0 <= x < 8.  (This is left as
    183   1.1  simonb  * an exercise to the reader, mostly because I have become tired of working
    184   1.1  simonb  * on this comment.)
    185   1.1  simonb  *
    186   1.1  simonb  * If our floating point mantissas (which are of the form 1.frac) occupy
    187   1.1  simonb  * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra.
    188   1.1  simonb  * In fact, we want even one more bit (for a carry, to avoid compares), or
    189   1.1  simonb  * three extra.  There is a comment in fpu_emu.h reminding maintainers of
    190   1.1  simonb  * this, so we have some justification in assuming it.
    191   1.1  simonb  */
    192   1.1  simonb struct fpn *
    193   1.1  simonb fpu_sqrt(struct fpemu *fe)
    194   1.1  simonb {
    195   1.1  simonb 	struct fpn *x = &fe->fe_f1;
    196   1.1  simonb 	u_int bit, q, tt;
    197   1.1  simonb 	u_int x0, x1, x2, x3;
    198   1.1  simonb 	u_int y0, y1, y2, y3;
    199   1.1  simonb 	u_int d0, d1, d2, d3;
    200   1.1  simonb 	int e;
    201   1.1  simonb 	FPU_DECL_CARRY;
    202   1.1  simonb 
    203   1.1  simonb 	/*
    204   1.1  simonb 	 * Take care of special cases first.  In order:
    205   1.1  simonb 	 *
    206   1.1  simonb 	 *	sqrt(NaN) = NaN
    207   1.1  simonb 	 *	sqrt(+0) = +0
    208   1.1  simonb 	 *	sqrt(-0) = -0
    209   1.1  simonb 	 *	sqrt(x < 0) = NaN	(including sqrt(-Inf))
    210   1.1  simonb 	 *	sqrt(+Inf) = +Inf
    211   1.1  simonb 	 *
    212   1.1  simonb 	 * Then all that remains are numbers with mantissas in [1..2).
    213   1.1  simonb 	 */
    214   1.8     rin 	DPRINTF(FPE_REG, ("fpu_sqrt:\n"));
    215   1.1  simonb 	DUMPFPN(FPE_REG, x);
    216   1.1  simonb 	DPRINTF(FPE_REG, ("=>\n"));
    217   1.1  simonb 	if (ISNAN(x)) {
    218  1.11     rin 		if (ISSNAN(x))
    219  1.11     rin 			fe->fe_cx |= FPSCR_VXSNAN;
    220   1.1  simonb 		DUMPFPN(FPE_REG, x);
    221   1.1  simonb 		return (x);
    222   1.1  simonb 	}
    223   1.1  simonb 	if (ISZERO(x)) {
    224   1.1  simonb 		DUMPFPN(FPE_REG, x);
    225   1.1  simonb 		return (x);
    226   1.1  simonb 	}
    227   1.1  simonb 	if (x->fp_sign) {
    228   1.7     rin 		fe->fe_cx |= FPSCR_VXSQRT;
    229   1.1  simonb 		return (fpu_newnan(fe));
    230   1.1  simonb 	}
    231   1.1  simonb 	if (ISINF(x)) {
    232   1.9     rin 		DUMPFPN(FPE_REG, x);
    233   1.9     rin 		return (x);
    234   1.1  simonb 	}
    235   1.1  simonb 
    236   1.1  simonb 	/*
    237   1.1  simonb 	 * Calculate result exponent.  As noted above, this may involve
    238   1.1  simonb 	 * doubling the mantissa.  We will also need to double x each
    239   1.1  simonb 	 * time around the loop, so we define a macro for this here, and
    240   1.1  simonb 	 * we break out the multiword mantissa.
    241   1.1  simonb 	 */
    242   1.1  simonb #ifdef FPU_SHL1_BY_ADD
    243   1.1  simonb #define	DOUBLE_X { \
    244   1.1  simonb 	FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \
    245   1.1  simonb 	FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \
    246   1.1  simonb }
    247   1.1  simonb #else
    248   1.1  simonb #define	DOUBLE_X { \
    249   1.1  simonb 	x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \
    250   1.1  simonb 	x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \
    251   1.1  simonb }
    252   1.1  simonb #endif
    253   1.1  simonb #if (FP_NMANT & 1) != 0
    254   1.1  simonb # define ODD_DOUBLE	DOUBLE_X
    255   1.1  simonb # define EVEN_DOUBLE	/* nothing */
    256   1.1  simonb #else
    257   1.1  simonb # define ODD_DOUBLE	/* nothing */
    258   1.1  simonb # define EVEN_DOUBLE	DOUBLE_X
    259   1.1  simonb #endif
    260   1.1  simonb 	x0 = x->fp_mant[0];
    261   1.1  simonb 	x1 = x->fp_mant[1];
    262   1.1  simonb 	x2 = x->fp_mant[2];
    263   1.1  simonb 	x3 = x->fp_mant[3];
    264   1.1  simonb 	e = x->fp_exp;
    265   1.1  simonb 	if (e & 1)		/* exponent is odd; use sqrt(2mant) */
    266   1.1  simonb 		DOUBLE_X;
    267   1.1  simonb 	/* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */
    268   1.1  simonb 	x->fp_exp = e >> 1;	/* calculates (e&1 ? (e-1)/2 : e/2 */
    269   1.1  simonb 
    270   1.1  simonb 	/*
    271   1.1  simonb 	 * Now calculate the mantissa root.  Since x is now in [1..4),
    272   1.1  simonb 	 * we know that the first trip around the loop will definitely
    273   1.1  simonb 	 * set the top bit in q, so we can do that manually and start
    274   1.1  simonb 	 * the loop at the next bit down instead.  We must be sure to
    275   1.1  simonb 	 * double x correctly while doing the `known q=1.0'.
