if_emac.c revision 1.44 1 1.44 ozaki /* $NetBSD: if_emac.c,v 1.44 2016/02/09 08:32:09 ozaki-r Exp $ */
2 1.1 simonb
3 1.1 simonb /*
4 1.3 simonb * Copyright 2001, 2002 Wasabi Systems, Inc.
5 1.1 simonb * All rights reserved.
6 1.1 simonb *
7 1.3 simonb * Written by Simon Burge and Jason Thorpe for Wasabi Systems, Inc.
8 1.1 simonb *
9 1.1 simonb * Redistribution and use in source and binary forms, with or without
10 1.1 simonb * modification, are permitted provided that the following conditions
11 1.1 simonb * are met:
12 1.1 simonb * 1. Redistributions of source code must retain the above copyright
13 1.1 simonb * notice, this list of conditions and the following disclaimer.
14 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 simonb * notice, this list of conditions and the following disclaimer in the
16 1.1 simonb * documentation and/or other materials provided with the distribution.
17 1.1 simonb * 3. All advertising materials mentioning features or use of this software
18 1.1 simonb * must display the following acknowledgement:
19 1.1 simonb * This product includes software developed for the NetBSD Project by
20 1.1 simonb * Wasabi Systems, Inc.
21 1.1 simonb * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.1 simonb * or promote products derived from this software without specific prior
23 1.1 simonb * written permission.
24 1.1 simonb *
25 1.1 simonb * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.1 simonb * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 simonb * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 simonb * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.1 simonb * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 simonb * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 simonb * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 simonb * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 simonb * POSSIBILITY OF SUCH DAMAGE.
36 1.1 simonb */
37 1.15 lukem
38 1.36 kiyohara /*
39 1.36 kiyohara * emac(4) supports following ibm4xx's EMACs.
40 1.36 kiyohara * XXXX: ZMII and 'TCP Accelaration Hardware' not support yet...
41 1.36 kiyohara *
42 1.36 kiyohara * tested
43 1.36 kiyohara * ------
44 1.36 kiyohara * 405EP - 10/100 x2
45 1.36 kiyohara * 405EX/EXr o 10/100/1000 x2 (EXr x1), STA v2, 256bit hash-Table, RGMII
46 1.36 kiyohara * 405GP/GPr o 10/100
47 1.36 kiyohara * 440EP - 10/100 x2, ZMII
48 1.36 kiyohara * 440GP - 10/100 x2, ZMII
49 1.36 kiyohara * 440GX - 10/100/1000 x4, ZMII/RGMII(ch 2, 3), TAH(ch 2, 3)
50 1.36 kiyohara * 440SP - 10/100/1000
51 1.36 kiyohara * 440SPe - 10/100/1000, STA v2
52 1.36 kiyohara */
53 1.36 kiyohara
54 1.15 lukem #include <sys/cdefs.h>
55 1.44 ozaki __KERNEL_RCSID(0, "$NetBSD: if_emac.c,v 1.44 2016/02/09 08:32:09 ozaki-r Exp $");
56 1.1 simonb
57 1.36 kiyohara #include "opt_emac.h"
58 1.1 simonb
59 1.1 simonb #include <sys/param.h>
60 1.1 simonb #include <sys/systm.h>
61 1.1 simonb #include <sys/mbuf.h>
62 1.1 simonb #include <sys/kernel.h>
63 1.1 simonb #include <sys/socket.h>
64 1.1 simonb #include <sys/ioctl.h>
65 1.39 matt #include <sys/cpu.h>
66 1.39 matt #include <sys/device.h>
67 1.1 simonb
68 1.3 simonb #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
69 1.1 simonb
70 1.1 simonb #include <net/if.h>
71 1.1 simonb #include <net/if_dl.h>
72 1.1 simonb #include <net/if_media.h>
73 1.1 simonb #include <net/if_ether.h>
74 1.1 simonb
75 1.1 simonb #include <net/bpf.h>
76 1.1 simonb
77 1.39 matt #include <powerpc/ibm4xx/cpu.h>
78 1.36 kiyohara #include <powerpc/ibm4xx/dcr4xx.h>
79 1.3 simonb #include <powerpc/ibm4xx/mal405gp.h>
80 1.7 simonb #include <powerpc/ibm4xx/dev/emacreg.h>
81 1.3 simonb #include <powerpc/ibm4xx/dev/if_emacreg.h>
82 1.36 kiyohara #include <powerpc/ibm4xx/dev/if_emacvar.h>
83 1.36 kiyohara #include <powerpc/ibm4xx/dev/malvar.h>
84 1.36 kiyohara #include <powerpc/ibm4xx/dev/opbreg.h>
85 1.36 kiyohara #include <powerpc/ibm4xx/dev/opbvar.h>
86 1.36 kiyohara #include <powerpc/ibm4xx/dev/plbvar.h>
87 1.36 kiyohara #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
88 1.36 kiyohara #include <powerpc/ibm4xx/dev/rmiivar.h>
89 1.36 kiyohara #endif
90 1.1 simonb
91 1.1 simonb #include <dev/mii/miivar.h>
92 1.1 simonb
93 1.36 kiyohara #include "locators.h"
94 1.36 kiyohara
95 1.36 kiyohara
96 1.3 simonb /*
97 1.3 simonb * Transmit descriptor list size. There are two Tx channels, each with
98 1.3 simonb * up to 256 hardware descriptors available. We currently use one Tx
99 1.3 simonb * channel. We tell the upper layers that they can queue a lot of
100 1.3 simonb * packets, and we go ahead and manage up to 64 of them at a time. We
101 1.3 simonb * allow up to 16 DMA segments per packet.
102 1.3 simonb */
103 1.3 simonb #define EMAC_NTXSEGS 16
104 1.3 simonb #define EMAC_TXQUEUELEN 64
105 1.3 simonb #define EMAC_TXQUEUELEN_MASK (EMAC_TXQUEUELEN - 1)
106 1.3 simonb #define EMAC_TXQUEUE_GC (EMAC_TXQUEUELEN / 4)
107 1.3 simonb #define EMAC_NTXDESC 256
108 1.3 simonb #define EMAC_NTXDESC_MASK (EMAC_NTXDESC - 1)
109 1.3 simonb #define EMAC_NEXTTX(x) (((x) + 1) & EMAC_NTXDESC_MASK)
110 1.3 simonb #define EMAC_NEXTTXS(x) (((x) + 1) & EMAC_TXQUEUELEN_MASK)
111 1.3 simonb
112 1.3 simonb /*
113 1.3 simonb * Receive descriptor list size. There is one Rx channel with up to 256
114 1.3 simonb * hardware descriptors available. We allocate 64 receive descriptors,
115 1.3 simonb * each with a 2k buffer (MCLBYTES).
116 1.3 simonb */
117 1.3 simonb #define EMAC_NRXDESC 64
118 1.3 simonb #define EMAC_NRXDESC_MASK (EMAC_NRXDESC - 1)
119 1.3 simonb #define EMAC_NEXTRX(x) (((x) + 1) & EMAC_NRXDESC_MASK)
120 1.3 simonb #define EMAC_PREVRX(x) (((x) - 1) & EMAC_NRXDESC_MASK)
121 1.3 simonb
122 1.3 simonb /*
123 1.3 simonb * Transmit/receive descriptors that are DMA'd to the EMAC.
124 1.3 simonb */
125 1.3 simonb struct emac_control_data {
126 1.3 simonb struct mal_descriptor ecd_txdesc[EMAC_NTXDESC];
127 1.3 simonb struct mal_descriptor ecd_rxdesc[EMAC_NRXDESC];
128 1.3 simonb };
129 1.3 simonb
130 1.3 simonb #define EMAC_CDOFF(x) offsetof(struct emac_control_data, x)
131 1.3 simonb #define EMAC_CDTXOFF(x) EMAC_CDOFF(ecd_txdesc[(x)])
132 1.3 simonb #define EMAC_CDRXOFF(x) EMAC_CDOFF(ecd_rxdesc[(x)])
133 1.3 simonb
134 1.3 simonb /*
135 1.3 simonb * Software state for transmit jobs.
136 1.3 simonb */
137 1.3 simonb struct emac_txsoft {
138 1.3 simonb struct mbuf *txs_mbuf; /* head of mbuf chain */
139 1.3 simonb bus_dmamap_t txs_dmamap; /* our DMA map */
140 1.3 simonb int txs_firstdesc; /* first descriptor in packet */
141 1.3 simonb int txs_lastdesc; /* last descriptor in packet */
142 1.3 simonb int txs_ndesc; /* # of descriptors used */
143 1.3 simonb };
144 1.3 simonb
145 1.3 simonb /*
146 1.3 simonb * Software state for receive descriptors.
147 1.3 simonb */
148 1.3 simonb struct emac_rxsoft {
149 1.3 simonb struct mbuf *rxs_mbuf; /* head of mbuf chain */
150 1.3 simonb bus_dmamap_t rxs_dmamap; /* our DMA map */
151 1.3 simonb };
152 1.3 simonb
153 1.3 simonb /*
154 1.3 simonb * Software state per device.
