Home | History | Annotate | Line # | Download | only in dev
      1  1.59    andvar /*	$NetBSD: if_emac.c,v 1.59 2024/02/10 09:30:05 andvar Exp $	*/
      2   1.1    simonb 
      3   1.1    simonb /*
      4   1.3    simonb  * Copyright 2001, 2002 Wasabi Systems, Inc.
      5   1.1    simonb  * All rights reserved.
      6   1.1    simonb  *
      7   1.3    simonb  * Written by Simon Burge and Jason Thorpe for Wasabi Systems, Inc.
      8   1.1    simonb  *
      9   1.1    simonb  * Redistribution and use in source and binary forms, with or without
     10   1.1    simonb  * modification, are permitted provided that the following conditions
     11   1.1    simonb  * are met:
     12   1.1    simonb  * 1. Redistributions of source code must retain the above copyright
     13   1.1    simonb  *    notice, this list of conditions and the following disclaimer.
     14   1.1    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     15   1.1    simonb  *    notice, this list of conditions and the following disclaimer in the
     16   1.1    simonb  *    documentation and/or other materials provided with the distribution.
     17   1.1    simonb  * 3. All advertising materials mentioning features or use of this software
     18   1.1    simonb  *    must display the following acknowledgement:
     19   1.1    simonb  *      This product includes software developed for the NetBSD Project by
     20   1.1    simonb  *      Wasabi Systems, Inc.
     21   1.1    simonb  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22   1.1    simonb  *    or promote products derived from this software without specific prior
     23   1.1    simonb  *    written permission.
     24   1.1    simonb  *
     25   1.1    simonb  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26   1.1    simonb  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27   1.1    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28   1.1    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29   1.1    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30   1.1    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31   1.1    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32   1.1    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33   1.1    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34   1.1    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35   1.1    simonb  * POSSIBILITY OF SUCH DAMAGE.
     36   1.1    simonb  */
     37  1.15     lukem 
     38  1.36  kiyohara /*
     39  1.36  kiyohara  * emac(4) supports following ibm4xx's EMACs.
     40  1.36  kiyohara  *   XXXX: ZMII and 'TCP Accelaration Hardware' not support yet...
     41  1.36  kiyohara  *
     42  1.36  kiyohara  *            tested
     43  1.36  kiyohara  *            ------
     44  1.36  kiyohara  * 405EP	-  10/100 x2
     45  1.36  kiyohara  * 405EX/EXr	o  10/100/1000 x2 (EXr x1), STA v2, 256bit hash-Table, RGMII
     46  1.36  kiyohara  * 405GP/GPr	o  10/100
     47  1.36  kiyohara  * 440EP	-  10/100 x2, ZMII
     48  1.36  kiyohara  * 440GP	-  10/100 x2, ZMII
     49  1.36  kiyohara  * 440GX	-  10/100/1000 x4, ZMII/RGMII(ch 2, 3), TAH(ch 2, 3)
     50  1.36  kiyohara  * 440SP	-  10/100/1000
     51  1.36  kiyohara  * 440SPe	-  10/100/1000, STA v2
     52  1.36  kiyohara  */
     53  1.36  kiyohara 
     54  1.15     lukem #include <sys/cdefs.h>
     55  1.59    andvar __KERNEL_RCSID(0, "$NetBSD: if_emac.c,v 1.59 2024/02/10 09:30:05 andvar Exp $");
     56   1.1    simonb 
     57  1.53       rin #ifdef _KERNEL_OPT
     58  1.36  kiyohara #include "opt_emac.h"
     59  1.53       rin #endif
     60   1.1    simonb 
     61   1.1    simonb #include <sys/param.h>
     62   1.1    simonb #include <sys/systm.h>
     63   1.1    simonb #include <sys/mbuf.h>
     64   1.1    simonb #include <sys/kernel.h>
     65   1.1    simonb #include <sys/socket.h>
     66   1.1    simonb #include <sys/ioctl.h>
     67  1.39      matt #include <sys/cpu.h>
     68  1.39      matt #include <sys/device.h>
     69   1.1    simonb 
     70  1.54       rin #include <sys/rndsource.h>
     71  1.54       rin 
     72   1.3    simonb #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     73   1.1    simonb 
     74   1.1    simonb #include <net/if.h>
     75   1.1    simonb #include <net/if_dl.h>
     76   1.1    simonb #include <net/if_media.h>
     77   1.1    simonb #include <net/if_ether.h>
     78   1.1    simonb 
     79   1.1    simonb #include <net/bpf.h>
     80   1.1    simonb 
     81  1.39      matt #include <powerpc/ibm4xx/cpu.h>
     82  1.36  kiyohara #include <powerpc/ibm4xx/dcr4xx.h>
     83   1.3    simonb #include <powerpc/ibm4xx/mal405gp.h>
     84   1.7    simonb #include <powerpc/ibm4xx/dev/emacreg.h>
     85   1.3    simonb #include <powerpc/ibm4xx/dev/if_emacreg.h>
     86  1.36  kiyohara #include <powerpc/ibm4xx/dev/if_emacvar.h>
     87  1.36  kiyohara #include <powerpc/ibm4xx/dev/malvar.h>
     88  1.36  kiyohara #include <powerpc/ibm4xx/dev/opbreg.h>
     89  1.36  kiyohara #include <powerpc/ibm4xx/dev/opbvar.h>
     90  1.36  kiyohara #include <powerpc/ibm4xx/dev/plbvar.h>
     91  1.36  kiyohara #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
     92  1.36  kiyohara #include <powerpc/ibm4xx/dev/rmiivar.h>
     93  1.36  kiyohara #endif
     94   1.1    simonb 
     95   1.1    simonb #include <dev/mii/miivar.h>
     96   1.1    simonb 
     97  1.36  kiyohara #include "locators.h"
     98  1.36  kiyohara 
     99  1.36  kiyohara 
    100   1.3    simonb /*
    101   1.3    simonb  * Transmit descriptor list size.  There are two Tx channels, each with
    102   1.3    simonb  * up to 256 hardware descriptors available.  We currently use one Tx
    103   1.3    simonb  * channel.  We tell the upper layers that they can queue a lot of
    104   1.3    simonb  * packets, and we go ahead and manage up to 64 of them at a time.  We
    105   1.3    simonb  * allow up to 16 DMA segments per packet.
    106   1.3    simonb  */
    107   1.3    simonb #define	EMAC_NTXSEGS		16
    108   1.3    simonb #define	EMAC_TXQUEUELEN		64
    109   1.3    simonb #define	EMAC_TXQUEUELEN_MASK	(EMAC_TXQUEUELEN - 1)
    110   1.3    simonb #define	EMAC_TXQUEUE_GC		(EMAC_TXQUEUELEN / 4)
    111   1.3    simonb #define	EMAC_NTXDESC		256
    112   1.3    simonb #define	EMAC_NTXDESC_MASK	(EMAC_NTXDESC - 1)
    113   1.3    simonb #define	EMAC_NEXTTX(x)		(((x) + 1) & EMAC_NTXDESC_MASK)
    114   1.3    simonb #define	EMAC_NEXTTXS(x)		(((x) + 1) & EMAC_TXQUEUELEN_MASK)
    115   1.3    simonb 
    116   1.3    simonb /*
    117   1.3    simonb  * Receive descriptor list size.  There is one Rx channel with up to 256
    118   1.3    simonb  * hardware descriptors available.  We allocate 64 receive descriptors,
    119   1.3    simonb  * each with a 2k buffer (MCLBYTES).
    120   1.3    simonb  */
    121   1.3    simonb #define	EMAC_NRXDESC		64
    122   1.3    simonb #define	EMAC_NRXDESC_MASK	(EMAC_NRXDESC - 1)
    123   1.3    simonb #define	EMAC_NEXTRX(x)		(((x) + 1) & EMAC_NRXDESC_MASK)
    124   1.3    simonb #define	EMAC_PREVRX(x)		(((x) - 1) & EMAC_NRXDESC_MASK)
    125   1.3    simonb 
    126   1.3    simonb /*
    127   1.3    simonb  * Transmit/receive descriptors that are DMA'd to the EMAC.
    128   1.3    simonb  */
    129   1.3    simonb struct emac_control_data {
    130   1.3    simonb 	struct mal_descriptor ecd_txdesc[EMAC_NTXDESC];
    131   1.3    simonb 	struct mal_descriptor ecd_rxdesc[EMAC_NRXDESC];
    132   1.3    simonb };
    133   1.3    simonb 
    134   1.3    simonb #define	EMAC_CDOFF(x)		offsetof(struct emac_control_data, x)
    135   1.3    simonb #define	EMAC_CDTXOFF(x)		EMAC_CDOFF(ecd_txdesc[(x)])
    136   1.3    simonb #define	EMAC_CDRXOFF(x)		EMAC_CDOFF(ecd_rxdesc[(x)])
    137   1.3    simonb 
    138   1.3    simonb /*
    139   1.3    simonb  * Software state for transmit jobs.
    140   1.3    simonb  */
    141   1.3    simonb struct emac_txsoft {
    142   1.3    simonb 	struct mbuf *txs_mbuf;		/* head of mbuf chain */
    143   1.3    simonb 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    144   1.3    simonb 	int txs_firstdesc;		/* first descriptor in packet */
    145   1.3    simonb 	int txs_lastdesc;		/* last descriptor in packet */
    146   1.3    simonb 	int txs_ndesc;			/* # of descriptors used */
    147   1.3    simonb };
    148   1.3    simonb 
    149   1.3    simonb /*
    150   1.3    simonb  * Software state for receive descriptors.
    151   1.3    simonb  */
    152   1.3    simonb struct emac_rxsoft {
    153   1.3    simonb 	struct mbuf *rxs_mbuf;		/* head of mbuf chain */
    154   1.3    simonb 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    155   1.3    simonb };
    156   1.3    simonb 
    157   1.3    simonb /*
    158   1.3    simonb  * Software state per device.
