if_emac.c revision 1.54 1 1.54 rin /* $NetBSD: if_emac.c,v 1.54 2021/01/24 05:22:21 rin Exp $ */
2 1.1 simonb
3 1.1 simonb /*
4 1.3 simonb * Copyright 2001, 2002 Wasabi Systems, Inc.
5 1.1 simonb * All rights reserved.
6 1.1 simonb *
7 1.3 simonb * Written by Simon Burge and Jason Thorpe for Wasabi Systems, Inc.
8 1.1 simonb *
9 1.1 simonb * Redistribution and use in source and binary forms, with or without
10 1.1 simonb * modification, are permitted provided that the following conditions
11 1.1 simonb * are met:
12 1.1 simonb * 1. Redistributions of source code must retain the above copyright
13 1.1 simonb * notice, this list of conditions and the following disclaimer.
14 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 simonb * notice, this list of conditions and the following disclaimer in the
16 1.1 simonb * documentation and/or other materials provided with the distribution.
17 1.1 simonb * 3. All advertising materials mentioning features or use of this software
18 1.1 simonb * must display the following acknowledgement:
19 1.1 simonb * This product includes software developed for the NetBSD Project by
20 1.1 simonb * Wasabi Systems, Inc.
21 1.1 simonb * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.1 simonb * or promote products derived from this software without specific prior
23 1.1 simonb * written permission.
24 1.1 simonb *
25 1.1 simonb * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.1 simonb * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 simonb * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 simonb * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.1 simonb * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 simonb * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 simonb * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 simonb * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 simonb * POSSIBILITY OF SUCH DAMAGE.
36 1.1 simonb */
37 1.15 lukem
38 1.36 kiyohara /*
39 1.36 kiyohara * emac(4) supports following ibm4xx's EMACs.
40 1.36 kiyohara * XXXX: ZMII and 'TCP Accelaration Hardware' not support yet...
41 1.36 kiyohara *
42 1.36 kiyohara * tested
43 1.36 kiyohara * ------
44 1.36 kiyohara * 405EP - 10/100 x2
45 1.36 kiyohara * 405EX/EXr o 10/100/1000 x2 (EXr x1), STA v2, 256bit hash-Table, RGMII
46 1.36 kiyohara * 405GP/GPr o 10/100
47 1.36 kiyohara * 440EP - 10/100 x2, ZMII
48 1.36 kiyohara * 440GP - 10/100 x2, ZMII
49 1.36 kiyohara * 440GX - 10/100/1000 x4, ZMII/RGMII(ch 2, 3), TAH(ch 2, 3)
50 1.36 kiyohara * 440SP - 10/100/1000
51 1.36 kiyohara * 440SPe - 10/100/1000, STA v2
52 1.36 kiyohara */
53 1.36 kiyohara
54 1.15 lukem #include <sys/cdefs.h>
55 1.54 rin __KERNEL_RCSID(0, "$NetBSD: if_emac.c,v 1.54 2021/01/24 05:22:21 rin Exp $");
56 1.1 simonb
57 1.53 rin #ifdef _KERNEL_OPT
58 1.36 kiyohara #include "opt_emac.h"
59 1.53 rin #endif
60 1.1 simonb
61 1.1 simonb #include <sys/param.h>
62 1.1 simonb #include <sys/systm.h>
63 1.1 simonb #include <sys/mbuf.h>
64 1.1 simonb #include <sys/kernel.h>
65 1.1 simonb #include <sys/socket.h>
66 1.1 simonb #include <sys/ioctl.h>
67 1.39 matt #include <sys/cpu.h>
68 1.39 matt #include <sys/device.h>
69 1.1 simonb
