Home | History | Annotate | Line # | Download | only in dev
if_emac.c revision 1.44
      1  1.44     ozaki /*	$NetBSD: if_emac.c,v 1.44 2016/02/09 08:32:09 ozaki-r Exp $	*/
      2   1.1    simonb 
      3   1.1    simonb /*
      4   1.3    simonb  * Copyright 2001, 2002 Wasabi Systems, Inc.
      5   1.1    simonb  * All rights reserved.
      6   1.1    simonb  *
      7   1.3    simonb  * Written by Simon Burge and Jason Thorpe for Wasabi Systems, Inc.
      8   1.1    simonb  *
      9   1.1    simonb  * Redistribution and use in source and binary forms, with or without
     10   1.1    simonb  * modification, are permitted provided that the following conditions
     11   1.1    simonb  * are met:
     12   1.1    simonb  * 1. Redistributions of source code must retain the above copyright
     13   1.1    simonb  *    notice, this list of conditions and the following disclaimer.
     14   1.1    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     15   1.1    simonb  *    notice, this list of conditions and the following disclaimer in the
     16   1.1    simonb  *    documentation and/or other materials provided with the distribution.
     17   1.1    simonb  * 3. All advertising materials mentioning features or use of this software
     18   1.1    simonb  *    must display the following acknowledgement:
     19   1.1    simonb  *      This product includes software developed for the NetBSD Project by
     20   1.1    simonb  *      Wasabi Systems, Inc.
     21   1.1    simonb  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22   1.1    simonb  *    or promote products derived from this software without specific prior
     23   1.1    simonb  *    written permission.
     24   1.1    simonb  *
     25   1.1    simonb  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26   1.1    simonb  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27   1.1    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28   1.1    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29   1.1    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30   1.1    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31   1.1    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32   1.1    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33   1.1    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34   1.1    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35   1.1    simonb  * POSSIBILITY OF SUCH DAMAGE.
     36   1.1    simonb  */
     37  1.15     lukem 
     38  1.36  kiyohara /*
     39  1.36  kiyohara  * emac(4) supports following ibm4xx's EMACs.
     40  1.36  kiyohara  *   XXXX: ZMII and 'TCP Accelaration Hardware' not support yet...
     41  1.36  kiyohara  *
     42  1.36  kiyohara  *            tested
     43  1.36  kiyohara  *            ------
     44  1.36  kiyohara  * 405EP	-  10/100 x2
     45  1.36  kiyohara  * 405EX/EXr	o  10/100/1000 x2 (EXr x1), STA v2, 256bit hash-Table, RGMII
     46  1.36  kiyohara  * 405GP/GPr	o  10/100
     47  1.36  kiyohara  * 440EP	-  10/100 x2, ZMII
     48  1.36  kiyohara  * 440GP	-  10/100 x2, ZMII
     49  1.36  kiyohara  * 440GX	-  10/100/1000 x4, ZMII/RGMII(ch 2, 3), TAH(ch 2, 3)
     50  1.36  kiyohara  * 440SP	-  10/100/1000
     51  1.36  kiyohara  * 440SPe	-  10/100/1000, STA v2
     52  1.36  kiyohara  */
     53  1.36  kiyohara 
     54  1.15     lukem #include <sys/cdefs.h>
     55  1.44     ozaki __KERNEL_RCSID(0, "$NetBSD: if_emac.c,v 1.44 2016/02/09 08:32:09 ozaki-r Exp $");
     56   1.1    simonb 
     57  1.36  kiyohara #include "opt_emac.h"
     58   1.1    simonb 
     59   1.1    simonb #include <sys/param.h>
     60   1.1    simonb #include <sys/systm.h>
     61   1.1    simonb #include <sys/mbuf.h>
     62   1.1    simonb #include <sys/kernel.h>
     63   1.1    simonb #include <sys/socket.h>
     64   1.1    simonb #include <sys/ioctl.h>
     65  1.39      matt #include <sys/cpu.h>
     66  1.39      matt #include <sys/device.h>
     67   1.1    simonb 
     68   1.3    simonb #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     69   1.1    simonb 
     70   1.1    simonb #include <net/if.h>
     71   1.1    simonb #include <net/if_dl.h>
     72   1.1    simonb #include <net/if_media.h>
     73   1.1    simonb #include <net/if_ether.h>
     74   1.1    simonb 
     75   1.1    simonb #include <net/bpf.h>
     76   1.1    simonb 
     77  1.39      matt #include <powerpc/ibm4xx/cpu.h>
     78  1.36  kiyohara #include <powerpc/ibm4xx/dcr4xx.h>
     79   1.3    simonb #include <powerpc/ibm4xx/mal405gp.h>
     80   1.7    simonb #include <powerpc/ibm4xx/dev/emacreg.h>
     81   1.3    simonb #include <powerpc/ibm4xx/dev/if_emacreg.h>
     82  1.36  kiyohara #include <powerpc/ibm4xx/dev/if_emacvar.h>
     83  1.36  kiyohara #include <powerpc/ibm4xx/dev/malvar.h>
     84  1.36  kiyohara #include <powerpc/ibm4xx/dev/opbreg.h>
     85  1.36  kiyohara #include <powerpc/ibm4xx/dev/opbvar.h>
     86  1.36  kiyohara #include <powerpc/ibm4xx/dev/plbvar.h>
     87  1.36  kiyohara #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
     88  1.36  kiyohara #include <powerpc/ibm4xx/dev/rmiivar.h>
     89  1.36  kiyohara #endif
     90   1.1    simonb 
     91   1.1    simonb #include <dev/mii/miivar.h>
     92   1.1    simonb 
     93  1.36  kiyohara #include "locators.h"
     94  1.36  kiyohara 
     95  1.36  kiyohara 
     96   1.3    simonb /*
     97   1.3    simonb  * Transmit descriptor list size.  There are two Tx channels, each with
     98   1.3    simonb  * up to 256 hardware descriptors available.  We currently use one Tx
     99   1.3    simonb  * channel.  We tell the upper layers that they can queue a lot of
    100   1.3    simonb  * packets, and we go ahead and manage up to 64 of them at a time.  We
    101   1.3    simonb  * allow up to 16 DMA segments per packet.
    102   1.3    simonb  */
    103   1.3    simonb #define	EMAC_NTXSEGS		16
    104   1.3    simonb #define	EMAC_TXQUEUELEN		64
    105   1.3    simonb #define	EMAC_TXQUEUELEN_MASK	(EMAC_TXQUEUELEN - 1)
    106   1.3    simonb #define	EMAC_TXQUEUE_GC		(EMAC_TXQUEUELEN / 4)
    107   1.3    simonb #define	EMAC_NTXDESC		256
    108   1.3    simonb #define	EMAC_NTXDESC_MASK	(EMAC_NTXDESC - 1)
    109   1.3    simonb #define	EMAC_NEXTTX(x)		(((x) + 1) & EMAC_NTXDESC_MASK)
    110   1.3    simonb #define	EMAC_NEXTTXS(x)		(((x) + 1) & EMAC_TXQUEUELEN_MASK)
    111   1.3    simonb 
    112   1.3    simonb /*
    113   1.3    simonb  * Receive descriptor list size.  There is one Rx channel with up to 256
    114   1.3    simonb  * hardware descriptors available.  We allocate 64 receive descriptors,
    115   1.3    simonb  * each with a 2k buffer (MCLBYTES).
    116   1.3    simonb  */
    117   1.3    simonb #define	EMAC_NRXDESC		64
    118   1.3    simonb #define	EMAC_NRXDESC_MASK	(EMAC_NRXDESC - 1)
    119   1.3    simonb #define	EMAC_NEXTRX(x)		(((x) + 1) & EMAC_NRXDESC_MASK)
    120   1.3    simonb #define	EMAC_PREVRX(x)		(((x) - 1) & EMAC_NRXDESC_MASK)
    121   1.3    simonb 
    122   1.3    simonb /*
    123   1.3    simonb  * Transmit/receive descriptors that are DMA'd to the EMAC.
    124   1.3    simonb  */
    125   1.3    simonb struct emac_control_data {
    126   1.3    simonb 	struct mal_descriptor ecd_txdesc[EMAC_NTXDESC];
    127   1.3    simonb 	struct mal_descriptor ecd_rxdesc[EMAC_NRXDESC];
    128   1.3    simonb };
    129   1.3    simonb 
    130   1.3    simonb #define	EMAC_CDOFF(x)		offsetof(struct emac_control_data, x)
    131   1.3    simonb #define	EMAC_CDTXOFF(x)		EMAC_CDOFF(ecd_txdesc[(x)])
    132   1.3    simonb #define	EMAC_CDRXOFF(x)		EMAC_CDOFF(ecd_rxdesc[(x)])
    133   1.3    simonb 
    134   1.3    simonb /*
    135   1.3    simonb  * Software state for transmit jobs.
    136   1.3    simonb  */
    137   1.3    simonb struct emac_txsoft {
    138   1.3    simonb 	struct mbuf *txs_mbuf;		/* head of mbuf chain */
    139   1.3    simonb 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    140   1.3    simonb 	int txs_firstdesc;		/* first descriptor in packet */
    141   1.3    simonb 	int txs_lastdesc;		/* last descriptor in packet */
    142   1.3    simonb 	int txs_ndesc;			/* # of descriptors used */
    143   1.3    simonb };
    144   1.3    simonb 
    145   1.3    simonb /*
    146   1.3    simonb  * Software state for receive descriptors.
    147   1.3    simonb  */
    148   1.3    simonb struct emac_rxsoft {
    149   1.3    simonb 	struct mbuf *rxs_mbuf;		/* head of mbuf chain */
    150   1.3    simonb 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    151   1.3    simonb };
    152   1.3    simonb 
    153   1.3    simonb /*
    154   1.3    simonb  * Software state per device.
