Home | History | Annotate | Line # | Download | only in fpu
fpu_sqrt.c revision 1.4.122.1
      1  1.4.122.1     tls /*	$NetBSD: fpu_sqrt.c,v 1.4.122.1 2014/08/20 00:03:19 tls Exp $ */
      2        1.1  simonb 
      3        1.1  simonb /*
      4        1.1  simonb  * Copyright (c) 1992, 1993
      5        1.1  simonb  *	The Regents of the University of California.  All rights reserved.
      6        1.1  simonb  *
      7        1.1  simonb  * This software was developed by the Computer Systems Engineering group
      8        1.1  simonb  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9        1.1  simonb  * contributed to Berkeley.
     10        1.1  simonb  *
     11        1.1  simonb  * All advertising materials mentioning features or use of this software
     12        1.1  simonb  * must display the following acknowledgement:
     13        1.1  simonb  *	This product includes software developed by the University of
     14        1.1  simonb  *	California, Lawrence Berkeley Laboratory.
     15        1.1  simonb  *
     16        1.1  simonb  * Redistribution and use in source and binary forms, with or without
     17        1.1  simonb  * modification, are permitted provided that the following conditions
     18        1.1  simonb  * are met:
     19        1.1  simonb  * 1. Redistributions of source code must retain the above copyright
     20        1.1  simonb  *    notice, this list of conditions and the following disclaimer.
     21        1.1  simonb  * 2. Redistributions in binary form must reproduce the above copyright
     22        1.1  simonb  *    notice, this list of conditions and the following disclaimer in the
     23        1.1  simonb  *    documentation and/or other materials provided with the distribution.
     24        1.3     agc  * 3. Neither the name of the University nor the names of its contributors
     25        1.1  simonb  *    may be used to endorse or promote products derived from this software
     26        1.1  simonb  *    without specific prior written permission.
     27        1.1  simonb  *
     28        1.1  simonb  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29        1.1  simonb  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30        1.1  simonb  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31        1.1  simonb  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32        1.1  simonb  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33        1.1  simonb  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34        1.1  simonb  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35        1.1  simonb  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36        1.1  simonb  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37        1.1  simonb  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38        1.1  simonb  * SUCH DAMAGE.
     39        1.1  simonb  *
     40        1.1  simonb  *	@(#)fpu_sqrt.c	8.1 (Berkeley) 6/11/93
     41        1.1  simonb  */
     42        1.1  simonb 
     43        1.1  simonb /*
     44        1.1  simonb  * Perform an FPU square root (return sqrt(x)).
     45        1.1  simonb  */
     46        1.2   lukem 
     47        1.2   lukem #include <sys/cdefs.h>
     48  1.4.122.1     tls __KERNEL_RCSID(0, "$NetBSD: fpu_sqrt.c,v 1.4.122.1 2014/08/20 00:03:19 tls Exp $");
     49        1.1  simonb 
     50        1.1  simonb #include <sys/types.h>
     51        1.1  simonb #if defined(DIAGNOSTIC)||defined(DEBUG)
     52        1.1  simonb #include <sys/systm.h>
     53        1.1  simonb #endif
     54        1.1  simonb 
     55        1.1  simonb #include <machine/reg.h>
     56        1.1  simonb #include <machine/fpu.h>
     57        1.1  simonb 
     58        1.1  simonb #include <powerpc/fpu/fpu_arith.h>
     59        1.1  simonb #include <powerpc/fpu/fpu_emu.h>
     60        1.1  simonb 
     61        1.1  simonb /*
     62        1.1  simonb  * Our task is to calculate the square root of a floating point number x0.