70 1.54 rin #include <sys/rndsource.h>
71 1.54 rin
72 1.3 simonb #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
73 1.1 simonb
74 1.1 simonb #include <net/if.h>
75 1.1 simonb #include <net/if_dl.h>
76 1.1 simonb #include <net/if_media.h>
77 1.1 simonb #include <net/if_ether.h>
78 1.1 simonb
79 1.1 simonb #include <net/bpf.h>
80 1.1 simonb
81 1.39 matt #include <powerpc/ibm4xx/cpu.h>
82 1.36 kiyohara #include <powerpc/ibm4xx/dcr4xx.h>
83 1.3 simonb #include <powerpc/ibm4xx/mal405gp.h>
84 1.7 simonb #include <powerpc/ibm4xx/dev/emacreg.h>
85 1.3 simonb #include <powerpc/ibm4xx/dev/if_emacreg.h>
86 1.36 kiyohara #include <powerpc/ibm4xx/dev/if_emacvar.h>
87 1.36 kiyohara #include <powerpc/ibm4xx/dev/malvar.h>
88 1.36 kiyohara #include <powerpc/ibm4xx/dev/opbreg.h>
89 1.36 kiyohara #include <powerpc/ibm4xx/dev/opbvar.h>
90 1.36 kiyohara #include <powerpc/ibm4xx/dev/plbvar.h>
91 1.36 kiyohara #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
92 1.36 kiyohara #include <powerpc/ibm4xx/dev/rmiivar.h>
93 1.36 kiyohara #endif
94 1.1 simonb
95 1.1 simonb #include <dev/mii/miivar.h>
96 1.1 simonb
97 1.36 kiyohara #include "locators.h"
98 1.36 kiyohara
99 1.36 kiyohara
100 1.3 simonb /*
101 1.3 simonb * Transmit descriptor list size. There are two Tx channels, each with
102 1.3 simonb * up to 256 hardware descriptors available. We currently use one Tx
103 1.3 simonb * channel. We tell the upper layers that they can queue a lot of
104 1.3 simonb * packets, and we go ahead and manage up to 64 of them at a time. We
105 1.3 simonb * allow up to 16 DMA segments per packet.
106 1.3 simonb */
107 1.3 simonb #define EMAC_NTXSEGS 16
108 1.3 simonb #define EMAC_TXQUEUELEN 64
109 1.3 simonb #define EMAC_TXQUEUELEN_MASK (EMAC_TXQUEUELEN - 1)
110 1.3 simonb #define EMAC_TXQUEUE_GC (EMAC_TXQUEUELEN / 4)
111 1.3 simonb #define EMAC_NTXDESC 256
112 1.3 simonb #define EMAC_NTXDESC_MASK (EMAC_NTXDESC - 1)
113 1.3 simonb #define EMAC_NEXTTX(x) (((x) + 1) & EMAC_NTXDESC_MASK)
114 1.3 simonb #define EMAC_NEXTTXS(x) (((x) + 1) & EMAC_TXQUEUELEN_MASK)
115 1.3 simonb
116 1.3 simonb /*
117 1.3 simonb * Receive descriptor list size. There is one Rx channel with up to 256
118 1.3 simonb * hardware descriptors available. We allocate 64 receive descriptors,
119 1.3 simonb * each with a 2k buffer (MCLBYTES).
120 1.3 simonb */
121 1.3 simonb #define EMAC_NRXDESC 64
122 1.3 simonb #define EMAC_NRXDESC_MASK (EMAC_NRXDESC - 1)
123 1.3 simonb #define EMAC_NEXTRX(x) (((x) + 1) & EMAC_NRXDESC_MASK)
124 1.3 simonb #define EMAC_PREVRX(x) (((x) - 1) & EMAC_NRXDESC_MASK)
125 1.3 simonb
126 1.3 simonb /*
127 1.3 simonb * Transmit/receive descriptors that are DMA'd to the EMAC.
128 1.3 simonb */
129 1.3 simonb struct emac_control_data {
130 1.3 simonb struct mal_descriptor ecd_txdesc[EMAC_NTXDESC];
131 1.3 simonb struct mal_descriptor ecd_rxdesc[EMAC_NRXDESC];
132 1.3 simonb };
133 1.3 simonb
134 1.3 simonb #define EMAC_CDOFF(x) offsetof(struct emac_control_data, x)
135 1.3 simonb #define EMAC_CDTXOFF(x) EMAC_CDOFF(ecd_txdesc[(x)])
136 1.3 simonb #define EMAC_CDRXOFF(x) EMAC_CDOFF(ecd_rxdesc[(x)])
137 1.3 simonb
138 1.3 simonb /*
139 1.3 simonb * Software state for transmit jobs.