    155   1.3    simonb  */
    156   1.1    simonb struct emac_softc {
    157  1.36  kiyohara 	device_t sc_dev;		/* generic device information */
    158  1.36  kiyohara 	int sc_instance;		/* instance no. */
    159   1.1    simonb 	bus_space_tag_t sc_st;		/* bus space tag */
    160   1.1    simonb 	bus_space_handle_t sc_sh;	/* bus space handle */
    161   1.1    simonb 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    162   1.1    simonb 	struct ethercom sc_ethercom;	/* ethernet common data */
    163   1.1    simonb 	void *sc_sdhook;		/* shutdown hook */
    164   1.3    simonb 	void *sc_powerhook;		/* power management hook */
    165   1.3    simonb 
    166   1.3    simonb 	struct mii_data sc_mii;		/* MII/media information */
    167   1.3    simonb 	struct callout sc_callout;	/* tick callout */
    168   1.3    simonb 
    169  1.36  kiyohara 	uint32_t sc_mr1;		/* copy of Mode Register 1 */
    170  1.36  kiyohara 	uint32_t sc_stacr_read;		/* Read opcode of STAOPC of STACR */
    171  1.36  kiyohara 	uint32_t sc_stacr_write;	/* Write opcode of STAOPC of STACR */
    172  1.36  kiyohara 	uint32_t sc_stacr_bits;		/* misc bits of STACR */
    173  1.36  kiyohara 	bool sc_stacr_completed;	/* Operation completed of STACR */
    174  1.36  kiyohara 	int sc_htsize;			/* Hash Table size */
    175   1.3    simonb 
    176   1.3    simonb 	bus_dmamap_t sc_cddmamap;	/* control data dma map */
    177   1.3    simonb #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    178   1.3    simonb 
    179   1.3    simonb 	/* Software state for transmit/receive descriptors. */
    180   1.3    simonb 	struct emac_txsoft sc_txsoft[EMAC_TXQUEUELEN];
    181   1.3    simonb 	struct emac_rxsoft sc_rxsoft[EMAC_NRXDESC];
    182   1.3    simonb 
    183   1.3    simonb 	/* Control data structures. */
    184   1.3    simonb 	struct emac_control_data *sc_control_data;
    185   1.3    simonb #define	sc_txdescs	sc_control_data->ecd_txdesc
    186   1.3    simonb #define	sc_rxdescs	sc_control_data->ecd_rxdesc
    187   1.3    simonb 
    188   1.3    simonb #ifdef EMAC_EVENT_COUNTERS
    189   1.3    simonb 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    190   1.3    simonb 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
    191   1.3    simonb 	struct evcnt sc_ev_rxde;	/* Rx descriptor interrupts */
    192   1.3    simonb 	struct evcnt sc_ev_txde;	/* Tx descriptor interrupts */
    193   1.3    simonb 	struct evcnt sc_ev_intr;	/* General EMAC interrupts */
    194   1.3    simonb 
    195   1.3    simonb 	struct evcnt sc_ev_txreap;	/* Calls to Tx descriptor reaper */
    196   1.3    simonb 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    197   1.3    simonb 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    198   1.3    simonb 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    199   1.3    simonb 	struct evcnt sc_ev_tu;		/* Tx underrun */
    200   1.3    simonb #endif /* EMAC_EVENT_COUNTERS */
    201   1.3    simonb 
    202   1.3    simonb 	int sc_txfree;			/* number of free Tx descriptors */
    203   1.3    simonb 	int sc_txnext;			/* next ready Tx descriptor */
    204   1.3    simonb 
    205   1.3    simonb 	int sc_txsfree;			/* number of free Tx jobs */
    206   1.3    simonb 	int sc_txsnext;			/* next ready Tx job */
    207   1.3    simonb 	int sc_txsdirty;		/* dirty Tx jobs */
    208   1.3    simonb 
    209   1.3    simonb 	int sc_rxptr;			/* next ready RX descriptor/descsoft */
    210  1.36  kiyohara 
    211  1.36  kiyohara 	void (*sc_rmii_enable)(device_t, int);		/* reduced MII enable */
    212  1.36  kiyohara 	void (*sc_rmii_disable)(device_t, int);		/* reduced MII disable*/
    213  1.36  kiyohara 	void (*sc_rmii_speed)(device_t, int, int);	/* reduced MII speed */
    214   1.1    simonb };
    215   1.1    simonb 
    216   1.3    simonb #ifdef EMAC_EVENT_COUNTERS
    217   1.3    simonb #define	EMAC_EVCNT_INCR(ev)	(ev)->ev_count++
    218   1.3    simonb #else
    219   1.3    simonb #define	EMAC_EVCNT_INCR(ev)	/* nothing */
    220   1.3    simonb #endif
    221   1.3    simonb 
    222   1.3    simonb #define	EMAC_CDTXADDR(sc, x)	((sc)->sc_cddma + EMAC_CDTXOFF((x)))
    223   1.3    simonb #define	EMAC_CDRXADDR(sc, x)	((sc)->sc_cddma + EMAC_CDRXOFF((x)))
    224   1.3    simonb 
    225   1.3    simonb #define	EMAC_CDTXSYNC(sc, x, n, ops)					\
    226   1.3    simonb do {									\
    227   1.3    simonb 	int __x, __n;							\
    228   1.3    simonb 									\
    229   1.3    simonb 	__x = (x);							\
    230   1.3    simonb 	__n = (n);							\
    231   1.3    simonb 									\
    232   1.3    simonb 	/* If it will wrap around, sync to the end of the ring. */	\
    233   1.3    simonb 	if ((__x + __n) > EMAC_NTXDESC) {				\
    234   1.3    simonb 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    235   1.3    simonb 		    EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) *	\
    236   1.3    simonb 		    (EMAC_NTXDESC - __x), (ops));			\
    237   1.3    simonb 		__n -= (EMAC_NTXDESC - __x);				\
    238   1.3    simonb 		__x = 0;						\
    239   1.3    simonb 	}								\
    240   1.3    simonb 									\
    241   1.3    simonb 	/* Now sync whatever is left. */				\
    242   1.3    simonb 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    243   1.3    simonb 	    EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * __n, (ops)); \
    244   1.3    simonb } while (/*CONSTCOND*/0)
    245   1.3    simonb 
    246   1.3    simonb #define	EMAC_CDRXSYNC(sc, x, ops)					\
    247   1.3    simonb do {									\
    248   1.3    simonb 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    249   1.3    simonb 	    EMAC_CDRXOFF((x)), sizeof(struct mal_descriptor), (ops));	\
    250   1.3    simonb } while (/*CONSTCOND*/0)
    251   1.3    simonb 
    252   1.3    simonb #define	EMAC_INIT_RXDESC(sc, x)						\
    253   1.3    simonb do {									\
    254   1.3    simonb 	struct emac_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    255   1.3    simonb 	struct mal_descriptor *__rxd = &(sc)->sc_rxdescs[(x)];		\
    256   1.3    simonb 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    257   1.3    simonb 									\
    258   1.3    simonb 	/*								\
    259   1.3    simonb 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    260   1.3    simonb 	 * so that the payload after the Ethernet header is aligned	\
    261   1.3    simonb 	 * to a 4-byte boundary.					\
    262   1.3    simonb 	 */								\
    263   1.3    simonb 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    264   1.3    simonb 									\
    265   1.3    simonb 	__rxd->md_data = __rxs->rxs_dmamap->dm_segs[0].ds_addr + 2;	\
    266   1.3    simonb 	__rxd->md_data_len = __m->m_ext.ext_size - 2;			\
    267   1.3    simonb 	__rxd->md_stat_ctrl = MAL_RX_EMPTY | MAL_RX_INTERRUPT |		\
    268   1.3    simonb 	    /* Set wrap on last descriptor. */				\
    269   1.3    simonb 	    (((x) == EMAC_NRXDESC - 1) ? MAL_RX_WRAP : 0);		\
    270   1.3    simonb 	EMAC_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    271   1.3    simonb } while (/*CONSTCOND*/0)
    272   1.3    simonb 
    273   1.3    simonb #define	EMAC_WRITE(sc, reg, val) \
    274   1.3    simonb 	bus_space_write_stream_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    275   1.3    simonb #define	EMAC_READ(sc, reg) \
    276   1.3    simonb 	bus_space_read_stream_4((sc)->sc_st, (sc)->sc_sh, (reg))
    277   1.3    simonb 
    278  1.36  kiyohara #define	EMAC_SET_FILTER(aht, crc) \
    279  1.36  kiyohara do {									\
    280  1.36  kiyohara 	(aht)[3 - (((crc) >> 26) >> 4)] |= 1 << (((crc) >> 26) & 0xf);	\
    281  1.36  kiyohara } while (/*CONSTCOND*/0)
    282  1.36  kiyohara #define	EMAC_SET_FILTER256(aht, crc) \
    283  1.18    simonb do {									\
    284  1.36  kiyohara 	(aht)[7 - (((crc) >> 24) >> 5)] |= 1 << (((crc) >> 24) & 0x1f);	\
    285  1.18    simonb } while (/*CONSTCOND*/0)
    286  1.18    simonb 
    287  1.36  kiyohara static int	emac_match(device_t, cfdata_t, void *);
    288  1.36  kiyohara static void	emac_attach(device_t, device_t, void *);
    289   1.3    simonb 
    290  1.36  kiyohara static int	emac_intr(void *);
    291   1.3    simonb static void	emac_shutdown(void *);
    292  1.36  kiyohara 
    293   1.3    simonb static void	emac_start(struct ifnet *);
    294  1.36  kiyohara static int	emac_ioctl(struct ifnet *, u_long, void *);
    295  1.36  kiyohara static int	emac_init(struct ifnet *);
    296   1.3    simonb static void	emac_stop(struct ifnet *, int);
    297   1.3    simonb static void	emac_watchdog(struct ifnet *);
    298  1.36  kiyohara 
    299  1.36  kiyohara static int	emac_add_rxbuf(struct emac_softc *, int);
    300  1.36  kiyohara static void	emac_rxdrain(struct emac_softc *);
    301  1.18    simonb static int	emac_set_filter(struct emac_softc *);
    302  1.36  kiyohara static int	emac_txreap(struct emac_softc *);
    303   1.3    simonb 
    304  1.36  kiyohara static void	emac_soft_reset(struct emac_softc *);
    305  1.36  kiyohara static void	emac_smart_reset(struct emac_softc *);
    306   1.1    simonb 
    307  1.36  kiyohara static int	emac_mii_readreg(device_t, int, int);
    308  1.36  kiyohara static void	emac_mii_writereg(device_t, int, int, int);
    309  1.41      matt static void	emac_mii_statchg(struct ifnet *);
    310  1.36  kiyohara static uint32_t	emac_mii_wait(struct emac_softc *);
    311   1.3    simonb static void	emac_mii_tick(void *);
    312   1.3    simonb 
    313   1.3    simonb int		emac_copy_small = 0;
    314   1.3    simonb 
    315  1.36  kiyohara CFATTACH_DECL_NEW(emac, sizeof(struct emac_softc),
    316  1.13   thorpej     emac_match, emac_attach, NULL, NULL);
    317   1.1    simonb 
    318  1.36  kiyohara 
    319   1.1    simonb static int
    320  1.36  kiyohara emac_match(device_t parent, cfdata_t cf, void *aux)
    321   1.1    simonb {
    322   1.5    simonb 	struct opb_attach_args *oaa = aux;
    323   1.1    simonb 
    324   1.3    simonb 	/* match only on-chip ethernet devices */
    325  1.10   thorpej 	if (strcmp(oaa->opb_name, cf->cf_name) == 0)
    326  1.36  kiyohara 		return 1;
    327   1.1    simonb 
    328  1.36  kiyohara 	return 0;
    329   1.1    simonb }
    330   1.1    simonb 
    331   1.1    simonb static void
    332  1.36  kiyohara emac_attach(device_t parent, device_t self, void *aux)
    333   1.1    simonb {
    334   1.5    simonb 	struct opb_attach_args *oaa = aux;
    335  1.36  kiyohara 	struct emac_softc *sc = device_private(self);
    336   1.3    simonb 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    337   1.3    simonb 	struct mii_data *mii = &sc->sc_mii;
    338  1.38      matt 	const char * xname = device_xname(self);
    339   1.3    simonb 	bus_dma_segment_t seg;
    340  1.36  kiyohara 	int error, i, nseg, opb_freq, opbc, mii_phy = MII_PHY_ANY;
    341  1.26   thorpej 	const uint8_t *enaddr;
    342  1.36  kiyohara 	prop_dictionary_t dict = device_properties(self);
    343  1.26   thorpej 	prop_data_t ea;
    344   1.1    simonb 
    345  1.27  kiyohara 	bus_space_map(oaa->opb_bt, oaa->opb_addr, EMAC_NREG, 0, &sc->sc_sh);
    346  1.36  kiyohara 
    347  1.36  kiyohara 	sc->sc_dev = self;
    348  1.36  kiyohara 	sc->sc_instance = oaa->opb_instance;
    349   1.9    simonb 	sc->sc_st = oaa->opb_bt;
    350   1.5    simonb 	sc->sc_dmat = oaa->opb_dmat;
    351   1.1    simonb 
    352  1.36  kiyohara 	callout_init(&sc->sc_callout, 0);
    353  1.36  kiyohara 
    354  1.36  kiyohara 	aprint_naive("\n");
    355  1.36  kiyohara 	aprint_normal(": Ethernet Media Access Controller\n");
    356   1.3    simonb 
    357  1.36  kiyohara 	/* Fetch the Ethernet address. */
    358  1.36  kiyohara 	ea = prop_dictionary_get(dict, "mac-address");
    359  1.36  kiyohara 	if (ea == NULL) {
    360  1.36  kiyohara 		aprint_error_dev(self, "unable to get mac-address property\n");
    361  1.36  kiyohara 		return;
    362  1.36  kiyohara 	}
    363  1.36  kiyohara 	KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
    364  1.36  kiyohara 	KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
    365  1.36  kiyohara 	enaddr = prop_data_data_nocopy(ea);
    366  1.36  kiyohara 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
    367  1.33  kiyohara 
    368  1.36  kiyohara #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
    369  1.36  kiyohara 	/* Fetch the MII offset. */
    370  1.36  kiyohara 	prop_dictionary_get_uint32(dict, "mii-phy", &mii_phy);
    371  1.36  kiyohara 
    372  1.36  kiyohara #ifdef EMAC_ZMII_PHY
    373  1.36  kiyohara 	if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_ZMII)
    374  1.36  kiyohara 		zmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
    375  1.36  kiyohara 		    &sc->sc_rmii_disable, &sc->sc_rmii_speed);
    376  1.36  kiyohara #endif
    377  1.36  kiyohara #ifdef EMAC_RGMII_PHY
    378  1.36  kiyohara 	if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_RGMII)
    379  1.36  kiyohara 		rgmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
    380  1.36  kiyohara 		    &sc->sc_rmii_disable, &sc->sc_rmii_speed);
    381  1.36  kiyohara #endif
    382  1.36  kiyohara #endif
    383   1.3    simonb 
    384   1.3    simonb 	/*
    385   1.3    simonb 	 * Allocate the control data structures, and create and load the
    386   1.3    simonb 	 * DMA map for it.
    387   1.3    simonb 	 */
    388   1.3    simonb 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    389   1.3    simonb 	    sizeof(struct emac_control_data), 0, 0, &seg, 1, &nseg, 0)) != 0) {
    390  1.36  kiyohara 		aprint_error_dev(self,
    391  1.36  kiyohara 		    "unable to allocate control data, error = %d\n", error);
    392   1.3    simonb 		goto fail_0;
    393   1.3    simonb 	}
    394   1.3    simonb 
    395   1.3    simonb 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    396  1.28  christos 	    sizeof(struct emac_control_data), (void **)&sc->sc_control_data,
    397   1.3    simonb 	    BUS_DMA_COHERENT)) != 0) {
    398  1.36  kiyohara 		aprint_error_dev(self,
    399  1.36  kiyohara 		    "unable to map control data, error = %d\n", error);
    400   1.3    simonb 		goto fail_1;
    401   1.3    simonb 	}
    402   1.3    simonb 
    403   1.3    simonb 	if ((error = bus_dmamap_create(sc->sc_dmat,
    404   1.3    simonb 	    sizeof(struct emac_control_data), 1,
    405   1.3    simonb 	    sizeof(struct emac_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    406  1.36  kiyohara 		aprint_error_dev(self,
    407  1.36  kiyohara 		    "unable to create control data DMA map, error = %d\n",
    408  1.36  kiyohara 		    error);
    409   1.3    simonb 		goto fail_2;
    410   1.3    simonb 	}
    411   1.3    simonb 
    412   1.3    simonb 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    413   1.3    simonb 	    sc->sc_control_data, sizeof(struct emac_control_data), NULL,
    414   1.3    simonb 	    0)) != 0) {
    415  1.36  kiyohara 		aprint_error_dev(self,
    416  1.36  kiyohara 		    "unable to load control data DMA map, error = %d\n", error);
    417   1.3    simonb 		goto fail_3;
    418   1.3    simonb 	}
    419   1.3    simonb 
    420   1.3    simonb 	/*
    421   1.3    simonb 	 * Create the transmit buffer DMA maps.