     63        1.1  simonb  * This number x normally has the form:
     64        1.1  simonb  *
     65        1.1  simonb  *		    exp
     66        1.1  simonb  *	x = mant * 2		(where 1 <= mant < 2 and exp is an integer)
     67        1.1  simonb  *
     68        1.1  simonb  * This can be left as it stands, or the mantissa can be doubled and the
     69        1.1  simonb  * exponent decremented:
     70        1.1  simonb  *
     71        1.1  simonb  *			  exp-1
     72        1.1  simonb  *	x = (2 * mant) * 2	(where 2 <= 2 * mant < 4)
     73        1.1  simonb  *
     74        1.1  simonb  * If the exponent `exp' is even, the square root of the number is best
     75        1.1  simonb  * handled using the first form, and is by definition equal to:
     76        1.1  simonb  *
     77        1.1  simonb  *				exp/2
     78        1.1  simonb  *	sqrt(x) = sqrt(mant) * 2
     79        1.1  simonb  *
     80        1.1  simonb  * If exp is odd, on the other hand, it is convenient to use the second
     81        1.1  simonb  * form, giving:
     82        1.1  simonb  *
     83        1.1  simonb  *				    (exp-1)/2
     84        1.1  simonb  *	sqrt(x) = sqrt(2 * mant) * 2
     85        1.1  simonb  *
     86        1.1  simonb  * In the first case, we have
     87        1.1  simonb  *
     88        1.1  simonb  *	1 <= mant < 2
     89        1.1  simonb  *
     90        1.1  simonb  * and therefore
     91        1.1  simonb  *
     92        1.1  simonb  *	sqrt(1) <= sqrt(mant) < sqrt(2)
     93        1.1  simonb  *
     94        1.1  simonb  * while in the second case we have
     95        1.1  simonb  *
     96        1.1  simonb  *	2 <= 2*mant < 4
     97        1.1  simonb  *
     98        1.1  simonb  * and therefore
     99        1.1  simonb  *
    100        1.1  simonb  *	sqrt(2) <= sqrt(2*mant) < sqrt(4)
    101        1.1  simonb  *
    102        1.1  simonb  * so that in any case, we are sure that
    103        1.1  simonb  *
    104        1.1  simonb  *	sqrt(1) <= sqrt(n * mant) < sqrt(4),	n = 1 or 2
    105        1.1  simonb  *
    106        1.1  simonb  * or
    107        1.1  simonb  *
    108        1.1  simonb  *	1 <= sqrt(n * mant) < 2,		n = 1 or 2.
    109        1.1  simonb  *
    110        1.1  simonb  * This root is therefore a properly formed mantissa for a floating
    111        1.1  simonb  * point number.  The exponent of sqrt(x) is either exp/2 or (exp-1)/2
    112        1.1  simonb  * as above.  This leaves us with the problem of finding the square root
    113        1.1  simonb  * of a fixed-point number in the range [1..4).
    114        1.1  simonb  *
    115        1.1  simonb  * Though it may not be instantly obvious, the following square root
    116        1.1  simonb  * algorithm works for any integer x of an even number of bits, provided
    117        1.1  simonb  * that no overflows occur:
    118        1.1  simonb  *
    119        1.1  simonb  *	let q = 0
    120        1.1  simonb  *	for k = NBITS-1 to 0 step -1 do -- for each digit in the answer...
    121        1.1  simonb  *		x *= 2			-- multiply by radix, for next digit
    122        1.1  simonb  *		if x >= 2q + 2^k then	-- if adding 2^k does not
    123        1.1  simonb  *			x -= 2q + 2^k	-- exceed the correct root,
    124        1.1  simonb  *			q += 2^k	-- add 2^k and adjust x
    125        1.1  simonb  *		fi
    126        1.1  simonb  *	done
    127        1.1  simonb  *	sqrt = q / 2^(NBITS/2)		-- (and any remainder is in x)
    128        1.1  simonb  *
    129        1.1  simonb  * If NBITS is odd (so that k is initially even), we can just add another
    130        1.1  simonb  * zero bit at the top of x.  Doing so means that q is not going to acquire
    131        1.1  simonb  * a 1 bit in the first trip around the loop (since x0 < 2^NBITS).  If the
    132        1.1  simonb  * final value in x is not needed, or can be off by a factor of 2, this is
    133        1.1  simonb  * equivalant to moving the `x *= 2' step to the bottom of the loop:
    134        1.1  simonb  *
    135        1.1  simonb  *	for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done
    136        1.1  simonb  *
    137        1.1  simonb  * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2).
    138        1.1  simonb  * (Since the algorithm is destructive on x, we will call x's initial
    139        1.1  simonb  * value, for which q is some power of two times its square root, x0.)