155 1.3 simonb */
156 1.1 simonb struct emac_softc {
157 1.36 kiyohara device_t sc_dev; /* generic device information */
158 1.36 kiyohara int sc_instance; /* instance no. */
159 1.1 simonb bus_space_tag_t sc_st; /* bus space tag */
160 1.1 simonb bus_space_handle_t sc_sh; /* bus space handle */
161 1.1 simonb bus_dma_tag_t sc_dmat; /* bus DMA tag */
162 1.1 simonb struct ethercom sc_ethercom; /* ethernet common data */
163 1.1 simonb void *sc_sdhook; /* shutdown hook */
164 1.3 simonb void *sc_powerhook; /* power management hook */
165 1.3 simonb
166 1.3 simonb struct mii_data sc_mii; /* MII/media information */
167 1.3 simonb struct callout sc_callout; /* tick callout */
168 1.3 simonb
169 1.36 kiyohara uint32_t sc_mr1; /* copy of Mode Register 1 */
170 1.36 kiyohara uint32_t sc_stacr_read; /* Read opcode of STAOPC of STACR */
171 1.36 kiyohara uint32_t sc_stacr_write; /* Write opcode of STAOPC of STACR */
172 1.36 kiyohara uint32_t sc_stacr_bits; /* misc bits of STACR */
173 1.36 kiyohara bool sc_stacr_completed; /* Operation completed of STACR */
174 1.36 kiyohara int sc_htsize; /* Hash Table size */
175 1.3 simonb
176 1.3 simonb bus_dmamap_t sc_cddmamap; /* control data dma map */
177 1.3 simonb #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
178 1.3 simonb
179 1.3 simonb /* Software state for transmit/receive descriptors. */
180 1.3 simonb struct emac_txsoft sc_txsoft[EMAC_TXQUEUELEN];
181 1.3 simonb struct emac_rxsoft sc_rxsoft[EMAC_NRXDESC];
182 1.3 simonb
183 1.3 simonb /* Control data structures. */
184 1.3 simonb struct emac_control_data *sc_control_data;
185 1.3 simonb #define sc_txdescs sc_control_data->ecd_txdesc
186 1.3 simonb #define sc_rxdescs sc_control_data->ecd_rxdesc
187 1.3 simonb
188 1.3 simonb #ifdef EMAC_EVENT_COUNTERS
189 1.3 simonb struct evcnt sc_ev_rxintr; /* Rx interrupts */
190 1.3 simonb struct evcnt sc_ev_txintr; /* Tx interrupts */
191 1.3 simonb struct evcnt sc_ev_rxde; /* Rx descriptor interrupts */
192 1.3 simonb struct evcnt sc_ev_txde; /* Tx descriptor interrupts */
193 1.3 simonb struct evcnt sc_ev_intr; /* General EMAC interrupts */
194 1.3 simonb
195 1.3 simonb struct evcnt sc_ev_txreap; /* Calls to Tx descriptor reaper */
196 1.3 simonb struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
197 1.3 simonb struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
198 1.3 simonb struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
199 1.3 simonb struct evcnt sc_ev_tu; /* Tx underrun */
200 1.3 simonb #endif /* EMAC_EVENT_COUNTERS */
201 1.3 simonb
202 1.3 simonb int sc_txfree; /* number of free Tx descriptors */
203 1.3 simonb int sc_txnext; /* next ready Tx descriptor */
204 1.3 simonb
205 1.3 simonb int sc_txsfree; /* number of free Tx jobs */
206 1.3 simonb int sc_txsnext; /* next ready Tx job */
207 1.3 simonb int sc_txsdirty; /* dirty Tx jobs */
208 1.3 simonb
209 1.3 simonb int sc_rxptr; /* next ready RX descriptor/descsoft */
210 1.36 kiyohara
211 1.36 kiyohara void (*sc_rmii_enable)(device_t, int); /* reduced MII enable */
212 1.36 kiyohara void (*sc_rmii_disable)(device_t, int); /* reduced MII disable*/
213 1.36 kiyohara void (*sc_rmii_speed)(device_t, int, int); /* reduced MII speed */
214 1.1 simonb };
215 1.1 simonb
216 1.3 simonb #ifdef EMAC_EVENT_COUNTERS
217 1.3 simonb #define EMAC_EVCNT_INCR(ev) (ev)->ev_count++
218 1.3 simonb #else
219 1.3 simonb #define EMAC_EVCNT_INCR(ev) /* nothing */
220 1.3 simonb #endif
221 1.3 simonb
222 1.3 simonb #define EMAC_CDTXADDR(sc, x) ((sc)->sc_cddma + EMAC_CDTXOFF((x)))
223 1.3 simonb #define EMAC_CDRXADDR(sc, x) ((sc)->sc_cddma + EMAC_CDRXOFF((x)))
224 1.3 simonb
225 1.3 simonb #define EMAC_CDTXSYNC(sc, x, n, ops) \
226 1.3 simonb do { \
227 1.3 simonb int __x, __n; \
228 1.3 simonb \
229 1.3 simonb __x = (x); \
230 1.3 simonb __n = (n); \
231 1.3 simonb \
232 1.3 simonb /* If it will wrap around, sync to the end of the ring. */ \
233 1.3 simonb if ((__x + __n) > EMAC_NTXDESC) { \
234 1.3 simonb bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
235 1.3 simonb EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * \
236 1.3 simonb (EMAC_NTXDESC - __x), (ops)); \
237 1.3 simonb __n -= (EMAC_NTXDESC - __x); \
238 1.3 simonb __x = 0; \
239 1.3 simonb } \
240 1.3 simonb \
241 1.3 simonb /* Now sync whatever is left. */ \
242 1.3 simonb bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
243 1.3 simonb EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * __n, (ops)); \
244 1.3 simonb } while (/*CONSTCOND*/0)
245 1.3 simonb
246 1.3 simonb #define EMAC_CDRXSYNC(sc, x, ops) \
247 1.3 simonb do { \
248 1.3 simonb bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
249 1.3 simonb EMAC_CDRXOFF((x)), sizeof(struct mal_descriptor), (ops)); \
250 1.3 simonb } while (/*CONSTCOND*/0)
251 1.3 simonb
252 1.3 simonb #define EMAC_INIT_RXDESC(sc, x) \
253 1.3 simonb do { \
254 1.3 simonb struct emac_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
255 1.3 simonb struct mal_descriptor *__rxd = &(sc)->sc_rxdescs[(x)]; \
256 1.3 simonb struct mbuf *__m = __rxs->rxs_mbuf; \
257 1.3 simonb \
258 1.3 simonb /* \
259 1.3 simonb * Note: We scoot the packet forward 2 bytes in the buffer \
260 1.3 simonb * so that the payload after the Ethernet header is aligned \
261 1.3 simonb * to a 4-byte boundary. \
262 1.3 simonb */ \
263 1.3 simonb __m->m_data = __m->m_ext.ext_buf + 2; \
264 1.3 simonb \
265 1.3 simonb __rxd->md_data = __rxs->rxs_dmamap->dm_segs[0].ds_addr + 2; \
266 1.3 simonb __rxd->md_data_len = __m->m_ext.ext_size - 2; \
267 1.3 simonb __rxd->md_stat_ctrl = MAL_RX_EMPTY | MAL_RX_INTERRUPT | \
268 1.3 simonb /* Set wrap on last descriptor. */ \
269 1.3 simonb (((x) == EMAC_NRXDESC - 1) ? MAL_RX_WRAP : 0); \
270 1.3 simonb EMAC_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
271 1.3 simonb } while (/*CONSTCOND*/0)
272 1.3 simonb
273 1.3 simonb #define EMAC_WRITE(sc, reg, val) \
274 1.3 simonb bus_space_write_stream_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
275 1.3 simonb #define EMAC_READ(sc, reg) \
276 1.3 simonb bus_space_read_stream_4((sc)->sc_st, (sc)->sc_sh, (reg))
277 1.3 simonb
278 1.36 kiyohara #define EMAC_SET_FILTER(aht, crc) \
279 1.36 kiyohara do { \
280 1.36 kiyohara (aht)[3 - (((crc) >> 26) >> 4)] |= 1 << (((crc) >> 26) & 0xf); \
281 1.36 kiyohara } while (/*CONSTCOND*/0)
282 1.36 kiyohara #define EMAC_SET_FILTER256(aht, crc) \
283 1.18 simonb do { \
284 1.36 kiyohara (aht)[7 - (((crc) >> 24) >> 5)] |= 1 << (((crc) >> 24) & 0x1f); \
285 1.18 simonb } while (/*CONSTCOND*/0)
286 1.18 simonb
287 1.36 kiyohara static int emac_match(device_t, cfdata_t, void *);
288 1.36 kiyohara static void emac_attach(device_t, device_t, void *);
289 1.3 simonb
290 1.36 kiyohara static int emac_intr(void *);
291 1.3 simonb static void emac_shutdown(void *);
292 1.36 kiyohara
293 1.3 simonb static void emac_start(struct ifnet *);
294 1.36 kiyohara static int emac_ioctl(struct ifnet *, u_long, void *);
295 1.36 kiyohara static int emac_init(struct ifnet *);
296 1.3 simonb static void emac_stop(struct ifnet *, int);
297 1.3 simonb static void emac_watchdog(struct ifnet *);
298 1.36 kiyohara
299 1.36 kiyohara static int emac_add_rxbuf(struct emac_softc *, int);
300 1.36 kiyohara static void emac_rxdrain(struct emac_softc *);
301 1.18 simonb static int emac_set_filter(struct emac_softc *);
302 1.36 kiyohara static int emac_txreap(struct emac_softc *);
303 1.3 simonb
304 1.36 kiyohara static void emac_soft_reset(struct emac_softc *);
305 1.36 kiyohara static void emac_smart_reset(struct emac_softc *);
306 1.1 simonb
307 1.36 kiyohara static int emac_mii_readreg(device_t, int, int);
308 1.36 kiyohara static void emac_mii_writereg(device_t, int, int, int);
309 1.41 matt static void emac_mii_statchg(struct ifnet *);
310 1.36 kiyohara static uint32_t emac_mii_wait(struct emac_softc *);
311 1.3 simonb static void emac_mii_tick(void *);
312 1.3 simonb
313 1.3 simonb int emac_copy_small = 0;
314 1.3 simonb
315 1.36 kiyohara CFATTACH_DECL_NEW(emac, sizeof(struct emac_softc),
316 1.13 thorpej emac_match, emac_attach, NULL, NULL);
317 1.1 simonb
318 1.36 kiyohara
319 1.1 simonb static int
320 1.36 kiyohara emac_match(device_t parent, cfdata_t cf, void *aux)
321 1.1 simonb {
322 1.5 simonb struct opb_attach_args *oaa = aux;
323 1.1 simonb
324 1.3 simonb /* match only on-chip ethernet devices */
325 1.10 thorpej if (strcmp(oaa->opb_name, cf->cf_name) == 0)
326 1.36 kiyohara return 1;
327 1.1 simonb
328 1.36 kiyohara return 0;
329 1.1 simonb }
330 1.1 simonb
331 1.1 simonb static void
332 1.36 kiyohara emac_attach(device_t parent, device_t self, void *aux)
333 1.1 simonb {
334 1.5 simonb struct opb_attach_args *oaa = aux;
335 1.36 kiyohara struct emac_softc *sc = device_private(self);
336 1.3 simonb struct ifnet *ifp = &sc->sc_ethercom.ec_if;
337 1.3 simonb struct mii_data *mii = &sc->sc_mii;
338 1.38 matt const char * xname = device_xname(self);
339 1.3 simonb bus_dma_segment_t seg;
340 1.36 kiyohara int error, i, nseg, opb_freq, opbc, mii_phy = MII_PHY_ANY;
341 1.26 thorpej const uint8_t *enaddr;
342 1.36 kiyohara prop_dictionary_t dict = device_properties(self);
343 1.26 thorpej prop_data_t ea;
344 1.1 simonb
345 1.27 kiyohara bus_space_map(oaa->opb_bt, oaa->opb_addr, EMAC_NREG, 0, &sc->sc_sh);
346 1.36 kiyohara
347 1.36 kiyohara sc->sc_dev = self;
348 1.36 kiyohara sc->sc_instance = oaa->opb_instance;
349 1.9 simonb sc->sc_st = oaa->opb_bt;
350 1.5 simonb sc->sc_dmat = oaa->opb_dmat;
351 1.1 simonb
352 1.36 kiyohara callout_init(&sc->sc_callout, 0);
353 1.36 kiyohara
354 1.36 kiyohara aprint_naive("\n");
355 1.36 kiyohara aprint_normal(": Ethernet Media Access Controller\n");
356 1.3 simonb
357 1.36 kiyohara /* Fetch the Ethernet address. */
358 1.36 kiyohara ea = prop_dictionary_get(dict, "mac-address");
359 1.36 kiyohara if (ea == NULL) {
360 1.36 kiyohara aprint_error_dev(self, "unable to get mac-address property\n");
361 1.36 kiyohara return;
362 1.36 kiyohara }
363 1.36 kiyohara KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
364 1.36 kiyohara KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
365 1.36 kiyohara enaddr = prop_data_data_nocopy(ea);
366 1.36 kiyohara aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
367 1.33 kiyohara
368 1.36 kiyohara #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
369 1.36 kiyohara /* Fetch the MII offset. */
370 1.36 kiyohara prop_dictionary_get_uint32(dict, "mii-phy", &mii_phy);
371 1.36 kiyohara
372 1.36 kiyohara #ifdef EMAC_ZMII_PHY
373 1.36 kiyohara if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_ZMII)
374 1.36 kiyohara zmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
375 1.36 kiyohara &sc->sc_rmii_disable, &sc->sc_rmii_speed);
376 1.36 kiyohara #endif
377 1.36 kiyohara #ifdef EMAC_RGMII_PHY
378 1.36 kiyohara if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_RGMII)
379 1.36 kiyohara rgmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
380 1.36 kiyohara &sc->sc_rmii_disable, &sc->sc_rmii_speed);
381 1.36 kiyohara #endif
382 1.36 kiyohara #endif
383 1.3 simonb
384 1.3 simonb /*
385 1.3 simonb * Allocate the control data structures, and create and load the
386 1.3 simonb * DMA map for it.