    422   1.3    simonb 	 */
    423   1.3    simonb 	for (i = 0; i < EMAC_TXQUEUELEN; i++) {
    424   1.3    simonb 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    425   1.3    simonb 		    EMAC_NTXSEGS, MCLBYTES, 0, 0,
    426   1.3    simonb 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    427  1.36  kiyohara 			aprint_error_dev(self,
    428  1.36  kiyohara 			    "unable to create tx DMA map %d, error = %d\n",
    429  1.36  kiyohara 			    i, error);
    430   1.3    simonb 			goto fail_4;
    431   1.3    simonb 		}
    432   1.3    simonb 	}
    433   1.3    simonb 
    434   1.3    simonb 	/*
    435   1.3    simonb 	 * Create the receive buffer DMA maps.
    436   1.3    simonb 	 */
    437   1.3    simonb 	for (i = 0; i < EMAC_NRXDESC; i++) {
    438   1.3    simonb 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    439   1.3    simonb 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    440  1.36  kiyohara 			aprint_error_dev(self,
    441  1.36  kiyohara 			    "unable to create rx DMA map %d, error = %d\n",
    442  1.36  kiyohara 			    i, error);
    443   1.3    simonb 			goto fail_5;
    444   1.3    simonb 		}
    445   1.3    simonb 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    446   1.3    simonb 	}
    447   1.3    simonb 
    448  1.36  kiyohara 	/* Soft Reset the EMAC.  The chip to a known state. */
    449  1.36  kiyohara 	emac_soft_reset(sc);
    450   1.3    simonb 
    451  1.36  kiyohara 	opb_freq = opb_get_frequency();
    452  1.36  kiyohara 	switch (opb_freq) {
    453  1.36  kiyohara 	case  50000000: opbc =  STACR_OPBC_50MHZ; break;
    454  1.36  kiyohara 	case  66666666: opbc =  STACR_OPBC_66MHZ; break;
    455  1.36  kiyohara 	case  83333333: opbc =  STACR_OPBC_83MHZ; break;
    456  1.36  kiyohara 	case 100000000: opbc = STACR_OPBC_100MHZ; break;
    457  1.36  kiyohara 
    458  1.36  kiyohara 	default:
    459  1.36  kiyohara 		if (opb_freq > 100000000) {
    460  1.36  kiyohara 			opbc = STACR_OPBC_A100MHZ;
    461  1.36  kiyohara 			break;
    462  1.36  kiyohara 		}
    463  1.36  kiyohara 		aprint_error_dev(self, "unsupport OPB frequency %dMHz\n",
    464  1.36  kiyohara 		    opb_freq / 1000 / 1000);
    465  1.36  kiyohara 		goto fail_5;
    466  1.36  kiyohara 	}
    467  1.36  kiyohara 	if (oaa->opb_flags & OPB_FLAGS_EMAC_GBE) {
    468  1.36  kiyohara 		sc->sc_mr1 =
    469  1.36  kiyohara 		    MR1_RFS_GBE(MR1__FS_16KB)	|
    470  1.36  kiyohara 		    MR1_TFS_GBE(MR1__FS_16KB)	|
    471  1.36  kiyohara 		    MR1_TR0_MULTIPLE		|
    472  1.36  kiyohara 		    MR1_OBCI(opbc);
    473  1.36  kiyohara 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
    474  1.36  kiyohara 
    475  1.36  kiyohara 		if (oaa->opb_flags & OPB_FLAGS_EMAC_STACV2) {
    476  1.36  kiyohara 			sc->sc_stacr_read = STACR_STAOPC_READ;
    477  1.36  kiyohara 			sc->sc_stacr_write = STACR_STAOPC_WRITE;
    478  1.36  kiyohara 			sc->sc_stacr_bits = STACR_OC;
    479  1.36  kiyohara 			sc->sc_stacr_completed = false;
    480  1.36  kiyohara 		} else {
    481  1.36  kiyohara 			sc->sc_stacr_read = STACR_READ;
    482  1.36  kiyohara 			sc->sc_stacr_write = STACR_WRITE;
    483  1.36  kiyohara 			sc->sc_stacr_completed = true;
    484  1.36  kiyohara 		}
    485  1.36  kiyohara 	} else {
    486  1.36  kiyohara 		/*
    487  1.36  kiyohara 		 * Set up Mode Register 1 - set receive and transmit FIFOs to
    488  1.36  kiyohara 		 * maximum size, allow transmit of multiple packets (only
    489  1.36  kiyohara 		 * channel 0 is used).
    490  1.36  kiyohara 		 *
    491  1.36  kiyohara 		 * XXX: Allow pause packets??
    492  1.36  kiyohara 		 */
    493  1.36  kiyohara 		sc->sc_mr1 =
    494  1.36  kiyohara 		    MR1_RFS(MR1__FS_4KB) |
    495  1.36  kiyohara 		    MR1_TFS(MR1__FS_2KB) |
    496  1.36  kiyohara 		    MR1_TR0_MULTIPLE;
    497  1.36  kiyohara 
    498  1.36  kiyohara 		sc->sc_stacr_read = STACR_READ;
    499  1.36  kiyohara 		sc->sc_stacr_write = STACR_WRITE;
    500  1.36  kiyohara 		sc->sc_stacr_bits = STACR_OPBC(opbc);
    501  1.36  kiyohara 		sc->sc_stacr_completed = true;
    502  1.14   thorpej 	}
    503  1.14   thorpej 
    504  1.36  kiyohara 	intr_establish(oaa->opb_irq, IST_LEVEL, IPL_NET, emac_intr, sc);
    505  1.36  kiyohara 	mal_intr_establish(sc->sc_instance, sc);
    506  1.36  kiyohara 
    507  1.36  kiyohara 	if (oaa->opb_flags & OPB_FLAGS_EMAC_HT256)
    508  1.36  kiyohara 		sc->sc_htsize = 256;
    509  1.36  kiyohara 	else
    510  1.36  kiyohara 		sc->sc_htsize = 64;
    511  1.36  kiyohara 
    512  1.36  kiyohara 	/* Clear all interrupts */
    513  1.36  kiyohara 	EMAC_WRITE(sc, EMAC_ISR, ISR_ALL);
    514   1.1    simonb 
    515   1.3    simonb 	/*
    516   1.3    simonb 	 * Initialise the media structures.
    517   1.3    simonb 	 */
    518   1.3    simonb 	mii->mii_ifp = ifp;
    519   1.3    simonb 	mii->mii_readreg = emac_mii_readreg;
    520   1.3    simonb 	mii->mii_writereg = emac_mii_writereg;
    521   1.3    simonb 	mii->mii_statchg = emac_mii_statchg;
    522   1.3    simonb 
    523  1.31    dyoung 	sc->sc_ethercom.ec_mii = mii;
    524  1.31    dyoung 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
    525  1.42   msaitoh 	mii_attach(self, mii, 0xffffffff, mii_phy, MII_OFFSET_ANY,
    526  1.42   msaitoh 	    MIIF_DOPAUSE);
    527   1.3    simonb 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    528   1.3    simonb 		ifmedia_add(&mii->mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    529   1.3    simonb 		ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_NONE);
    530   1.3    simonb 	} else
    531   1.3    simonb 		ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_AUTO);
    532   1.3    simonb 
    533   1.3    simonb 	ifp = &sc->sc_ethercom.ec_if;
    534  1.38      matt 	strcpy(ifp->if_xname, xname);
    535   1.3    simonb 	ifp->if_softc = sc;
    536   1.3    simonb 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    537  1.36  kiyohara 	ifp->if_start = emac_start;
    538   1.3    simonb 	ifp->if_ioctl = emac_ioctl;
    539   1.3    simonb 	ifp->if_init = emac_init;
    540   1.3    simonb 	ifp->if_stop = emac_stop;
    541  1.36  kiyohara 	ifp->if_watchdog = emac_watchdog;
    542   1.3    simonb 	IFQ_SET_READY(&ifp->if_snd);
    543   1.3    simonb 
    544   1.3    simonb 	/*
    545   1.3    simonb 	 * We can support 802.1Q VLAN-sized frames.
    546   1.3    simonb 	 */
    547   1.3    simonb 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    548   1.3    simonb 
    549   1.3    simonb 	/*
    550   1.3    simonb 	 * Attach the interface.
    551   1.3    simonb 	 */
    552   1.3    simonb 	if_attach(ifp);
    553  1.14   thorpej 	ether_ifattach(ifp, enaddr);
    554   1.3    simonb 
    555   1.3    simonb #ifdef EMAC_EVENT_COUNTERS
    556   1.3    simonb 	/*
    557   1.3    simonb 	 * Attach the event counters.
    558   1.3    simonb 	 */
    559  1.36  kiyohara 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    560  1.38      matt 	    NULL, xname, "txintr");
    561   1.3    simonb 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    562  1.38      matt 	    NULL, xname, "rxintr");
    563  1.36  kiyohara 	evcnt_attach_dynamic(&sc->sc_ev_txde, EVCNT_TYPE_INTR,
    564  1.38      matt 	    NULL, xname, "txde");
    565   1.3    simonb 	evcnt_attach_dynamic(&sc->sc_ev_rxde, EVCNT_TYPE_INTR,
    566  1.38      matt 	    NULL, xname, "rxde");
    567   1.3    simonb 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    568  1.38      matt 	    NULL, xname, "intr");
    569   1.3    simonb 
    570   1.3    simonb 	evcnt_attach_dynamic(&sc->sc_ev_txreap, EVCNT_TYPE_MISC,
    571  1.38      matt 	    NULL, xname, "txreap");
    572   1.3    simonb 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    573  1.38      matt 	    NULL, xname, "txsstall");
    574   1.3    simonb 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    575  1.38      matt 	    NULL, xname, "txdstall");
    576   1.3    simonb 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    577  1.38      matt 	    NULL, xname, "txdrop");
    578   1.3    simonb 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
    579  1.38      matt 	    NULL, xname, "tu");
    580   1.3    simonb #endif /* EMAC_EVENT_COUNTERS */
    581   1.3    simonb 
    582   1.3    simonb 	/*
    583   1.3    simonb 	 * Make sure the interface is shutdown during reboot.
    584   1.3    simonb 	 */
    585   1.3    simonb 	sc->sc_sdhook = shutdownhook_establish(emac_shutdown, sc);
    586   1.3    simonb 	if (sc->sc_sdhook == NULL)
    587  1.36  kiyohara 		aprint_error_dev(self,
    588  1.36  kiyohara 		    "WARNING: unable to establish shutdown hook\n");
    589   1.3    simonb 
    590   1.3    simonb 	return;
    591   1.3    simonb 
    592   1.3    simonb 	/*
    593   1.3    simonb 	 * Free any resources we've allocated during the failed attach
    594   1.3    simonb 	 * attempt.  Do this in reverse order and fall through.