    276   1.1  simonb 	 *
    277   1.1  simonb 	 * We do this one mantissa-word at a time, as noted above, to
    278   1.1  simonb 	 * save work.  To avoid `(1 << 31) << 1', we also do the top bit
    279   1.1  simonb 	 * outside of each per-word loop.
    280   1.1  simonb 	 *
    281   1.1  simonb 	 * The calculation `t = y + bit' breaks down into `t0 = y0, ...,
    282   1.1  simonb 	 * t3 = y3, t? |= bit' for the appropriate word.  Since the bit
    283   1.1  simonb 	 * is always a `new' one, this means that three of the `t?'s are
    284   1.1  simonb 	 * just the corresponding `y?'; we use `#define's here for this.
    285   1.1  simonb 	 * The variable `tt' holds the actual `t?' variable.
    286   1.1  simonb 	 */
    287   1.1  simonb 
    288   1.1  simonb 	/* calculate q0 */
    289   1.1  simonb #define	t0 tt
    290   1.1  simonb 	bit = FP_1;
    291   1.1  simonb 	EVEN_DOUBLE;
    292   1.1  simonb 	/* if (x >= (t0 = y0 | bit)) { */	/* always true */
    293   1.1  simonb 		q = bit;
    294   1.1  simonb 		x0 -= bit;
    295   1.1  simonb 		y0 = bit << 1;
    296   1.1  simonb 	/* } */
    297   1.1  simonb 	ODD_DOUBLE;
    298   1.1  simonb 	while ((bit >>= 1) != 0) {	/* for remaining bits in q0 */
    299   1.1  simonb 		EVEN_DOUBLE;
    300   1.1  simonb 		t0 = y0 | bit;		/* t = y + bit */
    301   1.1  simonb 		if (x0 >= t0) {		/* if x >= t then */
    302   1.1  simonb 			x0 -= t0;	/*	x -= t */
    303   1.1  simonb 			q |= bit;	/*	q += bit */
    304   1.1  simonb 			y0 |= bit << 1;	/*	y += bit << 1 */
    305   1.1  simonb 		}
    306   1.1  simonb 		ODD_DOUBLE;
    307   1.1  simonb 	}
    308   1.1  simonb 	x->fp_mant[0] = q;
    309   1.1  simonb #undef t0
    310   1.1  simonb 
    311   1.1  simonb 	/* calculate q1.  note (y0&1)==0. */
    312   1.1  simonb #define t0 y0
    313   1.1  simonb #define t1 tt
    314   1.1  simonb 	q = 0;
    315   1.1  simonb 	y1 = 0;
    316   1.1  simonb 	bit = 1 << 31;
    317   1.1  simonb 	EVEN_DOUBLE;
    318   1.1  simonb 	t1 = bit;
    319   1.1  simonb 	FPU_SUBS(d1, x1, t1);
    320   1.1  simonb 	FPU_SUBC(d0, x0, t0);		/* d = x - t */
    321   1.1  simonb 	if ((int)d0 >= 0) {		/* if d >= 0 (i.e., x >= t) then */
    322   1.1  simonb 		x0 = d0, x1 = d1;	/*	x -= t */
    323   1.1  simonb 		q = bit;		/*	q += bit */
    324   1.1  simonb 		y0 |= 1;		/*	y += bit << 1 */
    325   1.1  simonb 	}
    326   1.1  simonb 	ODD_DOUBLE;
    327   1.1  simonb 	while ((bit >>= 1) != 0) {	/* for remaining bits in q1 */
    328   1.1  simonb 		EVEN_DOUBLE;		/* as before */
    329   1.1  simonb 		t1 = y1 | bit;
    330   1.1  simonb 		FPU_SUBS(d1, x1, t1);
    331   1.1  simonb 		FPU_SUBC(d0, x0, t0);
    332   1.1  simonb 		if ((int)d0 >= 0) {
    333   1.1  simonb 			x0 = d0, x1 = d1;
    334   1.1  simonb 			q |= bit;
    335   1.1  simonb 			y1 |= bit << 1;
    336   1.1  simonb 		}
    337   1.1  simonb 		ODD_DOUBLE;
    338   1.1  simonb 	}
    339   1.1  simonb 	x->fp_mant[1] = q;
    340   1.1  simonb #undef t1
    341   1.1  simonb 