    159   1.3    simonb  */
    160   1.1    simonb struct emac_softc {
    161  1.36  kiyohara 	device_t sc_dev;		/* generic device information */
    162  1.36  kiyohara 	int sc_instance;		/* instance no. */
    163   1.1    simonb 	bus_space_tag_t sc_st;		/* bus space tag */
    164   1.1    simonb 	bus_space_handle_t sc_sh;	/* bus space handle */
    165   1.1    simonb 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    166   1.1    simonb 	struct ethercom sc_ethercom;	/* ethernet common data */
    167   1.1    simonb 	void *sc_sdhook;		/* shutdown hook */
    168   1.3    simonb 	void *sc_powerhook;		/* power management hook */
    169   1.3    simonb 
    170   1.3    simonb 	struct mii_data sc_mii;		/* MII/media information */
    171   1.3    simonb 	struct callout sc_callout;	/* tick callout */
    172   1.3    simonb 
    173  1.36  kiyohara 	uint32_t sc_mr1;		/* copy of Mode Register 1 */
    174  1.36  kiyohara 	uint32_t sc_stacr_read;		/* Read opcode of STAOPC of STACR */
    175  1.36  kiyohara 	uint32_t sc_stacr_write;	/* Write opcode of STAOPC of STACR */
    176  1.36  kiyohara 	uint32_t sc_stacr_bits;		/* misc bits of STACR */
    177  1.36  kiyohara 	bool sc_stacr_completed;	/* Operation completed of STACR */
    178  1.36  kiyohara 	int sc_htsize;			/* Hash Table size */
    179   1.3    simonb 
    180   1.3    simonb 	bus_dmamap_t sc_cddmamap;	/* control data dma map */
    181   1.3    simonb #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    182   1.3    simonb 
    183   1.3    simonb 	/* Software state for transmit/receive descriptors. */
    184   1.3    simonb 	struct emac_txsoft sc_txsoft[EMAC_TXQUEUELEN];
    185   1.3    simonb 	struct emac_rxsoft sc_rxsoft[EMAC_NRXDESC];
    186   1.3    simonb 
    187   1.3    simonb 	/* Control data structures. */
    188   1.3    simonb 	struct emac_control_data *sc_control_data;
    189   1.3    simonb #define	sc_txdescs	sc_control_data->ecd_txdesc
    190   1.3    simonb #define	sc_rxdescs	sc_control_data->ecd_rxdesc
    191   1.3    simonb 
    192   1.3    simonb #ifdef EMAC_EVENT_COUNTERS
    193   1.3    simonb 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    194   1.3    simonb 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
    195   1.3    simonb 	struct evcnt sc_ev_rxde;	/* Rx descriptor interrupts */
    196   1.3    simonb 	struct evcnt sc_ev_txde;	/* Tx descriptor interrupts */
    197   1.3    simonb 	struct evcnt sc_ev_intr;	/* General EMAC interrupts */
    198   1.3    simonb 
    199   1.3    simonb 	struct evcnt sc_ev_txreap;	/* Calls to Tx descriptor reaper */
    200   1.3    simonb 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    201   1.3    simonb 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    202   1.3    simonb 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    203   1.3    simonb 	struct evcnt sc_ev_tu;		/* Tx underrun */
    204   1.3    simonb #endif /* EMAC_EVENT_COUNTERS */
    205   1.3    simonb 
    206   1.3    simonb 	int sc_txfree;			/* number of free Tx descriptors */
    207   1.3    simonb 	int sc_txnext;			/* next ready Tx descriptor */
    208   1.3    simonb 
    209   1.3    simonb 	int sc_txsfree;			/* number of free Tx jobs */
    210   1.3    simonb 	int sc_txsnext;			/* next ready Tx job */
    211   1.3    simonb 	int sc_txsdirty;		/* dirty Tx jobs */
    212   1.3    simonb 
    213   1.3    simonb 	int sc_rxptr;			/* next ready RX descriptor/descsoft */
    214  1.36  kiyohara 
    215  1.54       rin 	krndsource_t rnd_source;	/* random source */
    216  1.54       rin 
    217  1.36  kiyohara 	void (*sc_rmii_enable)(device_t, int);		/* reduced MII enable */
    218  1.36  kiyohara 	void (*sc_rmii_disable)(device_t, int);		/* reduced MII disable*/
    219  1.36  kiyohara 	void (*sc_rmii_speed)(device_t, int, int);	/* reduced MII speed */
    220   1.1    simonb };
    221   1.1    simonb 
    222   1.3    simonb #ifdef EMAC_EVENT_COUNTERS
    223   1.3    simonb #define	EMAC_EVCNT_INCR(ev)	(ev)->ev_count++
    224   1.3    simonb #else
    225   1.3    simonb #define	EMAC_EVCNT_INCR(ev)	/* nothing */
    226   1.3    simonb #endif
    227   1.3    simonb 
    228   1.3    simonb #define	EMAC_CDTXADDR(sc, x)	((sc)->sc_cddma + EMAC_CDTXOFF((x)))
    229   1.3    simonb #define	EMAC_CDRXADDR(sc, x)	((sc)->sc_cddma + EMAC_CDRXOFF((x)))
    230   1.3    simonb 
    231   1.3    simonb #define	EMAC_CDTXSYNC(sc, x, n, ops)					\
    232   1.3    simonb do {									\
    233   1.3    simonb 	int __x, __n;							\
    234   1.3    simonb 									\
    235   1.3    simonb 	__x = (x);							\
    236   1.3    simonb 	__n = (n);							\
    237   1.3    simonb 									\
    238   1.3    simonb 	/* If it will wrap around, sync to the end of the ring. */	\
    239   1.3    simonb 	if ((__x + __n) > EMAC_NTXDESC) {				\
    240   1.3    simonb 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    241   1.3    simonb 		    EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) *	\
    242   1.3    simonb 		    (EMAC_NTXDESC - __x), (ops));			\
    243   1.3    simonb 		__n -= (EMAC_NTXDESC - __x);				\
    244   1.3    simonb 		__x = 0;						\
    245   1.3    simonb 	}								\
    246   1.3    simonb 									\
    247   1.3    simonb 	/* Now sync whatever is left. */				\
    248   1.3    simonb 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    249   1.3    simonb 	    EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * __n, (ops)); \
    250   1.3    simonb } while (/*CONSTCOND*/0)
    251   1.3    simonb 
    252   1.3    simonb #define	EMAC_CDRXSYNC(sc, x, ops)					\
    253   1.3    simonb do {									\
    254   1.3    simonb 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    255   1.3    simonb 	    EMAC_CDRXOFF((x)), sizeof(struct mal_descriptor), (ops));	\
    256   1.3    simonb } while (/*CONSTCOND*/0)
    257   1.3    simonb 
    258   1.3    simonb #define	EMAC_INIT_RXDESC(sc, x)						\
    259   1.3    simonb do {									\
    260   1.3    simonb 	struct emac_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    261   1.3    simonb 	struct mal_descriptor *__rxd = &(sc)->sc_rxdescs[(x)];		\
    262   1.3    simonb 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    263   1.3    simonb 									\
    264   1.3    simonb 	/*								\
    265   1.3    simonb 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    266   1.3    simonb 	 * so that the payload after the Ethernet header is aligned	\
    267   1.3    simonb 	 * to a 4-byte boundary.					\
    268   1.3    simonb 	 */								\
    269   1.3    simonb 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    270   1.3    simonb 									\
    271   1.3    simonb 	__rxd->md_data = __rxs->rxs_dmamap->dm_segs[0].ds_addr + 2;	\
    272   1.3    simonb 	__rxd->md_data_len = __m->m_ext.ext_size - 2;			\
    273   1.3    simonb 	__rxd->md_stat_ctrl = MAL_RX_EMPTY | MAL_RX_INTERRUPT |		\
    274   1.3    simonb 	    /* Set wrap on last descriptor. */				\
    275   1.3    simonb 	    (((x) == EMAC_NRXDESC - 1) ? MAL_RX_WRAP : 0);		\
    276  1.50   msaitoh 	EMAC_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
    277   1.3    simonb } while (/*CONSTCOND*/0)
    278   1.3    simonb 
    279   1.3    simonb #define	EMAC_WRITE(sc, reg, val) \
    280   1.3    simonb 	bus_space_write_stream_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    281   1.3    simonb #define	EMAC_READ(sc, reg) \
    282   1.3    simonb 	bus_space_read_stream_4((sc)->sc_st, (sc)->sc_sh, (reg))
    283   1.3    simonb 
    284  1.36  kiyohara #define	EMAC_SET_FILTER(aht, crc) \
    285  1.36  kiyohara do {									\
    286  1.36  kiyohara 	(aht)[3 - (((crc) >> 26) >> 4)] |= 1 << (((crc) >> 26) & 0xf);	\
    287  1.36  kiyohara } while (/*CONSTCOND*/0)
    288  1.36  kiyohara #define	EMAC_SET_FILTER256(aht, crc) \
    289  1.18    simonb do {									\
    290  1.36  kiyohara 	(aht)[7 - (((crc) >> 24) >> 5)] |= 1 << (((crc) >> 24) & 0x1f);	\
    291  1.18    simonb } while (/*CONSTCOND*/0)
    292  1.18    simonb 
    293  1.36  kiyohara static int	emac_match(device_t, cfdata_t, void *);
    294  1.36  kiyohara static void	emac_attach(device_t, device_t, void *);
    295   1.3    simonb 
    296  1.36  kiyohara static int	emac_intr(void *);
    297   1.3    simonb static void	emac_shutdown(void *);
    298  1.36  kiyohara 
    299   1.3    simonb static void	emac_start(struct ifnet *);
    300  1.36  kiyohara static int	emac_ioctl(struct ifnet *, u_long, void *);
    301  1.36  kiyohara static int	emac_init(struct ifnet *);
    302   1.3    simonb static void	emac_stop(struct ifnet *, int);
    303   1.3    simonb static void	emac_watchdog(struct ifnet *);
    304  1.36  kiyohara 
    305  1.36  kiyohara static int	emac_add_rxbuf(struct emac_softc *, int);
    306  1.36  kiyohara static void	emac_rxdrain(struct emac_softc *);
    307  1.18    simonb static int	emac_set_filter(struct emac_softc *);
    308  1.36  kiyohara static int	emac_txreap(struct emac_softc *);
    309   1.3    simonb 
    310  1.36  kiyohara static void	emac_soft_reset(struct emac_softc *);
    311  1.36  kiyohara static void	emac_smart_reset(struct emac_softc *);
    312   1.1    simonb 
    313  1.49   msaitoh static int	emac_mii_readreg(device_t, int, int, uint16_t *);
    314  1.49   msaitoh static int	emac_mii_writereg(device_t, int, int, uint16_t);
    315  1.41      matt static void	emac_mii_statchg(struct ifnet *);
    316  1.36  kiyohara static uint32_t	emac_mii_wait(struct emac_softc *);
    317   1.3    simonb static void	emac_mii_tick(void *);
    318   1.3    simonb 
    319   1.3    simonb int		emac_copy_small = 0;
    320   1.3    simonb 
    321  1.36  kiyohara CFATTACH_DECL_NEW(emac, sizeof(struct emac_softc),
    322  1.13   thorpej     emac_match, emac_attach, NULL, NULL);
    323   1.1    simonb 
    324  1.36  kiyohara 
    325   1.1    simonb static int
    326  1.36  kiyohara emac_match(device_t parent, cfdata_t cf, void *aux)
    327   1.1    simonb {
    328   1.5    simonb 	struct opb_attach_args *oaa = aux;
    329   1.1    simonb 
    330   1.3    simonb 	/* match only on-chip ethernet devices */
    331  1.10   thorpej 	if (strcmp(oaa->opb_name, cf->cf_name) == 0)
    332  1.36  kiyohara 		return 1;
    333   1.1    simonb 
    334  1.36  kiyohara 	return 0;
    335   1.1    simonb }
    336   1.1    simonb 
    337   1.1    simonb static void
    338  1.36  kiyohara emac_attach(device_t parent, device_t self, void *aux)
    339   1.1    simonb {
    340   1.5    simonb 	struct opb_attach_args *oaa = aux;
    341  1.36  kiyohara 	struct emac_softc *sc = device_private(self);
    342   1.3    simonb 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    343   1.3    simonb 	struct mii_data *mii = &sc->sc_mii;
    344  1.38      matt 	const char * xname = device_xname(self);
    345   1.3    simonb 	bus_dma_segment_t seg;
    346  1.36  kiyohara 	int error, i, nseg, opb_freq, opbc, mii_phy = MII_PHY_ANY;
    347  1.26   thorpej 	const uint8_t *enaddr;
    348  1.36  kiyohara 	prop_dictionary_t dict = device_properties(self);
    349  1.26   thorpej 	prop_data_t ea;
    350   1.1    simonb 
    351  1.27  kiyohara 	bus_space_map(oaa->opb_bt, oaa->opb_addr, EMAC_NREG, 0, &sc->sc_sh);
    352  1.36  kiyohara 
    353  1.36  kiyohara 	sc->sc_dev = self;
    354  1.36  kiyohara 	sc->sc_instance = oaa->opb_instance;
    355   1.9    simonb 	sc->sc_st = oaa->opb_bt;
    356   1.5    simonb 	sc->sc_dmat = oaa->opb_dmat;
    357   1.1    simonb 
    358  1.36  kiyohara 	callout_init(&sc->sc_callout, 0);
    359  1.36  kiyohara 
    360  1.36  kiyohara 	aprint_naive("\n");
    361  1.36  kiyohara 	aprint_normal(": Ethernet Media Access Controller\n");
    362   1.3    simonb 
    363  1.36  kiyohara 	/* Fetch the Ethernet address. */
    364  1.36  kiyohara 	ea = prop_dictionary_get(dict, "mac-address");
    365  1.36  kiyohara 	if (ea == NULL) {
    366  1.36  kiyohara 		aprint_error_dev(self, "unable to get mac-address property\n");
    367  1.36  kiyohara 		return;
    368  1.36  kiyohara 	}
    369  1.36  kiyohara 	KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
    370  1.36  kiyohara 	KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
    371  1.36  kiyohara 	enaddr = prop_data_data_nocopy(ea);
    372  1.36  kiyohara 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
    373  1.33  kiyohara 
    374  1.36  kiyohara #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
    375  1.36  kiyohara 	/* Fetch the MII offset. */
    376  1.36  kiyohara 	prop_dictionary_get_uint32(dict, "mii-phy", &mii_phy);
    377  1.36  kiyohara 
    378  1.36  kiyohara #ifdef EMAC_ZMII_PHY
    379  1.36  kiyohara 	if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_ZMII)
    380  1.36  kiyohara 		zmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
    381  1.36  kiyohara 		    &sc->sc_rmii_disable, &sc->sc_rmii_speed);
    382  1.36  kiyohara #endif
    383  1.36  kiyohara #ifdef EMAC_RGMII_PHY
    384  1.36  kiyohara 	if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_RGMII)
    385  1.36  kiyohara 		rgmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
    386  1.36  kiyohara 		    &sc->sc_rmii_disable, &sc->sc_rmii_speed);
    387  1.36  kiyohara #endif
    388  1.36  kiyohara #endif
    389   1.3    simonb 
    390   1.3    simonb 	/*
    391   1.3    simonb 	 * Allocate the control data structures, and create and load the
    392   1.3    simonb 	 * DMA map for it.
    393   1.3    simonb 	 */
    394   1.3    simonb 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    395   1.3    simonb 	    sizeof(struct emac_control_data), 0, 0, &seg, 1, &nseg, 0)) != 0) {
    396  1.36  kiyohara 		aprint_error_dev(self,
    397  1.36  kiyohara 		    "unable to allocate control data, error = %d\n", error);
    398   1.3    simonb 		goto fail_0;
    399   1.3    simonb 	}
    400   1.3    simonb 
    401   1.3    simonb 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    402  1.28  christos 	    sizeof(struct emac_control_data), (void **)&sc->sc_control_data,
    403   1.3    simonb 	    BUS_DMA_COHERENT)) != 0) {
    404  1.36  kiyohara 		aprint_error_dev(self,
    405  1.36  kiyohara 		    "unable to map control data, error = %d\n", error);
    406   1.3    simonb 		goto fail_1;
    407   1.3    simonb 	}
    408   1.3    simonb 
    409   1.3    simonb 	if ((error = bus_dmamap_create(sc->sc_dmat,
    410   1.3    simonb 	    sizeof(struct emac_control_data), 1,
    411   1.3    simonb 	    sizeof(struct emac_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    412  1.36  kiyohara 		aprint_error_dev(self,
    413  1.36  kiyohara 		    "unable to create control data DMA map, error = %d\n",
    414  1.36  kiyohara 		    error);
    415   1.3    simonb 		goto fail_2;
    416   1.3    simonb 	}
    417   1.3    simonb 
    418   1.3    simonb 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    419   1.3    simonb 	    sc->sc_control_data, sizeof(struct emac_control_data), NULL,
    420   1.3    simonb 	    0)) != 0) {
    421  1.36  kiyohara 		aprint_error_dev(self,
    422  1.36  kiyohara 		    "unable to load control data DMA map, error = %d\n", error);
    423   1.3    simonb 		goto fail_3;
    424   1.3    simonb 	}
    425   1.3    simonb 
    426   1.3    simonb 	/*
    427   1.3    simonb 	 * Create the transmit buffer DMA maps.