    140        1.1  simonb  *
    141        1.1  simonb  * If we insert a loop invariant y = 2q, we can then rewrite this using
    142        1.1  simonb  * C notation as:
    143        1.1  simonb  *
    144        1.1  simonb  *	q = y = 0; x = x0;
    145        1.1  simonb  *	for (k = NBITS; --k >= 0;) {
    146        1.1  simonb  * #if (NBITS is even)
    147        1.1  simonb  *		x *= 2;
    148        1.1  simonb  * #endif
    149        1.1  simonb  *		t = y + (1 << k);
    150        1.1  simonb  *		if (x >= t) {
    151        1.1  simonb  *			x -= t;
    152        1.1  simonb  *			q += 1 << k;
    153        1.1  simonb  *			y += 1 << (k + 1);
    154        1.1  simonb  *		}
    155        1.1  simonb  * #if (NBITS is odd)
    156        1.1  simonb  *		x *= 2;
    157        1.1  simonb  * #endif
    158        1.1  simonb  *	}
    159        1.1  simonb  *
    160        1.1  simonb  * If x0 is fixed point, rather than an integer, we can simply alter the
    161        1.1  simonb  * scale factor between q and sqrt(x0).  As it happens, we can easily arrange
    162        1.1  simonb  * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q.
    163        1.1  simonb  *
    164        1.1  simonb  * In our case, however, x0 (and therefore x, y, q, and t) are multiword
    165        1.1  simonb  * integers, which adds some complication.  But note that q is built one
    166        1.1  simonb  * bit at a time, from the top down, and is not used itself in the loop
    167        1.1  simonb  * (we use 2q as held in y instead).  This means we can build our answer
    168        1.1  simonb  * in an integer, one word at a time, which saves a bit of work.  Also,
    169        1.1  simonb  * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are
    170        1.1  simonb  * `new' bits in y and we can set them with an `or' operation rather than
    171        1.1  simonb  * a full-blown multiword add.
    172        1.1  simonb  *
    173        1.1  simonb  * We are almost done, except for one snag.  We must prove that none of our
    174        1.1  simonb  * intermediate calculations can overflow.  We know that x0 is in [1..4)
    175        1.1  simonb  * and therefore the square root in q will be in [1..2), but what about x,
    176        1.1  simonb  * y, and t?
    177        1.1  simonb  *
    178        1.1  simonb  * We know that y = 2q at the beginning of each loop.  (The relation only
    179        1.1  simonb  * fails temporarily while y and q are being updated.)  Since q < 2, y < 4.
    180        1.1  simonb  * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and.
    181        1.1  simonb  * Furthermore, we can prove with a bit of work that x never exceeds y by
    182        1.1  simonb  * more than 2, so that even after doubling, 0 <= x < 8.  (This is left as
    183        1.1  simonb  * an exercise to the reader, mostly because I have become tired of working
    184        1.1  simonb  * on this comment.)
    185        1.1  simonb  *
    186        1.1  simonb  * If our floating point mantissas (which are of the form 1.frac) occupy
    187        1.1  simonb  * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra.
    188        1.1  simonb  * In fact, we want even one more bit (for a carry, to avoid compares), or
    189        1.1  simonb  * three extra.  There is a comment in fpu_emu.h reminding maintainers of
    190        1.1  simonb  * this, so we have some justification in assuming it.
    191        1.1  simonb  */
    192        1.1  simonb struct fpn *
    193        1.1  simonb fpu_sqrt(struct fpemu *fe)
    194        1.1  simonb {
    195        1.1  simonb 	struct fpn *x = &fe->fe_f1;
    196        1.1  simonb 	u_int bit, q, tt;
    197        1.1  simonb 	u_int x0, x1, x2, x3;
    198        1.1  simonb 	u_int y0, y1, y2, y3;
    199        1.1  simonb 	u_int d0, d1, d2, d3;
    200        1.1  simonb 	int e;
    201        1.1  simonb 	FPU_DECL_CARRY;
    202        1.1  simonb 
    203        1.1  simonb 	/*
    204        1.1  simonb 	 * Take care of special cases first.  In order:
    205        1.1  simonb 	 *
    206        1.1  simonb 	 *	sqrt(NaN) = NaN
    207        1.1  simonb 	 *	sqrt(+0) = +0
    208        1.1  simonb 	 *	sqrt(-0) = -0
    209        1.1  simonb 	 *	sqrt(x < 0) = NaN	(including sqrt(-Inf))
    210        1.1  simonb 	 *	sqrt(+Inf) = +Inf
    211        1.1  simonb 	 *
    212        1.1  simonb 	 * Then all that remains are numbers with mantissas in [1..2).