    595   1.3    simonb 	 */
    596   1.3    simonb fail_5:
    597   1.3    simonb 	for (i = 0; i < EMAC_NRXDESC; i++) {
    598   1.3    simonb 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    599   1.3    simonb 			bus_dmamap_destroy(sc->sc_dmat,
    600   1.3    simonb 			    sc->sc_rxsoft[i].rxs_dmamap);
    601   1.3    simonb 	}
    602   1.3    simonb fail_4:
    603   1.3    simonb 	for (i = 0; i < EMAC_TXQUEUELEN; i++) {
    604   1.3    simonb 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    605   1.3    simonb 			bus_dmamap_destroy(sc->sc_dmat,
    606   1.3    simonb 			    sc->sc_txsoft[i].txs_dmamap);
    607   1.3    simonb 	}
    608   1.3    simonb 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    609   1.3    simonb fail_3:
    610   1.3    simonb 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    611   1.3    simonb fail_2:
    612  1.28  christos 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    613   1.3    simonb 	    sizeof(struct emac_control_data));
    614   1.3    simonb fail_1:
    615   1.3    simonb 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    616   1.3    simonb fail_0:
    617   1.3    simonb 	return;
    618   1.3    simonb }
    619   1.3    simonb 
    620   1.3    simonb /*
    621  1.36  kiyohara  * EMAC General interrupt handler
    622   1.3    simonb  */
    623  1.36  kiyohara static int
    624  1.36  kiyohara emac_intr(void *arg)
    625  1.36  kiyohara {
    626  1.36  kiyohara 	struct emac_softc *sc = arg;
    627  1.36  kiyohara 	uint32_t status;
    628  1.36  kiyohara 
    629  1.36  kiyohara 	EMAC_EVCNT_INCR(&sc->sc_ev_intr);
    630  1.36  kiyohara 	status = EMAC_READ(sc, EMAC_ISR);
    631  1.36  kiyohara 
    632  1.36  kiyohara 	/* Clear the interrupt status bits. */
    633  1.36  kiyohara 	EMAC_WRITE(sc, EMAC_ISR, status);
    634  1.36  kiyohara 
    635  1.36  kiyohara 	return 1;
    636  1.36  kiyohara }
    637  1.36  kiyohara 
    638   1.3    simonb static void
    639   1.3    simonb emac_shutdown(void *arg)
    640   1.3    simonb {
    641   1.3    simonb 	struct emac_softc *sc = arg;
    642   1.3    simonb 
    643   1.3    simonb 	emac_stop(&sc->sc_ethercom.ec_if, 0);
    644   1.3    simonb }
    645   1.3    simonb 
    646  1.36  kiyohara 
    647  1.36  kiyohara /*
    648  1.36  kiyohara  * ifnet interface functions
    649  1.36  kiyohara  */
    650  1.36  kiyohara 
    651   1.3    simonb static void
    652   1.3    simonb emac_start(struct ifnet *ifp)
    653   1.3    simonb {
    654   1.3    simonb 	struct emac_softc *sc = ifp->if_softc;
    655   1.3    simonb 	struct mbuf *m0;
    656   1.3    simonb 	struct emac_txsoft *txs;
    657   1.3    simonb 	bus_dmamap_t dmamap;
    658   1.3    simonb 	int error, firsttx, nexttx, lasttx, ofree, seg;
    659  1.17    simonb 
    660  1.17    simonb 	lasttx = 0;	/* XXX gcc */
    661   1.3    simonb 
    662   1.3    simonb 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    663   1.3    simonb 		return;
    664   1.3    simonb 
    665   1.3    simonb 	/*
    666   1.3    simonb 	 * Remember the previous number of free descriptors.
    667   1.3    simonb 	 */
    668   1.3    simonb 	ofree = sc->sc_txfree;
    669   1.3    simonb 
    670   1.3    simonb 	/*
    671   1.3    simonb 	 * Loop through the send queue, setting up transmit descriptors
    672   1.3    simonb 	 * until we drain the queue, or use up all available transmit
    673   1.3    simonb 	 * descriptors.
    674   1.3    simonb 	 */
    675   1.3    simonb 	for (;;) {
    676   1.3    simonb 		/* Grab a packet off the queue. */
    677   1.3    simonb 		IFQ_POLL(&ifp->if_snd, m0);
    678   1.3    simonb 		if (m0 == NULL)
    679   1.3    simonb 			break;
    680   1.3    simonb 
    681   1.3    simonb 		/*
    682   1.3    simonb 		 * Get a work queue entry.  Reclaim used Tx descriptors if
    683   1.3    simonb 		 * we are running low.
    684   1.3    simonb 		 */
    685   1.3    simonb 		if (sc->sc_txsfree < EMAC_TXQUEUE_GC) {
    686   1.3    simonb 			emac_txreap(sc);
    687   1.3    simonb 			if (sc->sc_txsfree == 0) {
    688   1.3    simonb 				EMAC_EVCNT_INCR(&sc->sc_ev_txsstall);
    689   1.3    simonb 				break;
    690   1.3    simonb 			}
    691   1.3    simonb 		}
    692   1.3    simonb 
    693   1.3    simonb 		txs = &sc->sc_txsoft[sc->sc_txsnext];
    694   1.3    simonb 		dmamap = txs->txs_dmamap;
    695   1.3    simonb 
    696   1.3    simonb 		/*
    697   1.3    simonb 		 * Load the DMA map.  If this fails, the packet either
    698   1.3    simonb 		 * didn't fit in the alloted number of segments, or we
    699   1.3    simonb 		 * were short on resources.  In this case, we'll copy
    700   1.3    simonb 		 * and try again.
    701   1.3    simonb 		 */
    702   1.3    simonb 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    703   1.3    simonb 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    704   1.3    simonb 		if (error) {
    705   1.3    simonb 			if (error == EFBIG) {
    706   1.3    simonb 				EMAC_EVCNT_INCR(&sc->sc_ev_txdrop);
    707  1.36  kiyohara 				aprint_error_ifnet(ifp,
    708  1.36  kiyohara 				    "Tx packet consumes too many "
    709  1.36  kiyohara 				    "DMA segments, dropping...\n");
    710   1.3    simonb 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
    711   1.3    simonb 				    m_freem(m0);
    712   1.3    simonb 				    continue;
    713   1.3    simonb 			}
    714   1.3    simonb 			/* Short on resources, just stop for now. */
    715   1.3    simonb 			break;
    716   1.3    simonb 		}
    717   1.3    simonb 
    718   1.3    simonb 		/*
    719   1.3    simonb 		 * Ensure we have enough descriptors free to describe
    720   1.3    simonb 		 * the packet.
    721   1.3    simonb 		 */
    722   1.3    simonb 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    723   1.3    simonb 			/*
    724   1.3    simonb 			 * Not enough free descriptors to transmit this
    725   1.3    simonb 			 * packet.  We haven't committed anything yet,
    726   1.3    simonb 			 * so just unload the DMA map, put the packet
    727   1.3    simonb 			 * back on the queue, and punt.  Notify the upper
    728   1.3    simonb 			 * layer that there are not more slots left.
    729   1.3    simonb 			 *
    730   1.3    simonb 			 */
    731   1.3    simonb 			ifp->if_flags |= IFF_OACTIVE;
    732   1.3    simonb 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    733   1.3    simonb 			EMAC_EVCNT_INCR(&sc->sc_ev_txdstall);
    734   1.3    simonb 			break;
    735   1.3    simonb 		}
    736   1.3    simonb 
    737   1.3    simonb 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    738   1.3    simonb 
    739   1.3    simonb 		/*
    740   1.3    simonb 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    741   1.3    simonb 		 */
    742   1.3    simonb 
    743   1.3    simonb 		/* Sync the DMA map. */
    744   1.3    simonb 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    745   1.3    simonb 		    BUS_DMASYNC_PREWRITE);
    746   1.3    simonb 
    747   1.3    simonb 		/*
    748   1.3    simonb 		 * Store a pointer to the packet so that we can free it
    749   1.3    simonb 		 * later.
    750   1.3    simonb 		 */
    751   1.3    simonb 		txs->txs_mbuf = m0;
    752   1.3    simonb 		txs->txs_firstdesc = sc->sc_txnext;
    753   1.3    simonb 		txs->txs_ndesc = dmamap->dm_nsegs;
    754   1.3    simonb 
    755   1.3    simonb 		/*
    756   1.3    simonb 		 * Initialize the transmit descriptor.
    757   1.3    simonb 		 */
    758   1.3    simonb 		firsttx = sc->sc_txnext;
    759   1.3    simonb 		for (nexttx = sc->sc_txnext, seg = 0;
    760   1.3    simonb 		     seg < dmamap->dm_nsegs;
    761   1.3    simonb 		     seg++, nexttx = EMAC_NEXTTX(nexttx)) {
    762  1.36  kiyohara 			struct mal_descriptor *txdesc =
    763  1.36  kiyohara 			    &sc->sc_txdescs[nexttx];
    764  1.36  kiyohara 
    765   1.3    simonb 			/*
    766   1.3    simonb 			 * If this is the first descriptor we're
    767   1.3    simonb 			 * enqueueing, don't set the TX_READY bit just
    768   1.3    simonb 			 * yet.  That could cause a race condition.
    769   1.3    simonb 			 * We'll do it below.
    770   1.3    simonb 			 */
    771  1.36  kiyohara 			txdesc->md_data = dmamap->dm_segs[seg].ds_addr;
    772  1.36  kiyohara 			txdesc->md_data_len = dmamap->dm_segs[seg].ds_len;
    773  1.36  kiyohara 			txdesc->md_stat_ctrl =
    774  1.36  kiyohara 			    (txdesc->md_stat_ctrl & MAL_TX_WRAP) |
    775   1.3    simonb 			    (nexttx == firsttx ? 0 : MAL_TX_READY) |
    776   1.3    simonb 			    EMAC_TXC_GFCS | EMAC_TXC_GPAD;
    777   1.3    simonb 			lasttx = nexttx;
    778   1.3    simonb 		}
    779   1.3    simonb 
    780   1.3    simonb 		/* Set the LAST bit on the last segment. */
    781   1.3    simonb 		sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_LAST;
    782   1.3    simonb 
    783  1.21    simonb 		/*
    784  1.21    simonb 		 * Set up last segment descriptor to send an interrupt after
    785  1.21    simonb 		 * that descriptor is transmitted, and bypass existing Tx
    786  1.21    simonb 		 * descriptor reaping method (for now...).
    787  1.21    simonb 		 */
    788  1.21    simonb 		sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_INTERRUPT;
    789  1.21    simonb 
    790  1.21    simonb 
    791   1.3    simonb 		txs->txs_lastdesc = lasttx;
    792   1.3    simonb 
    793   1.3    simonb 		/* Sync the descriptors we're using. */
    794   1.3    simonb 		EMAC_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
    795   1.3    simonb 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    796   1.3    simonb 
    797   1.3    simonb 		/*
    798   1.3    simonb 		 * The entire packet chain is set up.  Give the
    799   1.3    simonb 		 * first descriptor to the chip now.
    800   1.3    simonb 		 */
    801   1.3    simonb 		sc->sc_txdescs[firsttx].md_stat_ctrl |= MAL_TX_READY;
    802   1.3    simonb 		EMAC_CDTXSYNC(sc, firsttx, 1,
    803   1.3    simonb 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    804   1.3    simonb 		/*
    805   1.3    simonb 		 * Tell the EMAC that a new packet is available.
    806   1.3    simonb 		 */
    807  1.36  kiyohara 		EMAC_WRITE(sc, EMAC_TMR0, TMR0_GNP0 | TMR0_TFAE_2);
    808   1.3    simonb 
    809   1.3    simonb 		/* Advance the tx pointer. */
    810   1.3    simonb 		sc->sc_txfree -= txs->txs_ndesc;
    811   1.3    simonb 		sc->sc_txnext = nexttx;
    812   1.3    simonb 
    813   1.3    simonb 		sc->sc_txsfree--;
    814   1.3    simonb 		sc->sc_txsnext = EMAC_NEXTTXS(sc->sc_txsnext);
    815   1.3    simonb 
    816   1.3    simonb 		/*
    817   1.3    simonb 		 * Pass the packet to any BPF listeners.
    818   1.3    simonb 		 */
    819  1.37     joerg 		bpf_mtap(ifp, m0);
    820   1.3    simonb 	}
    821   1.3    simonb 
    822  1.36  kiyohara 	if (sc->sc_txfree == 0)
    823   1.3    simonb 		/* No more slots left; notify upper layer. */
    824   1.3    simonb 		ifp->if_flags |= IFF_OACTIVE;
    825   1.3    simonb 
    826  1.36  kiyohara 	if (sc->sc_txfree != ofree)
    827   1.3    simonb 		/* Set a watchdog timer in case the chip flakes out. */
    828   1.3    simonb 		ifp->if_timer = 5;
    829  1.36  kiyohara }
    830  1.36  kiyohara 
    831  1.36  kiyohara static int
    832  1.36  kiyohara emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    833  1.36  kiyohara {
    834  1.36  kiyohara 	struct emac_softc *sc = ifp->if_softc;
    835  1.36  kiyohara 	int s, error;
    836  1.36  kiyohara 
    837  1.36  kiyohara 	s = splnet();
    838  1.36  kiyohara 
    839  1.36  kiyohara 	switch (cmd) {
    840  1.36  kiyohara 	case SIOCSIFMTU:
    841  1.36  kiyohara 	{
    842  1.36  kiyohara 		struct ifreq *ifr = (struct ifreq *)data;
    843  1.36  kiyohara 		int maxmtu;
    844  1.36  kiyohara 
    845  1.36  kiyohara 		if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU)
    846  1.36  kiyohara 			maxmtu = EMAC_MAX_MTU;
    847  1.36  kiyohara 		else
    848  1.36  kiyohara 			maxmtu = ETHERMTU;
    849  1.36  kiyohara 
    850  1.36  kiyohara 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
    851  1.36  kiyohara 			error = EINVAL;
    852  1.36  kiyohara 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
    853  1.36  kiyohara 			break;
    854  1.36  kiyohara 		else if (ifp->if_flags & IFF_UP)
    855  1.36  kiyohara 			error = emac_init(ifp);
    856  1.36  kiyohara 		else
    857  1.36  kiyohara 			error = 0;
    858  1.36  kiyohara 		break;
    859  1.36  kiyohara 	}
    860  1.36  kiyohara 
    861  1.36  kiyohara 	default:
    862  1.36  kiyohara 		error = ether_ioctl(ifp, cmd, data);
    863  1.36  kiyohara 		if (error == ENETRESET) {
    864  1.36  kiyohara 			/*
    865  1.36  kiyohara 			 * Multicast list has changed; set the hardware filter
    866  1.36  kiyohara 			 * accordingly.