387 1.3 simonb */
388 1.3 simonb if ((error = bus_dmamem_alloc(sc->sc_dmat,
389 1.3 simonb sizeof(struct emac_control_data), 0, 0, &seg, 1, &nseg, 0)) != 0) {
390 1.36 kiyohara aprint_error_dev(self,
391 1.36 kiyohara "unable to allocate control data, error = %d\n", error);
392 1.3 simonb goto fail_0;
393 1.3 simonb }
394 1.3 simonb
395 1.3 simonb if ((error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
396 1.28 christos sizeof(struct emac_control_data), (void **)&sc->sc_control_data,
397 1.3 simonb BUS_DMA_COHERENT)) != 0) {
398 1.36 kiyohara aprint_error_dev(self,
399 1.36 kiyohara "unable to map control data, error = %d\n", error);
400 1.3 simonb goto fail_1;
401 1.3 simonb }
402 1.3 simonb
403 1.3 simonb if ((error = bus_dmamap_create(sc->sc_dmat,
404 1.3 simonb sizeof(struct emac_control_data), 1,
405 1.3 simonb sizeof(struct emac_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
406 1.36 kiyohara aprint_error_dev(self,
407 1.36 kiyohara "unable to create control data DMA map, error = %d\n",
408 1.36 kiyohara error);
409 1.3 simonb goto fail_2;
410 1.3 simonb }
411 1.3 simonb
412 1.3 simonb if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
413 1.3 simonb sc->sc_control_data, sizeof(struct emac_control_data), NULL,
414 1.3 simonb 0)) != 0) {
415 1.36 kiyohara aprint_error_dev(self,
416 1.36 kiyohara "unable to load control data DMA map, error = %d\n", error);
417 1.3 simonb goto fail_3;
418 1.3 simonb }
419 1.3 simonb
420 1.3 simonb /*
421 1.3 simonb * Create the transmit buffer DMA maps.
422 1.3 simonb */
423 1.3 simonb for (i = 0; i < EMAC_TXQUEUELEN; i++) {
424 1.3 simonb if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
425 1.3 simonb EMAC_NTXSEGS, MCLBYTES, 0, 0,
426 1.3 simonb &sc->sc_txsoft[i].txs_dmamap)) != 0) {
427 1.36 kiyohara aprint_error_dev(self,
428 1.36 kiyohara "unable to create tx DMA map %d, error = %d\n",
429 1.36 kiyohara i, error);
430 1.3 simonb goto fail_4;
431 1.3 simonb }
432 1.3 simonb }
433 1.3 simonb
434 1.3 simonb /*
435 1.3 simonb * Create the receive buffer DMA maps.
436 1.3 simonb */
437 1.3 simonb for (i = 0; i < EMAC_NRXDESC; i++) {
438 1.3 simonb if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
439 1.3 simonb MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
440 1.36 kiyohara aprint_error_dev(self,
441 1.36 kiyohara "unable to create rx DMA map %d, error = %d\n",
442 1.36 kiyohara i, error);
443 1.3 simonb goto fail_5;
444 1.3 simonb }
445 1.3 simonb sc->sc_rxsoft[i].rxs_mbuf = NULL;
446 1.3 simonb }
447 1.3 simonb
448 1.36 kiyohara /* Soft Reset the EMAC. The chip to a known state. */
449 1.36 kiyohara emac_soft_reset(sc);
450 1.3 simonb
451 1.36 kiyohara opb_freq = opb_get_frequency();
452 1.36 kiyohara switch (opb_freq) {
453 1.36 kiyohara case 50000000: opbc = STACR_OPBC_50MHZ; break;
454 1.36 kiyohara case 66666666: opbc = STACR_OPBC_66MHZ; break;
455 1.36 kiyohara case 83333333: opbc = STACR_OPBC_83MHZ; break;
456 1.36 kiyohara case 100000000: opbc = STACR_OPBC_100MHZ; break;
457 1.36 kiyohara
458 1.36 kiyohara default:
459 1.36 kiyohara if (opb_freq > 100000000) {
460 1.36 kiyohara opbc = STACR_OPBC_A100MHZ;
461 1.36 kiyohara break;
462 1.36 kiyohara }
463 1.36 kiyohara aprint_error_dev(self, "unsupport OPB frequency %dMHz\n",
464 1.36 kiyohara opb_freq / 1000 / 1000);
465 1.36 kiyohara goto fail_5;
466 1.36 kiyohara }
467 1.36 kiyohara if (oaa->opb_flags & OPB_FLAGS_EMAC_GBE) {
468 1.36 kiyohara sc->sc_mr1 =
469 1.36 kiyohara MR1_RFS_GBE(MR1__FS_16KB) |
470 1.36 kiyohara MR1_TFS_GBE(MR1__FS_16KB) |
471 1.36 kiyohara MR1_TR0_MULTIPLE |
472 1.36 kiyohara MR1_OBCI(opbc);
473 1.36 kiyohara sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
474 1.36 kiyohara
475 1.36 kiyohara if (oaa->opb_flags & OPB_FLAGS_EMAC_STACV2) {
476 1.36 kiyohara sc->sc_stacr_read = STACR_STAOPC_READ;
477 1.36 kiyohara sc->sc_stacr_write = STACR_STAOPC_WRITE;
478 1.36 kiyohara sc->sc_stacr_bits = STACR_OC;
479 1.36 kiyohara sc->sc_stacr_completed = false;
480 1.36 kiyohara } else {
481 1.36 kiyohara sc->sc_stacr_read = STACR_READ;
482 1.36 kiyohara sc->sc_stacr_write = STACR_WRITE;
483 1.36 kiyohara sc->sc_stacr_completed = true;
484 1.36 kiyohara }
485 1.36 kiyohara } else {
486 1.36 kiyohara /*
487 1.36 kiyohara * Set up Mode Register 1 - set receive and transmit FIFOs to
488 1.36 kiyohara * maximum size, allow transmit of multiple packets (only
489 1.36 kiyohara * channel 0 is used).
490 1.36 kiyohara *
491 1.36 kiyohara * XXX: Allow pause packets??
492 1.36 kiyohara */
493 1.36 kiyohara sc->sc_mr1 =
494 1.36 kiyohara MR1_RFS(MR1__FS_4KB) |
495 1.36 kiyohara MR1_TFS(MR1__FS_2KB) |
496 1.36 kiyohara MR1_TR0_MULTIPLE;
497 1.36 kiyohara
498 1.36 kiyohara sc->sc_stacr_read = STACR_READ;
499 1.36 kiyohara sc->sc_stacr_write = STACR_WRITE;
500 1.36 kiyohara sc->sc_stacr_bits = STACR_OPBC(opbc);
501 1.36 kiyohara sc->sc_stacr_completed = true;
502 1.14 thorpej }
503 1.14 thorpej
504 1.36 kiyohara intr_establish(oaa->opb_irq, IST_LEVEL, IPL_NET, emac_intr, sc);
505 1.36 kiyohara mal_intr_establish(sc->sc_instance, sc);
506 1.36 kiyohara
507 1.36 kiyohara if (oaa->opb_flags & OPB_FLAGS_EMAC_HT256)
508 1.36 kiyohara sc->sc_htsize = 256;
509 1.36 kiyohara else
510 1.36 kiyohara sc->sc_htsize = 64;
511 1.36 kiyohara
512 1.36 kiyohara /* Clear all interrupts */
513 1.36 kiyohara EMAC_WRITE(sc, EMAC_ISR, ISR_ALL);
514 1.1 simonb
515 1.3 simonb /*
516 1.3 simonb * Initialise the media structures.
517 1.3 simonb */
518 1.3 simonb mii->mii_ifp = ifp;
519 1.3 simonb mii->mii_readreg = emac_mii_readreg;
520 1.3 simonb mii->mii_writereg = emac_mii_writereg;
521 1.3 simonb mii->mii_statchg = emac_mii_statchg;
522 1.3 simonb
523 1.31 dyoung sc->sc_ethercom.ec_mii = mii;
524 1.31 dyoung ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
525 1.42 msaitoh mii_attach(self, mii, 0xffffffff, mii_phy, MII_OFFSET_ANY,
526 1.42 msaitoh MIIF_DOPAUSE);
527 1.3 simonb if (LIST_FIRST(&mii->mii_phys) == NULL) {
528 1.3 simonb ifmedia_add(&mii->mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
529 1.3 simonb ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_NONE);
530 1.3 simonb } else
531 1.3 simonb ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_AUTO);
532 1.3 simonb
533 1.3 simonb ifp = &sc->sc_ethercom.ec_if;
534 1.38 matt strcpy(ifp->if_xname, xname);
535 1.3 simonb ifp->if_softc = sc;
536 1.3 simonb ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
537 1.36 kiyohara ifp->if_start = emac_start;
538 1.3 simonb ifp->if_ioctl = emac_ioctl;
539 1.3 simonb ifp->if_init = emac_init;
540 1.3 simonb ifp->if_stop = emac_stop;
541 1.36 kiyohara ifp->if_watchdog = emac_watchdog;
542 1.3 simonb IFQ_SET_READY(&ifp->if_snd);
543 1.3 simonb
544 1.3 simonb /*
545 1.3 simonb * We can support 802.1Q VLAN-sized frames.
546 1.3 simonb */
547 1.3 simonb sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
548 1.3 simonb
549 1.3 simonb /*
550 1.3 simonb * Attach the interface.
551 1.3 simonb */
552 1.3 simonb if_attach(ifp);
553 1.14 thorpej ether_ifattach(ifp, enaddr);
554 1.3 simonb
555 1.3 simonb #ifdef EMAC_EVENT_COUNTERS
556 1.3 simonb /*
557 1.3 simonb * Attach the event counters.
558 1.3 simonb */
559 1.36 kiyohara evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
560 1.38 matt NULL, xname, "txintr");
561 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
562 1.38 matt NULL, xname, "rxintr");
563 1.36 kiyohara evcnt_attach_dynamic(&sc->sc_ev_txde, EVCNT_TYPE_INTR,
564 1.38 matt NULL, xname, "txde");
565 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_rxde, EVCNT_TYPE_INTR,
566 1.38 matt NULL, xname, "rxde");
567 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
568 1.38 matt NULL, xname, "intr");
569 1.3 simonb
570 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_txreap, EVCNT_TYPE_MISC,
571 1.38 matt NULL, xname, "txreap");
572 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
573 1.38 matt NULL, xname, "txsstall");
574 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
575 1.38 matt NULL, xname, "txdstall");
576 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
577 1.38 matt NULL, xname, "txdrop");
578 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
579 1.38 matt NULL, xname, "tu");
580 1.3 simonb #endif /* EMAC_EVENT_COUNTERS */
581 1.3 simonb
582 1.3 simonb /*
583 1.3 simonb * Make sure the interface is shutdown during reboot.
584 1.3 simonb */
585 1.3 simonb sc->sc_sdhook = shutdownhook_establish(emac_shutdown, sc);
586 1.3 simonb if (sc->sc_sdhook == NULL)
587 1.36 kiyohara aprint_error_dev(self,
588 1.36 kiyohara "WARNING: unable to establish shutdown hook\n");
589 1.3 simonb
590 1.3 simonb return;
591 1.3 simonb
592 1.3 simonb /*
593 1.3 simonb * Free any resources we've allocated during the failed attach
594 1.3 simonb * attempt. Do this in reverse order and fall through.