    428   1.3    simonb 	 */
    429   1.3    simonb 	for (i = 0; i < EMAC_TXQUEUELEN; i++) {
    430   1.3    simonb 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    431   1.3    simonb 		    EMAC_NTXSEGS, MCLBYTES, 0, 0,
    432   1.3    simonb 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    433  1.36  kiyohara 			aprint_error_dev(self,
    434  1.36  kiyohara 			    "unable to create tx DMA map %d, error = %d\n",
    435  1.36  kiyohara 			    i, error);
    436   1.3    simonb 			goto fail_4;
    437   1.3    simonb 		}
    438   1.3    simonb 	}
    439   1.3    simonb 
    440   1.3    simonb 	/*
    441   1.3    simonb 	 * Create the receive buffer DMA maps.
    442   1.3    simonb 	 */
    443   1.3    simonb 	for (i = 0; i < EMAC_NRXDESC; i++) {
    444   1.3    simonb 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    445   1.3    simonb 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    446  1.36  kiyohara 			aprint_error_dev(self,
    447  1.36  kiyohara 			    "unable to create rx DMA map %d, error = %d\n",
    448  1.36  kiyohara 			    i, error);
    449   1.3    simonb 			goto fail_5;
    450   1.3    simonb 		}
    451   1.3    simonb 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    452   1.3    simonb 	}
    453   1.3    simonb 
    454  1.36  kiyohara 	/* Soft Reset the EMAC.  The chip to a known state. */
    455  1.36  kiyohara 	emac_soft_reset(sc);
    456   1.3    simonb 
    457  1.36  kiyohara 	opb_freq = opb_get_frequency();
    458  1.36  kiyohara 	switch (opb_freq) {
    459  1.56       rin 	case  33333333: opbc =  STACR_OPBC_33MHZ; break;
    460  1.36  kiyohara 	case  50000000: opbc =  STACR_OPBC_50MHZ; break;
    461  1.36  kiyohara 	case  66666666: opbc =  STACR_OPBC_66MHZ; break;
    462  1.36  kiyohara 	case  83333333: opbc =  STACR_OPBC_83MHZ; break;
    463  1.36  kiyohara 	case 100000000: opbc = STACR_OPBC_100MHZ; break;
    464  1.36  kiyohara 
    465  1.36  kiyohara 	default:
    466  1.36  kiyohara 		if (opb_freq > 100000000) {
    467  1.36  kiyohara 			opbc = STACR_OPBC_A100MHZ;
    468  1.36  kiyohara 			break;
    469  1.36  kiyohara 		}
    470  1.58    andvar 		aprint_error_dev(self, "unsupported OPB frequency %dMHz\n",
    471  1.36  kiyohara 		    opb_freq / 1000 / 1000);
    472  1.36  kiyohara 		goto fail_5;
    473  1.36  kiyohara 	}
    474  1.36  kiyohara 	if (oaa->opb_flags & OPB_FLAGS_EMAC_GBE) {
    475  1.36  kiyohara 		sc->sc_mr1 =
    476  1.36  kiyohara 		    MR1_RFS_GBE(MR1__FS_16KB)	|
    477  1.36  kiyohara 		    MR1_TFS_GBE(MR1__FS_16KB)	|
    478  1.36  kiyohara 		    MR1_TR0_MULTIPLE		|
    479  1.36  kiyohara 		    MR1_OBCI(opbc);
    480  1.36  kiyohara 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
    481  1.36  kiyohara 
    482  1.36  kiyohara 		if (oaa->opb_flags & OPB_FLAGS_EMAC_STACV2) {
    483  1.36  kiyohara 			sc->sc_stacr_read = STACR_STAOPC_READ;
    484  1.36  kiyohara 			sc->sc_stacr_write = STACR_STAOPC_WRITE;
    485  1.36  kiyohara 			sc->sc_stacr_bits = STACR_OC;
    486  1.36  kiyohara 			sc->sc_stacr_completed = false;
    487  1.36  kiyohara 		} else {
    488  1.36  kiyohara 			sc->sc_stacr_read = STACR_READ;
    489  1.36  kiyohara 			sc->sc_stacr_write = STACR_WRITE;
    490  1.36  kiyohara 			sc->sc_stacr_completed = true;
    491  1.36  kiyohara 		}
    492  1.36  kiyohara 	} else {
    493  1.36  kiyohara 		/*
    494  1.36  kiyohara 		 * Set up Mode Register 1 - set receive and transmit FIFOs to
    495  1.36  kiyohara 		 * maximum size, allow transmit of multiple packets (only
    496  1.36  kiyohara 		 * channel 0 is used).
    497  1.36  kiyohara 		 *
    498  1.36  kiyohara 		 * XXX: Allow pause packets??
    499  1.36  kiyohara 		 */
    500  1.36  kiyohara 		sc->sc_mr1 =
    501  1.36  kiyohara 		    MR1_RFS(MR1__FS_4KB) |
    502  1.36  kiyohara 		    MR1_TFS(MR1__FS_2KB) |
    503  1.36  kiyohara 		    MR1_TR0_MULTIPLE;
    504  1.36  kiyohara 
    505  1.36  kiyohara 		sc->sc_stacr_read = STACR_READ;
    506  1.36  kiyohara 		sc->sc_stacr_write = STACR_WRITE;
    507  1.36  kiyohara 		sc->sc_stacr_bits = STACR_OPBC(opbc);
    508  1.36  kiyohara 		sc->sc_stacr_completed = true;
    509  1.14   thorpej 	}
    510  1.14   thorpej 
    511  1.55       rin 	intr_establish_xname(oaa->opb_irq, IST_LEVEL, IPL_NET, emac_intr, sc,
    512  1.55       rin 	    device_xname(self));
    513  1.36  kiyohara 	mal_intr_establish(sc->sc_instance, sc);
    514  1.36  kiyohara 
    515  1.36  kiyohara 	if (oaa->opb_flags & OPB_FLAGS_EMAC_HT256)
    516  1.36  kiyohara 		sc->sc_htsize = 256;
    517  1.36  kiyohara 	else
    518  1.36  kiyohara 		sc->sc_htsize = 64;
    519  1.36  kiyohara 
    520  1.36  kiyohara 	/* Clear all interrupts */
    521  1.36  kiyohara 	EMAC_WRITE(sc, EMAC_ISR, ISR_ALL);
    522   1.1    simonb 
    523   1.3    simonb 	/*
    524   1.3    simonb 	 * Initialise the media structures.
    525   1.3    simonb 	 */
    526   1.3    simonb 	mii->mii_ifp = ifp;
    527   1.3    simonb 	mii->mii_readreg = emac_mii_readreg;
    528   1.3    simonb 	mii->mii_writereg = emac_mii_writereg;
    529   1.3    simonb 	mii->mii_statchg = emac_mii_statchg;
    530   1.3    simonb 
    531  1.31    dyoung 	sc->sc_ethercom.ec_mii = mii;
    532  1.31    dyoung 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
    533  1.42   msaitoh 	mii_attach(self, mii, 0xffffffff, mii_phy, MII_OFFSET_ANY,
    534  1.42   msaitoh 	    MIIF_DOPAUSE);
    535   1.3    simonb 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    536  1.50   msaitoh 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
    537  1.50   msaitoh 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
    538   1.3    simonb 	} else
    539  1.50   msaitoh 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    540   1.3    simonb 
    541   1.3    simonb 	ifp = &sc->sc_ethercom.ec_if;
    542  1.38      matt 	strcpy(ifp->if_xname, xname);
    543   1.3    simonb 	ifp->if_softc = sc;
    544   1.3    simonb 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    545  1.36  kiyohara 	ifp->if_start = emac_start;
    546   1.3    simonb 	ifp->if_ioctl = emac_ioctl;
    547   1.3    simonb 	ifp->if_init = emac_init;
    548   1.3    simonb 	ifp->if_stop = emac_stop;
    549  1.36  kiyohara 	ifp->if_watchdog = emac_watchdog;
    550   1.3    simonb 	IFQ_SET_READY(&ifp->if_snd);
    551   1.3    simonb 
    552   1.3    simonb 	/*
    553   1.3    simonb 	 * We can support 802.1Q VLAN-sized frames.
    554   1.3    simonb 	 */
    555   1.3    simonb 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    556   1.3    simonb 
    557   1.3    simonb 	/*
    558   1.3    simonb 	 * Attach the interface.
    559   1.3    simonb 	 */
    560   1.3    simonb 	if_attach(ifp);
    561  1.46     ozaki 	if_deferred_start_init(ifp, NULL);
    562  1.14   thorpej 	ether_ifattach(ifp, enaddr);
    563   1.3    simonb 
    564  1.54       rin 	rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET,
    565  1.54       rin 	    RND_FLAG_DEFAULT);
    566  1.54       rin 
    567   1.3    simonb #ifdef EMAC_EVENT_COUNTERS
    568   1.3    simonb 	/*
    569   1.3    simonb 	 * Attach the event counters.
    570   1.3    simonb 	 */
    571  1.36  kiyohara 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    572  1.38      matt 	    NULL, xname, "txintr");
    573   1.3    simonb 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    574  1.38      matt 	    NULL, xname, "rxintr");
    575  1.36  kiyohara 	evcnt_attach_dynamic(&sc->sc_ev_txde, EVCNT_TYPE_INTR,
    576  1.38      matt 	    NULL, xname, "txde");
    577   1.3    simonb 	evcnt_attach_dynamic(&sc->sc_ev_rxde, EVCNT_TYPE_INTR,
    578  1.38      matt 	    NULL, xname, "rxde");
    579   1.3    simonb 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    580  1.38      matt 	    NULL, xname, "intr");
    581   1.3    simonb 
    582   1.3    simonb 	evcnt_attach_dynamic(&sc->sc_ev_txreap, EVCNT_TYPE_MISC,
    583  1.38      matt 	    NULL, xname, "txreap");
    584   1.3    simonb 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    585  1.38      matt 	    NULL, xname, "txsstall");
    586   1.3    simonb 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    587  1.38      matt 	    NULL, xname, "txdstall");
    588   1.3    simonb 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    589  1.38      matt 	    NULL, xname, "txdrop");
    590   1.3    simonb 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
    591  1.38      matt 	    NULL, xname, "tu");
    592   1.3    simonb #endif /* EMAC_EVENT_COUNTERS */
    593   1.3    simonb 
    594   1.3    simonb 	/*
    595   1.3    simonb 	 * Make sure the interface is shutdown during reboot.
    596   1.3    simonb 	 */
    597   1.3    simonb 	sc->sc_sdhook = shutdownhook_establish(emac_shutdown, sc);
    598   1.3    simonb 	if (sc->sc_sdhook == NULL)
    599  1.36  kiyohara 		aprint_error_dev(self,
    600  1.36  kiyohara 		    "WARNING: unable to establish shutdown hook\n");
    601   1.3    simonb 
    602   1.3    simonb 	return;
    603   1.3    simonb 
    604   1.3    simonb 	/*
    605   1.3    simonb 	 * Free any resources we've allocated during the failed attach
    606   1.3    simonb 	 * attempt.  Do this in reverse order and fall through.