140 1.3 simonb */
141 1.3 simonb struct emac_txsoft {
142 1.3 simonb struct mbuf *txs_mbuf; /* head of mbuf chain */
143 1.3 simonb bus_dmamap_t txs_dmamap; /* our DMA map */
144 1.3 simonb int txs_firstdesc; /* first descriptor in packet */
145 1.3 simonb int txs_lastdesc; /* last descriptor in packet */
146 1.3 simonb int txs_ndesc; /* # of descriptors used */
147 1.3 simonb };
148 1.3 simonb
149 1.3 simonb /*
150 1.3 simonb * Software state for receive descriptors.
151 1.3 simonb */
152 1.3 simonb struct emac_rxsoft {
153 1.3 simonb struct mbuf *rxs_mbuf; /* head of mbuf chain */
154 1.3 simonb bus_dmamap_t rxs_dmamap; /* our DMA map */
155 1.3 simonb };
156 1.3 simonb
157 1.3 simonb /*
158 1.3 simonb * Software state per device.
159 1.3 simonb */
160 1.1 simonb struct emac_softc {
161 1.36 kiyohara device_t sc_dev; /* generic device information */
162 1.36 kiyohara int sc_instance; /* instance no. */
163 1.1 simonb bus_space_tag_t sc_st; /* bus space tag */
164 1.1 simonb bus_space_handle_t sc_sh; /* bus space handle */
165 1.1 simonb bus_dma_tag_t sc_dmat; /* bus DMA tag */
166 1.1 simonb struct ethercom sc_ethercom; /* ethernet common data */
167 1.1 simonb void *sc_sdhook; /* shutdown hook */
168 1.3 simonb void *sc_powerhook; /* power management hook */
169 1.3 simonb
170 1.3 simonb struct mii_data sc_mii; /* MII/media information */
171 1.3 simonb struct callout sc_callout; /* tick callout */
172 1.3 simonb
173 1.36 kiyohara uint32_t sc_mr1; /* copy of Mode Register 1 */
174 1.36 kiyohara uint32_t sc_stacr_read; /* Read opcode of STAOPC of STACR */
175 1.36 kiyohara uint32_t sc_stacr_write; /* Write opcode of STAOPC of STACR */
176 1.36 kiyohara uint32_t sc_stacr_bits; /* misc bits of STACR */
177 1.36 kiyohara bool sc_stacr_completed; /* Operation completed of STACR */
178 1.36 kiyohara int sc_htsize; /* Hash Table size */
179 1.3 simonb
180 1.3 simonb bus_dmamap_t sc_cddmamap; /* control data dma map */
181 1.3 simonb #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
182 1.3 simonb
183 1.3 simonb /* Software state for transmit/receive descriptors. */
184 1.3 simonb struct emac_txsoft sc_txsoft[EMAC_TXQUEUELEN];
185 1.3 simonb struct emac_rxsoft sc_rxsoft[EMAC_NRXDESC];
186 1.3 simonb
187 1.3 simonb /* Control data structures. */
188 1.3 simonb struct emac_control_data *sc_control_data;
189 1.3 simonb #define sc_txdescs sc_control_data->ecd_txdesc
190 1.3 simonb #define sc_rxdescs sc_control_data->ecd_rxdesc
191 1.3 simonb
192 1.3 simonb #ifdef EMAC_EVENT_COUNTERS
193 1.3 simonb struct evcnt sc_ev_rxintr; /* Rx interrupts */
194 1.3 simonb struct evcnt sc_ev_txintr; /* Tx interrupts */
195 1.3 simonb struct evcnt sc_ev_rxde; /* Rx descriptor interrupts */
196 1.3 simonb struct evcnt sc_ev_txde; /* Tx descriptor interrupts */
197 1.3 simonb struct evcnt sc_ev_intr; /* General EMAC interrupts */
198 1.3 simonb
199 1.3 simonb struct evcnt sc_ev_txreap; /* Calls to Tx descriptor reaper */
200 1.3 simonb struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