595 1.3 simonb */
596 1.3 simonb fail_5:
597 1.3 simonb for (i = 0; i < EMAC_NRXDESC; i++) {
598 1.3 simonb if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
599 1.3 simonb bus_dmamap_destroy(sc->sc_dmat,
600 1.3 simonb sc->sc_rxsoft[i].rxs_dmamap);
601 1.3 simonb }
602 1.3 simonb fail_4:
603 1.3 simonb for (i = 0; i < EMAC_TXQUEUELEN; i++) {
604 1.3 simonb if (sc->sc_txsoft[i].txs_dmamap != NULL)
605 1.3 simonb bus_dmamap_destroy(sc->sc_dmat,
606 1.3 simonb sc->sc_txsoft[i].txs_dmamap);
607 1.3 simonb }
608 1.3 simonb bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
609 1.3 simonb fail_3:
610 1.3 simonb bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
611 1.3 simonb fail_2:
612 1.28 christos bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
613 1.3 simonb sizeof(struct emac_control_data));
614 1.3 simonb fail_1:
615 1.3 simonb bus_dmamem_free(sc->sc_dmat, &seg, nseg);
616 1.3 simonb fail_0:
617 1.3 simonb return;
618 1.3 simonb }
619 1.3 simonb
620 1.3 simonb /*
621 1.36 kiyohara * EMAC General interrupt handler
622 1.3 simonb */
623 1.36 kiyohara static int
624 1.36 kiyohara emac_intr(void *arg)
625 1.36 kiyohara {
626 1.36 kiyohara struct emac_softc *sc = arg;
627 1.36 kiyohara uint32_t status;
628 1.36 kiyohara
629 1.36 kiyohara EMAC_EVCNT_INCR(&sc->sc_ev_intr);
630 1.36 kiyohara status = EMAC_READ(sc, EMAC_ISR);
631 1.36 kiyohara
632 1.36 kiyohara /* Clear the interrupt status bits. */
633 1.36 kiyohara EMAC_WRITE(sc, EMAC_ISR, status);
634 1.36 kiyohara
635 1.36 kiyohara return 1;
636 1.36 kiyohara }
637 1.36 kiyohara
638 1.3 simonb static void
639 1.3 simonb emac_shutdown(void *arg)
640 1.3 simonb {
641 1.3 simonb struct emac_softc *sc = arg;
642 1.3 simonb
643 1.3 simonb emac_stop(&sc->sc_ethercom.ec_if, 0);
644 1.3 simonb }
645 1.3 simonb
646 1.36 kiyohara
647 1.36 kiyohara /*
648 1.36 kiyohara * ifnet interface functions
649 1.36 kiyohara */
650 1.36 kiyohara
651 1.3 simonb static void
652 1.3 simonb emac_start(struct ifnet *ifp)
653 1.3 simonb {
654 1.3 simonb struct emac_softc *sc = ifp->if_softc;
655 1.3 simonb struct mbuf *m0;
656 1.3 simonb struct emac_txsoft *txs;
657 1.3 simonb bus_dmamap_t dmamap;
658 1.3 simonb int error, firsttx, nexttx, lasttx, ofree, seg;
659 1.17 simonb
660 1.17 simonb lasttx = 0; /* XXX gcc */
661 1.3 simonb
662 1.3 simonb if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
663 1.3 simonb return;
664 1.3 simonb
665 1.3 simonb /*
666 1.3 simonb * Remember the previous number of free descriptors.
667 1.3 simonb */
668 1.3 simonb ofree = sc->sc_txfree;
669 1.3 simonb
670 1.3 simonb /*
671 1.3 simonb * Loop through the send queue, setting up transmit descriptors
672 1.3 simonb * until we drain the queue, or use up all available transmit
673 1.3 simonb * descriptors.
674 1.3 simonb */
675 1.3 simonb for (;;) {
676 1.3 simonb /* Grab a packet off the queue. */
677 1.3 simonb IFQ_POLL(&ifp->if_snd, m0);
678 1.3 simonb if (m0 == NULL)
679 1.3 simonb break;
680 1.3 simonb
681 1.3 simonb /*
682 1.3 simonb * Get a work queue entry. Reclaim used Tx descriptors if
683 1.3 simonb * we are running low.
684 1.3 simonb */
685 1.3 simonb if (sc->sc_txsfree < EMAC_TXQUEUE_GC) {
686 1.3 simonb emac_txreap(sc);
687 1.3 simonb if (sc->sc_txsfree == 0) {
688 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_txsstall);
689 1.3 simonb break;
690 1.3 simonb }
691 1.3 simonb }
692 1.3 simonb
693 1.3 simonb txs = &sc->sc_txsoft[sc->sc_txsnext];
694 1.3 simonb dmamap = txs->txs_dmamap;
695 1.3 simonb
696 1.3 simonb /*
697 1.3 simonb * Load the DMA map. If this fails, the packet either
698 1.3 simonb * didn't fit in the alloted number of segments, or we
699 1.3 simonb * were short on resources. In this case, we'll copy
700 1.3 simonb * and try again.
701 1.3 simonb */
702 1.3 simonb error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
703 1.3 simonb BUS_DMA_WRITE|BUS_DMA_NOWAIT);
704 1.3 simonb if (error) {
705 1.3 simonb if (error == EFBIG) {
706 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_txdrop);
707 1.36 kiyohara aprint_error_ifnet(ifp,
708 1.36 kiyohara "Tx packet consumes too many "
709 1.36 kiyohara "DMA segments, dropping...\n");
710 1.3 simonb IFQ_DEQUEUE(&ifp->if_snd, m0);
711 1.3 simonb m_freem(m0);
712 1.3 simonb continue;
713 1.3 simonb }
714 1.3 simonb /* Short on resources, just stop for now. */
715 1.3 simonb break;
716 1.3 simonb }
717 1.3 simonb
718 1.3 simonb /*
719 1.3 simonb * Ensure we have enough descriptors free to describe
720 1.3 simonb * the packet.
721 1.3 simonb */
722 1.3 simonb if (dmamap->dm_nsegs > sc->sc_txfree) {
723 1.3 simonb /*
724 1.3 simonb * Not enough free descriptors to transmit this
725 1.3 simonb * packet. We haven't committed anything yet,
726 1.3 simonb * so just unload the DMA map, put the packet
727 1.3 simonb * back on the queue, and punt. Notify the upper
728 1.3 simonb * layer that there are not more slots left.
729 1.3 simonb *
730 1.3 simonb */
731 1.3 simonb ifp->if_flags |= IFF_OACTIVE;
732 1.3 simonb bus_dmamap_unload(sc->sc_dmat, dmamap);
733 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_txdstall);
734 1.3 simonb break;
735 1.3 simonb }
736 1.3 simonb
737 1.3 simonb IFQ_DEQUEUE(&ifp->if_snd, m0);
738 1.3 simonb
739 1.3 simonb /*
740 1.3 simonb * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
741 1.3 simonb */
742 1.3 simonb
743 1.3 simonb /* Sync the DMA map. */
744 1.3 simonb bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
745 1.3 simonb BUS_DMASYNC_PREWRITE);
746 1.3 simonb
747 1.3 simonb /*
748 1.3 simonb * Store a pointer to the packet so that we can free it
749 1.3 simonb * later.
750 1.3 simonb */
751 1.3 simonb txs->txs_mbuf = m0;
752 1.3 simonb txs->txs_firstdesc = sc->sc_txnext;
753 1.3 simonb txs->txs_ndesc = dmamap->dm_nsegs;
754 1.3 simonb
755 1.3 simonb /*
756 1.3 simonb * Initialize the transmit descriptor.
757 1.3 simonb */
758 1.3 simonb firsttx = sc->sc_txnext;
759 1.3 simonb for (nexttx = sc->sc_txnext, seg = 0;
760 1.3 simonb seg < dmamap->dm_nsegs;
761 1.3 simonb seg++, nexttx = EMAC_NEXTTX(nexttx)) {
762 1.36 kiyohara struct mal_descriptor *txdesc =
763 1.36 kiyohara &sc->sc_txdescs[nexttx];
764 1.36 kiyohara
765 1.3 simonb /*
766 1.3 simonb * If this is the first descriptor we're
767 1.3 simonb * enqueueing, don't set the TX_READY bit just
768 1.3 simonb * yet. That could cause a race condition.
769 1.3 simonb * We'll do it below.
770 1.3 simonb */
771 1.36 kiyohara txdesc->md_data = dmamap->dm_segs[seg].ds_addr;
772 1.36 kiyohara txdesc->md_data_len = dmamap->dm_segs[seg].ds_len;
773 1.36 kiyohara txdesc->md_stat_ctrl =
774 1.36 kiyohara (txdesc->md_stat_ctrl & MAL_TX_WRAP) |
775 1.3 simonb (nexttx == firsttx ? 0 : MAL_TX_READY) |
776 1.3 simonb EMAC_TXC_GFCS | EMAC_TXC_GPAD;
777 1.3 simonb lasttx = nexttx;
778 1.3 simonb }
779 1.3 simonb
780 1.3 simonb /* Set the LAST bit on the last segment. */
781 1.3 simonb sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_LAST;
782 1.3 simonb
783 1.21 simonb /*
784 1.21 simonb * Set up last segment descriptor to send an interrupt after
785 1.21 simonb * that descriptor is transmitted, and bypass existing Tx
786 1.21 simonb * descriptor reaping method (for now...).
787 1.21 simonb */
788 1.21 simonb sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_INTERRUPT;
789 1.21 simonb
790 1.21 simonb
791 1.3 simonb txs->txs_lastdesc = lasttx;
792 1.3 simonb
793 1.3 simonb /* Sync the descriptors we're using. */
794 1.3 simonb EMAC_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
795 1.3 simonb BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
796 1.3 simonb
797 1.3 simonb /*
798 1.3 simonb * The entire packet chain is set up. Give the
799 1.3 simonb * first descriptor to the chip now.
800 1.3 simonb */
801 1.3 simonb sc->sc_txdescs[firsttx].md_stat_ctrl |= MAL_TX_READY;
802 1.3 simonb EMAC_CDTXSYNC(sc, firsttx, 1,
803 1.3 simonb BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
804 1.3 simonb /*
805 1.3 simonb * Tell the EMAC that a new packet is available.
806 1.3 simonb */
807 1.36 kiyohara EMAC_WRITE(sc, EMAC_TMR0, TMR0_GNP0 | TMR0_TFAE_2);
808 1.3 simonb
809 1.3 simonb /* Advance the tx pointer. */
810 1.3 simonb sc->sc_txfree -= txs->txs_ndesc;
811 1.3 simonb sc->sc_txnext = nexttx;
812 1.3 simonb
813 1.3 simonb sc->sc_txsfree--;
814 1.3 simonb sc->sc_txsnext = EMAC_NEXTTXS(sc->sc_txsnext);
815 1.3 simonb
816 1.3 simonb /*
817 1.3 simonb * Pass the packet to any BPF listeners.
818 1.3 simonb */
819 1.37 joerg bpf_mtap(ifp, m0);
820 1.3 simonb }
821 1.3 simonb
822 1.36 kiyohara if (sc->sc_txfree == 0)
823 1.3 simonb /* No more slots left; notify upper layer. */
824 1.3 simonb ifp->if_flags |= IFF_OACTIVE;
825 1.3 simonb
826 1.36 kiyohara if (sc->sc_txfree != ofree)
827 1.3 simonb /* Set a watchdog timer in case the chip flakes out. */
828 1.3 simonb ifp->if_timer = 5;
829 1.36 kiyohara }
830 1.36 kiyohara
831 1.36 kiyohara static int
832 1.36 kiyohara emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
833 1.36 kiyohara {
834 1.36 kiyohara struct emac_softc *sc = ifp->if_softc;
835 1.36 kiyohara int s, error;
836 1.36 kiyohara
837 1.36 kiyohara s = splnet();
838 1.36 kiyohara
839 1.36 kiyohara switch (cmd) {
840 1.36 kiyohara case SIOCSIFMTU:
841 1.36 kiyohara {
842 1.36 kiyohara struct ifreq *ifr = (struct ifreq *)data;
843 1.36 kiyohara int maxmtu;
844 1.36 kiyohara
845 1.36 kiyohara if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU)
846 1.36 kiyohara maxmtu = EMAC_MAX_MTU;
847 1.36 kiyohara else
848 1.36 kiyohara maxmtu = ETHERMTU;
849 1.36 kiyohara
850 1.36 kiyohara if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
851 1.36 kiyohara error = EINVAL;
852 1.36 kiyohara else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
853 1.36 kiyohara break;
854 1.36 kiyohara else if (ifp->if_flags & IFF_UP)
855 1.36 kiyohara error = emac_init(ifp);
856 1.36 kiyohara else
857 1.36 kiyohara error = 0;
858 1.36 kiyohara break;
859 1.36 kiyohara }
860 1.36 kiyohara
861 1.36 kiyohara default:
862 1.36 kiyohara error = ether_ioctl(ifp, cmd, data);
863 1.36 kiyohara if (error == ENETRESET) {
864 1.36 kiyohara /*
865 1.36 kiyohara * Multicast list has changed; set the hardware filter
866 1.36 kiyohara * accordingly.