    607   1.3    simonb 	 */
    608   1.3    simonb fail_5:
    609   1.3    simonb 	for (i = 0; i < EMAC_NRXDESC; i++) {
    610   1.3    simonb 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    611   1.3    simonb 			bus_dmamap_destroy(sc->sc_dmat,
    612   1.3    simonb 			    sc->sc_rxsoft[i].rxs_dmamap);
    613   1.3    simonb 	}
    614   1.3    simonb fail_4:
    615   1.3    simonb 	for (i = 0; i < EMAC_TXQUEUELEN; i++) {
    616   1.3    simonb 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    617   1.3    simonb 			bus_dmamap_destroy(sc->sc_dmat,
    618   1.3    simonb 			    sc->sc_txsoft[i].txs_dmamap);
    619   1.3    simonb 	}
    620   1.3    simonb 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    621   1.3    simonb fail_3:
    622   1.3    simonb 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    623   1.3    simonb fail_2:
    624  1.28  christos 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    625   1.3    simonb 	    sizeof(struct emac_control_data));
    626   1.3    simonb fail_1:
    627   1.3    simonb 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    628   1.3    simonb fail_0:
    629   1.3    simonb 	return;
    630   1.3    simonb }
    631   1.3    simonb 
    632   1.3    simonb /*
    633  1.36  kiyohara  * EMAC General interrupt handler
    634   1.3    simonb  */
    635  1.36  kiyohara static int
    636  1.36  kiyohara emac_intr(void *arg)
    637  1.36  kiyohara {
    638  1.36  kiyohara 	struct emac_softc *sc = arg;
    639  1.36  kiyohara 	uint32_t status;
    640  1.36  kiyohara 
    641  1.36  kiyohara 	EMAC_EVCNT_INCR(&sc->sc_ev_intr);
    642  1.36  kiyohara 	status = EMAC_READ(sc, EMAC_ISR);
    643  1.36  kiyohara 
    644  1.36  kiyohara 	/* Clear the interrupt status bits. */
    645  1.36  kiyohara 	EMAC_WRITE(sc, EMAC_ISR, status);
    646  1.36  kiyohara 
    647  1.36  kiyohara 	return 1;
    648  1.36  kiyohara }
    649  1.36  kiyohara 
    650   1.3    simonb static void
    651   1.3    simonb emac_shutdown(void *arg)
    652   1.3    simonb {
    653   1.3    simonb 	struct emac_softc *sc = arg;
    654   1.3    simonb 
    655   1.3    simonb 	emac_stop(&sc->sc_ethercom.ec_if, 0);
    656   1.3    simonb }
    657   1.3    simonb 
    658  1.36  kiyohara 
    659  1.36  kiyohara /*
    660  1.36  kiyohara  * ifnet interface functions
    661  1.36  kiyohara  */
    662  1.36  kiyohara 
    663   1.3    simonb static void
    664   1.3    simonb emac_start(struct ifnet *ifp)
    665   1.3    simonb {
    666   1.3    simonb 	struct emac_softc *sc = ifp->if_softc;
    667   1.3    simonb 	struct mbuf *m0;
    668   1.3    simonb 	struct emac_txsoft *txs;
    669   1.3    simonb 	bus_dmamap_t dmamap;
    670   1.3    simonb 	int error, firsttx, nexttx, lasttx, ofree, seg;
    671  1.17    simonb 
    672  1.17    simonb 	lasttx = 0;	/* XXX gcc */
    673   1.3    simonb 
    674  1.57   thorpej 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    675   1.3    simonb 		return;
    676   1.3    simonb 
    677   1.3    simonb 	/*
    678   1.3    simonb 	 * Remember the previous number of free descriptors.
    679   1.3    simonb 	 */
    680   1.3    simonb 	ofree = sc->sc_txfree;
    681   1.3    simonb 
    682   1.3    simonb 	/*
    683   1.3    simonb 	 * Loop through the send queue, setting up transmit descriptors
    684   1.3    simonb 	 * until we drain the queue, or use up all available transmit
    685   1.3    simonb 	 * descriptors.
    686   1.3    simonb 	 */
    687   1.3    simonb 	for (;;) {
    688   1.3    simonb 		/* Grab a packet off the queue. */
    689   1.3    simonb 		IFQ_POLL(&ifp->if_snd, m0);
    690   1.3    simonb 		if (m0 == NULL)
    691   1.3    simonb 			break;
    692   1.3    simonb 
    693   1.3    simonb 		/*
    694   1.3    simonb 		 * Get a work queue entry.  Reclaim used Tx descriptors if
    695   1.3    simonb 		 * we are running low.
    696   1.3    simonb 		 */
    697   1.3    simonb 		if (sc->sc_txsfree < EMAC_TXQUEUE_GC) {
    698   1.3    simonb 			emac_txreap(sc);
    699   1.3    simonb 			if (sc->sc_txsfree == 0) {
    700   1.3    simonb 				EMAC_EVCNT_INCR(&sc->sc_ev_txsstall);
    701   1.3    simonb 				break;
    702   1.3    simonb 			}
    703   1.3    simonb 		}
    704   1.3    simonb 
    705   1.3    simonb 		txs = &sc->sc_txsoft[sc->sc_txsnext];
    706   1.3    simonb 		dmamap = txs->txs_dmamap;
    707   1.3    simonb 
    708   1.3    simonb 		/*
    709   1.3    simonb 		 * Load the DMA map.  If this fails, the packet either
    710  1.59    andvar 		 * didn't fit in the allotted number of segments, or we
    711   1.3    simonb 		 * were short on resources.  In this case, we'll copy
    712   1.3    simonb 		 * and try again.
    713   1.3    simonb 		 */
    714   1.3    simonb 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    715  1.50   msaitoh 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
    716   1.3    simonb 		if (error) {
    717   1.3    simonb 			if (error == EFBIG) {
    718   1.3    simonb 				EMAC_EVCNT_INCR(&sc->sc_ev_txdrop);
    719  1.36  kiyohara 				aprint_error_ifnet(ifp,
    720  1.36  kiyohara 				    "Tx packet consumes too many "
    721  1.36  kiyohara 				    "DMA segments, dropping...\n");
    722   1.3    simonb 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
    723   1.3    simonb 				    m_freem(m0);
    724   1.3    simonb 				    continue;
    725   1.3    simonb 			}
    726   1.3    simonb 			/* Short on resources, just stop for now. */
    727   1.3    simonb 			break;
    728   1.3    simonb 		}
    729   1.3    simonb 
    730   1.3    simonb 		/*
    731   1.3    simonb 		 * Ensure we have enough descriptors free to describe
    732   1.3    simonb 		 * the packet.
    733   1.3    simonb 		 */
    734   1.3    simonb 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    735   1.3    simonb 			/*
    736   1.3    simonb 			 * Not enough free descriptors to transmit this
    737   1.3    simonb 			 * packet.  We haven't committed anything yet,
    738   1.3    simonb 			 * so just unload the DMA map, put the packet
    739   1.3    simonb 			 * back on the queue, and punt.  Notify the upper
    740   1.3    simonb 			 * layer that there are not more slots left.
    741   1.3    simonb 			 *
    742   1.3    simonb 			 */
    743   1.3    simonb 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    744   1.3    simonb 			EMAC_EVCNT_INCR(&sc->sc_ev_txdstall);
    745   1.3    simonb 			break;
    746   1.3    simonb 		}
    747   1.3    simonb 
    748   1.3    simonb 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    749   1.3    simonb 
    750   1.3    simonb 		/*
    751   1.3    simonb 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    752   1.3    simonb 		 */
    753   1.3    simonb 
    754   1.3    simonb 		/* Sync the DMA map. */
    755   1.3    simonb 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    756   1.3    simonb 		    BUS_DMASYNC_PREWRITE);
    757   1.3    simonb 
    758   1.3    simonb 		/*
    759   1.3    simonb 		 * Store a pointer to the packet so that we can free it
    760   1.3    simonb 		 * later.
    761   1.3    simonb 		 */
    762   1.3    simonb 		txs->txs_mbuf = m0;
    763   1.3    simonb 		txs->txs_firstdesc = sc->sc_txnext;
    764   1.3    simonb 		txs->txs_ndesc = dmamap->dm_nsegs;
    765   1.3    simonb 
    766   1.3    simonb 		/*
    767   1.3    simonb 		 * Initialize the transmit descriptor.
    768   1.3    simonb 		 */
    769   1.3    simonb 		firsttx = sc->sc_txnext;
    770   1.3    simonb 		for (nexttx = sc->sc_txnext, seg = 0;
    771   1.3    simonb 		     seg < dmamap->dm_nsegs;
    772   1.3    simonb 		     seg++, nexttx = EMAC_NEXTTX(nexttx)) {
    773  1.36  kiyohara 			struct mal_descriptor *txdesc =
    774  1.36  kiyohara 			    &sc->sc_txdescs[nexttx];
    775  1.36  kiyohara 
    776   1.3    simonb 			/*
    777   1.3    simonb 			 * If this is the first descriptor we're
    778   1.3    simonb 			 * enqueueing, don't set the TX_READY bit just
    779   1.3    simonb 			 * yet.  That could cause a race condition.
    780   1.3    simonb 			 * We'll do it below.
    781   1.3    simonb 			 */
    782  1.36  kiyohara 			txdesc->md_data = dmamap->dm_segs[seg].ds_addr;
    783  1.36  kiyohara 			txdesc->md_data_len = dmamap->dm_segs[seg].ds_len;
    784  1.36  kiyohara 			txdesc->md_stat_ctrl =
    785  1.36  kiyohara 			    (txdesc->md_stat_ctrl & MAL_TX_WRAP) |
    786   1.3    simonb 			    (nexttx == firsttx ? 0 : MAL_TX_READY) |
    787   1.3    simonb 			    EMAC_TXC_GFCS | EMAC_TXC_GPAD;
    788   1.3    simonb 			lasttx = nexttx;
    789   1.3    simonb 		}
    790   1.3    simonb 
    791   1.3    simonb 		/* Set the LAST bit on the last segment. */
    792   1.3    simonb 		sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_LAST;
    793   1.3    simonb 
    794  1.21    simonb 		/*
    795  1.21    simonb 		 * Set up last segment descriptor to send an interrupt after
    796  1.21    simonb 		 * that descriptor is transmitted, and bypass existing Tx
    797  1.21    simonb 		 * descriptor reaping method (for now...).
    798  1.21    simonb 		 */
    799  1.21    simonb 		sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_INTERRUPT;
    800  1.21    simonb 
    801  1.21    simonb 
    802   1.3    simonb 		txs->txs_lastdesc = lasttx;
    803   1.3    simonb 
    804   1.3    simonb 		/* Sync the descriptors we're using. */
    805   1.3    simonb 		EMAC_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
    806   1.3    simonb 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    807   1.3    simonb 
    808   1.3    simonb 		/*
    809   1.3    simonb 		 * The entire packet chain is set up.  Give the
    810   1.3    simonb 		 * first descriptor to the chip now.
    811   1.3    simonb 		 */
    812   1.3    simonb 		sc->sc_txdescs[firsttx].md_stat_ctrl |= MAL_TX_READY;
    813   1.3    simonb 		EMAC_CDTXSYNC(sc, firsttx, 1,
    814   1.3    simonb 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    815   1.3    simonb 		/*
    816   1.3    simonb 		 * Tell the EMAC that a new packet is available.
    817   1.3    simonb 		 */
    818  1.36  kiyohara 		EMAC_WRITE(sc, EMAC_TMR0, TMR0_GNP0 | TMR0_TFAE_2);
    819   1.3    simonb 
    820   1.3    simonb 		/* Advance the tx pointer. */
    821   1.3    simonb 		sc->sc_txfree -= txs->txs_ndesc;
    822   1.3    simonb 		sc->sc_txnext = nexttx;
    823   1.3    simonb 
    824   1.3    simonb 		sc->sc_txsfree--;
    825   1.3    simonb 		sc->sc_txsnext = EMAC_NEXTTXS(sc->sc_txsnext);
    826   1.3    simonb 
    827   1.3    simonb 		/*
    828   1.3    simonb 		 * Pass the packet to any BPF listeners.
    829   1.3    simonb 		 */
    830  1.48   msaitoh 		bpf_mtap(ifp, m0, BPF_D_OUT);
    831   1.3    simonb 	}
    832   1.3    simonb 
    833  1.36  kiyohara 	if (sc->sc_txfree != ofree)
    834   1.3    simonb 		/* Set a watchdog timer in case the chip flakes out. */
    835   1.3    simonb 		ifp->if_timer = 5;
    836  1.36  kiyohara }
    837  1.36  kiyohara 
    838  1.36  kiyohara static int
    839  1.36  kiyohara emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    840  1.36  kiyohara {
    841  1.36  kiyohara 	struct emac_softc *sc = ifp->if_softc;
    842  1.36  kiyohara 	int s, error;
    843  1.36  kiyohara 
    844  1.36  kiyohara 	s = splnet();
    845  1.36  kiyohara 
    846  1.36  kiyohara 	switch (cmd) {
    847  1.36  kiyohara 	case SIOCSIFMTU:
    848  1.36  kiyohara 	{
    849  1.36  kiyohara 		struct ifreq *ifr = (struct ifreq *)data;
    850  1.36  kiyohara 		int maxmtu;
    851  1.36  kiyohara 
    852  1.36  kiyohara 		if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU)
    853  1.36  kiyohara 			maxmtu = EMAC_MAX_MTU;
    854  1.36  kiyohara 		else
    855  1.36  kiyohara 			maxmtu = ETHERMTU;
    856  1.36  kiyohara 
    857  1.36  kiyohara 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
    858  1.36  kiyohara 			error = EINVAL;
    859  1.36  kiyohara 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
    860  1.36  kiyohara 			break;
    861  1.36  kiyohara 		else if (ifp->if_flags & IFF_UP)
    862  1.36  kiyohara 			error = emac_init(ifp);
    863  1.36  kiyohara 		else
    864  1.36  kiyohara 			error = 0;
    865  1.36  kiyohara 		break;
    866  1.36  kiyohara 	}
    867  1.36  kiyohara 
    868  1.36  kiyohara 	default:
    869  1.36  kiyohara 		error = ether_ioctl(ifp, cmd, data);
    870  1.36  kiyohara 		if (error == ENETRESET) {
    871  1.36  kiyohara 			/*
    872  1.36  kiyohara 			 * Multicast list has changed; set the hardware filter
    873  1.36  kiyohara 			 * accordingly.