    867  1.36  kiyohara 			 */
    868  1.36  kiyohara 			if (ifp->if_flags & IFF_RUNNING)
    869  1.36  kiyohara 				error = emac_set_filter(sc);
    870  1.36  kiyohara 			else
    871  1.36  kiyohara 				error = 0;
    872  1.36  kiyohara 		}
    873   1.3    simonb 	}
    874  1.36  kiyohara 
    875  1.36  kiyohara 	/* try to get more packets going */
    876  1.36  kiyohara 	emac_start(ifp);
    877  1.36  kiyohara 
    878  1.36  kiyohara 	splx(s);
    879  1.36  kiyohara 	return error;
    880   1.3    simonb }
    881   1.3    simonb 
    882   1.3    simonb static int
    883   1.3    simonb emac_init(struct ifnet *ifp)
    884   1.3    simonb {
    885   1.3    simonb 	struct emac_softc *sc = ifp->if_softc;
    886   1.3    simonb 	struct emac_rxsoft *rxs;
    887  1.29    dyoung 	const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
    888   1.3    simonb 	int error, i;
    889   1.3    simonb 
    890   1.3    simonb 	error = 0;
    891   1.3    simonb 
    892   1.3    simonb 	/* Cancel any pending I/O. */
    893   1.3    simonb 	emac_stop(ifp, 0);
    894   1.3    simonb 
    895   1.3    simonb 	/* Reset the chip to a known state. */
    896  1.36  kiyohara 	emac_soft_reset(sc);
    897   1.3    simonb 
    898  1.36  kiyohara 	/*
    899   1.3    simonb 	 * Initialise the transmit descriptor ring.
    900   1.3    simonb 	 */
    901   1.3    simonb 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    902   1.3    simonb 	/* set wrap on last descriptor */
    903   1.3    simonb 	sc->sc_txdescs[EMAC_NTXDESC - 1].md_stat_ctrl |= MAL_TX_WRAP;
    904   1.3    simonb 	EMAC_CDTXSYNC(sc, 0, EMAC_NTXDESC,
    905  1.36  kiyohara 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    906   1.3    simonb 	sc->sc_txfree = EMAC_NTXDESC;
    907   1.3    simonb 	sc->sc_txnext = 0;
    908   1.3    simonb 
    909   1.3    simonb 	/*
    910   1.3    simonb 	 * Initialise the transmit job descriptors.
    911   1.3    simonb 	 */
    912   1.3    simonb 	for (i = 0; i < EMAC_TXQUEUELEN; i++)
    913   1.3    simonb 		sc->sc_txsoft[i].txs_mbuf = NULL;
    914   1.3    simonb 	sc->sc_txsfree = EMAC_TXQUEUELEN;
    915   1.3    simonb 	sc->sc_txsnext = 0;
    916   1.3    simonb 	sc->sc_txsdirty = 0;
    917   1.3    simonb 
    918   1.3    simonb 	/*
    919   1.3    simonb 	 * Initialise the receiver descriptor and receive job
    920   1.3    simonb 	 * descriptor rings.
    921   1.3    simonb 	 */
    922   1.3    simonb 	for (i = 0; i < EMAC_NRXDESC; i++) {
    923   1.3    simonb 		rxs = &sc->sc_rxsoft[i];
    924   1.3    simonb 		if (rxs->rxs_mbuf == NULL) {
    925   1.3    simonb 			if ((error = emac_add_rxbuf(sc, i)) != 0) {
    926  1.36  kiyohara 				aprint_error_ifnet(ifp,
    927  1.36  kiyohara 				    "unable to allocate or map rx buffer %d,"
    928  1.36  kiyohara 				    " error = %d\n",
    929  1.36  kiyohara 				    i, error);
    930   1.3    simonb 				/*
    931   1.3    simonb 				 * XXX Should attempt to run with fewer receive
    932   1.3    simonb 				 * XXX buffers instead of just failing.
    933   1.3    simonb 				 */
    934   1.3    simonb 				emac_rxdrain(sc);
    935   1.3    simonb 				goto out;
    936   1.3    simonb 			}
    937   1.3    simonb 		} else
    938   1.3    simonb 			EMAC_INIT_RXDESC(sc, i);
    939   1.3    simonb 	}
    940   1.3    simonb 	sc->sc_rxptr = 0;
    941   1.3    simonb 
    942   1.3    simonb 	/*
    943   1.3    simonb 	 * Set the current media.
    944   1.3    simonb 	 */
    945  1.31    dyoung 	if ((error = ether_mediachange(ifp)) != 0)
    946  1.31    dyoung 		goto out;
    947   1.3    simonb 
    948   1.3    simonb 	/*
    949   1.3    simonb 	 * Load the MAC address.
    950   1.3    simonb 	 */
    951   1.6    simonb 	EMAC_WRITE(sc, EMAC_IAHR, enaddr[0] << 8 | enaddr[1]);
    952   1.6    simonb 	EMAC_WRITE(sc, EMAC_IALR,
    953   1.3    simonb 	    enaddr[2] << 24 | enaddr[3] << 16 | enaddr[4] << 8 | enaddr[5]);
    954   1.3    simonb 
    955  1.36  kiyohara 	/* Enable the transmit and receive channel on the MAL. */
    956  1.36  kiyohara 	error = mal_start(sc->sc_instance,
    957  1.36  kiyohara 	    EMAC_CDTXADDR(sc, 0), EMAC_CDRXADDR(sc, 0));
    958  1.36  kiyohara 	if (error)
    959  1.36  kiyohara 		goto out;
    960  1.36  kiyohara 
    961  1.36  kiyohara 	sc->sc_mr1 &= ~MR1_JPSM;
    962  1.36  kiyohara 	if (ifp->if_mtu > ETHERMTU)
    963  1.36  kiyohara 		/* Enable Jumbo Packet Support Mode */
    964  1.36  kiyohara 		sc->sc_mr1 |= MR1_JPSM;
    965   1.3    simonb 
    966   1.3    simonb 	/* Set fifos, media modes. */
    967   1.6    simonb 	EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
    968   1.3    simonb 
    969   1.3    simonb 	/*
    970   1.3    simonb 	 * Enable Individual and (possibly) Broadcast Address modes,
    971   1.3    simonb 	 * runt packets, and strip padding.
    972   1.3    simonb 	 */
    973  1.36  kiyohara 	EMAC_WRITE(sc, EMAC_RMR, RMR_IAE | RMR_RRP | RMR_SP | RMR_TFAE_2 |
    974  1.18    simonb 	    (ifp->if_flags & IFF_PROMISC ? RMR_PME : 0) |
    975   1.3    simonb 	    (ifp->if_flags & IFF_BROADCAST ? RMR_BAE : 0));
    976   1.3    simonb 
    977   1.3    simonb 	/*
    978  1.27  kiyohara 	 * Set multicast filter.
    979  1.27  kiyohara 	 */
    980  1.27  kiyohara 	emac_set_filter(sc);
    981  1.27  kiyohara 
    982  1.27  kiyohara 	/*
    983   1.3    simonb 	 * Set low- and urgent-priority request thresholds.
    984   1.3    simonb 	 */
    985   1.6    simonb 	EMAC_WRITE(sc, EMAC_TMR1,
    986   1.3    simonb 	    ((7 << TMR1_TLR_SHIFT) & TMR1_TLR_MASK) | /* 16 word burst */
    987   1.3    simonb 	    ((15 << TMR1_TUR_SHIFT) & TMR1_TUR_MASK));
    988   1.3    simonb 	/*
    989   1.3    simonb 	 * Set Transmit Request Threshold Register.
    990   1.3    simonb 	 */
    991   1.6    simonb 	EMAC_WRITE(sc, EMAC_TRTR, TRTR_256);
    992   1.3    simonb 
    993   1.3    simonb 	/*
    994   1.3    simonb 	 * Set high and low receive watermarks.
    995   1.3    simonb 	 */
    996   1.6    simonb 	EMAC_WRITE(sc, EMAC_RWMR,
    997   1.3    simonb 	    30 << RWMR_RLWM_SHIFT | 64 << RWMR_RLWM_SHIFT);
    998   1.3    simonb 
    999   1.3    simonb 	/*
   1000   1.3    simonb 	 * Set frame gap.
   1001   1.3    simonb 	 */
   1002   1.6    simonb 	EMAC_WRITE(sc, EMAC_IPGVR, 8);
   1003   1.3    simonb 
   1004   1.3    simonb 	/*
   1005  1.36  kiyohara 	 * Set interrupt status enable bits for EMAC.
   1006   1.3    simonb 	 */
   1007   1.6    simonb 	EMAC_WRITE(sc, EMAC_ISER,
   1008  1.36  kiyohara 	    ISR_TXPE |		/* TX Parity Error */
   1009  1.36  kiyohara 	    ISR_RXPE |		/* RX Parity Error */
   1010  1.36  kiyohara 	    ISR_TXUE |		/* TX Underrun Event */
   1011  1.36  kiyohara 	    ISR_RXOE |		/* RX Overrun Event */
   1012  1.36  kiyohara 	    ISR_OVR  |		/* Overrun Error */
   1013  1.36  kiyohara 	    ISR_PP   |		/* Pause Packet */
   1014  1.36  kiyohara 	    ISR_BP   |		/* Bad Packet */
   1015  1.36  kiyohara 	    ISR_RP   |		/* Runt Packet */
   1016  1.36  kiyohara 	    ISR_SE   |		/* Short Event */
   1017  1.36  kiyohara 	    ISR_ALE  |		/* Alignment Error */
   1018  1.36  kiyohara 	    ISR_BFCS |		/* Bad FCS */
   1019  1.36  kiyohara 	    ISR_PTLE |		/* Packet Too Long Error */
   1020  1.36  kiyohara 	    ISR_ORE  |		/* Out of Range Error */
   1021  1.36  kiyohara 	    ISR_IRE  |		/* In Range Error */
   1022  1.36  kiyohara 	    ISR_SE0  |		/* Signal Quality Error 0 (SQE) */
   1023  1.36  kiyohara 	    ISR_TE0  |		/* Transmit Error 0 */
   1024  1.36  kiyohara 	    ISR_MOS  |		/* MMA Operation Succeeded */
   1025  1.36  kiyohara 	    ISR_MOF);		/* MMA Operation Failed */
   1026   1.3    simonb 
   1027   1.3    simonb 	/*
   1028   1.3    simonb 	 * Enable the transmit and receive channel on the EMAC.
   1029   1.3    simonb 	 */
   1030   1.6    simonb 	EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
   1031   1.3    simonb 
   1032   1.3    simonb 	/*
   1033   1.3    simonb 	 * Start the one second MII clock.
   1034   1.3    simonb 	 */
   1035   1.3    simonb 	callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
   1036   1.3    simonb 
   1037   1.3    simonb 	/*
   1038   1.3    simonb 	 * ... all done!
   1039   1.3    simonb 	 */
   1040   1.3    simonb 	ifp->if_flags |= IFF_RUNNING;
   1041   1.3    simonb 	ifp->if_flags &= ~IFF_OACTIVE;
   1042   1.3    simonb 
   1043   1.3    simonb  out:
   1044   1.3    simonb 	if (error) {
   1045   1.3    simonb 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1046   1.3    simonb 		ifp->if_timer = 0;
   1047  1.36  kiyohara 		aprint_error_ifnet(ifp, "interface not running\n");
   1048   1.3    simonb 	}
   1049  1.36  kiyohara 	return error;
   1050   1.3    simonb }
   1051   1.3    simonb 
   1052   1.3    simonb static void
   1053   1.3    simonb emac_stop(struct ifnet *ifp, int disable)
   1054   1.3    simonb {
   1055   1.3    simonb 	struct emac_softc *sc = ifp->if_softc;
   1056   1.3    simonb 	struct emac_txsoft *txs;
   1057   1.3    simonb 	int i;
   1058   1.3    simonb 
   1059   1.3    simonb 	/* Stop the one second clock. */
   1060   1.3    simonb 	callout_stop(&sc->sc_callout);
   1061   1.3    simonb 
   1062   1.3    simonb 	/* Down the MII */
   1063   1.3    simonb 	mii_down(&sc->sc_mii);
   1064   1.3    simonb 
   1065   1.3    simonb 	/* Disable interrupts. */
   1066   1.6    simonb 	EMAC_WRITE(sc, EMAC_ISER, 0);
   1067   1.3    simonb 
   1068   1.3    simonb 	/* Disable the receive and transmit channels. */
   1069  1.36  kiyohara 	mal_stop(sc->sc_instance);
   1070   1.3    simonb 
   1071   1.3    simonb 	/* Disable the transmit enable and receive MACs. */
   1072   1.6    simonb 	EMAC_WRITE(sc, EMAC_MR0,
   1073   1.6    simonb 	    EMAC_READ(sc, EMAC_MR0) & ~(MR0_TXE | MR0_RXE));
   1074   1.3    simonb 
   1075   1.3    simonb 	/* Release any queued transmit buffers. */
   1076   1.3    simonb 	for (i = 0; i < EMAC_TXQUEUELEN; i++) {
   1077   1.3    simonb 		txs = &sc->sc_txsoft[i];
   1078   1.3    simonb 		if (txs->txs_mbuf != NULL) {
   1079   1.3    simonb 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1080   1.3    simonb 			m_freem(txs->txs_mbuf);
   1081   1.3    simonb 			txs->txs_mbuf = NULL;
   1082   1.3    simonb 		}
   1083   1.3    simonb 	}
   1084   1.3    simonb 
   1085   1.3    simonb 	if (disable)
   1086   1.3    simonb 		emac_rxdrain(sc);
   1087   1.3    simonb 
   1088   1.3    simonb 	/*
   1089   1.3    simonb 	 * Mark the interface down and cancel the watchdog timer.