867 1.36 kiyohara */
868 1.36 kiyohara if (ifp->if_flags & IFF_RUNNING)
869 1.36 kiyohara error = emac_set_filter(sc);
870 1.36 kiyohara else
871 1.36 kiyohara error = 0;
872 1.36 kiyohara }
873 1.3 simonb }
874 1.36 kiyohara
875 1.36 kiyohara /* try to get more packets going */
876 1.36 kiyohara emac_start(ifp);
877 1.36 kiyohara
878 1.36 kiyohara splx(s);
879 1.36 kiyohara return error;
880 1.3 simonb }
881 1.3 simonb
882 1.3 simonb static int
883 1.3 simonb emac_init(struct ifnet *ifp)
884 1.3 simonb {
885 1.3 simonb struct emac_softc *sc = ifp->if_softc;
886 1.3 simonb struct emac_rxsoft *rxs;
887 1.29 dyoung const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
888 1.3 simonb int error, i;
889 1.3 simonb
890 1.3 simonb error = 0;
891 1.3 simonb
892 1.3 simonb /* Cancel any pending I/O. */
893 1.3 simonb emac_stop(ifp, 0);
894 1.3 simonb
895 1.3 simonb /* Reset the chip to a known state. */
896 1.36 kiyohara emac_soft_reset(sc);
897 1.3 simonb
898 1.36 kiyohara /*
899 1.3 simonb * Initialise the transmit descriptor ring.
900 1.3 simonb */
901 1.3 simonb memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
902 1.3 simonb /* set wrap on last descriptor */
903 1.3 simonb sc->sc_txdescs[EMAC_NTXDESC - 1].md_stat_ctrl |= MAL_TX_WRAP;
904 1.3 simonb EMAC_CDTXSYNC(sc, 0, EMAC_NTXDESC,
905 1.36 kiyohara BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
906 1.3 simonb sc->sc_txfree = EMAC_NTXDESC;
907 1.3 simonb sc->sc_txnext = 0;
908 1.3 simonb
909 1.3 simonb /*
910 1.3 simonb * Initialise the transmit job descriptors.
911 1.3 simonb */
912 1.3 simonb for (i = 0; i < EMAC_TXQUEUELEN; i++)
913 1.3 simonb sc->sc_txsoft[i].txs_mbuf = NULL;
914 1.3 simonb sc->sc_txsfree = EMAC_TXQUEUELEN;
915 1.3 simonb sc->sc_txsnext = 0;
916 1.3 simonb sc->sc_txsdirty = 0;
917 1.3 simonb
918 1.3 simonb /*
919 1.3 simonb * Initialise the receiver descriptor and receive job
920 1.3 simonb * descriptor rings.
921 1.3 simonb */
922 1.3 simonb for (i = 0; i < EMAC_NRXDESC; i++) {
923 1.3 simonb rxs = &sc->sc_rxsoft[i];
924 1.3 simonb if (rxs->rxs_mbuf == NULL) {
925 1.3 simonb if ((error = emac_add_rxbuf(sc, i)) != 0) {
926 1.36 kiyohara aprint_error_ifnet(ifp,
927 1.36 kiyohara "unable to allocate or map rx buffer %d,"
928 1.36 kiyohara " error = %d\n",
929 1.36 kiyohara i, error);
930 1.3 simonb /*
931 1.3 simonb * XXX Should attempt to run with fewer receive
932 1.3 simonb * XXX buffers instead of just failing.
933 1.3 simonb */
934 1.3 simonb emac_rxdrain(sc);
935 1.3 simonb goto out;
936 1.3 simonb }
937 1.3 simonb } else
938 1.3 simonb EMAC_INIT_RXDESC(sc, i);
939 1.3 simonb }
940 1.3 simonb sc->sc_rxptr = 0;
941 1.3 simonb
942 1.3 simonb /*
943 1.3 simonb * Set the current media.
944 1.3 simonb */
945 1.31 dyoung if ((error = ether_mediachange(ifp)) != 0)
946 1.31 dyoung goto out;
947 1.3 simonb
948 1.3 simonb /*
949 1.3 simonb * Load the MAC address.
950 1.3 simonb */
951 1.6 simonb EMAC_WRITE(sc, EMAC_IAHR, enaddr[0] << 8 | enaddr[1]);
952 1.6 simonb EMAC_WRITE(sc, EMAC_IALR,
953 1.3 simonb enaddr[2] << 24 | enaddr[3] << 16 | enaddr[4] << 8 | enaddr[5]);
954 1.3 simonb
955 1.36 kiyohara /* Enable the transmit and receive channel on the MAL. */
956 1.36 kiyohara error = mal_start(sc->sc_instance,
957 1.36 kiyohara EMAC_CDTXADDR(sc, 0), EMAC_CDRXADDR(sc, 0));
958 1.36 kiyohara if (error)
959 1.36 kiyohara goto out;
960 1.36 kiyohara
961 1.36 kiyohara sc->sc_mr1 &= ~MR1_JPSM;
962 1.36 kiyohara if (ifp->if_mtu > ETHERMTU)
963 1.36 kiyohara /* Enable Jumbo Packet Support Mode */
964 1.36 kiyohara sc->sc_mr1 |= MR1_JPSM;
965 1.3 simonb
966 1.3 simonb /* Set fifos, media modes. */
967 1.6 simonb EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
968 1.3 simonb
969 1.3 simonb /*
970 1.3 simonb * Enable Individual and (possibly) Broadcast Address modes,
971 1.3 simonb * runt packets, and strip padding.
972 1.3 simonb */
973 1.36 kiyohara EMAC_WRITE(sc, EMAC_RMR, RMR_IAE | RMR_RRP | RMR_SP | RMR_TFAE_2 |
974 1.18 simonb (ifp->if_flags & IFF_PROMISC ? RMR_PME : 0) |
975 1.3 simonb (ifp->if_flags & IFF_BROADCAST ? RMR_BAE : 0));
976 1.3 simonb
977 1.3 simonb /*
978 1.27 kiyohara * Set multicast filter.
979 1.27 kiyohara */
980 1.27 kiyohara emac_set_filter(sc);
981 1.27 kiyohara
982 1.27 kiyohara /*
983 1.3 simonb * Set low- and urgent-priority request thresholds.
984 1.3 simonb */
985 1.6 simonb EMAC_WRITE(sc, EMAC_TMR1,
986 1.3 simonb ((7 << TMR1_TLR_SHIFT) & TMR1_TLR_MASK) | /* 16 word burst */
987 1.3 simonb ((15 << TMR1_TUR_SHIFT) & TMR1_TUR_MASK));
988 1.3 simonb /*
989 1.3 simonb * Set Transmit Request Threshold Register.
990 1.3 simonb */
991 1.6 simonb EMAC_WRITE(sc, EMAC_TRTR, TRTR_256);
992 1.3 simonb
993 1.3 simonb /*
994 1.3 simonb * Set high and low receive watermarks.
995 1.3 simonb */
996 1.6 simonb EMAC_WRITE(sc, EMAC_RWMR,
997 1.3 simonb 30 << RWMR_RLWM_SHIFT | 64 << RWMR_RLWM_SHIFT);
998 1.3 simonb
999 1.3 simonb /*
1000 1.3 simonb * Set frame gap.
1001 1.3 simonb */
1002 1.6 simonb EMAC_WRITE(sc, EMAC_IPGVR, 8);
1003 1.3 simonb
1004 1.3 simonb /*
1005 1.36 kiyohara * Set interrupt status enable bits for EMAC.
1006 1.3 simonb */
1007 1.6 simonb EMAC_WRITE(sc, EMAC_ISER,
1008 1.36 kiyohara ISR_TXPE | /* TX Parity Error */
1009 1.36 kiyohara ISR_RXPE | /* RX Parity Error */
1010 1.36 kiyohara ISR_TXUE | /* TX Underrun Event */
1011 1.36 kiyohara ISR_RXOE | /* RX Overrun Event */
1012 1.36 kiyohara ISR_OVR | /* Overrun Error */
1013 1.36 kiyohara ISR_PP | /* Pause Packet */
1014 1.36 kiyohara ISR_BP | /* Bad Packet */
1015 1.36 kiyohara ISR_RP | /* Runt Packet */
1016 1.36 kiyohara ISR_SE | /* Short Event */
1017 1.36 kiyohara ISR_ALE | /* Alignment Error */
1018 1.36 kiyohara ISR_BFCS | /* Bad FCS */
1019 1.36 kiyohara ISR_PTLE | /* Packet Too Long Error */
1020 1.36 kiyohara ISR_ORE | /* Out of Range Error */
1021 1.36 kiyohara ISR_IRE | /* In Range Error */
1022 1.36 kiyohara ISR_SE0 | /* Signal Quality Error 0 (SQE) */
1023 1.36 kiyohara ISR_TE0 | /* Transmit Error 0 */
1024 1.36 kiyohara ISR_MOS | /* MMA Operation Succeeded */
1025 1.36 kiyohara ISR_MOF); /* MMA Operation Failed */
1026 1.3 simonb
1027 1.3 simonb /*
1028 1.3 simonb * Enable the transmit and receive channel on the EMAC.
1029 1.3 simonb */
1030 1.6 simonb EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
1031 1.3 simonb
1032 1.3 simonb /*
1033 1.3 simonb * Start the one second MII clock.
1034 1.3 simonb */
1035 1.3 simonb callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
1036 1.3 simonb
1037 1.3 simonb /*
1038 1.3 simonb * ... all done!
1039 1.3 simonb */
1040 1.3 simonb ifp->if_flags |= IFF_RUNNING;
1041 1.3 simonb ifp->if_flags &= ~IFF_OACTIVE;
1042 1.3 simonb
1043 1.3 simonb out:
1044 1.3 simonb if (error) {
1045 1.3 simonb ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1046 1.3 simonb ifp->if_timer = 0;
1047 1.36 kiyohara aprint_error_ifnet(ifp, "interface not running\n");
1048 1.3 simonb }
1049 1.36 kiyohara return error;
1050 1.3 simonb }
1051 1.3 simonb
1052 1.3 simonb static void
1053 1.3 simonb emac_stop(struct ifnet *ifp, int disable)
1054 1.3 simonb {
1055 1.3 simonb struct emac_softc *sc = ifp->if_softc;
1056 1.3 simonb struct emac_txsoft *txs;
1057 1.3 simonb int i;
1058 1.3 simonb
1059 1.3 simonb /* Stop the one second clock. */
1060 1.3 simonb callout_stop(&sc->sc_callout);
1061 1.3 simonb
1062 1.3 simonb /* Down the MII */
1063 1.3 simonb mii_down(&sc->sc_mii);
1064 1.3 simonb
1065 1.3 simonb /* Disable interrupts. */
1066 1.6 simonb EMAC_WRITE(sc, EMAC_ISER, 0);
1067 1.3 simonb
1068 1.3 simonb /* Disable the receive and transmit channels. */
1069 1.36 kiyohara mal_stop(sc->sc_instance);
1070 1.3 simonb
1071 1.3 simonb /* Disable the transmit enable and receive MACs. */
1072 1.6 simonb EMAC_WRITE(sc, EMAC_MR0,
1073 1.6 simonb EMAC_READ(sc, EMAC_MR0) & ~(MR0_TXE | MR0_RXE));
1074 1.3 simonb
1075 1.3 simonb /* Release any queued transmit buffers. */
1076 1.3 simonb for (i = 0; i < EMAC_TXQUEUELEN; i++) {
1077 1.3 simonb txs = &sc->sc_txsoft[i];
1078 1.3 simonb if (txs->txs_mbuf != NULL) {
1079 1.3 simonb bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1080 1.3 simonb m_freem(txs->txs_mbuf);
1081 1.3 simonb txs->txs_mbuf = NULL;
1082 1.3 simonb }
1083 1.3 simonb }
1084 1.3 simonb
1085 1.3 simonb if (disable)
1086 1.3 simonb emac_rxdrain(sc);
1087 1.3 simonb
1088 1.3 simonb /*
1089 1.3 simonb * Mark the interface down and cancel the watchdog timer.