    874  1.36  kiyohara 			 */
    875  1.36  kiyohara 			if (ifp->if_flags & IFF_RUNNING)
    876  1.36  kiyohara 				error = emac_set_filter(sc);
    877  1.36  kiyohara 			else
    878  1.36  kiyohara 				error = 0;
    879  1.36  kiyohara 		}
    880   1.3    simonb 	}
    881  1.36  kiyohara 
    882  1.36  kiyohara 	/* try to get more packets going */
    883  1.36  kiyohara 	emac_start(ifp);
    884  1.36  kiyohara 
    885  1.36  kiyohara 	splx(s);
    886  1.36  kiyohara 	return error;
    887   1.3    simonb }
    888   1.3    simonb 
    889   1.3    simonb static int
    890   1.3    simonb emac_init(struct ifnet *ifp)
    891   1.3    simonb {
    892   1.3    simonb 	struct emac_softc *sc = ifp->if_softc;
    893   1.3    simonb 	struct emac_rxsoft *rxs;
    894  1.29    dyoung 	const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
    895   1.3    simonb 	int error, i;
    896   1.3    simonb 
    897   1.3    simonb 	error = 0;
    898   1.3    simonb 
    899   1.3    simonb 	/* Cancel any pending I/O. */
    900   1.3    simonb 	emac_stop(ifp, 0);
    901   1.3    simonb 
    902   1.3    simonb 	/* Reset the chip to a known state. */
    903  1.36  kiyohara 	emac_soft_reset(sc);
    904   1.3    simonb 
    905  1.36  kiyohara 	/*
    906   1.3    simonb 	 * Initialise the transmit descriptor ring.
    907   1.3    simonb 	 */
    908   1.3    simonb 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    909   1.3    simonb 	/* set wrap on last descriptor */
    910   1.3    simonb 	sc->sc_txdescs[EMAC_NTXDESC - 1].md_stat_ctrl |= MAL_TX_WRAP;
    911   1.3    simonb 	EMAC_CDTXSYNC(sc, 0, EMAC_NTXDESC,
    912  1.36  kiyohara 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    913   1.3    simonb 	sc->sc_txfree = EMAC_NTXDESC;
    914   1.3    simonb 	sc->sc_txnext = 0;
    915   1.3    simonb 
    916   1.3    simonb 	/*
    917   1.3    simonb 	 * Initialise the transmit job descriptors.
    918   1.3    simonb 	 */
    919   1.3    simonb 	for (i = 0; i < EMAC_TXQUEUELEN; i++)
    920   1.3    simonb 		sc->sc_txsoft[i].txs_mbuf = NULL;
    921   1.3    simonb 	sc->sc_txsfree = EMAC_TXQUEUELEN;
    922   1.3    simonb 	sc->sc_txsnext = 0;
    923   1.3    simonb 	sc->sc_txsdirty = 0;
    924   1.3    simonb 
    925   1.3    simonb 	/*
    926   1.3    simonb 	 * Initialise the receiver descriptor and receive job
    927   1.3    simonb 	 * descriptor rings.
    928   1.3    simonb 	 */
    929   1.3    simonb 	for (i = 0; i < EMAC_NRXDESC; i++) {
    930   1.3    simonb 		rxs = &sc->sc_rxsoft[i];
    931   1.3    simonb 		if (rxs->rxs_mbuf == NULL) {
    932   1.3    simonb 			if ((error = emac_add_rxbuf(sc, i)) != 0) {
    933  1.36  kiyohara 				aprint_error_ifnet(ifp,
    934  1.36  kiyohara 				    "unable to allocate or map rx buffer %d,"
    935  1.36  kiyohara 				    " error = %d\n",
    936  1.36  kiyohara 				    i, error);
    937   1.3    simonb 				/*
    938   1.3    simonb 				 * XXX Should attempt to run with fewer receive
    939   1.3    simonb 				 * XXX buffers instead of just failing.
    940   1.3    simonb 				 */
    941   1.3    simonb 				emac_rxdrain(sc);
    942   1.3    simonb 				goto out;
    943   1.3    simonb 			}
    944   1.3    simonb 		} else
    945   1.3    simonb 			EMAC_INIT_RXDESC(sc, i);
    946   1.3    simonb 	}
    947   1.3    simonb 	sc->sc_rxptr = 0;
    948   1.3    simonb 
    949   1.3    simonb 	/*
    950   1.3    simonb 	 * Set the current media.
    951   1.3    simonb 	 */
    952  1.31    dyoung 	if ((error = ether_mediachange(ifp)) != 0)
    953  1.31    dyoung 		goto out;
    954   1.3    simonb 
    955   1.3    simonb 	/*
    956   1.3    simonb 	 * Load the MAC address.
    957   1.3    simonb 	 */
    958   1.6    simonb 	EMAC_WRITE(sc, EMAC_IAHR, enaddr[0] << 8 | enaddr[1]);
    959   1.6    simonb 	EMAC_WRITE(sc, EMAC_IALR,
    960   1.3    simonb 	    enaddr[2] << 24 | enaddr[3] << 16 | enaddr[4] << 8 | enaddr[5]);
    961   1.3    simonb 
    962  1.36  kiyohara 	/* Enable the transmit and receive channel on the MAL. */
    963  1.36  kiyohara 	error = mal_start(sc->sc_instance,
    964  1.36  kiyohara 	    EMAC_CDTXADDR(sc, 0), EMAC_CDRXADDR(sc, 0));
    965  1.36  kiyohara 	if (error)
    966  1.36  kiyohara 		goto out;
    967  1.36  kiyohara 
    968  1.36  kiyohara 	sc->sc_mr1 &= ~MR1_JPSM;
    969  1.36  kiyohara 	if (ifp->if_mtu > ETHERMTU)
    970  1.36  kiyohara 		/* Enable Jumbo Packet Support Mode */
    971  1.36  kiyohara 		sc->sc_mr1 |= MR1_JPSM;
    972   1.3    simonb 
    973   1.3    simonb 	/* Set fifos, media modes. */
    974   1.6    simonb 	EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
    975   1.3    simonb 
    976   1.3    simonb 	/*
    977   1.3    simonb 	 * Enable Individual and (possibly) Broadcast Address modes,
    978   1.3    simonb 	 * runt packets, and strip padding.
    979   1.3    simonb 	 */
    980  1.36  kiyohara 	EMAC_WRITE(sc, EMAC_RMR, RMR_IAE | RMR_RRP | RMR_SP | RMR_TFAE_2 |
    981  1.18    simonb 	    (ifp->if_flags & IFF_PROMISC ? RMR_PME : 0) |
    982   1.3    simonb 	    (ifp->if_flags & IFF_BROADCAST ? RMR_BAE : 0));
    983   1.3    simonb 
    984   1.3    simonb 	/*
    985  1.27  kiyohara 	 * Set multicast filter.
    986  1.27  kiyohara 	 */
    987  1.27  kiyohara 	emac_set_filter(sc);
    988  1.27  kiyohara 
    989  1.27  kiyohara 	/*
    990   1.3    simonb 	 * Set low- and urgent-priority request thresholds.
    991   1.3    simonb 	 */
    992   1.6    simonb 	EMAC_WRITE(sc, EMAC_TMR1,
    993   1.3    simonb 	    ((7 << TMR1_TLR_SHIFT) & TMR1_TLR_MASK) | /* 16 word burst */
    994   1.3    simonb 	    ((15 << TMR1_TUR_SHIFT) & TMR1_TUR_MASK));
    995   1.3    simonb 	/*
    996   1.3    simonb 	 * Set Transmit Request Threshold Register.
    997   1.3    simonb 	 */
    998   1.6    simonb 	EMAC_WRITE(sc, EMAC_TRTR, TRTR_256);
    999   1.3    simonb 
   1000   1.3    simonb 	/*
   1001   1.3    simonb 	 * Set high and low receive watermarks.
   1002   1.3    simonb 	 */
   1003   1.6    simonb 	EMAC_WRITE(sc, EMAC_RWMR,
   1004   1.3    simonb 	    30 << RWMR_RLWM_SHIFT | 64 << RWMR_RLWM_SHIFT);
   1005   1.3    simonb 
   1006   1.3    simonb 	/*
   1007   1.3    simonb 	 * Set frame gap.
   1008   1.3    simonb 	 */
   1009   1.6    simonb 	EMAC_WRITE(sc, EMAC_IPGVR, 8);
   1010   1.3    simonb 
   1011   1.3    simonb 	/*
   1012  1.36  kiyohara 	 * Set interrupt status enable bits for EMAC.
   1013   1.3    simonb 	 */
   1014   1.6    simonb 	EMAC_WRITE(sc, EMAC_ISER,
   1015  1.36  kiyohara 	    ISR_TXPE |		/* TX Parity Error */
   1016  1.36  kiyohara 	    ISR_RXPE |		/* RX Parity Error */
   1017  1.36  kiyohara 	    ISR_TXUE |		/* TX Underrun Event */
   1018  1.36  kiyohara 	    ISR_RXOE |		/* RX Overrun Event */
   1019  1.36  kiyohara 	    ISR_OVR  |		/* Overrun Error */
   1020  1.36  kiyohara 	    ISR_PP   |		/* Pause Packet */
   1021  1.36  kiyohara 	    ISR_BP   |		/* Bad Packet */
   1022  1.36  kiyohara 	    ISR_RP   |		/* Runt Packet */
   1023  1.36  kiyohara 	    ISR_SE   |		/* Short Event */
   1024  1.36  kiyohara 	    ISR_ALE  |		/* Alignment Error */
   1025  1.36  kiyohara 	    ISR_BFCS |		/* Bad FCS */
   1026  1.36  kiyohara 	    ISR_PTLE |		/* Packet Too Long Error */
   1027  1.36  kiyohara 	    ISR_ORE  |		/* Out of Range Error */
   1028  1.36  kiyohara 	    ISR_IRE  |		/* In Range Error */
   1029  1.36  kiyohara 	    ISR_SE0  |		/* Signal Quality Error 0 (SQE) */
   1030  1.36  kiyohara 	    ISR_TE0  |		/* Transmit Error 0 */
   1031  1.36  kiyohara 	    ISR_MOS  |		/* MMA Operation Succeeded */
   1032  1.36  kiyohara 	    ISR_MOF);		/* MMA Operation Failed */
   1033   1.3    simonb 
   1034   1.3    simonb 	/*
   1035   1.3    simonb 	 * Enable the transmit and receive channel on the EMAC.
   1036   1.3    simonb 	 */
   1037   1.6    simonb 	EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
   1038   1.3    simonb 
   1039   1.3    simonb 	/*
   1040   1.3    simonb 	 * Start the one second MII clock.
   1041   1.3    simonb 	 */
   1042   1.3    simonb 	callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
   1043   1.3    simonb 
   1044   1.3    simonb 	/*
   1045   1.3    simonb 	 * ... all done!
   1046   1.3    simonb 	 */
   1047   1.3    simonb 	ifp->if_flags |= IFF_RUNNING;
   1048   1.3    simonb 
   1049   1.3    simonb  out:
   1050   1.3    simonb 	if (error) {
   1051  1.57   thorpej 		ifp->if_flags &= ~IFF_RUNNING;
   1052   1.3    simonb 		ifp->if_timer = 0;
   1053  1.36  kiyohara 		aprint_error_ifnet(ifp, "interface not running\n");
   1054   1.3    simonb 	}
   1055  1.36  kiyohara 	return error;
   1056   1.3    simonb }
   1057   1.3    simonb 
   1058   1.3    simonb static void
   1059   1.3    simonb emac_stop(struct ifnet *ifp, int disable)
   1060   1.3    simonb {
   1061   1.3    simonb 	struct emac_softc *sc = ifp->if_softc;
   1062   1.3    simonb 	struct emac_txsoft *txs;
   1063   1.3    simonb 	int i;
   1064   1.3    simonb 
   1065   1.3    simonb 	/* Stop the one second clock. */
   1066   1.3    simonb 	callout_stop(&sc->sc_callout);
   1067   1.3    simonb 
   1068   1.3    simonb 	/* Down the MII */
   1069   1.3    simonb 	mii_down(&sc->sc_mii);
   1070   1.3    simonb 
   1071   1.3    simonb 	/* Disable interrupts. */
   1072   1.6    simonb 	EMAC_WRITE(sc, EMAC_ISER, 0);
   1073   1.3    simonb 
   1074   1.3    simonb 	/* Disable the receive and transmit channels. */
   1075  1.36  kiyohara 	mal_stop(sc->sc_instance);
   1076   1.3    simonb 
   1077   1.3    simonb 	/* Disable the transmit enable and receive MACs. */
   1078   1.6    simonb 	EMAC_WRITE(sc, EMAC_MR0,
   1079   1.6    simonb 	    EMAC_READ(sc, EMAC_MR0) & ~(MR0_TXE | MR0_RXE));
   1080   1.3    simonb 
   1081   1.3    simonb 	/* Release any queued transmit buffers. */
   1082   1.3    simonb 	for (i = 0; i < EMAC_TXQUEUELEN; i++) {
   1083   1.3    simonb 		txs = &sc->sc_txsoft[i];
   1084   1.3    simonb 		if (txs->txs_mbuf != NULL) {
   1085   1.3    simonb 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1086   1.3    simonb 			m_freem(txs->txs_mbuf);
   1087   1.3    simonb 			txs->txs_mbuf = NULL;
   1088   1.3    simonb 		}
   1089   1.3    simonb 	}
   1090   1.3    simonb 
   1091   1.3    simonb 	if (disable)
   1092   1.3    simonb 		emac_rxdrain(sc);
   1093   1.3    simonb 
   1094   1.3    simonb 	/*
   1095   1.3    simonb 	 * Mark the interface down and cancel the watchdog timer.