201 1.3 simonb struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
202 1.3 simonb struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
203 1.3 simonb struct evcnt sc_ev_tu; /* Tx underrun */
204 1.3 simonb #endif /* EMAC_EVENT_COUNTERS */
205 1.3 simonb
206 1.3 simonb int sc_txfree; /* number of free Tx descriptors */
207 1.3 simonb int sc_txnext; /* next ready Tx descriptor */
208 1.3 simonb
209 1.3 simonb int sc_txsfree; /* number of free Tx jobs */
210 1.3 simonb int sc_txsnext; /* next ready Tx job */
211 1.3 simonb int sc_txsdirty; /* dirty Tx jobs */
212 1.3 simonb
213 1.3 simonb int sc_rxptr; /* next ready RX descriptor/descsoft */
214 1.36 kiyohara
215 1.54 rin krndsource_t rnd_source; /* random source */
216 1.54 rin
217 1.36 kiyohara void (*sc_rmii_enable)(device_t, int); /* reduced MII enable */
218 1.36 kiyohara void (*sc_rmii_disable)(device_t, int); /* reduced MII disable*/
219 1.36 kiyohara void (*sc_rmii_speed)(device_t, int, int); /* reduced MII speed */
220 1.1 simonb };
221 1.1 simonb
222 1.3 simonb #ifdef EMAC_EVENT_COUNTERS
223 1.3 simonb #define EMAC_EVCNT_INCR(ev) (ev)->ev_count++
224 1.3 simonb #else
225 1.3 simonb #define EMAC_EVCNT_INCR(ev) /* nothing */
226 1.3 simonb #endif
227 1.3 simonb
228 1.3 simonb #define EMAC_CDTXADDR(sc, x) ((sc)->sc_cddma + EMAC_CDTXOFF((x)))
229 1.3 simonb #define EMAC_CDRXADDR(sc, x) ((sc)->sc_cddma + EMAC_CDRXOFF((x)))
230 1.3 simonb
231 1.3 simonb #define EMAC_CDTXSYNC(sc, x, n, ops) \
232 1.3 simonb do { \
233 1.3 simonb int __x, __n; \
234 1.3 simonb \
235 1.3 simonb __x = (x); \
236 1.3 simonb __n = (n); \
237 1.3 simonb \
238 1.3 simonb /* If it will wrap around, sync to the end of the ring. */ \
239 1.3 simonb if ((__x + __n) > EMAC_NTXDESC) { \
240 1.3 simonb bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
241 1.3 simonb EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * \
242 1.3 simonb (EMAC_NTXDESC - __x), (ops)); \
243 1.3 simonb __n -= (EMAC_NTXDESC - __x); \
244 1.3 simonb __x = 0; \
245 1.3 simonb } \
246 1.3 simonb \
247 1.3 simonb /* Now sync whatever is left. */ \
248 1.3 simonb bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
249 1.3 simonb EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * __n, (ops)); \
250 1.3 simonb } while (/*CONSTCOND*/0)
251 1.3 simonb
252 1.3 simonb #define EMAC_CDRXSYNC(sc, x, ops) \
253 1.3 simonb do { \
254 1.3 simonb bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
255 1.3 simonb EMAC_CDRXOFF((x)), sizeof(struct mal_descriptor), (ops)); \
256 1.3 simonb } while (/*CONSTCOND*/0)
257 1.3 simonb
258 1.3 simonb #define EMAC_INIT_RXDESC(sc, x) \
259 1.3 simonb do { \
260 1.3 simonb struct emac_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
261 1.3 simonb struct mal_descriptor *__rxd = &(sc)->sc_rxdescs[(x)]; \
262 1.3 simonb struct mbuf *__m = __rxs->rxs_mbuf; \
263 1.3 simonb \
264 1.3 simonb /* \
265 1.3 simonb * Note: We scoot the packet forward 2 bytes in the buffer \