1090 1.3 simonb */
1091 1.3 simonb ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1092 1.3 simonb ifp->if_timer = 0;
1093 1.3 simonb }
1094 1.3 simonb
1095 1.36 kiyohara static void
1096 1.36 kiyohara emac_watchdog(struct ifnet *ifp)
1097 1.3 simonb {
1098 1.3 simonb struct emac_softc *sc = ifp->if_softc;
1099 1.3 simonb
1100 1.36 kiyohara /*
1101 1.36 kiyohara * Since we're not interrupting every packet, sweep
1102 1.36 kiyohara * up before we report an error.
1103 1.36 kiyohara */
1104 1.36 kiyohara emac_txreap(sc);
1105 1.36 kiyohara
1106 1.36 kiyohara if (sc->sc_txfree != EMAC_NTXDESC) {
1107 1.36 kiyohara aprint_error_ifnet(ifp,
1108 1.36 kiyohara "device timeout (txfree %d txsfree %d txnext %d)\n",
1109 1.36 kiyohara sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
1110 1.36 kiyohara ifp->if_oerrors++;
1111 1.3 simonb
1112 1.36 kiyohara /* Reset the interface. */
1113 1.36 kiyohara (void)emac_init(ifp);
1114 1.36 kiyohara } else if (ifp->if_flags & IFF_DEBUG)
1115 1.36 kiyohara aprint_error_ifnet(ifp, "recovered from device timeout\n");
1116 1.3 simonb
1117 1.3 simonb /* try to get more packets going */
1118 1.3 simonb emac_start(ifp);
1119 1.3 simonb }
1120 1.3 simonb
1121 1.36 kiyohara static int
1122 1.36 kiyohara emac_add_rxbuf(struct emac_softc *sc, int idx)
1123 1.3 simonb {
1124 1.36 kiyohara struct emac_rxsoft *rxs = &sc->sc_rxsoft[idx];
1125 1.36 kiyohara struct mbuf *m;
1126 1.36 kiyohara int error;
1127 1.36 kiyohara
1128 1.36 kiyohara MGETHDR(m, M_DONTWAIT, MT_DATA);
1129 1.36 kiyohara if (m == NULL)
1130 1.36 kiyohara return ENOBUFS;
1131 1.36 kiyohara
1132 1.36 kiyohara MCLGET(m, M_DONTWAIT);
1133 1.36 kiyohara if ((m->m_flags & M_EXT) == 0) {
1134 1.36 kiyohara m_freem(m);
1135 1.36 kiyohara return ENOBUFS;
1136 1.36 kiyohara }
1137 1.3 simonb
1138 1.36 kiyohara if (rxs->rxs_mbuf != NULL)
1139 1.36 kiyohara bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1140 1.36 kiyohara
1141 1.36 kiyohara rxs->rxs_mbuf = m;
1142 1.3 simonb
1143 1.36 kiyohara error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1144 1.36 kiyohara m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1145 1.36 kiyohara if (error) {
1146 1.36 kiyohara aprint_error_dev(sc->sc_dev,
1147 1.36 kiyohara "can't load rx DMA map %d, error = %d\n", idx, error);
1148 1.36 kiyohara panic("emac_add_rxbuf"); /* XXX */
1149 1.36 kiyohara }
1150 1.3 simonb
1151 1.36 kiyohara bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1152 1.36 kiyohara rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1153 1.3 simonb
1154 1.36 kiyohara EMAC_INIT_RXDESC(sc, idx);
1155 1.3 simonb
1156 1.36 kiyohara return 0;
1157 1.36 kiyohara }
1158 1.36 kiyohara
1159 1.36 kiyohara static void
1160 1.36 kiyohara emac_rxdrain(struct emac_softc *sc)
1161 1.36 kiyohara {
1162 1.36 kiyohara struct emac_rxsoft *rxs;
1163 1.36 kiyohara int i;
1164 1.36 kiyohara
1165 1.36 kiyohara for (i = 0; i < EMAC_NRXDESC; i++) {
1166 1.36 kiyohara rxs = &sc->sc_rxsoft[i];
1167 1.36 kiyohara if (rxs->rxs_mbuf != NULL) {
1168 1.36 kiyohara bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1169 1.36 kiyohara m_freem(rxs->rxs_mbuf);
1170 1.36 kiyohara rxs->rxs_mbuf = NULL;
1171 1.36 kiyohara }
1172 1.36 kiyohara }
1173 1.3 simonb }
1174 1.3 simonb
1175 1.18 simonb static int
1176 1.18 simonb emac_set_filter(struct emac_softc *sc)
1177 1.18 simonb {
1178 1.18 simonb struct ether_multistep step;
1179 1.18 simonb struct ether_multi *enm;
1180 1.18 simonb struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1181 1.36 kiyohara uint32_t rmr, crc, mask, tmp, reg, gaht[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1182 1.36 kiyohara int regs, cnt = 0, i;
1183 1.36 kiyohara
1184 1.36 kiyohara if (sc->sc_htsize == 256) {
1185 1.36 kiyohara reg = EMAC_GAHT256(0);
1186 1.36 kiyohara regs = 8;
1187 1.36 kiyohara } else {
1188 1.36 kiyohara reg = EMAC_GAHT64(0);
1189 1.36 kiyohara regs = 4;
1190 1.36 kiyohara }
1191 1.36 kiyohara mask = (1ULL << (sc->sc_htsize / regs)) - 1;
1192 1.18 simonb
1193 1.18 simonb rmr = EMAC_READ(sc, EMAC_RMR);
1194 1.18 simonb rmr &= ~(RMR_PMME | RMR_MAE);
1195 1.18 simonb ifp->if_flags &= ~IFF_ALLMULTI;
1196 1.18 simonb
1197 1.18 simonb ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1198 1.18 simonb while (enm != NULL) {
1199 1.18 simonb if (memcmp(enm->enm_addrlo,
1200 1.18 simonb enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1201 1.18 simonb /*
1202 1.18 simonb * We must listen to a range of multicast addresses.
1203 1.18 simonb * For now, just accept all multicasts, rather than
1204 1.18 simonb * trying to set only those filter bits needed to match
1205 1.18 simonb * the range. (At this time, the only use of address
1206 1.18 simonb * ranges is for IP multicast routing, for which the
1207 1.18 simonb * range is big enough to require all bits set.)
1208 1.18 simonb */
1209 1.36 kiyohara gaht[0] = gaht[1] = gaht[2] = gaht[3] =
1210 1.36 kiyohara gaht[4] = gaht[5] = gaht[6] = gaht[7] = mask;
1211 1.18 simonb break;
1212 1.18 simonb }
1213 1.18 simonb
1214 1.18 simonb crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1215 1.18 simonb
1216 1.36 kiyohara if (sc->sc_htsize == 256)
1217 1.36 kiyohara EMAC_SET_FILTER256(gaht, crc);
1218 1.36 kiyohara else
1219 1.36 kiyohara EMAC_SET_FILTER(gaht, crc);
1220 1.18 simonb
1221 1.18 simonb ETHER_NEXT_MULTI(step, enm);
1222 1.18 simonb cnt++;
1223 1.18 simonb }
1224 1.18 simonb
1225 1.36 kiyohara for (i = 1, tmp = gaht[0]; i < regs; i++)
1226 1.36 kiyohara tmp &= gaht[i];
1227 1.36 kiyohara if (tmp == mask) {
1228 1.18 simonb /* All categories are true. */
1229 1.18 simonb ifp->if_flags |= IFF_ALLMULTI;
1230 1.18 simonb rmr |= RMR_PMME;
1231 1.18 simonb } else if (cnt != 0) {
1232 1.18 simonb /* Some categories are true. */
1233 1.36 kiyohara for (i = 0; i < regs; i++)
1234 1.36 kiyohara EMAC_WRITE(sc, reg + (i << 2), gaht[i]);
1235 1.18 simonb rmr |= RMR_MAE;
1236 1.18 simonb }
1237 1.18 simonb EMAC_WRITE(sc, EMAC_RMR, rmr);
1238 1.18 simonb
1239 1.18 simonb return 0;
1240 1.18 simonb }
1241 1.18 simonb
1242 1.3 simonb /*
1243 1.3 simonb * Reap completed Tx descriptors.
1244 1.3 simonb */
1245 1.3 simonb static int
1246 1.3 simonb emac_txreap(struct emac_softc *sc)
1247 1.3 simonb {
1248 1.3 simonb struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1249 1.3 simonb struct emac_txsoft *txs;
1250 1.20 simonb int handled, i;
1251 1.36 kiyohara uint32_t txstat;
1252 1.3 simonb
1253 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_txreap);
1254 1.20 simonb handled = 0;
1255 1.3 simonb
1256 1.3 simonb ifp->if_flags &= ~IFF_OACTIVE;
1257 1.3 simonb
1258 1.3 simonb /*
1259 1.3 simonb * Go through our Tx list and free mbufs for those
1260 1.3 simonb * frames that have been transmitted.
1261 1.3 simonb */
1262 1.3 simonb for (i = sc->sc_txsdirty; sc->sc_txsfree != EMAC_TXQUEUELEN;
1263 1.3 simonb i = EMAC_NEXTTXS(i), sc->sc_txsfree++) {
1264 1.3 simonb txs = &sc->sc_txsoft[i];
1265 1.3 simonb
1266 1.3 simonb EMAC_CDTXSYNC(sc, txs->txs_lastdesc,
1267 1.3 simonb txs->txs_dmamap->dm_nsegs,
1268 1.3 simonb BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1269 1.3 simonb
1270 1.3 simonb txstat = sc->sc_txdescs[txs->txs_lastdesc].md_stat_ctrl;
1271 1.3 simonb if (txstat & MAL_TX_READY)
1272 1.3 simonb break;
1273 1.3 simonb
1274 1.20 simonb handled = 1;
1275 1.20 simonb
1276 1.3 simonb /*
1277 1.3 simonb * Check for errors and collisions.