   1096   1.3    simonb 	 */
   1097  1.57   thorpej 	ifp->if_flags &= ~IFF_RUNNING;
   1098   1.3    simonb 	ifp->if_timer = 0;
   1099   1.3    simonb }
   1100   1.3    simonb 
   1101  1.36  kiyohara static void
   1102  1.36  kiyohara emac_watchdog(struct ifnet *ifp)
   1103   1.3    simonb {
   1104   1.3    simonb 	struct emac_softc *sc = ifp->if_softc;
   1105   1.3    simonb 
   1106  1.36  kiyohara 	/*
   1107  1.36  kiyohara 	 * Since we're not interrupting every packet, sweep
   1108  1.36  kiyohara 	 * up before we report an error.
   1109  1.36  kiyohara 	 */
   1110  1.36  kiyohara 	emac_txreap(sc);
   1111  1.36  kiyohara 
   1112  1.36  kiyohara 	if (sc->sc_txfree != EMAC_NTXDESC) {
   1113  1.36  kiyohara 		aprint_error_ifnet(ifp,
   1114  1.36  kiyohara 		    "device timeout (txfree %d txsfree %d txnext %d)\n",
   1115  1.36  kiyohara 		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
   1116  1.52   thorpej 		if_statinc(ifp, if_oerrors);
   1117   1.3    simonb 
   1118  1.36  kiyohara 		/* Reset the interface. */
   1119  1.36  kiyohara 		(void)emac_init(ifp);
   1120  1.36  kiyohara 	} else if (ifp->if_flags & IFF_DEBUG)
   1121  1.36  kiyohara 		aprint_error_ifnet(ifp, "recovered from device timeout\n");
   1122   1.3    simonb 
   1123   1.3    simonb 	/* try to get more packets going */
   1124   1.3    simonb 	emac_start(ifp);
   1125   1.3    simonb }
   1126   1.3    simonb 
   1127  1.36  kiyohara static int
   1128  1.36  kiyohara emac_add_rxbuf(struct emac_softc *sc, int idx)
   1129   1.3    simonb {
   1130  1.36  kiyohara 	struct emac_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1131  1.36  kiyohara 	struct mbuf *m;
   1132  1.36  kiyohara 	int error;
   1133  1.36  kiyohara 
   1134  1.36  kiyohara 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1135  1.36  kiyohara 	if (m == NULL)
   1136  1.36  kiyohara 		return ENOBUFS;
   1137  1.36  kiyohara 
   1138  1.36  kiyohara 	MCLGET(m, M_DONTWAIT);
   1139  1.36  kiyohara 	if ((m->m_flags & M_EXT) == 0) {
   1140  1.36  kiyohara 		m_freem(m);
   1141  1.36  kiyohara 		return ENOBUFS;
   1142  1.36  kiyohara 	}
   1143   1.3    simonb 
   1144  1.36  kiyohara 	if (rxs->rxs_mbuf != NULL)
   1145  1.36  kiyohara 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1146  1.36  kiyohara 
   1147  1.36  kiyohara 	rxs->rxs_mbuf = m;
   1148   1.3    simonb 
   1149  1.36  kiyohara 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1150  1.36  kiyohara 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1151  1.36  kiyohara 	if (error) {
   1152  1.36  kiyohara 		aprint_error_dev(sc->sc_dev,
   1153  1.36  kiyohara 		    "can't load rx DMA map %d, error = %d\n", idx, error);
   1154  1.36  kiyohara 		panic("emac_add_rxbuf");		/* XXX */
   1155  1.36  kiyohara 	}
   1156   1.3    simonb 
   1157  1.36  kiyohara 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1158  1.36  kiyohara 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1159   1.3    simonb 
   1160  1.36  kiyohara 	EMAC_INIT_RXDESC(sc, idx);
   1161   1.3    simonb 
   1162  1.36  kiyohara 	return 0;
   1163  1.36  kiyohara }
   1164  1.36  kiyohara 
   1165  1.36  kiyohara static void
   1166  1.36  kiyohara emac_rxdrain(struct emac_softc *sc)
   1167  1.36  kiyohara {
   1168  1.36  kiyohara 	struct emac_rxsoft *rxs;
   1169  1.36  kiyohara 	int i;
   1170  1.36  kiyohara 
   1171  1.36  kiyohara 	for (i = 0; i < EMAC_NRXDESC; i++) {
   1172  1.36  kiyohara 		rxs = &sc->sc_rxsoft[i];
   1173  1.36  kiyohara 		if (rxs->rxs_mbuf != NULL) {
   1174  1.36  kiyohara 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1175  1.36  kiyohara 			m_freem(rxs->rxs_mbuf);
   1176  1.36  kiyohara 			rxs->rxs_mbuf = NULL;
   1177  1.36  kiyohara 		}
   1178  1.36  kiyohara 	}
   1179   1.3    simonb }
   1180   1.3    simonb 
   1181  1.18    simonb static int
   1182  1.18    simonb emac_set_filter(struct emac_softc *sc)
   1183  1.18    simonb {
   1184  1.51   msaitoh 	struct ethercom *ec = &sc->sc_ethercom;
   1185  1.18    simonb 	struct ether_multistep step;
   1186  1.18    simonb 	struct ether_multi *enm;
   1187  1.18    simonb 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1188  1.36  kiyohara 	uint32_t rmr, crc, mask, tmp, reg, gaht[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   1189  1.36  kiyohara 	int regs, cnt = 0, i;
   1190  1.36  kiyohara 
   1191  1.36  kiyohara 	if (sc->sc_htsize == 256) {
   1192  1.36  kiyohara 		reg = EMAC_GAHT256(0);
   1193  1.36  kiyohara 		regs = 8;
   1194  1.36  kiyohara 	} else {
   1195  1.36  kiyohara 		reg = EMAC_GAHT64(0);
   1196  1.36  kiyohara 		regs = 4;
   1197  1.36  kiyohara 	}
   1198  1.36  kiyohara 	mask = (1ULL << (sc->sc_htsize / regs)) - 1;
   1199  1.18    simonb 
   1200  1.18    simonb 	rmr = EMAC_READ(sc, EMAC_RMR);
   1201  1.18    simonb 	rmr &= ~(RMR_PMME | RMR_MAE);
   1202  1.18    simonb 	ifp->if_flags &= ~IFF_ALLMULTI;
   1203  1.18    simonb 
   1204  1.51   msaitoh 	ETHER_LOCK(ec);
   1205  1.51   msaitoh 	ETHER_FIRST_MULTI(step, ec, enm);
   1206  1.18    simonb 	while (enm != NULL) {
   1207  1.18    simonb 		if (memcmp(enm->enm_addrlo,
   1208  1.18    simonb 		    enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
   1209  1.18    simonb 			/*
   1210  1.18    simonb 			 * We must listen to a range of multicast addresses.
   1211  1.18    simonb 			 * For now, just accept all multicasts, rather than
   1212  1.18    simonb 			 * trying to set only those filter bits needed to match
   1213  1.18    simonb 			 * the range.  (At this time, the only use of address
   1214  1.18    simonb 			 * ranges is for IP multicast routing, for which the
   1215  1.18    simonb 			 * range is big enough to require all bits set.)
   1216  1.18    simonb 			 */
   1217  1.36  kiyohara 			gaht[0] = gaht[1] = gaht[2] = gaht[3] =
   1218  1.36  kiyohara 			    gaht[4] = gaht[5] = gaht[6] = gaht[7] = mask;
   1219  1.18    simonb 			break;
   1220  1.18    simonb 		}
   1221  1.18    simonb 
   1222  1.18    simonb 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1223  1.18    simonb 
   1224  1.36  kiyohara 		if (sc->sc_htsize == 256)
   1225  1.36  kiyohara 			EMAC_SET_FILTER256(gaht, crc);
   1226  1.36  kiyohara 		else
   1227  1.36  kiyohara 			EMAC_SET_FILTER(gaht, crc);
   1228  1.18    simonb 
   1229  1.18    simonb 		ETHER_NEXT_MULTI(step, enm);
   1230  1.18    simonb 		cnt++;
   1231  1.18    simonb 	}
   1232  1.51   msaitoh 	ETHER_UNLOCK(ec);
   1233  1.18    simonb 
   1234  1.36  kiyohara 	for (i = 1, tmp = gaht[0]; i < regs; i++)
   1235  1.36  kiyohara 		tmp &= gaht[i];
   1236  1.36  kiyohara 	if (tmp == mask) {
   1237  1.18    simonb 		/* All categories are true. */
   1238  1.18    simonb 		ifp->if_flags |= IFF_ALLMULTI;
   1239  1.18    simonb 		rmr |= RMR_PMME;
   1240  1.18    simonb 	} else if (cnt != 0) {
   1241  1.18    simonb 		/* Some categories are true. */
   1242  1.36  kiyohara 		for (i = 0; i < regs; i++)
   1243  1.36  kiyohara 			EMAC_WRITE(sc, reg + (i << 2), gaht[i]);
   1244  1.18    simonb 		rmr |= RMR_MAE;
   1245  1.18    simonb 	}
   1246  1.18    simonb 	EMAC_WRITE(sc, EMAC_RMR, rmr);
   1247  1.18    simonb 
   1248  1.18    simonb 	return 0;
   1249  1.18    simonb }
   1250  1.18    simonb 
   1251   1.3    simonb /*
   1252   1.3    simonb  * Reap completed Tx descriptors.
   1253   1.3    simonb  */
   1254   1.3    simonb static int
   1255   1.3    simonb emac_txreap(struct emac_softc *sc)
   1256   1.3    simonb {
   1257   1.3    simonb 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1258   1.3    simonb 	struct emac_txsoft *txs;
   1259  1.20    simonb 	int handled, i;
   1260  1.54       rin 	uint32_t txstat, count;
   1261   1.3    simonb 
   1262   1.3    simonb 	EMAC_EVCNT_INCR(&sc->sc_ev_txreap);
   1263  1.20    simonb 	handled = 0;
   1264   1.3    simonb 
   1265  1.54       rin 	count = 0;
   1266   1.3    simonb 	/*
   1267   1.3    simonb 	 * Go through our Tx list and free mbufs for those
   1268   1.3    simonb 	 * frames that have been transmitted.
   1269   1.3    simonb 	 */
   1270   1.3    simonb 	for (i = sc->sc_txsdirty; sc->sc_txsfree != EMAC_TXQUEUELEN;
   1271   1.3    simonb 	    i = EMAC_NEXTTXS(i), sc->sc_txsfree++) {
   1272   1.3    simonb 		txs = &sc->sc_txsoft[i];
   1273   1.3    simonb 
   1274   1.3    simonb 		EMAC_CDTXSYNC(sc, txs->txs_lastdesc,
   1275   1.3    simonb 		    txs->txs_dmamap->dm_nsegs,
   1276  1.50   msaitoh 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1277   1.3    simonb 
   1278   1.3    simonb 		txstat = sc->sc_txdescs[txs->txs_lastdesc].md_stat_ctrl;
   1279   1.3    simonb 		if (txstat & MAL_TX_READY)
   1280   1.3    simonb 			break;
   1281   1.3    simonb 
   1282  1.20    simonb 		handled = 1;
   1283  1.20    simonb 
   1284   1.3    simonb 		/*
   1285   1.3    simonb 		 * Check for errors and collisions.
   1286   1.3    simonb 		 */
   1287   1.3    simonb 		if (txstat & (EMAC_TXS_UR | EMAC_TXS_ED))
   1288  1.52   thorpej 			if_statinc(ifp, if_oerrors);
   1289   1.3    simonb 
   1290   1.3    simonb #ifdef EMAC_EVENT_COUNTERS
   1291   1.3    simonb 		if (txstat & EMAC_TXS_UR)
   1292   1.3    simonb 			EMAC_EVCNT_INCR(&sc->sc_ev_tu);
   1293   1.3    simonb #endif /* EMAC_EVENT_COUNTERS */
   1294   1.3    simonb 
   1295  1.36  kiyohara 		if (txstat &
   1296  1.36  kiyohara 		    (EMAC_TXS_EC | EMAC_TXS_MC | EMAC_TXS_SC | EMAC_TXS_LC)) {
   1297   1.3    simonb 			if (txstat & EMAC_TXS_EC)
   1298  1.52   thorpej 				if_statadd(ifp, if_collisions, 16);
   1299   1.3    simonb 			else if (txstat & EMAC_TXS_MC)
   1300  1.52   thorpej 				if_statadd(ifp, if_collisions, 2); /* XXX? */
   1301   1.3    simonb 			else if (txstat & EMAC_TXS_SC)
   1302  1.52   thorpej 				if_statinc(ifp, if_collisions);
   1303   1.3    simonb 			if (txstat & EMAC_TXS_LC)
   1304  1.52   thorpej 				if_statinc(ifp, if_collisions);
   1305   1.3    simonb 		} else
   1306  1.52   thorpej 			if_statinc(ifp, if_opackets);
   1307   1.3    simonb 
   1308   1.3    simonb 		if (ifp->if_flags & IFF_DEBUG) {
   1309   1.3    simonb 			if (txstat & EMAC_TXS_ED)
   1310  1.36  kiyohara 				aprint_error_ifnet(ifp, "excessive deferral\n");
   1311   1.3    simonb 			if (txstat & EMAC_TXS_EC)
   1312  1.36  kiyohara 				aprint_error_ifnet(ifp,
   1313  1.36  kiyohara 				    "excessive collisions\n");
   1314   1.3    simonb 		}
   1315   1.3    simonb 
   1316   1.3    simonb 		sc->sc_txfree += txs->txs_ndesc;
   1317   1.3    simonb 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1318   1.3    simonb 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1319   1.3    simonb 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1320   1.3    simonb 		m_freem(txs->txs_mbuf);
   1321   1.3    simonb 		txs->txs_mbuf = NULL;
   1322  1.54       rin 
   1323  1.54       rin 		count++;
   1324   1.3    simonb 	}
   1325   1.3    simonb 
   1326   1.3    simonb 	/* Update the dirty transmit buffer pointer. */
   1327   1.3    simonb 	sc->sc_txsdirty = i;
   1328   1.3    simonb 
   1329   1.3    simonb 	/*
   1330   1.3    simonb 	 * If there are no more pending transmissions, cancel the watchdog
   1331   1.3    simonb 	 * timer.