   1090   1.3    simonb 	 */
   1091   1.3    simonb 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1092   1.3    simonb 	ifp->if_timer = 0;
   1093   1.3    simonb }
   1094   1.3    simonb 
   1095  1.36  kiyohara static void
   1096  1.36  kiyohara emac_watchdog(struct ifnet *ifp)
   1097   1.3    simonb {
   1098   1.3    simonb 	struct emac_softc *sc = ifp->if_softc;
   1099   1.3    simonb 
   1100  1.36  kiyohara 	/*
   1101  1.36  kiyohara 	 * Since we're not interrupting every packet, sweep
   1102  1.36  kiyohara 	 * up before we report an error.
   1103  1.36  kiyohara 	 */
   1104  1.36  kiyohara 	emac_txreap(sc);
   1105  1.36  kiyohara 
   1106  1.36  kiyohara 	if (sc->sc_txfree != EMAC_NTXDESC) {
   1107  1.36  kiyohara 		aprint_error_ifnet(ifp,
   1108  1.36  kiyohara 		    "device timeout (txfree %d txsfree %d txnext %d)\n",
   1109  1.36  kiyohara 		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
   1110  1.36  kiyohara 		ifp->if_oerrors++;
   1111   1.3    simonb 
   1112  1.36  kiyohara 		/* Reset the interface. */
   1113  1.36  kiyohara 		(void)emac_init(ifp);
   1114  1.36  kiyohara 	} else if (ifp->if_flags & IFF_DEBUG)
   1115  1.36  kiyohara 		aprint_error_ifnet(ifp, "recovered from device timeout\n");
   1116   1.3    simonb 
   1117   1.3    simonb 	/* try to get more packets going */
   1118   1.3    simonb 	emac_start(ifp);
   1119   1.3    simonb }
   1120   1.3    simonb 
   1121  1.36  kiyohara static int
   1122  1.36  kiyohara emac_add_rxbuf(struct emac_softc *sc, int idx)
   1123   1.3    simonb {
   1124  1.36  kiyohara 	struct emac_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1125  1.36  kiyohara 	struct mbuf *m;
   1126  1.36  kiyohara 	int error;
   1127  1.36  kiyohara 
   1128  1.36  kiyohara 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1129  1.36  kiyohara 	if (m == NULL)
   1130  1.36  kiyohara 		return ENOBUFS;
   1131  1.36  kiyohara 
   1132  1.36  kiyohara 	MCLGET(m, M_DONTWAIT);
   1133  1.36  kiyohara 	if ((m->m_flags & M_EXT) == 0) {
   1134  1.36  kiyohara 		m_freem(m);
   1135  1.36  kiyohara 		return ENOBUFS;
   1136  1.36  kiyohara 	}
   1137   1.3    simonb 
   1138  1.36  kiyohara 	if (rxs->rxs_mbuf != NULL)
   1139  1.36  kiyohara 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1140  1.36  kiyohara 
   1141  1.36  kiyohara 	rxs->rxs_mbuf = m;
   1142   1.3    simonb 
   1143  1.36  kiyohara 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1144  1.36  kiyohara 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1145  1.36  kiyohara 	if (error) {
   1146  1.36  kiyohara 		aprint_error_dev(sc->sc_dev,
   1147  1.36  kiyohara 		    "can't load rx DMA map %d, error = %d\n", idx, error);
   1148  1.36  kiyohara 		panic("emac_add_rxbuf");		/* XXX */
   1149  1.36  kiyohara 	}
   1150   1.3    simonb 
   1151  1.36  kiyohara 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1152  1.36  kiyohara 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1153   1.3    simonb 
   1154  1.36  kiyohara 	EMAC_INIT_RXDESC(sc, idx);
   1155   1.3    simonb 
   1156  1.36  kiyohara 	return 0;
   1157  1.36  kiyohara }
   1158  1.36  kiyohara 
   1159  1.36  kiyohara static void
   1160  1.36  kiyohara emac_rxdrain(struct emac_softc *sc)
   1161  1.36  kiyohara {
   1162  1.36  kiyohara 	struct emac_rxsoft *rxs;
   1163  1.36  kiyohara 	int i;
   1164  1.36  kiyohara 
   1165  1.36  kiyohara 	for (i = 0; i < EMAC_NRXDESC; i++) {
   1166  1.36  kiyohara 		rxs = &sc->sc_rxsoft[i];
   1167  1.36  kiyohara 		if (rxs->rxs_mbuf != NULL) {
   1168  1.36  kiyohara 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1169  1.36  kiyohara 			m_freem(rxs->rxs_mbuf);
   1170  1.36  kiyohara 			rxs->rxs_mbuf = NULL;
   1171  1.36  kiyohara 		}
   1172  1.36  kiyohara 	}
   1173   1.3    simonb }
   1174   1.3    simonb 
   1175  1.18    simonb static int
   1176  1.18    simonb emac_set_filter(struct emac_softc *sc)
   1177  1.18    simonb {
   1178  1.18    simonb 	struct ether_multistep step;
   1179  1.18    simonb 	struct ether_multi *enm;
   1180  1.18    simonb 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1181  1.36  kiyohara 	uint32_t rmr, crc, mask, tmp, reg, gaht[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   1182  1.36  kiyohara 	int regs, cnt = 0, i;
   1183  1.36  kiyohara 
   1184  1.36  kiyohara 	if (sc->sc_htsize == 256) {
   1185  1.36  kiyohara 		reg = EMAC_GAHT256(0);
   1186  1.36  kiyohara 		regs = 8;
   1187  1.36  kiyohara 	} else {
   1188  1.36  kiyohara 		reg = EMAC_GAHT64(0);
   1189  1.36  kiyohara 		regs = 4;
   1190  1.36  kiyohara 	}
   1191  1.36  kiyohara 	mask = (1ULL << (sc->sc_htsize / regs)) - 1;
   1192  1.18    simonb 
   1193  1.18    simonb 	rmr = EMAC_READ(sc, EMAC_RMR);
   1194  1.18    simonb 	rmr &= ~(RMR_PMME | RMR_MAE);
   1195  1.18    simonb 	ifp->if_flags &= ~IFF_ALLMULTI;
   1196  1.18    simonb 
   1197  1.18    simonb 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
   1198  1.18    simonb 	while (enm != NULL) {
   1199  1.18    simonb 		if (memcmp(enm->enm_addrlo,
   1200  1.18    simonb 		    enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
   1201  1.18    simonb 			/*
   1202  1.18    simonb 			 * We must listen to a range of multicast addresses.
   1203  1.18    simonb 			 * For now, just accept all multicasts, rather than
   1204  1.18    simonb 			 * trying to set only those filter bits needed to match
   1205  1.18    simonb 			 * the range.  (At this time, the only use of address
   1206  1.18    simonb 			 * ranges is for IP multicast routing, for which the
   1207  1.18    simonb 			 * range is big enough to require all bits set.)
   1208  1.18    simonb 			 */
   1209  1.36  kiyohara 			gaht[0] = gaht[1] = gaht[2] = gaht[3] =
   1210  1.36  kiyohara 			    gaht[4] = gaht[5] = gaht[6] = gaht[7] = mask;
   1211  1.18    simonb 			break;
   1212  1.18    simonb 		}
   1213  1.18    simonb 
   1214  1.18    simonb 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1215  1.18    simonb 
   1216  1.36  kiyohara 		if (sc->sc_htsize == 256)
   1217  1.36  kiyohara 			EMAC_SET_FILTER256(gaht, crc);
   1218  1.36  kiyohara 		else
   1219  1.36  kiyohara 			EMAC_SET_FILTER(gaht, crc);
   1220  1.18    simonb 
   1221  1.18    simonb 		ETHER_NEXT_MULTI(step, enm);
   1222  1.18    simonb 		cnt++;
   1223  1.18    simonb 	}
   1224  1.18    simonb 
   1225  1.36  kiyohara 	for (i = 1, tmp = gaht[0]; i < regs; i++)
   1226  1.36  kiyohara 		tmp &= gaht[i];
   1227  1.36  kiyohara 	if (tmp == mask) {
   1228  1.18    simonb 		/* All categories are true. */
   1229  1.18    simonb 		ifp->if_flags |= IFF_ALLMULTI;
   1230  1.18    simonb 		rmr |= RMR_PMME;
   1231  1.18    simonb 	} else if (cnt != 0) {
   1232  1.18    simonb 		/* Some categories are true. */
   1233  1.36  kiyohara 		for (i = 0; i < regs; i++)
   1234  1.36  kiyohara 			EMAC_WRITE(sc, reg + (i << 2), gaht[i]);
   1235  1.18    simonb 		rmr |= RMR_MAE;
   1236  1.18    simonb 	}
   1237  1.18    simonb 	EMAC_WRITE(sc, EMAC_RMR, rmr);
   1238  1.18    simonb 
   1239  1.18    simonb 	return 0;
   1240  1.18    simonb }
   1241  1.18    simonb 
   1242   1.3    simonb /*
   1243   1.3    simonb  * Reap completed Tx descriptors.
   1244   1.3    simonb  */
   1245   1.3    simonb static int
   1246   1.3    simonb emac_txreap(struct emac_softc *sc)
   1247   1.3    simonb {
   1248   1.3    simonb 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1249   1.3    simonb 	struct emac_txsoft *txs;
   1250  1.20    simonb 	int handled, i;
   1251  1.36  kiyohara 	uint32_t txstat;
   1252   1.3    simonb 
   1253   1.3    simonb 	EMAC_EVCNT_INCR(&sc->sc_ev_txreap);
   1254  1.20    simonb 	handled = 0;
   1255   1.3    simonb 
   1256   1.3    simonb 	ifp->if_flags &= ~IFF_OACTIVE;
   1257   1.3    simonb 
   1258   1.3    simonb 	/*
   1259   1.3    simonb 	 * Go through our Tx list and free mbufs for those
   1260   1.3    simonb 	 * frames that have been transmitted.
   1261   1.3    simonb 	 */
   1262   1.3    simonb 	for (i = sc->sc_txsdirty; sc->sc_txsfree != EMAC_TXQUEUELEN;
   1263   1.3    simonb 	    i = EMAC_NEXTTXS(i), sc->sc_txsfree++) {
   1264   1.3    simonb 		txs = &sc->sc_txsoft[i];
   1265   1.3    simonb 
   1266   1.3    simonb 		EMAC_CDTXSYNC(sc, txs->txs_lastdesc,
   1267   1.3    simonb 		    txs->txs_dmamap->dm_nsegs,
   1268   1.3    simonb 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1269   1.3    simonb 
   1270   1.3    simonb 		txstat = sc->sc_txdescs[txs->txs_lastdesc].md_stat_ctrl;
   1271   1.3    simonb 		if (txstat & MAL_TX_READY)
   1272   1.3    simonb 			break;
   1273   1.3    simonb 
   1274  1.20    simonb 		handled = 1;
   1275  1.20    simonb 
   1276   1.3    simonb 		/*
   1277   1.3    simonb 		 * Check for errors and collisions.