    213        1.1  simonb 	 */
    214        1.1  simonb 	DPRINTF(FPE_REG, ("fpu_sqer:\n"));
    215        1.1  simonb 	DUMPFPN(FPE_REG, x);
    216        1.1  simonb 	DPRINTF(FPE_REG, ("=>\n"));
    217        1.1  simonb 	if (ISNAN(x)) {
    218        1.1  simonb 		fe->fe_cx |= FPSCR_VXSNAN;
    219        1.1  simonb 		DUMPFPN(FPE_REG, x);
    220        1.1  simonb 		return (x);
    221        1.1  simonb 	}
    222        1.1  simonb 	if (ISZERO(x)) {
    223        1.1  simonb 		fe->fe_cx |= FPSCR_ZX;
    224        1.1  simonb 		x->fp_class = FPC_INF;
    225        1.1  simonb 		DUMPFPN(FPE_REG, x);
    226        1.1  simonb 		return (x);
    227        1.1  simonb 	}
    228        1.1  simonb 	if (x->fp_sign) {
    229        1.1  simonb 		return (fpu_newnan(fe));
    230        1.1  simonb 	}
    231        1.1  simonb 	if (ISINF(x)) {
    232        1.1  simonb 		fe->fe_cx |= FPSCR_VXSQRT;
    233        1.1  simonb 		DUMPFPN(FPE_REG, 0);
    234        1.1  simonb 		return (0);
    235        1.1  simonb 	}
    236        1.1  simonb 
    237        1.1  simonb 	/*
    238        1.1  simonb 	 * Calculate result exponent.  As noted above, this may involve
    239        1.1  simonb 	 * doubling the mantissa.  We will also need to double x each
    240        1.1  simonb 	 * time around the loop, so we define a macro for this here, and
    241        1.1  simonb 	 * we break out the multiword mantissa.
    242        1.1  simonb 	 */
    243        1.1  simonb #ifdef FPU_SHL1_BY_ADD
    244        1.1  simonb #define	DOUBLE_X { \
    245        1.1  simonb 	FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \
    246        1.1  simonb 	FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \
    247        1.1  simonb }
    248        1.1  simonb #else
    249        1.1  simonb #define	DOUBLE_X { \
    250        1.1  simonb 	x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \
    251        1.1  simonb 	x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \
    252        1.1  simonb }
    253        1.1  simonb #endif
    254        1.1  simonb #if (FP_NMANT & 1) != 0
    255        1.1  simonb # define ODD_DOUBLE	DOUBLE_X
    256        1.1  simonb # define EVEN_DOUBLE	/* nothing */
    257        1.1  simonb #else
    258        1.1  simonb # define ODD_DOUBLE	/* nothing */
    259        1.1  simonb # define EVEN_DOUBLE	DOUBLE_X
    260        1.1  simonb #endif
    261        1.1  simonb 	x0 = x->fp_mant[0];
    262        1.1  simonb 	x1 = x->fp_mant[1];
    263        1.1  simonb 	x2 = x->fp_mant[2];
    264        1.1  simonb 	x3 = x->fp_mant[3];
    265        1.1  simonb 	e = x->fp_exp;
    266        1.1  simonb 	if (e & 1)		/* exponent is odd; use sqrt(2mant) */
    267        1.1  simonb 		DOUBLE_X;
    268        1.1  simonb 	/* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */
    269        1.1  simonb 	x->fp_exp = e >> 1;	/* calculates (e&1 ? (e-1)/2 : e/2 */
    270        1.1  simonb 
    271        1.1  simonb 	/*
    272        1.1  simonb 	 * Now calculate the mantissa root.  Since x is now in [1..4),
    273        1.1  simonb 	 * we know that the first trip around the loop will definitely
    274        1.1  simonb 	 * set the top bit in q, so we can do that manually and start
    275        1.1  simonb 	 * the loop at the next bit down instead.  We must be sure to
    276        1.1  simonb 	 * double x correctly while doing the `known q=1.0'.
    277        1.1  simonb 	 *
    278        1.1  simonb 	 * We do this one mantissa-word at a time, as noted above, to
    279        1.1  simonb 	 * save work.  To avoid `(1 << 31) << 1', we also do the top bit
    280        1.1  simonb 	 * outside of each per-word loop.