   1332   1.3    simonb 	 */
   1333   1.3    simonb 	if (sc->sc_txsfree == EMAC_TXQUEUELEN)
   1334   1.3    simonb 		ifp->if_timer = 0;
   1335   1.3    simonb 
   1336  1.54       rin 	if (count != 0)
   1337  1.54       rin 		rnd_add_uint32(&sc->rnd_source, count);
   1338  1.54       rin 
   1339  1.36  kiyohara 	return handled;
   1340  1.36  kiyohara }
   1341  1.36  kiyohara 
   1342  1.36  kiyohara 
   1343  1.36  kiyohara /*
   1344  1.36  kiyohara  * Reset functions
   1345  1.36  kiyohara  */
   1346  1.36  kiyohara 
   1347  1.36  kiyohara static void
   1348  1.36  kiyohara emac_soft_reset(struct emac_softc *sc)
   1349  1.36  kiyohara {
   1350  1.36  kiyohara 	uint32_t sdr;
   1351  1.36  kiyohara 	int t = 0;
   1352  1.36  kiyohara 
   1353  1.36  kiyohara 	/*
   1354  1.36  kiyohara 	 * The PHY must provide a TX Clk in order perform a soft reset the
   1355  1.36  kiyohara 	 * EMAC.  If none is present, select the internal clock,
   1356  1.50   msaitoh 	 * SDR0_MFR[E0CS, E1CS].  After the soft reset, select the external
   1357  1.36  kiyohara 	 * clock.
   1358  1.36  kiyohara 	 */
   1359  1.36  kiyohara 
   1360  1.36  kiyohara 	sdr = mfsdr(DCR_SDR0_MFR);
   1361  1.36  kiyohara 	sdr |= SDR0_MFR_ECS(sc->sc_instance);
   1362  1.36  kiyohara 	mtsdr(DCR_SDR0_MFR, sdr);
   1363  1.36  kiyohara 
   1364  1.36  kiyohara 	EMAC_WRITE(sc, EMAC_MR0, MR0_SRST);
   1365  1.36  kiyohara 
   1366  1.36  kiyohara 	sdr = mfsdr(DCR_SDR0_MFR);
   1367  1.36  kiyohara 	sdr &= ~SDR0_MFR_ECS(sc->sc_instance);
   1368  1.36  kiyohara 	mtsdr(DCR_SDR0_MFR, sdr);
   1369  1.36  kiyohara 
   1370  1.36  kiyohara 	delay(5);
   1371  1.36  kiyohara 
   1372  1.36  kiyohara 	/* wait finish */
   1373  1.36  kiyohara 	while (EMAC_READ(sc, EMAC_MR0) & MR0_SRST) {
   1374  1.36  kiyohara 		if (++t == 1000000 /* 1sec XXXXX */) {
   1375  1.36  kiyohara 			aprint_error_dev(sc->sc_dev, "Soft Reset failed\n");
   1376  1.36  kiyohara 			return;
   1377  1.36  kiyohara 		}
   1378  1.36  kiyohara 		delay(1);
   1379  1.36  kiyohara 	}
   1380  1.36  kiyohara }
   1381  1.36  kiyohara 
   1382  1.36  kiyohara static void
   1383  1.36  kiyohara emac_smart_reset(struct emac_softc *sc)
   1384  1.36  kiyohara {
   1385  1.36  kiyohara 	uint32_t mr0;
   1386  1.36  kiyohara 	int t = 0;
   1387  1.36  kiyohara 
   1388  1.36  kiyohara 	mr0 = EMAC_READ(sc, EMAC_MR0);
   1389  1.36  kiyohara 	if (mr0 & (MR0_TXE | MR0_RXE)) {
   1390  1.36  kiyohara 		mr0 &= ~(MR0_TXE | MR0_RXE);
   1391  1.36  kiyohara 		EMAC_WRITE(sc, EMAC_MR0, mr0);
   1392  1.36  kiyohara 
   1393  1.36  kiyohara 		/* wait idel state */
   1394  1.36  kiyohara 		while ((EMAC_READ(sc, EMAC_MR0) & (MR0_TXI | MR0_RXI)) !=
   1395  1.36  kiyohara 		    (MR0_TXI | MR0_RXI)) {
   1396  1.36  kiyohara 			if (++t == 1000000 /* 1sec XXXXX */) {
   1397  1.36  kiyohara 				aprint_error_dev(sc->sc_dev,
   1398  1.36  kiyohara 				    "Smart Reset failed\n");
   1399  1.36  kiyohara 				return;
   1400  1.36  kiyohara 			}
   1401  1.36  kiyohara 			delay(1);
   1402  1.36  kiyohara 		}
   1403  1.36  kiyohara 	}
   1404   1.3    simonb }
   1405   1.3    simonb 
   1406  1.36  kiyohara 
   1407   1.3    simonb /*
   1408  1.36  kiyohara  * MII related functions
   1409   1.3    simonb  */
   1410  1.36  kiyohara 
   1411   1.3    simonb static int
   1412  1.49   msaitoh emac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1413  1.36  kiyohara {
   1414  1.36  kiyohara 	struct emac_softc *sc = device_private(self);
   1415  1.36  kiyohara 	uint32_t sta_reg;
   1416  1.49   msaitoh 	int rv;
   1417  1.36  kiyohara 
   1418  1.36  kiyohara 	if (sc->sc_rmii_enable)
   1419  1.36  kiyohara 		sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
   1420  1.36  kiyohara 
   1421  1.36  kiyohara 	/* wait for PHY data transfer to complete */
   1422  1.49   msaitoh 	if ((rv = emac_mii_wait(sc)) != 0)
   1423  1.36  kiyohara 		goto fail;
   1424  1.36  kiyohara 
   1425  1.36  kiyohara 	sta_reg =
   1426  1.36  kiyohara 	    sc->sc_stacr_read		|
   1427  1.36  kiyohara 	    (reg << STACR_PRA_SHIFT)	|
   1428  1.36  kiyohara 	    (phy << STACR_PCDA_SHIFT)	|
   1429  1.36  kiyohara 	    sc->sc_stacr_bits;
   1430  1.36  kiyohara 	EMAC_WRITE(sc, EMAC_STACR, sta_reg);
   1431  1.36  kiyohara 
   1432  1.49   msaitoh 	if ((rv = emac_mii_wait(sc)) != 0)
   1433  1.36  kiyohara 		goto fail;
   1434  1.36  kiyohara 	sta_reg = EMAC_READ(sc, EMAC_STACR);
   1435  1.36  kiyohara 
   1436  1.49   msaitoh 	if (sta_reg & STACR_PHYE) {
   1437  1.49   msaitoh 		rv = -1;
   1438  1.49   msaitoh 		goto fail;
   1439  1.49   msaitoh 	}
   1440  1.49   msaitoh 	*val = sta_reg >> STACR_PHYD_SHIFT;
   1441  1.36  kiyohara 
   1442  1.36  kiyohara fail:
   1443  1.36  kiyohara 	if (sc->sc_rmii_disable)
   1444  1.36  kiyohara 		sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
   1445  1.49   msaitoh 	return rv;
   1446  1.36  kiyohara }
   1447  1.36  kiyohara 
   1448  1.49   msaitoh static int
   1449  1.49   msaitoh emac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1450  1.36  kiyohara {
   1451  1.36  kiyohara 	struct emac_softc *sc = device_private(self);
   1452  1.36  kiyohara 	uint32_t sta_reg;
   1453  1.49   msaitoh 	int rv;
   1454  1.36  kiyohara 
   1455  1.36  kiyohara 	if (sc->sc_rmii_enable)
   1456  1.36  kiyohara 		sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
   1457  1.36  kiyohara 
   1458  1.36  kiyohara 	/* wait for PHY data transfer to complete */
   1459  1.49   msaitoh 	if ((rv = emac_mii_wait(sc)) != 0)
   1460  1.36  kiyohara 		goto out;
   1461  1.36  kiyohara 
   1462  1.36  kiyohara 	sta_reg =
   1463  1.36  kiyohara 	    (val << STACR_PHYD_SHIFT)	|
   1464  1.36  kiyohara 	    sc->sc_stacr_write		|
   1465  1.36  kiyohara 	    (reg << STACR_PRA_SHIFT)	|
   1466  1.36  kiyohara 	    (phy << STACR_PCDA_SHIFT)	|
   1467  1.36  kiyohara 	    sc->sc_stacr_bits;
   1468  1.36  kiyohara 	EMAC_WRITE(sc, EMAC_STACR, sta_reg);
   1469  1.36  kiyohara 
   1470  1.49   msaitoh 	if ((rv = emac_mii_wait(sc)) != 0)
   1471  1.36  kiyohara 		goto out;
   1472  1.49   msaitoh 	if (EMAC_READ(sc, EMAC_STACR) & STACR_PHYE) {
   1473  1.36  kiyohara 		aprint_error_dev(sc->sc_dev, "MII PHY Error\n");
   1474  1.49   msaitoh 		rv = -1;
   1475  1.49   msaitoh 	}
   1476  1.36  kiyohara 
   1477  1.36  kiyohara out:
   1478  1.36  kiyohara 	if (sc->sc_rmii_disable)
   1479  1.36  kiyohara 		sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
   1480  1.49   msaitoh 
   1481  1.49   msaitoh 	return rv;
   1482  1.36  kiyohara }
   1483  1.36  kiyohara 
   1484  1.36  kiyohara static void
   1485  1.41      matt emac_mii_statchg(struct ifnet *ifp)
   1486  1.36  kiyohara {
   1487  1.41      matt 	struct emac_softc *sc = ifp->if_softc;
   1488  1.36  kiyohara 	struct mii_data *mii = &sc->sc_mii;
   1489  1.36  kiyohara 
   1490  1.36  kiyohara 	/*
   1491  1.36  kiyohara 	 * MR1 can only be written immediately after a reset...