1278 1.3 simonb */
1279 1.3 simonb if (txstat & (EMAC_TXS_UR | EMAC_TXS_ED))
1280 1.3 simonb ifp->if_oerrors++;
1281 1.3 simonb
1282 1.3 simonb #ifdef EMAC_EVENT_COUNTERS
1283 1.3 simonb if (txstat & EMAC_TXS_UR)
1284 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_tu);
1285 1.3 simonb #endif /* EMAC_EVENT_COUNTERS */
1286 1.3 simonb
1287 1.36 kiyohara if (txstat &
1288 1.36 kiyohara (EMAC_TXS_EC | EMAC_TXS_MC | EMAC_TXS_SC | EMAC_TXS_LC)) {
1289 1.3 simonb if (txstat & EMAC_TXS_EC)
1290 1.3 simonb ifp->if_collisions += 16;
1291 1.3 simonb else if (txstat & EMAC_TXS_MC)
1292 1.3 simonb ifp->if_collisions += 2; /* XXX? */
1293 1.3 simonb else if (txstat & EMAC_TXS_SC)
1294 1.3 simonb ifp->if_collisions++;
1295 1.3 simonb if (txstat & EMAC_TXS_LC)
1296 1.3 simonb ifp->if_collisions++;
1297 1.3 simonb } else
1298 1.3 simonb ifp->if_opackets++;
1299 1.3 simonb
1300 1.3 simonb if (ifp->if_flags & IFF_DEBUG) {
1301 1.3 simonb if (txstat & EMAC_TXS_ED)
1302 1.36 kiyohara aprint_error_ifnet(ifp, "excessive deferral\n");
1303 1.3 simonb if (txstat & EMAC_TXS_EC)
1304 1.36 kiyohara aprint_error_ifnet(ifp,
1305 1.36 kiyohara "excessive collisions\n");
1306 1.3 simonb }
1307 1.3 simonb
1308 1.3 simonb sc->sc_txfree += txs->txs_ndesc;
1309 1.3 simonb bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1310 1.3 simonb 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1311 1.3 simonb bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1312 1.3 simonb m_freem(txs->txs_mbuf);
1313 1.3 simonb txs->txs_mbuf = NULL;
1314 1.3 simonb }
1315 1.3 simonb
1316 1.3 simonb /* Update the dirty transmit buffer pointer. */
1317 1.3 simonb sc->sc_txsdirty = i;
1318 1.3 simonb
1319 1.3 simonb /*
1320 1.3 simonb * If there are no more pending transmissions, cancel the watchdog
1321 1.3 simonb * timer.
1322 1.3 simonb */
1323 1.3 simonb if (sc->sc_txsfree == EMAC_TXQUEUELEN)
1324 1.3 simonb ifp->if_timer = 0;
1325 1.3 simonb
1326 1.36 kiyohara return handled;
1327 1.36 kiyohara }
1328 1.36 kiyohara
1329 1.36 kiyohara
1330 1.36 kiyohara /*
1331 1.36 kiyohara * Reset functions
1332 1.36 kiyohara */
1333 1.36 kiyohara
1334 1.36 kiyohara static void
1335 1.36 kiyohara emac_soft_reset(struct emac_softc *sc)
1336 1.36 kiyohara {
1337 1.36 kiyohara uint32_t sdr;
1338 1.36 kiyohara int t = 0;
1339 1.36 kiyohara
1340 1.36 kiyohara /*
1341 1.36 kiyohara * The PHY must provide a TX Clk in order perform a soft reset the
1342 1.36 kiyohara * EMAC. If none is present, select the internal clock,
1343 1.36 kiyohara * SDR0_MFR[E0CS,E1CS]. After the soft reset, select the external
1344 1.36 kiyohara * clock.
1345 1.36 kiyohara */
1346 1.36 kiyohara
1347 1.36 kiyohara sdr = mfsdr(DCR_SDR0_MFR);
1348 1.36 kiyohara sdr |= SDR0_MFR_ECS(sc->sc_instance);
1349 1.36 kiyohara mtsdr(DCR_SDR0_MFR, sdr);
1350 1.36 kiyohara
1351 1.36 kiyohara EMAC_WRITE(sc, EMAC_MR0, MR0_SRST);
1352 1.36 kiyohara
1353 1.36 kiyohara sdr = mfsdr(DCR_SDR0_MFR);
1354 1.36 kiyohara sdr &= ~SDR0_MFR_ECS(sc->sc_instance);
1355 1.36 kiyohara mtsdr(DCR_SDR0_MFR, sdr);
1356 1.36 kiyohara
1357 1.36 kiyohara delay(5);
1358 1.36 kiyohara
1359 1.36 kiyohara /* wait finish */
1360 1.36 kiyohara while (EMAC_READ(sc, EMAC_MR0) & MR0_SRST) {
1361 1.36 kiyohara if (++t == 1000000 /* 1sec XXXXX */) {
1362 1.36 kiyohara aprint_error_dev(sc->sc_dev, "Soft Reset failed\n");
1363 1.36 kiyohara return;
1364 1.36 kiyohara }
1365 1.36 kiyohara delay(1);
1366 1.36 kiyohara }
1367 1.36 kiyohara }
1368 1.36 kiyohara
1369 1.36 kiyohara static void
1370 1.36 kiyohara emac_smart_reset(struct emac_softc *sc)
1371 1.36 kiyohara {
1372 1.36 kiyohara uint32_t mr0;
1373 1.36 kiyohara int t = 0;
1374 1.36 kiyohara
1375 1.36 kiyohara mr0 = EMAC_READ(sc, EMAC_MR0);
1376 1.36 kiyohara if (mr0 & (MR0_TXE | MR0_RXE)) {
1377 1.36 kiyohara mr0 &= ~(MR0_TXE | MR0_RXE);
1378 1.36 kiyohara EMAC_WRITE(sc, EMAC_MR0, mr0);
1379 1.36 kiyohara
1380 1.36 kiyohara /* wait idel state */
1381 1.36 kiyohara while ((EMAC_READ(sc, EMAC_MR0) & (MR0_TXI | MR0_RXI)) !=
1382 1.36 kiyohara (MR0_TXI | MR0_RXI)) {
1383 1.36 kiyohara if (++t == 1000000 /* 1sec XXXXX */) {
1384 1.36 kiyohara aprint_error_dev(sc->sc_dev,
1385 1.36 kiyohara "Smart Reset failed\n");
1386 1.36 kiyohara return;
1387 1.36 kiyohara }
1388 1.36 kiyohara delay(1);
1389 1.36 kiyohara }
1390 1.36 kiyohara }
1391 1.3 simonb }
1392 1.3 simonb
1393 1.36 kiyohara
1394 1.3 simonb /*
1395 1.36 kiyohara * MII related functions
1396 1.3 simonb */
1397 1.36 kiyohara
1398 1.3 simonb static int
1399 1.36 kiyohara emac_mii_readreg(device_t self, int phy, int reg)
1400 1.36 kiyohara {
1401 1.36 kiyohara struct emac_softc *sc = device_private(self);
1402 1.36 kiyohara uint32_t sta_reg;
1403 1.36 kiyohara
1404 1.36 kiyohara if (sc->sc_rmii_enable)
1405 1.36 kiyohara sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
1406 1.36 kiyohara
1407 1.36 kiyohara /* wait for PHY data transfer to complete */
1408 1.36 kiyohara if (emac_mii_wait(sc))
1409 1.36 kiyohara goto fail;
1410 1.36 kiyohara
1411 1.36 kiyohara sta_reg =
1412 1.36 kiyohara sc->sc_stacr_read |
1413 1.36 kiyohara (reg << STACR_PRA_SHIFT) |
1414 1.36 kiyohara (phy << STACR_PCDA_SHIFT) |
1415 1.36 kiyohara sc->sc_stacr_bits;
1416 1.36 kiyohara EMAC_WRITE(sc, EMAC_STACR, sta_reg);
1417 1.36 kiyohara
1418 1.36 kiyohara if (emac_mii_wait(sc))
1419 1.36 kiyohara goto fail;
1420 1.36 kiyohara sta_reg = EMAC_READ(sc, EMAC_STACR);
1421 1.36 kiyohara
1422 1.36 kiyohara if (sc->sc_rmii_disable)
1423 1.36 kiyohara sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
1424 1.36 kiyohara
1425 1.36 kiyohara if (sta_reg & STACR_PHYE)
1426 1.36 kiyohara return 0;
1427 1.36 kiyohara return sta_reg >> STACR_PHYD_SHIFT;
1428 1.36 kiyohara
1429 1.36 kiyohara fail:
1430 1.36 kiyohara if (sc->sc_rmii_disable)
1431 1.36 kiyohara sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
1432 1.36 kiyohara return 0;
1433 1.36 kiyohara }
1434 1.36 kiyohara
1435 1.36 kiyohara static void
1436 1.36 kiyohara emac_mii_writereg(device_t self, int phy, int reg, int val)
1437 1.36 kiyohara {
1438 1.36 kiyohara struct emac_softc *sc = device_private(self);
1439 1.36 kiyohara uint32_t sta_reg;
1440 1.36 kiyohara
1441 1.36 kiyohara if (sc->sc_rmii_enable)
1442 1.36 kiyohara sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
1443 1.36 kiyohara
1444 1.36 kiyohara /* wait for PHY data transfer to complete */
1445 1.36 kiyohara if (emac_mii_wait(sc))
1446 1.36 kiyohara goto out;
1447 1.36 kiyohara
1448 1.36 kiyohara sta_reg =
1449 1.36 kiyohara (val << STACR_PHYD_SHIFT) |
1450 1.36 kiyohara sc->sc_stacr_write |
1451 1.36 kiyohara (reg << STACR_PRA_SHIFT) |
1452 1.36 kiyohara (phy << STACR_PCDA_SHIFT) |
1453 1.36 kiyohara sc->sc_stacr_bits;
1454 1.36 kiyohara EMAC_WRITE(sc, EMAC_STACR, sta_reg);
1455 1.36 kiyohara
1456 1.36 kiyohara if (emac_mii_wait(sc))
1457 1.36 kiyohara goto out;
1458 1.36 kiyohara if (EMAC_READ(sc, EMAC_STACR) & STACR_PHYE)
1459 1.36 kiyohara aprint_error_dev(sc->sc_dev, "MII PHY Error\n");
1460 1.36 kiyohara
1461 1.36 kiyohara out:
1462 1.36 kiyohara if (sc->sc_rmii_disable)
1463 1.36 kiyohara sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
1464 1.36 kiyohara }
1465 1.36 kiyohara
1466 1.36 kiyohara static void
1467 1.41 matt emac_mii_statchg(struct ifnet *ifp)
1468 1.36 kiyohara {
1469 1.41 matt struct emac_softc *sc = ifp->if_softc;
1470 1.36 kiyohara struct mii_data *mii = &sc->sc_mii;
1471 1.36 kiyohara
1472 1.36 kiyohara /*
1473 1.36 kiyohara * MR1 can only be written immediately after a reset...