   1278   1.3    simonb 		 */
   1279   1.3    simonb 		if (txstat & (EMAC_TXS_UR | EMAC_TXS_ED))
   1280   1.3    simonb 			ifp->if_oerrors++;
   1281   1.3    simonb 
   1282   1.3    simonb #ifdef EMAC_EVENT_COUNTERS
   1283   1.3    simonb 		if (txstat & EMAC_TXS_UR)
   1284   1.3    simonb 			EMAC_EVCNT_INCR(&sc->sc_ev_tu);
   1285   1.3    simonb #endif /* EMAC_EVENT_COUNTERS */
   1286   1.3    simonb 
   1287  1.36  kiyohara 		if (txstat &
   1288  1.36  kiyohara 		    (EMAC_TXS_EC | EMAC_TXS_MC | EMAC_TXS_SC | EMAC_TXS_LC)) {
   1289   1.3    simonb 			if (txstat & EMAC_TXS_EC)
   1290   1.3    simonb 				ifp->if_collisions += 16;
   1291   1.3    simonb 			else if (txstat & EMAC_TXS_MC)
   1292   1.3    simonb 				ifp->if_collisions += 2;	/* XXX? */
   1293   1.3    simonb 			else if (txstat & EMAC_TXS_SC)
   1294   1.3    simonb 				ifp->if_collisions++;
   1295   1.3    simonb 			if (txstat & EMAC_TXS_LC)
   1296   1.3    simonb 				ifp->if_collisions++;
   1297   1.3    simonb 		} else
   1298   1.3    simonb 			ifp->if_opackets++;
   1299   1.3    simonb 
   1300   1.3    simonb 		if (ifp->if_flags & IFF_DEBUG) {
   1301   1.3    simonb 			if (txstat & EMAC_TXS_ED)
   1302  1.36  kiyohara 				aprint_error_ifnet(ifp, "excessive deferral\n");
   1303   1.3    simonb 			if (txstat & EMAC_TXS_EC)
   1304  1.36  kiyohara 				aprint_error_ifnet(ifp,
   1305  1.36  kiyohara 				    "excessive collisions\n");
   1306   1.3    simonb 		}
   1307   1.3    simonb 
   1308   1.3    simonb 		sc->sc_txfree += txs->txs_ndesc;
   1309   1.3    simonb 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1310   1.3    simonb 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1311   1.3    simonb 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1312   1.3    simonb 		m_freem(txs->txs_mbuf);
   1313   1.3    simonb 		txs->txs_mbuf = NULL;
   1314   1.3    simonb 	}
   1315   1.3    simonb 
   1316   1.3    simonb 	/* Update the dirty transmit buffer pointer. */
   1317   1.3    simonb 	sc->sc_txsdirty = i;
   1318   1.3    simonb 
   1319   1.3    simonb 	/*
   1320   1.3    simonb 	 * If there are no more pending transmissions, cancel the watchdog
   1321   1.3    simonb 	 * timer.
   1322   1.3    simonb 	 */
   1323   1.3    simonb 	if (sc->sc_txsfree == EMAC_TXQUEUELEN)
   1324   1.3    simonb 		ifp->if_timer = 0;
   1325   1.3    simonb 
   1326  1.36  kiyohara 	return handled;
   1327  1.36  kiyohara }
   1328  1.36  kiyohara 
   1329  1.36  kiyohara 
   1330  1.36  kiyohara /*
   1331  1.36  kiyohara  * Reset functions
   1332  1.36  kiyohara  */
   1333  1.36  kiyohara 
   1334  1.36  kiyohara static void
   1335  1.36  kiyohara emac_soft_reset(struct emac_softc *sc)
   1336  1.36  kiyohara {
   1337  1.36  kiyohara 	uint32_t sdr;
   1338  1.36  kiyohara 	int t = 0;
   1339  1.36  kiyohara 
   1340  1.36  kiyohara 	/*
   1341  1.36  kiyohara 	 * The PHY must provide a TX Clk in order perform a soft reset the
   1342  1.36  kiyohara 	 * EMAC.  If none is present, select the internal clock,
   1343  1.36  kiyohara 	 * SDR0_MFR[E0CS,E1CS].  After the soft reset, select the external
   1344  1.36  kiyohara 	 * clock.
   1345  1.36  kiyohara 	 */
   1346  1.36  kiyohara 
   1347  1.36  kiyohara 	sdr = mfsdr(DCR_SDR0_MFR);
   1348  1.36  kiyohara 	sdr |= SDR0_MFR_ECS(sc->sc_instance);
   1349  1.36  kiyohara 	mtsdr(DCR_SDR0_MFR, sdr);
   1350  1.36  kiyohara 
   1351  1.36  kiyohara 	EMAC_WRITE(sc, EMAC_MR0, MR0_SRST);
   1352  1.36  kiyohara 
   1353  1.36  kiyohara 	sdr = mfsdr(DCR_SDR0_MFR);
   1354  1.36  kiyohara 	sdr &= ~SDR0_MFR_ECS(sc->sc_instance);
   1355  1.36  kiyohara 	mtsdr(DCR_SDR0_MFR, sdr);
   1356  1.36  kiyohara 
   1357  1.36  kiyohara 	delay(5);
   1358  1.36  kiyohara 
   1359  1.36  kiyohara 	/* wait finish */
   1360  1.36  kiyohara 	while (EMAC_READ(sc, EMAC_MR0) & MR0_SRST) {
   1361  1.36  kiyohara 		if (++t == 1000000 /* 1sec XXXXX */) {
   1362  1.36  kiyohara 			aprint_error_dev(sc->sc_dev, "Soft Reset failed\n");
   1363  1.36  kiyohara 			return;
   1364  1.36  kiyohara 		}
   1365  1.36  kiyohara 		delay(1);
   1366  1.36  kiyohara 	}
   1367  1.36  kiyohara }
   1368  1.36  kiyohara 
   1369  1.36  kiyohara static void
   1370  1.36  kiyohara emac_smart_reset(struct emac_softc *sc)
   1371  1.36  kiyohara {
   1372  1.36  kiyohara 	uint32_t mr0;
   1373  1.36  kiyohara 	int t = 0;
   1374  1.36  kiyohara 
   1375  1.36  kiyohara 	mr0 = EMAC_READ(sc, EMAC_MR0);
   1376  1.36  kiyohara 	if (mr0 & (MR0_TXE | MR0_RXE)) {
   1377  1.36  kiyohara 		mr0 &= ~(MR0_TXE | MR0_RXE);
   1378  1.36  kiyohara 		EMAC_WRITE(sc, EMAC_MR0, mr0);
   1379  1.36  kiyohara 
   1380  1.36  kiyohara 		/* wait idel state */
   1381  1.36  kiyohara 		while ((EMAC_READ(sc, EMAC_MR0) & (MR0_TXI | MR0_RXI)) !=
   1382  1.36  kiyohara 		    (MR0_TXI | MR0_RXI)) {
   1383  1.36  kiyohara 			if (++t == 1000000 /* 1sec XXXXX */) {
   1384  1.36  kiyohara 				aprint_error_dev(sc->sc_dev,
   1385  1.36  kiyohara 				    "Smart Reset failed\n");
   1386  1.36  kiyohara 				return;
   1387  1.36  kiyohara 			}
   1388  1.36  kiyohara 			delay(1);
   1389  1.36  kiyohara 		}
   1390  1.36  kiyohara 	}
   1391   1.3    simonb }
   1392   1.3    simonb 
   1393  1.36  kiyohara 
   1394   1.3    simonb /*
   1395  1.36  kiyohara  * MII related functions
   1396   1.3    simonb  */
   1397  1.36  kiyohara 
   1398   1.3    simonb static int
   1399  1.36  kiyohara emac_mii_readreg(device_t self, int phy, int reg)
   1400  1.36  kiyohara {
   1401  1.36  kiyohara 	struct emac_softc *sc = device_private(self);
   1402  1.36  kiyohara 	uint32_t sta_reg;
   1403  1.36  kiyohara 
   1404  1.36  kiyohara 	if (sc->sc_rmii_enable)
   1405  1.36  kiyohara 		sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
   1406  1.36  kiyohara 
   1407  1.36  kiyohara 	/* wait for PHY data transfer to complete */
   1408  1.36  kiyohara 	if (emac_mii_wait(sc))
   1409  1.36  kiyohara 		goto fail;
   1410  1.36  kiyohara 
   1411  1.36  kiyohara 	sta_reg =
   1412  1.36  kiyohara 	    sc->sc_stacr_read		|
   1413  1.36  kiyohara 	    (reg << STACR_PRA_SHIFT)	|
   1414  1.36  kiyohara 	    (phy << STACR_PCDA_SHIFT)	|
   1415  1.36  kiyohara 	    sc->sc_stacr_bits;
   1416  1.36  kiyohara 	EMAC_WRITE(sc, EMAC_STACR, sta_reg);
   1417  1.36  kiyohara 
   1418  1.36  kiyohara 	if (emac_mii_wait(sc))
   1419  1.36  kiyohara 		goto fail;
   1420  1.36  kiyohara 	sta_reg = EMAC_READ(sc, EMAC_STACR);
   1421  1.36  kiyohara 
   1422  1.36  kiyohara 	if (sc->sc_rmii_disable)
   1423  1.36  kiyohara 		sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
   1424  1.36  kiyohara 
   1425  1.36  kiyohara 	if (sta_reg & STACR_PHYE)
   1426  1.36  kiyohara 		return 0;
   1427  1.36  kiyohara 	return sta_reg >> STACR_PHYD_SHIFT;
   1428  1.36  kiyohara 
   1429  1.36  kiyohara fail:
   1430  1.36  kiyohara 	if (sc->sc_rmii_disable)
   1431  1.36  kiyohara 		sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
   1432  1.36  kiyohara 	return 0;
   1433  1.36  kiyohara }
   1434  1.36  kiyohara 
   1435  1.36  kiyohara static void
   1436  1.36  kiyohara emac_mii_writereg(device_t self, int phy, int reg, int val)
   1437  1.36  kiyohara {
   1438  1.36  kiyohara 	struct emac_softc *sc = device_private(self);
   1439  1.36  kiyohara 	uint32_t sta_reg;
   1440  1.36  kiyohara 
   1441  1.36  kiyohara 	if (sc->sc_rmii_enable)
   1442  1.36  kiyohara 		sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
   1443  1.36  kiyohara 
   1444  1.36  kiyohara 	/* wait for PHY data transfer to complete */
   1445  1.36  kiyohara 	if (emac_mii_wait(sc))
   1446  1.36  kiyohara 		goto out;
   1447  1.36  kiyohara 
   1448  1.36  kiyohara 	sta_reg =
   1449  1.36  kiyohara 	    (val << STACR_PHYD_SHIFT)	|
   1450  1.36  kiyohara 	    sc->sc_stacr_write		|
   1451  1.36  kiyohara 	    (reg << STACR_PRA_SHIFT)	|
   1452  1.36  kiyohara 	    (phy << STACR_PCDA_SHIFT)	|
   1453  1.36  kiyohara 	    sc->sc_stacr_bits;
   1454  1.36  kiyohara 	EMAC_WRITE(sc, EMAC_STACR, sta_reg);
   1455  1.36  kiyohara 
   1456  1.36  kiyohara 	if (emac_mii_wait(sc))
   1457  1.36  kiyohara 		goto out;
   1458  1.36  kiyohara 	if (EMAC_READ(sc, EMAC_STACR) & STACR_PHYE)
   1459  1.36  kiyohara 		aprint_error_dev(sc->sc_dev, "MII PHY Error\n");
   1460  1.36  kiyohara 
   1461  1.36  kiyohara out:
   1462  1.36  kiyohara 	if (sc->sc_rmii_disable)
   1463  1.36  kiyohara 		sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
   1464  1.36  kiyohara }
   1465  1.36  kiyohara 
   1466  1.36  kiyohara static void
   1467  1.41      matt emac_mii_statchg(struct ifnet *ifp)
   1468  1.36  kiyohara {
   1469  1.41      matt 	struct emac_softc *sc = ifp->if_softc;
   1470  1.36  kiyohara 	struct mii_data *mii = &sc->sc_mii;
   1471  1.36  kiyohara 
   1472  1.36  kiyohara 	/*
   1473  1.36  kiyohara 	 * MR1 can only be written immediately after a reset...