266 1.3 simonb * so that the payload after the Ethernet header is aligned \
267 1.3 simonb * to a 4-byte boundary. \
268 1.3 simonb */ \
269 1.3 simonb __m->m_data = __m->m_ext.ext_buf + 2; \
270 1.3 simonb \
271 1.3 simonb __rxd->md_data = __rxs->rxs_dmamap->dm_segs[0].ds_addr + 2; \
272 1.3 simonb __rxd->md_data_len = __m->m_ext.ext_size - 2; \
273 1.3 simonb __rxd->md_stat_ctrl = MAL_RX_EMPTY | MAL_RX_INTERRUPT | \
274 1.3 simonb /* Set wrap on last descriptor. */ \
275 1.3 simonb (((x) == EMAC_NRXDESC - 1) ? MAL_RX_WRAP : 0); \
276 1.50 msaitoh EMAC_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
277 1.3 simonb } while (/*CONSTCOND*/0)
278 1.3 simonb
279 1.3 simonb #define EMAC_WRITE(sc, reg, val) \
280 1.3 simonb bus_space_write_stream_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
281 1.3 simonb #define EMAC_READ(sc, reg) \
282 1.3 simonb bus_space_read_stream_4((sc)->sc_st, (sc)->sc_sh, (reg))
283 1.3 simonb
284 1.36 kiyohara #define EMAC_SET_FILTER(aht, crc) \
285 1.36 kiyohara do { \
286 1.36 kiyohara (aht)[3 - (((crc) >> 26) >> 4)] |= 1 << (((crc) >> 26) & 0xf); \
287 1.36 kiyohara } while (/*CONSTCOND*/0)
288 1.36 kiyohara #define EMAC_SET_FILTER256(aht, crc) \
289 1.18 simonb do { \
290 1.36 kiyohara (aht)[7 - (((crc) >> 24) >> 5)] |= 1 << (((crc) >> 24) & 0x1f); \
291 1.18 simonb } while (/*CONSTCOND*/0)
292 1.18 simonb
293 1.36 kiyohara static int emac_match(device_t, cfdata_t, void *);
294 1.36 kiyohara static void emac_attach(device_t, device_t, void *);
295 1.3 simonb
296 1.36 kiyohara static int emac_intr(void *);
297 1.3 simonb static void emac_shutdown(void *);
298 1.36 kiyohara
299 1.3 simonb static void emac_start(struct ifnet *);
300 1.36 kiyohara static int emac_ioctl(struct ifnet *, u_long, void *);
301 1.36 kiyohara static int emac_init(struct ifnet *);
302 1.3 simonb static void emac_stop(struct ifnet *, int);
303 1.3 simonb static void emac_watchdog(struct ifnet *);
304 1.36 kiyohara
305 1.36 kiyohara static int emac_add_rxbuf(struct emac_softc *, int);
306 1.36 kiyohara static void emac_rxdrain(struct emac_softc *);
307 1.18 simonb static int emac_set_filter(struct emac_softc *);
308 1.36 kiyohara static int emac_txreap(struct emac_softc *);
309 1.3 simonb
310 1.36 kiyohara static void emac_soft_reset(struct emac_softc *);
311 1.36 kiyohara static void emac_smart_reset(struct emac_softc *);
312 1.1 simonb
313 1.49 msaitoh static int emac_mii_readreg(device_t, int, int, uint16_t *);
314 1.49 msaitoh static int emac_mii_writereg(device_t, int, int, uint16_t);
315 1.41 matt static void emac_mii_statchg(struct ifnet *);
316 1.36 kiyohara static uint32_t emac_mii_wait(struct emac_softc *);
317 1.3 simonb static void emac_mii_tick(void *);
318 1.3 simonb
319 1.3 simonb int emac_copy_small = 0;
320 1.3 simonb
321 1.36 kiyohara CFATTACH_DECL_NEW(emac, sizeof(struct emac_softc),
322 1.13 thorpej emac_match, emac_attach, NULL, NULL);
323 1.1 simonb
324 1.36 kiyohara
325 1.1 simonb static int
326 1.36 kiyohara emac_match(device_t parent, cfdata_t cf, void *aux)