1474 1.36 kiyohara */
1475 1.36 kiyohara emac_smart_reset(sc);
1476 1.36 kiyohara
1477 1.36 kiyohara sc->sc_mr1 &= ~(MR1_FDE | MR1_ILE | MR1_EIFC | MR1_MF_MASK | MR1_IST);
1478 1.36 kiyohara if (mii->mii_media_active & IFM_FDX)
1479 1.36 kiyohara sc->sc_mr1 |= (MR1_FDE | MR1_EIFC | MR1_IST);
1480 1.36 kiyohara if (mii->mii_media_active & IFM_FLOW)
1481 1.36 kiyohara sc->sc_mr1 |= MR1_EIFC;
1482 1.36 kiyohara if (mii->mii_media_active & IFM_LOOP)
1483 1.36 kiyohara sc->sc_mr1 |= MR1_ILE;
1484 1.36 kiyohara switch (IFM_SUBTYPE(mii->mii_media_active)) {
1485 1.36 kiyohara case IFM_1000_T:
1486 1.36 kiyohara sc->sc_mr1 |= (MR1_MF_1000MBS | MR1_IST);
1487 1.36 kiyohara break;
1488 1.36 kiyohara
1489 1.36 kiyohara case IFM_100_TX:
1490 1.36 kiyohara sc->sc_mr1 |= (MR1_MF_100MBS | MR1_IST);
1491 1.36 kiyohara break;
1492 1.36 kiyohara
1493 1.36 kiyohara case IFM_10_T:
1494 1.36 kiyohara sc->sc_mr1 |= MR1_MF_10MBS;
1495 1.36 kiyohara break;
1496 1.36 kiyohara
1497 1.36 kiyohara case IFM_NONE:
1498 1.36 kiyohara break;
1499 1.36 kiyohara
1500 1.36 kiyohara default:
1501 1.41 matt aprint_error_dev(sc->sc_dev, "unknown sub-type %d\n",
1502 1.36 kiyohara IFM_SUBTYPE(mii->mii_media_active));
1503 1.36 kiyohara break;
1504 1.36 kiyohara }
1505 1.36 kiyohara if (sc->sc_rmii_speed)
1506 1.41 matt sc->sc_rmii_speed(device_parent(sc->sc_dev), sc->sc_instance,
1507 1.36 kiyohara IFM_SUBTYPE(mii->mii_media_active));
1508 1.36 kiyohara
1509 1.36 kiyohara EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
1510 1.36 kiyohara
1511 1.36 kiyohara /* Enable TX and RX if already RUNNING */
1512 1.36 kiyohara if (ifp->if_flags & IFF_RUNNING)
1513 1.36 kiyohara EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
1514 1.36 kiyohara }
1515 1.36 kiyohara
1516 1.36 kiyohara static uint32_t
1517 1.36 kiyohara emac_mii_wait(struct emac_softc *sc)
1518 1.36 kiyohara {
1519 1.36 kiyohara int i;
1520 1.36 kiyohara uint32_t oc;
1521 1.36 kiyohara
1522 1.36 kiyohara /* wait for PHY data transfer to complete */
1523 1.36 kiyohara i = 0;
1524 1.36 kiyohara oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
1525 1.36 kiyohara while ((oc == STACR_OC) != sc->sc_stacr_completed) {
1526 1.36 kiyohara delay(7);
1527 1.36 kiyohara if (i++ > 5) {
1528 1.36 kiyohara aprint_error_dev(sc->sc_dev, "MII timed out\n");
1529 1.36 kiyohara return -1;
1530 1.36 kiyohara }
1531 1.36 kiyohara oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
1532 1.36 kiyohara }
1533 1.36 kiyohara return 0;
1534 1.36 kiyohara }
1535 1.36 kiyohara
1536 1.36 kiyohara static void
1537 1.36 kiyohara emac_mii_tick(void *arg)
1538 1.36 kiyohara {
1539 1.36 kiyohara struct emac_softc *sc = arg;
1540 1.36 kiyohara int s;
1541 1.36 kiyohara
1542 1.36 kiyohara if (!device_is_active(sc->sc_dev))
1543 1.36 kiyohara return;
1544 1.36 kiyohara
1545 1.36 kiyohara s = splnet();
1546 1.36 kiyohara mii_tick(&sc->sc_mii);
1547 1.36 kiyohara splx(s);
1548 1.36 kiyohara
1549 1.36 kiyohara callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
1550 1.36 kiyohara }
1551 1.36 kiyohara
1552 1.36 kiyohara int
1553 1.36 kiyohara emac_txeob_intr(void *arg)
1554 1.36 kiyohara {
1555 1.36 kiyohara struct emac_softc *sc = arg;
1556 1.36 kiyohara int handled = 0;
1557 1.36 kiyohara
1558 1.36 kiyohara EMAC_EVCNT_INCR(&sc->sc_ev_txintr);
1559 1.36 kiyohara handled |= emac_txreap(sc);
1560 1.36 kiyohara
1561 1.36 kiyohara /* try to get more packets going */
1562 1.36 kiyohara emac_start(&sc->sc_ethercom.ec_if);
1563 1.36 kiyohara
1564 1.36 kiyohara return handled;
1565 1.36 kiyohara }
1566 1.36 kiyohara
1567 1.36 kiyohara int
1568 1.3 simonb emac_rxeob_intr(void *arg)
1569 1.3 simonb {
1570 1.3 simonb struct emac_softc *sc = arg;
1571 1.3 simonb struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1572 1.3 simonb struct emac_rxsoft *rxs;
1573 1.3 simonb struct mbuf *m;
1574 1.36 kiyohara uint32_t rxstat;
1575 1.3 simonb int i, len;
1576 1.3 simonb
1577 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_rxintr);
1578 1.3 simonb
1579 1.36 kiyohara for (i = sc->sc_rxptr; ; i = EMAC_NEXTRX(i)) {
1580 1.3 simonb rxs = &sc->sc_rxsoft[i];
1581 1.3 simonb
1582 1.3 simonb EMAC_CDRXSYNC(sc, i,
1583 1.3 simonb BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1584 1.3 simonb
1585 1.3 simonb rxstat = sc->sc_rxdescs[i].md_stat_ctrl;
1586 1.3 simonb
1587 1.40 kiyohara if (rxstat & MAL_RX_EMPTY) {
1588 1.3 simonb /*
1589 1.3 simonb * We have processed all of the receive buffers.
1590 1.3 simonb */
1591 1.40 kiyohara /* Flush current empty descriptor */
1592 1.40 kiyohara EMAC_CDRXSYNC(sc, i,
1593 1.40 kiyohara BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1594 1.3 simonb break;
1595 1.40 kiyohara }
1596 1.3 simonb
1597 1.3 simonb /*
1598 1.3 simonb * If an error occurred, update stats, clear the status
1599 1.3 simonb * word, and leave the packet buffer in place. It will
1600 1.3 simonb * simply be reused the next time the ring comes around.
1601 1.3 simonb */
1602 1.3 simonb if (rxstat & (EMAC_RXS_OE | EMAC_RXS_BP | EMAC_RXS_SE |
1603 1.3 simonb EMAC_RXS_AE | EMAC_RXS_BFCS | EMAC_RXS_PTL | EMAC_RXS_ORE |
1604 1.3 simonb EMAC_RXS_IRE)) {
1605 1.36 kiyohara #define PRINTERR(bit, str) \
1606 1.36 kiyohara if (rxstat & (bit)) \
1607 1.36 kiyohara aprint_error_ifnet(ifp, \
1608 1.36 kiyohara "receive error: %s\n", str)
1609 1.3 simonb ifp->if_ierrors++;
1610 1.3 simonb PRINTERR(EMAC_RXS_OE, "overrun error");
1611 1.3 simonb PRINTERR(EMAC_RXS_BP, "bad packet");
1612 1.3 simonb PRINTERR(EMAC_RXS_RP, "runt packet");
1613 1.3 simonb PRINTERR(EMAC_RXS_SE, "short event");
1614 1.3 simonb PRINTERR(EMAC_RXS_AE, "alignment error");
1615 1.3 simonb PRINTERR(EMAC_RXS_BFCS, "bad FCS");
1616 1.3 simonb PRINTERR(EMAC_RXS_PTL, "packet too long");
1617 1.3 simonb PRINTERR(EMAC_RXS_ORE, "out of range error");
1618 1.3 simonb PRINTERR(EMAC_RXS_IRE, "in range error");
1619 1.3 simonb #undef PRINTERR
1620 1.3 simonb EMAC_INIT_RXDESC(sc, i);
1621 1.3 simonb continue;
1622 1.3 simonb }
1623 1.3 simonb
1624 1.3 simonb bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1625 1.3 simonb rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1626 1.3 simonb
1627 1.3 simonb /*
1628 1.3 simonb * No errors; receive the packet. Note, the 405GP emac
1629 1.3 simonb * includes the CRC with every packet.
1630 1.3 simonb */
1631 1.22 thorpej len = sc->sc_rxdescs[i].md_data_len - ETHER_CRC_LEN;
1632 1.3 simonb
1633 1.3 simonb /*
1634 1.3 simonb * If the packet is small enough to fit in a
1635 1.3 simonb * single header mbuf, allocate one and copy
1636 1.3 simonb * the data into it. This greatly reduces
1637 1.3 simonb * memory consumption when we receive lots
1638 1.3 simonb * of small packets.
1639 1.3 simonb *
1640 1.3 simonb * Otherwise, we add a new buffer to the receive
1641 1.3 simonb * chain. If this fails, we drop the packet and
1642 1.3 simonb * recycle the old buffer.
1643 1.3 simonb */
1644 1.3 simonb if (emac_copy_small != 0 && len <= MHLEN) {
1645 1.3 simonb MGETHDR(m, M_DONTWAIT, MT_DATA);
1646 1.3 simonb if (m == NULL)
1647 1.3 simonb goto dropit;
1648 1.28 christos memcpy(mtod(m, void *),
1649 1.28 christos mtod(rxs->rxs_mbuf, void *), len);
1650 1.3 simonb EMAC_INIT_RXDESC(sc, i);
1651 1.3 simonb bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1652 1.3 simonb rxs->rxs_dmamap->dm_mapsize,
1653 1.3 simonb BUS_DMASYNC_PREREAD);
1654 1.3 simonb } else {
1655 1.3 simonb m = rxs->rxs_mbuf;
1656 1.3 simonb if (emac_add_rxbuf(sc, i) != 0) {
1657 1.3 simonb dropit:
1658 1.3 simonb ifp->if_ierrors++;
1659 1.3 simonb EMAC_INIT_RXDESC(sc, i);
1660 1.3 simonb bus_dmamap_sync(sc->sc_dmat,
1661 1.3 simonb rxs->rxs_dmamap, 0,
1662 1.3 simonb rxs->rxs_dmamap->dm_mapsize,
1663 1.3 simonb BUS_DMASYNC_PREREAD);
1664 1.3 simonb continue;
1665 1.3 simonb }
1666 1.3 simonb }
1667 1.3 simonb
1668 1.3 simonb ifp->if_ipackets++;
1669 1.3 simonb m->m_pkthdr.rcvif = ifp;
1670 1.3 simonb m->m_pkthdr.len = m->m_len = len;
1671 1.3 simonb
1672 1.3 simonb /*
1673 1.3 simonb * Pass this up to any BPF listeners, but only
1674 1.43 snj * pass it up the stack if it's for us.
1675 1.3 simonb */
1676 1.37 joerg bpf_mtap(ifp, m);
1677 1.3 simonb
1678 1.3 simonb /* Pass it on. */
1679 1.44 ozaki if_percpuq_enqueue(ifp->if_percpuq, m);
1680 1.3 simonb }
1681 1.3 simonb
1682 1.3 simonb /* Update the receive pointer. */
1683 1.3 simonb sc->sc_rxptr = i;
1684 1.3 simonb
1685 1.36 kiyohara return 1;
1686 1.3 simonb }
1687 1.3 simonb
1688 1.36 kiyohara int
1689 1.3 simonb emac_txde_intr(void *arg)
1690 1.3 simonb {
1691 1.3 simonb struct emac_softc *sc = arg;
1692 1.3 simonb
1693 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_txde);
1694 1.36 kiyohara aprint_error_dev(sc->sc_dev, "emac_txde_intr\n");
1695 1.36 kiyohara return 1;
1696 1.3 simonb }
1697 1.3 simonb
1698 1.36 kiyohara int
1699 1.3 simonb emac_rxde_intr(void *arg)
1700 1.3 simonb {
1701 1.36 kiyohara struct emac_softc *sc = arg;
1702 1.3 simonb int i;
1703 1.3 simonb
1704 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_rxde);
1705 1.36 kiyohara aprint_error_dev(sc->sc_dev, "emac_rxde_intr\n");
1706 1.3 simonb /*
1707 1.3 simonb * XXX!
1708 1.3 simonb * This is a bit drastic; we just drop all descriptors that aren't
1709 1.3 simonb * "clean". We should probably send any that are up the stack.
1710 1.3 simonb */
1711 1.3 simonb for (i = 0; i < EMAC_NRXDESC; i++) {
1712 1.36 kiyohara EMAC_CDRXSYNC(sc, i,
1713 1.36 kiyohara BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1714 1.3 simonb
1715 1.36 kiyohara if (sc->sc_rxdescs[i].md_data_len != MCLBYTES)
1716 1.3 simonb EMAC_INIT_RXDESC(sc, i);
1717 1.3 simonb }
1718 1.3 simonb
1719 1.36 kiyohara return 1;
1720 1.3 simonb }
1721