   1474  1.36  kiyohara 	 */
   1475  1.36  kiyohara 	emac_smart_reset(sc);
   1476  1.36  kiyohara 
   1477  1.36  kiyohara 	sc->sc_mr1 &= ~(MR1_FDE | MR1_ILE | MR1_EIFC | MR1_MF_MASK | MR1_IST);
   1478  1.36  kiyohara 	if (mii->mii_media_active & IFM_FDX)
   1479  1.36  kiyohara 		sc->sc_mr1 |= (MR1_FDE | MR1_EIFC | MR1_IST);
   1480  1.36  kiyohara 	if (mii->mii_media_active & IFM_FLOW)
   1481  1.36  kiyohara 		sc->sc_mr1 |= MR1_EIFC;
   1482  1.36  kiyohara 	if (mii->mii_media_active & IFM_LOOP)
   1483  1.36  kiyohara 		sc->sc_mr1 |= MR1_ILE;
   1484  1.36  kiyohara 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1485  1.36  kiyohara 	case IFM_1000_T:
   1486  1.36  kiyohara 		sc->sc_mr1 |= (MR1_MF_1000MBS | MR1_IST);
   1487  1.36  kiyohara 		break;
   1488  1.36  kiyohara 
   1489  1.36  kiyohara 	case IFM_100_TX:
   1490  1.36  kiyohara 		sc->sc_mr1 |= (MR1_MF_100MBS | MR1_IST);
   1491  1.36  kiyohara 		break;
   1492  1.36  kiyohara 
   1493  1.36  kiyohara 	case IFM_10_T:
   1494  1.36  kiyohara 		sc->sc_mr1 |= MR1_MF_10MBS;
   1495  1.36  kiyohara 		break;
   1496  1.36  kiyohara 
   1497  1.36  kiyohara 	case IFM_NONE:
   1498  1.36  kiyohara 		break;
   1499  1.36  kiyohara 
   1500  1.36  kiyohara 	default:
   1501  1.41      matt 		aprint_error_dev(sc->sc_dev, "unknown sub-type %d\n",
   1502  1.36  kiyohara 		    IFM_SUBTYPE(mii->mii_media_active));
   1503  1.36  kiyohara 		break;
   1504  1.36  kiyohara 	}
   1505  1.36  kiyohara 	if (sc->sc_rmii_speed)
   1506  1.41      matt 		sc->sc_rmii_speed(device_parent(sc->sc_dev), sc->sc_instance,
   1507  1.36  kiyohara 		    IFM_SUBTYPE(mii->mii_media_active));
   1508  1.36  kiyohara 
   1509  1.36  kiyohara 	EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
   1510  1.36  kiyohara 
   1511  1.36  kiyohara 	/* Enable TX and RX if already RUNNING */
   1512  1.36  kiyohara 	if (ifp->if_flags & IFF_RUNNING)
   1513  1.36  kiyohara 		EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
   1514  1.36  kiyohara }
   1515  1.36  kiyohara 
   1516  1.36  kiyohara static uint32_t
   1517  1.36  kiyohara emac_mii_wait(struct emac_softc *sc)
   1518  1.36  kiyohara {
   1519  1.36  kiyohara 	int i;
   1520  1.36  kiyohara 	uint32_t oc;
   1521  1.36  kiyohara 
   1522  1.36  kiyohara 	/* wait for PHY data transfer to complete */
   1523  1.36  kiyohara 	i = 0;
   1524  1.36  kiyohara 	oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
   1525  1.36  kiyohara 	while ((oc == STACR_OC) != sc->sc_stacr_completed) {
   1526  1.36  kiyohara 		delay(7);
   1527  1.36  kiyohara 		if (i++ > 5) {
   1528  1.36  kiyohara 			aprint_error_dev(sc->sc_dev, "MII timed out\n");
   1529  1.36  kiyohara 			return -1;
   1530  1.36  kiyohara 		}
   1531  1.36  kiyohara 		oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
   1532  1.36  kiyohara 	}
   1533  1.36  kiyohara 	return 0;
   1534  1.36  kiyohara }
   1535  1.36  kiyohara 
   1536  1.36  kiyohara static void
   1537  1.36  kiyohara emac_mii_tick(void *arg)
   1538  1.36  kiyohara {
   1539  1.36  kiyohara 	struct emac_softc *sc = arg;
   1540  1.36  kiyohara 	int s;
   1541  1.36  kiyohara 
   1542  1.36  kiyohara 	if (!device_is_active(sc->sc_dev))
   1543  1.36  kiyohara 		return;
   1544  1.36  kiyohara 
   1545  1.36  kiyohara 	s = splnet();
   1546  1.36  kiyohara 	mii_tick(&sc->sc_mii);
   1547  1.36  kiyohara 	splx(s);
   1548  1.36  kiyohara 
   1549  1.36  kiyohara 	callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
   1550  1.36  kiyohara }
   1551  1.36  kiyohara 
   1552  1.36  kiyohara int
   1553  1.36  kiyohara emac_txeob_intr(void *arg)
   1554  1.36  kiyohara {
   1555  1.36  kiyohara 	struct emac_softc *sc = arg;
   1556  1.36  kiyohara 	int handled = 0;
   1557  1.36  kiyohara 
   1558  1.36  kiyohara 	EMAC_EVCNT_INCR(&sc->sc_ev_txintr);
   1559  1.36  kiyohara 	handled |= emac_txreap(sc);
   1560  1.36  kiyohara 
   1561  1.36  kiyohara 	/* try to get more packets going */
   1562  1.36  kiyohara 	emac_start(&sc->sc_ethercom.ec_if);
   1563  1.36  kiyohara 
   1564  1.36  kiyohara 	return handled;
   1565  1.36  kiyohara }
   1566  1.36  kiyohara 
   1567  1.36  kiyohara int
   1568   1.3    simonb emac_rxeob_intr(void *arg)
   1569   1.3    simonb {
   1570   1.3    simonb 	struct emac_softc *sc = arg;
   1571   1.3    simonb 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1572   1.3    simonb 	struct emac_rxsoft *rxs;
   1573   1.3    simonb 	struct mbuf *m;
   1574  1.36  kiyohara 	uint32_t rxstat;
   1575   1.3    simonb 	int i, len;
   1576   1.3    simonb 
   1577   1.3    simonb 	EMAC_EVCNT_INCR(&sc->sc_ev_rxintr);
   1578   1.3    simonb 
   1579  1.36  kiyohara 	for (i = sc->sc_rxptr; ; i = EMAC_NEXTRX(i)) {
   1580   1.3    simonb 		rxs = &sc->sc_rxsoft[i];
   1581   1.3    simonb 
   1582   1.3    simonb 		EMAC_CDRXSYNC(sc, i,
   1583   1.3    simonb 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1584   1.3    simonb 
   1585   1.3    simonb 		rxstat = sc->sc_rxdescs[i].md_stat_ctrl;
   1586   1.3    simonb 
   1587  1.40  kiyohara 		if (rxstat & MAL_RX_EMPTY) {
   1588   1.3    simonb 			/*
   1589   1.3    simonb 			 * We have processed all of the receive buffers.
   1590   1.3    simonb 			 */
   1591  1.40  kiyohara 			/* Flush current empty descriptor */
   1592  1.40  kiyohara 			EMAC_CDRXSYNC(sc, i,
   1593  1.40  kiyohara 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1594   1.3    simonb 			break;
   1595  1.40  kiyohara 		}
   1596   1.3    simonb 
   1597   1.3    simonb 		/*
   1598   1.3    simonb 		 * If an error occurred, update stats, clear the status
   1599   1.3    simonb 		 * word, and leave the packet buffer in place.  It will
   1600   1.3    simonb 		 * simply be reused the next time the ring comes around.
   1601   1.3    simonb 		 */
   1602   1.3    simonb 		if (rxstat & (EMAC_RXS_OE | EMAC_RXS_BP | EMAC_RXS_SE |
   1603   1.3    simonb 		    EMAC_RXS_AE | EMAC_RXS_BFCS | EMAC_RXS_PTL | EMAC_RXS_ORE |
   1604   1.3    simonb 		    EMAC_RXS_IRE)) {
   1605  1.36  kiyohara #define	PRINTERR(bit, str)					\
   1606  1.36  kiyohara 			if (rxstat & (bit))			\
   1607  1.36  kiyohara 				aprint_error_ifnet(ifp,		\
   1608  1.36  kiyohara 				    "receive error: %s\n", str)
   1609   1.3    simonb 			ifp->if_ierrors++;
   1610   1.3    simonb 			PRINTERR(EMAC_RXS_OE, "overrun error");
   1611   1.3    simonb 			PRINTERR(EMAC_RXS_BP, "bad packet");
   1612   1.3    simonb 			PRINTERR(EMAC_RXS_RP, "runt packet");
   1613   1.3    simonb 			PRINTERR(EMAC_RXS_SE, "short event");
   1614   1.3    simonb 			PRINTERR(EMAC_RXS_AE, "alignment error");
   1615   1.3    simonb 			PRINTERR(EMAC_RXS_BFCS, "bad FCS");
   1616   1.3    simonb 			PRINTERR(EMAC_RXS_PTL, "packet too long");
   1617   1.3    simonb 			PRINTERR(EMAC_RXS_ORE, "out of range error");
   1618   1.3    simonb 			PRINTERR(EMAC_RXS_IRE, "in range error");
   1619   1.3    simonb #undef PRINTERR
   1620   1.3    simonb 			EMAC_INIT_RXDESC(sc, i);
   1621   1.3    simonb 			continue;
   1622   1.3    simonb 		}
   1623   1.3    simonb 
   1624   1.3    simonb 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1625   1.3    simonb 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1626   1.3    simonb 
   1627   1.3    simonb 		/*
   1628   1.3    simonb 		 * No errors; receive the packet.  Note, the 405GP emac
   1629   1.3    simonb 		 * includes the CRC with every packet.
   1630   1.3    simonb 		 */
   1631  1.22   thorpej 		len = sc->sc_rxdescs[i].md_data_len - ETHER_CRC_LEN;
   1632   1.3    simonb 
   1633   1.3    simonb 		/*
   1634   1.3    simonb 		 * If the packet is small enough to fit in a
   1635   1.3    simonb 		 * single header mbuf, allocate one and copy
   1636   1.3    simonb 		 * the data into it.  This greatly reduces
   1637   1.3    simonb 		 * memory consumption when we receive lots
   1638   1.3    simonb 		 * of small packets.
   1639   1.3    simonb 		 *
   1640   1.3    simonb 		 * Otherwise, we add a new buffer to the receive
   1641   1.3    simonb 		 * chain.  If this fails, we drop the packet and
   1642   1.3    simonb 		 * recycle the old buffer.
   1643   1.3    simonb 		 */
   1644   1.3    simonb 		if (emac_copy_small != 0 && len <= MHLEN) {
   1645   1.3    simonb 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1646   1.3    simonb 			if (m == NULL)
   1647   1.3    simonb 				goto dropit;
   1648  1.28  christos 			memcpy(mtod(m, void *),
   1649  1.28  christos 			    mtod(rxs->rxs_mbuf, void *), len);
   1650   1.3    simonb 			EMAC_INIT_RXDESC(sc, i);
   1651   1.3    simonb 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1652   1.3    simonb 			    rxs->rxs_dmamap->dm_mapsize,
   1653   1.3    simonb 			    BUS_DMASYNC_PREREAD);
   1654   1.3    simonb 		} else {
   1655   1.3    simonb 			m = rxs->rxs_mbuf;
   1656   1.3    simonb 			if (emac_add_rxbuf(sc, i) != 0) {
   1657   1.3    simonb  dropit:
   1658   1.3    simonb 				ifp->if_ierrors++;
   1659   1.3    simonb 				EMAC_INIT_RXDESC(sc, i);
   1660   1.3    simonb 				bus_dmamap_sync(sc->sc_dmat,
   1661   1.3    simonb 				    rxs->rxs_dmamap, 0,
   1662   1.3    simonb 				    rxs->rxs_dmamap->dm_mapsize,
   1663   1.3    simonb 				    BUS_DMASYNC_PREREAD);
   1664   1.3    simonb 				continue;
   1665   1.3    simonb 			}
   1666   1.3    simonb 		}
   1667   1.3    simonb 
   1668   1.3    simonb 		ifp->if_ipackets++;
   1669   1.3    simonb 		m->m_pkthdr.rcvif = ifp;
   1670   1.3    simonb 		m->m_pkthdr.len = m->m_len = len;
   1671   1.3    simonb 
   1672   1.3    simonb 		/*
   1673   1.3    simonb 		 * Pass this up to any BPF listeners, but only
   1674  1.43       snj 		 * pass it up the stack if it's for us.
   1675   1.3    simonb 		 */
   1676  1.37     joerg 		bpf_mtap(ifp, m);
   1677   1.3    simonb 
   1678   1.3    simonb 		/* Pass it on. */
   1679  1.44     ozaki 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1680   1.3    simonb 	}
   1681   1.3    simonb 
   1682   1.3    simonb 	/* Update the receive pointer. */
   1683   1.3    simonb 	sc->sc_rxptr = i;
   1684   1.3    simonb 
   1685  1.36  kiyohara 	return 1;
   1686   1.3    simonb }
   1687   1.3    simonb 
   1688  1.36  kiyohara int
   1689   1.3    simonb emac_txde_intr(void *arg)
   1690   1.3    simonb {
   1691   1.3    simonb 	struct emac_softc *sc = arg;
   1692   1.3    simonb 
   1693   1.3    simonb 	EMAC_EVCNT_INCR(&sc->sc_ev_txde);
   1694  1.36  kiyohara 	aprint_error_dev(sc->sc_dev, "emac_txde_intr\n");
   1695  1.36  kiyohara 	return 1;
   1696   1.3    simonb }
   1697   1.3    simonb 
   1698  1.36  kiyohara int
   1699   1.3    simonb emac_rxde_intr(void *arg)
   1700   1.3    simonb {
   1701  1.36  kiyohara 	struct emac_softc *sc = arg;
   1702   1.3    simonb 	int i;
   1703   1.3    simonb 
   1704   1.3    simonb 	EMAC_EVCNT_INCR(&sc->sc_ev_rxde);
   1705  1.36  kiyohara 	aprint_error_dev(sc->sc_dev, "emac_rxde_intr\n");
   1706   1.3    simonb 	/*
   1707   1.3    simonb 	 * XXX!
   1708   1.3    simonb 	 * This is a bit drastic; we just drop all descriptors that aren't
   1709   1.3    simonb 	 * "clean".  We should probably send any that are up the stack.
   1710   1.3    simonb 	 */
   1711   1.3    simonb 	for (i = 0; i < EMAC_NRXDESC; i++) {
   1712  1.36  kiyohara 		EMAC_CDRXSYNC(sc, i,
   1713  1.36  kiyohara 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1714   1.3    simonb 
   1715  1.36  kiyohara 		if (sc->sc_rxdescs[i].md_data_len != MCLBYTES)
   1716   1.3    simonb 			EMAC_INIT_RXDESC(sc, i);
   1717   1.3    simonb 	}
   1718   1.3    simonb 
   1719  1.36  kiyohara 	return 1;
   1720   1.3    simonb }
   1721