    342   1.1  simonb 	/* calculate q2.  note (y1&1)==0; y0 (aka t0) is fixed. */
    343   1.1  simonb #define t1 y1
    344   1.1  simonb #define t2 tt
    345   1.1  simonb 	q = 0;
    346   1.1  simonb 	y2 = 0;
    347   1.1  simonb 	bit = 1 << 31;
    348   1.1  simonb 	EVEN_DOUBLE;
    349   1.1  simonb 	t2 = bit;
    350   1.1  simonb 	FPU_SUBS(d2, x2, t2);
    351   1.1  simonb 	FPU_SUBCS(d1, x1, t1);
    352   1.1  simonb 	FPU_SUBC(d0, x0, t0);
    353   1.1  simonb 	if ((int)d0 >= 0) {
    354   1.1  simonb 		x0 = d0, x1 = d1, x2 = d2;
    355   1.1  simonb 		q |= bit;
    356   1.1  simonb 		y1 |= 1;		/* now t1, y1 are set in concrete */
    357   1.1  simonb 	}
    358   1.1  simonb 	ODD_DOUBLE;
    359   1.1  simonb 	while ((bit >>= 1) != 0) {
    360   1.1  simonb 		EVEN_DOUBLE;
    361   1.1  simonb 		t2 = y2 | bit;
    362   1.1  simonb 		FPU_SUBS(d2, x2, t2);
    363   1.1  simonb 		FPU_SUBCS(d1, x1, t1);
    364   1.1  simonb 		FPU_SUBC(d0, x0, t0);
    365   1.1  simonb 		if ((int)d0 >= 0) {
    366   1.1  simonb 			x0 = d0, x1 = d1, x2 = d2;
    367   1.1  simonb 			q |= bit;
    368   1.1  simonb 			y2 |= bit << 1;
    369   1.1  simonb 		}
    370   1.1  simonb 		ODD_DOUBLE;
    371   1.1  simonb 	}
    372   1.1  simonb 	x->fp_mant[2] = q;
    373   1.1  simonb #undef t2
    374   1.1  simonb 
    375   1.1  simonb 	/* calculate q3.  y0, t0, y1, t1 all fixed; y2, t2, almost done. */
    376   1.1  simonb #define t2 y2
    377   1.1  simonb #define t3 tt
    378   1.1  simonb 	q = 0;
    379   1.1  simonb 	y3 = 0;
    380   1.1  simonb 	bit = 1 << 31;
    381   1.1  simonb 	EVEN_DOUBLE;
    382   1.1  simonb 	t3 = bit;
    383  1.13     rin 	FPU_SUBS(d3, x3, t3);
    384   1.1  simonb 	FPU_SUBCS(d2, x2, t2);
    385   1.1  simonb 	FPU_SUBCS(d1, x1, t1);
    386   1.1  simonb 	FPU_SUBC(d0, x0, t0);
    387   1.1  simonb 	if ((int)d0 >= 0) {
    388  1.13     rin 		x0 = d0, x1 = d1, x2 = d2; x3 = d3;
    389   1.1  simonb 		q |= bit;
    390   1.1  simonb 		y2 |= 1;
    391   1.1  simonb 	}
    392  1.13     rin 	ODD_DOUBLE;
    393   1.1  simonb 	while ((bit >>= 1) != 0) {
    394   1.1  simonb 		EVEN_DOUBLE;
    395   1.1  simonb 		t3 = y3 | bit;
    396   1.1  simonb 		FPU_SUBS(d3, x3, t3);
    397   1.1  simonb 		FPU_SUBCS(d2, x2, t2);
    398   1.1  simonb 		FPU_SUBCS(d1, x1, t1);
    399   1.1  simonb 		FPU_SUBC(d0, x0, t0);
    400   1.1  simonb 		if ((int)d0 >= 0) {
    401  1.13     rin 			x0 = d0, x1 = d1, x2 = d2; x3 = d3;
    402   1.1  simonb 			q |= bit;
    403   1.1  simonb 			y3 |= bit << 1;
    404   1.1  simonb 		}
    405   1.1  simonb 		ODD_DOUBLE;
    406   1.1  simonb 	}
    407   1.1  simonb 	x->fp_mant[3] = q;
    408   1.1  simonb 
    409   1.1  simonb 	/*
    410   1.1  simonb 	 * The result, which includes guard and round bits, is exact iff
    411   1.1  simonb 	 * x is now zero; any nonzero bits in x represent sticky bits.
    412   1.1  simonb 	 */
    413   1.1  simonb 	x->fp_sticky = x0 | x1 | x2 | x3;
    414   1.1  simonb 	DUMPFPN(FPE_REG, x);
    415   1.1  simonb 	return (x);
    416   1.1  simonb }
    417