327 1.1 simonb {
328 1.5 simonb struct opb_attach_args *oaa = aux;
329 1.1 simonb
330 1.3 simonb /* match only on-chip ethernet devices */
331 1.10 thorpej if (strcmp(oaa->opb_name, cf->cf_name) == 0)
332 1.36 kiyohara return 1;
333 1.1 simonb
334 1.36 kiyohara return 0;
335 1.1 simonb }
336 1.1 simonb
337 1.1 simonb static void
338 1.36 kiyohara emac_attach(device_t parent, device_t self, void *aux)
339 1.1 simonb {
340 1.5 simonb struct opb_attach_args *oaa = aux;
341 1.36 kiyohara struct emac_softc *sc = device_private(self);
342 1.3 simonb struct ifnet *ifp = &sc->sc_ethercom.ec_if;
343 1.3 simonb struct mii_data *mii = &sc->sc_mii;
344 1.38 matt const char * xname = device_xname(self);
345 1.3 simonb bus_dma_segment_t seg;
346 1.36 kiyohara int error, i, nseg, opb_freq, opbc, mii_phy = MII_PHY_ANY;
347 1.26 thorpej const uint8_t *enaddr;
348 1.36 kiyohara prop_dictionary_t dict = device_properties(self);
349 1.26 thorpej prop_data_t ea;
350 1.1 simonb
351 1.27 kiyohara bus_space_map(oaa->opb_bt, oaa->opb_addr, EMAC_NREG, 0, &sc->sc_sh);
352 1.36 kiyohara
353 1.36 kiyohara sc->sc_dev = self;
354 1.36 kiyohara sc->sc_instance = oaa->opb_instance;
355 1.9 simonb sc->sc_st = oaa->opb_bt;
356 1.5 simonb sc->sc_dmat = oaa->opb_dmat;
357 1.1 simonb
358 1.36 kiyohara callout_init(&sc->sc_callout, 0);
359 1.36 kiyohara
360 1.36 kiyohara aprint_naive("\n");
361 1.36 kiyohara aprint_normal(": Ethernet Media Access Controller\n");
362 1.3 simonb
363 1.36 kiyohara /* Fetch the Ethernet address. */
364 1.36 kiyohara ea = prop_dictionary_get(dict, "mac-address");
365 1.36 kiyohara if (ea == NULL) {
366 1.36 kiyohara aprint_error_dev(self, "unable to get mac-address property\n");
367 1.36 kiyohara return;
368 1.36 kiyohara }
369 1.36 kiyohara KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
370 1.36 kiyohara KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
371 1.36 kiyohara enaddr = prop_data_data_nocopy(ea);
372 1.36 kiyohara aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
373 1.33 kiyohara
374 1.36 kiyohara #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
375 1.36 kiyohara /* Fetch the MII offset. */
376 1.36 kiyohara prop_dictionary_get_uint32(dict, "mii-phy", &mii_phy);
377 1.36 kiyohara
378 1.36 kiyohara #ifdef EMAC_ZMII_PHY
379 1.36 kiyohara if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_ZMII)
380 1.36 kiyohara zmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
381 1.36 kiyohara &sc->sc_rmii_disable, &sc->sc_rmii_speed);
382 1.36 kiyohara #endif
383 1.36 kiyohara #ifdef EMAC_RGMII_PHY
384 1.36 kiyohara if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_RGMII)
385 1.36 kiyohara rgmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
386 1.36 kiyohara &sc->sc_rmii_disable, &sc->sc_rmii_speed);
387 1.36 kiyohara #endif
388 1.36 kiyohara #endif
389 1.3 simonb
390 1.3 simonb /*
391 1.3 simonb * Allocate the control data structures, and create and load the
392 1.3 simonb * DMA map for it.