    281        1.1  simonb 	 *
    282        1.1  simonb 	 * The calculation `t = y + bit' breaks down into `t0 = y0, ...,
    283        1.1  simonb 	 * t3 = y3, t? |= bit' for the appropriate word.  Since the bit
    284        1.1  simonb 	 * is always a `new' one, this means that three of the `t?'s are
    285        1.1  simonb 	 * just the corresponding `y?'; we use `#define's here for this.
    286        1.1  simonb 	 * The variable `tt' holds the actual `t?' variable.
    287        1.1  simonb 	 */
    288        1.1  simonb 
    289        1.1  simonb 	/* calculate q0 */
    290        1.1  simonb #define	t0 tt
    291        1.1  simonb 	bit = FP_1;
    292        1.1  simonb 	EVEN_DOUBLE;
    293        1.1  simonb 	/* if (x >= (t0 = y0 | bit)) { */	/* always true */
    294        1.1  simonb 		q = bit;
    295        1.1  simonb 		x0 -= bit;
    296        1.1  simonb 		y0 = bit << 1;
    297        1.1  simonb 	/* } */
    298        1.1  simonb 	ODD_DOUBLE;
    299        1.1  simonb 	while ((bit >>= 1) != 0) {	/* for remaining bits in q0 */
    300        1.1  simonb 		EVEN_DOUBLE;
    301        1.1  simonb 		t0 = y0 | bit;		/* t = y + bit */
    302        1.1  simonb 		if (x0 >= t0) {		/* if x >= t then */
    303        1.1  simonb 			x0 -= t0;	/*	x -= t */
    304        1.1  simonb 			q |= bit;	/*	q += bit */
    305        1.1  simonb 			y0 |= bit << 1;	/*	y += bit << 1 */
    306        1.1  simonb 		}
    307        1.1  simonb 		ODD_DOUBLE;
    308        1.1  simonb 	}
    309        1.1  simonb 	x->fp_mant[0] = q;
    310        1.1  simonb #undef t0
    311        1.1  simonb 
    312        1.1  simonb 	/* calculate q1.  note (y0&1)==0. */
    313        1.1  simonb #define t0 y0
    314        1.1  simonb #define t1 tt
    315        1.1  simonb 	q = 0;
    316        1.1  simonb 	y1 = 0;
    317        1.1  simonb 	bit = 1 << 31;
    318        1.1  simonb 	EVEN_DOUBLE;
    319        1.1  simonb 	t1 = bit;
    320        1.1  simonb 	FPU_SUBS(d1, x1, t1);
    321        1.1  simonb 	FPU_SUBC(d0, x0, t0);		/* d = x - t */
    322        1.1  simonb 	if ((int)d0 >= 0) {		/* if d >= 0 (i.e., x >= t) then */
    323        1.1  simonb 		x0 = d0, x1 = d1;	/*	x -= t */
    324        1.1  simonb 		q = bit;		/*	q += bit */
    325        1.1  simonb 		y0 |= 1;		/*	y += bit << 1 */
    326        1.1  simonb 	}
    327        1.1  simonb 	ODD_DOUBLE;
    328        1.1  simonb 	while ((bit >>= 1) != 0) {	/* for remaining bits in q1 */
    329        1.1  simonb 		EVEN_DOUBLE;		/* as before */
    330        1.1  simonb 		t1 = y1 | bit;
    331        1.1  simonb 		FPU_SUBS(d1, x1, t1);
    332        1.1  simonb 		FPU_SUBC(d0, x0, t0);
    333        1.1  simonb 		if ((int)d0 >= 0) {
    334        1.1  simonb 			x0 = d0, x1 = d1;
    335        1.1  simonb 			q |= bit;
    336        1.1  simonb 			y1 |= bit << 1;
    337        1.1  simonb 		}
    338        1.1  simonb 		ODD_DOUBLE;
    339        1.1  simonb 	}
    340        1.1  simonb 	x->fp_mant[1] = q;
    341        1.1  simonb #undef t1
    342        1.1  simonb 
    343        1.1  simonb 	/* calculate q2.  note (y1&1)==0; y0 (aka t0) is fixed. */
    344        1.1  simonb #define t1 y1
    345        1.1  simonb #define t2 tt
    346        1.1  simonb 	q = 0;