   1492  1.36  kiyohara 	 */
   1493  1.36  kiyohara 	emac_smart_reset(sc);
   1494  1.36  kiyohara 
   1495  1.36  kiyohara 	sc->sc_mr1 &= ~(MR1_FDE | MR1_ILE | MR1_EIFC | MR1_MF_MASK | MR1_IST);
   1496  1.36  kiyohara 	if (mii->mii_media_active & IFM_FDX)
   1497  1.36  kiyohara 		sc->sc_mr1 |= (MR1_FDE | MR1_EIFC | MR1_IST);
   1498  1.36  kiyohara 	if (mii->mii_media_active & IFM_FLOW)
   1499  1.36  kiyohara 		sc->sc_mr1 |= MR1_EIFC;
   1500  1.36  kiyohara 	if (mii->mii_media_active & IFM_LOOP)
   1501  1.36  kiyohara 		sc->sc_mr1 |= MR1_ILE;
   1502  1.36  kiyohara 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1503  1.36  kiyohara 	case IFM_1000_T:
   1504  1.36  kiyohara 		sc->sc_mr1 |= (MR1_MF_1000MBS | MR1_IST);
   1505  1.36  kiyohara 		break;
   1506  1.36  kiyohara 
   1507  1.36  kiyohara 	case IFM_100_TX:
   1508  1.36  kiyohara 		sc->sc_mr1 |= (MR1_MF_100MBS | MR1_IST);
   1509  1.36  kiyohara 		break;
   1510  1.36  kiyohara 
   1511  1.36  kiyohara 	case IFM_10_T:
   1512  1.36  kiyohara 		sc->sc_mr1 |= MR1_MF_10MBS;
   1513  1.36  kiyohara 		break;
   1514  1.36  kiyohara 
   1515  1.36  kiyohara 	case IFM_NONE:
   1516  1.36  kiyohara 		break;
   1517  1.36  kiyohara 
   1518  1.36  kiyohara 	default:
   1519  1.41      matt 		aprint_error_dev(sc->sc_dev, "unknown sub-type %d\n",
   1520  1.36  kiyohara 		    IFM_SUBTYPE(mii->mii_media_active));
   1521  1.36  kiyohara 		break;
   1522  1.36  kiyohara 	}
   1523  1.36  kiyohara 	if (sc->sc_rmii_speed)
   1524  1.41      matt 		sc->sc_rmii_speed(device_parent(sc->sc_dev), sc->sc_instance,
   1525  1.36  kiyohara 		    IFM_SUBTYPE(mii->mii_media_active));
   1526  1.36  kiyohara 
   1527  1.36  kiyohara 	EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
   1528  1.36  kiyohara 
   1529  1.36  kiyohara 	/* Enable TX and RX if already RUNNING */
   1530  1.36  kiyohara 	if (ifp->if_flags & IFF_RUNNING)
   1531  1.36  kiyohara 		EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
   1532  1.36  kiyohara }
   1533  1.36  kiyohara 
   1534  1.36  kiyohara static uint32_t
   1535  1.36  kiyohara emac_mii_wait(struct emac_softc *sc)
   1536  1.36  kiyohara {
   1537  1.36  kiyohara 	int i;
   1538  1.36  kiyohara 	uint32_t oc;
   1539  1.36  kiyohara 
   1540  1.36  kiyohara 	/* wait for PHY data transfer to complete */
   1541  1.36  kiyohara 	i = 0;
   1542  1.36  kiyohara 	oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
   1543  1.36  kiyohara 	while ((oc == STACR_OC) != sc->sc_stacr_completed) {
   1544  1.36  kiyohara 		delay(7);
   1545  1.36  kiyohara 		if (i++ > 5) {
   1546  1.36  kiyohara 			aprint_error_dev(sc->sc_dev, "MII timed out\n");
   1547  1.49   msaitoh 			return ETIMEDOUT;
   1548  1.36  kiyohara 		}
   1549  1.36  kiyohara 		oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
   1550  1.36  kiyohara 	}
   1551  1.36  kiyohara 	return 0;
   1552  1.36  kiyohara }
   1553  1.36  kiyohara 
   1554  1.36  kiyohara static void
   1555  1.36  kiyohara emac_mii_tick(void *arg)
   1556  1.36  kiyohara {
   1557  1.36  kiyohara 	struct emac_softc *sc = arg;
   1558  1.36  kiyohara 	int s;
   1559  1.36  kiyohara 
   1560  1.36  kiyohara 	if (!device_is_active(sc->sc_dev))
   1561  1.36  kiyohara 		return;
   1562  1.36  kiyohara 
   1563  1.36  kiyohara 	s = splnet();
   1564  1.36  kiyohara 	mii_tick(&sc->sc_mii);
   1565  1.36  kiyohara 	splx(s);
   1566  1.36  kiyohara 
   1567  1.36  kiyohara 	callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
   1568  1.36  kiyohara }
   1569  1.36  kiyohara 
   1570  1.36  kiyohara int
   1571  1.36  kiyohara emac_txeob_intr(void *arg)
   1572  1.36  kiyohara {
   1573  1.36  kiyohara 	struct emac_softc *sc = arg;
   1574  1.36  kiyohara 	int handled = 0;
   1575  1.36  kiyohara 
   1576  1.36  kiyohara 	EMAC_EVCNT_INCR(&sc->sc_ev_txintr);
   1577  1.36  kiyohara 	handled |= emac_txreap(sc);
   1578  1.36  kiyohara 
   1579  1.36  kiyohara 	/* try to get more packets going */
   1580  1.46     ozaki 	if_schedule_deferred_start(&sc->sc_ethercom.ec_if);
   1581  1.36  kiyohara 
   1582  1.36  kiyohara 	return handled;
   1583  1.36  kiyohara }
   1584  1.36  kiyohara 
   1585  1.36  kiyohara int
   1586   1.3    simonb emac_rxeob_intr(void *arg)
   1587   1.3    simonb {
   1588   1.3    simonb 	struct emac_softc *sc = arg;
   1589   1.3    simonb 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1590   1.3    simonb 	struct emac_rxsoft *rxs;
   1591   1.3    simonb 	struct mbuf *m;
   1592  1.54       rin 	uint32_t rxstat, count;
   1593   1.3    simonb 	int i, len;
   1594   1.3    simonb 
   1595   1.3    simonb 	EMAC_EVCNT_INCR(&sc->sc_ev_rxintr);
   1596   1.3    simonb 
   1597  1.54       rin 	count = 0;
   1598  1.36  kiyohara 	for (i = sc->sc_rxptr; ; i = EMAC_NEXTRX(i)) {
   1599   1.3    simonb 		rxs = &sc->sc_rxsoft[i];
   1600   1.3    simonb 
   1601   1.3    simonb 		EMAC_CDRXSYNC(sc, i,
   1602  1.50   msaitoh 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1603   1.3    simonb 
   1604   1.3    simonb 		rxstat = sc->sc_rxdescs[i].md_stat_ctrl;
   1605   1.3    simonb 
   1606  1.40  kiyohara 		if (rxstat & MAL_RX_EMPTY) {
   1607   1.3    simonb 			/*
   1608   1.3    simonb 			 * We have processed all of the receive buffers.
   1609   1.3    simonb 			 */
   1610  1.40  kiyohara 			/* Flush current empty descriptor */
   1611  1.40  kiyohara 			EMAC_CDRXSYNC(sc, i,
   1612  1.50   msaitoh 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1613   1.3    simonb 			break;
   1614  1.40  kiyohara 		}
   1615   1.3    simonb 
   1616   1.3    simonb 		/*
   1617   1.3    simonb 		 * If an error occurred, update stats, clear the status
   1618   1.3    simonb 		 * word, and leave the packet buffer in place.  It will
   1619   1.3    simonb 		 * simply be reused the next time the ring comes around.
   1620   1.3    simonb 		 */
   1621   1.3    simonb 		if (rxstat & (EMAC_RXS_OE | EMAC_RXS_BP | EMAC_RXS_SE |
   1622   1.3    simonb 		    EMAC_RXS_AE | EMAC_RXS_BFCS | EMAC_RXS_PTL | EMAC_RXS_ORE |
   1623   1.3    simonb 		    EMAC_RXS_IRE)) {
   1624  1.36  kiyohara #define	PRINTERR(bit, str)					\
   1625  1.36  kiyohara 			if (rxstat & (bit))			\
   1626  1.36  kiyohara 				aprint_error_ifnet(ifp,		\
   1627  1.36  kiyohara 				    "receive error: %s\n", str)
   1628  1.52   thorpej 			if_statinc(ifp, if_ierrors);
   1629   1.3    simonb 			PRINTERR(EMAC_RXS_OE, "overrun error");
   1630   1.3    simonb 			PRINTERR(EMAC_RXS_BP, "bad packet");
   1631   1.3    simonb 			PRINTERR(EMAC_RXS_RP, "runt packet");
   1632   1.3    simonb 			PRINTERR(EMAC_RXS_SE, "short event");
   1633   1.3    simonb 			PRINTERR(EMAC_RXS_AE, "alignment error");
   1634   1.3    simonb 			PRINTERR(EMAC_RXS_BFCS, "bad FCS");
   1635   1.3    simonb 			PRINTERR(EMAC_RXS_PTL, "packet too long");
   1636   1.3    simonb 			PRINTERR(EMAC_RXS_ORE, "out of range error");
   1637   1.3    simonb 			PRINTERR(EMAC_RXS_IRE, "in range error");
   1638   1.3    simonb #undef PRINTERR
   1639   1.3    simonb 			EMAC_INIT_RXDESC(sc, i);
   1640   1.3    simonb 			continue;
   1641   1.3    simonb 		}
   1642   1.3    simonb 
   1643   1.3    simonb 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1644   1.3    simonb 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1645   1.3    simonb 
   1646   1.3    simonb 		/*
   1647   1.3    simonb 		 * No errors; receive the packet.  Note, the 405GP emac
   1648   1.3    simonb 		 * includes the CRC with every packet.
   1649   1.3    simonb 		 */
   1650  1.22   thorpej 		len = sc->sc_rxdescs[i].md_data_len - ETHER_CRC_LEN;
   1651   1.3    simonb 
   1652   1.3    simonb 		/*
   1653   1.3    simonb 		 * If the packet is small enough to fit in a
   1654   1.3    simonb 		 * single header mbuf, allocate one and copy
   1655   1.3    simonb 		 * the data into it.  This greatly reduces
   1656   1.3    simonb 		 * memory consumption when we receive lots
   1657   1.3    simonb 		 * of small packets.
   1658   1.3    simonb 		 *
   1659   1.3    simonb 		 * Otherwise, we add a new buffer to the receive
   1660   1.3    simonb 		 * chain.  If this fails, we drop the packet and
   1661   1.3    simonb 		 * recycle the old buffer.
   1662   1.3    simonb 		 */
   1663   1.3    simonb 		if (emac_copy_small != 0 && len <= MHLEN) {
   1664   1.3    simonb 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1665   1.3    simonb 			if (m == NULL)
   1666   1.3    simonb 				goto dropit;
   1667  1.28  christos 			memcpy(mtod(m, void *),
   1668  1.28  christos 			    mtod(rxs->rxs_mbuf, void *), len);
   1669   1.3    simonb 			EMAC_INIT_RXDESC(sc, i);
   1670   1.3    simonb 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1671   1.3    simonb 			    rxs->rxs_dmamap->dm_mapsize,
   1672   1.3    simonb 			    BUS_DMASYNC_PREREAD);
   1673   1.3    simonb 		} else {
   1674   1.3    simonb 			m = rxs->rxs_mbuf;
   1675   1.3    simonb 			if (emac_add_rxbuf(sc, i) != 0) {
   1676   1.3    simonb  dropit:
   1677  1.52   thorpej 				if_statinc(ifp, if_ierrors);
   1678   1.3    simonb 				EMAC_INIT_RXDESC(sc, i);
   1679   1.3    simonb 				bus_dmamap_sync(sc->sc_dmat,
   1680   1.3    simonb 				    rxs->rxs_dmamap, 0,
   1681   1.3    simonb 				    rxs->rxs_dmamap->dm_mapsize,
   1682   1.3    simonb 				    BUS_DMASYNC_PREREAD);
   1683   1.3    simonb 				continue;
   1684   1.3    simonb 			}
   1685   1.3    simonb 		}
   1686   1.3    simonb 
   1687  1.45     ozaki 		m_set_rcvif(m, ifp);
   1688   1.3    simonb 		m->m_pkthdr.len = m->m_len = len;
   1689   1.3    simonb 
   1690   1.3    simonb 		/* Pass it on. */
   1691  1.44     ozaki 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1692  1.54       rin 
   1693  1.54       rin 		count++;
   1694   1.3    simonb 	}
   1695   1.3    simonb 
   1696   1.3    simonb 	/* Update the receive pointer. */
   1697   1.3    simonb 	sc->sc_rxptr = i;
   1698   1.3    simonb 
   1699  1.54       rin 	if (count != 0)
   1700  1.54       rin 		rnd_add_uint32(&sc->rnd_source, count);
   1701  1.54       rin 
   1702  1.36  kiyohara 	return 1;
   1703   1.3    simonb }
   1704   1.3    simonb 
   1705  1.36  kiyohara int
   1706   1.3    simonb emac_txde_intr(void *arg)
   1707   1.3    simonb {
   1708   1.3    simonb 	struct emac_softc *sc = arg;
   1709   1.3    simonb 
   1710   1.3    simonb 	EMAC_EVCNT_INCR(&sc->sc_ev_txde);
   1711  1.36  kiyohara 	aprint_error_dev(sc->sc_dev, "emac_txde_intr\n");
   1712  1.36  kiyohara 	return 1;
   1713   1.3    simonb }
   1714   1.3    simonb 
   1715  1.36  kiyohara int
   1716   1.3    simonb emac_rxde_intr(void *arg)
   1717   1.3    simonb {
   1718  1.36  kiyohara 	struct emac_softc *sc = arg;
   1719   1.3    simonb 	int i;
   1720   1.3    simonb 
   1721   1.3    simonb 	EMAC_EVCNT_INCR(&sc->sc_ev_rxde);
   1722  1.36  kiyohara 	aprint_error_dev(sc->sc_dev, "emac_rxde_intr\n");
   1723   1.3    simonb 	/*
   1724   1.3    simonb 	 * XXX!
   1725   1.3    simonb 	 * This is a bit drastic; we just drop all descriptors that aren't
   1726   1.3    simonb 	 * "clean".  We should probably send any that are up the stack.
   1727   1.3    simonb 	 */
   1728   1.3    simonb 	for (i = 0; i < EMAC_NRXDESC; i++) {
   1729  1.36  kiyohara 		EMAC_CDRXSYNC(sc, i,
   1730  1.36  kiyohara 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1731   1.3    simonb 
   1732  1.36  kiyohara 		if (sc->sc_rxdescs[i].md_data_len != MCLBYTES)
   1733   1.3    simonb 			EMAC_INIT_RXDESC(sc, i);
   1734   1.3    simonb 	}
   1735   1.3    simonb 
   1736  1.36  kiyohara 	return 1;
   1737   1.3    simonb }
   1738