    347        1.1  simonb 	y2 = 0;
    348        1.1  simonb 	bit = 1 << 31;
    349        1.1  simonb 	EVEN_DOUBLE;
    350        1.1  simonb 	t2 = bit;
    351        1.1  simonb 	FPU_SUBS(d2, x2, t2);
    352        1.1  simonb 	FPU_SUBCS(d1, x1, t1);
    353        1.1  simonb 	FPU_SUBC(d0, x0, t0);
    354        1.1  simonb 	if ((int)d0 >= 0) {
    355        1.1  simonb 		x0 = d0, x1 = d1, x2 = d2;
    356        1.1  simonb 		q |= bit;
    357        1.1  simonb 		y1 |= 1;		/* now t1, y1 are set in concrete */
    358        1.1  simonb 	}
    359        1.1  simonb 	ODD_DOUBLE;
    360        1.1  simonb 	while ((bit >>= 1) != 0) {
    361        1.1  simonb 		EVEN_DOUBLE;
    362        1.1  simonb 		t2 = y2 | bit;
    363        1.1  simonb 		FPU_SUBS(d2, x2, t2);
    364        1.1  simonb 		FPU_SUBCS(d1, x1, t1);
    365        1.1  simonb 		FPU_SUBC(d0, x0, t0);
    366        1.1  simonb 		if ((int)d0 >= 0) {
    367        1.1  simonb 			x0 = d0, x1 = d1, x2 = d2;
    368        1.1  simonb 			q |= bit;
    369        1.1  simonb 			y2 |= bit << 1;
    370        1.1  simonb 		}
    371        1.1  simonb 		ODD_DOUBLE;
    372        1.1  simonb 	}
    373        1.1  simonb 	x->fp_mant[2] = q;
    374        1.1  simonb #undef t2
    375        1.1  simonb 
    376        1.1  simonb 	/* calculate q3.  y0, t0, y1, t1 all fixed; y2, t2, almost done. */
    377        1.1  simonb #define t2 y2
    378        1.1  simonb #define t3 tt
    379        1.1  simonb 	q = 0;
    380        1.1  simonb 	y3 = 0;
    381        1.1  simonb 	bit = 1 << 31;
    382        1.1  simonb 	EVEN_DOUBLE;
    383        1.1  simonb 	t3 = bit;
    384  1.4.122.1     tls 	FPU_SUBS(d3, x3, t3); __USE(d3);
    385        1.1  simonb 	FPU_SUBCS(d2, x2, t2);
    386        1.1  simonb 	FPU_SUBCS(d1, x1, t1);
    387        1.1  simonb 	FPU_SUBC(d0, x0, t0);
    388        1.1  simonb 	ODD_DOUBLE;
    389        1.1  simonb 	if ((int)d0 >= 0) {
    390        1.1  simonb 		x0 = d0, x1 = d1, x2 = d2;
    391        1.1  simonb 		q |= bit;
    392        1.1  simonb 		y2 |= 1;
    393        1.1  simonb 	}
    394        1.1  simonb 	while ((bit >>= 1) != 0) {
    395        1.1  simonb 		EVEN_DOUBLE;
    396        1.1  simonb 		t3 = y3 | bit;
    397        1.1  simonb 		FPU_SUBS(d3, x3, t3);
    398        1.1  simonb 		FPU_SUBCS(d2, x2, t2);
    399        1.1  simonb 		FPU_SUBCS(d1, x1, t1);
    400        1.1  simonb 		FPU_SUBC(d0, x0, t0);
    401        1.1  simonb 		if ((int)d0 >= 0) {
    402        1.1  simonb 			x0 = d0, x1 = d1, x2 = d2;
    403        1.1  simonb 			q |= bit;
    404        1.1  simonb 			y3 |= bit << 1;
    405        1.1  simonb 		}
    406        1.1  simonb 		ODD_DOUBLE;
    407        1.1  simonb 	}
    408        1.1  simonb 	x->fp_mant[3] = q;
    409        1.1  simonb 
    410        1.1  simonb 	/*
    411        1.1  simonb 	 * The result, which includes guard and round bits, is exact iff
    412        1.1  simonb 	 * x is now zero; any nonzero bits in x represent sticky bits.
    413        1.1  simonb 	 */
    414        1.1  simonb 	x->fp_sticky = x0 | x1 | x2 | x3;
    415        1.1  simonb 	DUMPFPN(FPE_REG, x);
    416        1.1  simonb 	return (x);
    417        1.1  simonb }
    418