393 1.3 simonb */
394 1.3 simonb if ((error = bus_dmamem_alloc(sc->sc_dmat,
395 1.3 simonb sizeof(struct emac_control_data), 0, 0, &seg, 1, &nseg, 0)) != 0) {
396 1.36 kiyohara aprint_error_dev(self,
397 1.36 kiyohara "unable to allocate control data, error = %d\n", error);
398 1.3 simonb goto fail_0;
399 1.3 simonb }
400 1.3 simonb
401 1.3 simonb if ((error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
402 1.28 christos sizeof(struct emac_control_data), (void **)&sc->sc_control_data,
403 1.3 simonb BUS_DMA_COHERENT)) != 0) {
404 1.36 kiyohara aprint_error_dev(self,
405 1.36 kiyohara "unable to map control data, error = %d\n", error);
406 1.3 simonb goto fail_1;
407 1.3 simonb }
408 1.3 simonb
409 1.3 simonb if ((error = bus_dmamap_create(sc->sc_dmat,
410 1.3 simonb sizeof(struct emac_control_data), 1,
411 1.3 simonb sizeof(struct emac_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
412 1.36 kiyohara aprint_error_dev(self,
413 1.36 kiyohara "unable to create control data DMA map, error = %d\n",
414 1.36 kiyohara error);
415 1.3 simonb goto fail_2;
416 1.3 simonb }
417 1.3 simonb
418 1.3 simonb if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
419 1.3 simonb sc->sc_control_data, sizeof(struct emac_control_data), NULL,
420 1.3 simonb 0)) != 0) {
421 1.36 kiyohara aprint_error_dev(self,
422 1.36 kiyohara "unable to load control data DMA map, error = %d\n", error);
423 1.3 simonb goto fail_3;
424 1.3 simonb }
425 1.3 simonb
426 1.3 simonb /*
427 1.3 simonb * Create the transmit buffer DMA maps.
428 1.3 simonb */
429 1.3 simonb for (i = 0; i < EMAC_TXQUEUELEN; i++) {
430 1.3 simonb if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
431 1.3 simonb EMAC_NTXSEGS, MCLBYTES, 0, 0,
432 1.3 simonb &sc->sc_txsoft[i].txs_dmamap)) != 0) {
433 1.36 kiyohara aprint_error_dev(self,
434 1.36 kiyohara "unable to create tx DMA map %d, error = %d\n",
435 1.36 kiyohara i, error);
436 1.3 simonb goto fail_4;
437 1.3 simonb }
438 1.3 simonb }
439 1.3 simonb
440 1.3 simonb /*
441 1.3 simonb * Create the receive buffer DMA maps.
442 1.3 simonb */
443 1.3 simonb for (i = 0; i < EMAC_NRXDESC; i++) {
444 1.3 simonb if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
445 1.3 simonb MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
446 1.36 kiyohara aprint_error_dev(self,
447 1.36 kiyohara "unable to create rx DMA map %d, error = %d\n",
448 1.36 kiyohara i, error);
449 1.3 simonb goto fail_5;
450 1.3 simonb }
451 1.3 simonb sc->sc_rxsoft[i].rxs_mbuf = NULL;
452 1.3 simonb }
453 1.3 simonb
454 1.36 kiyohara /* Soft Reset the EMAC. The chip to a known state. */
455 1.36 kiyohara emac_soft_reset(sc);
456 1.3 simonb
457 1.36 kiyohara opb_freq = opb_get_frequency();
458 1.36 kiyohara switch (opb_freq) {
459 1.36 kiyohara case 50000000: opbc = STACR_OPBC_50MHZ; break;
460 1.36 kiyohara case 66666666: opbc = STACR_OPBC_66MHZ; break;
461 1.36 kiyohara case 83333333: opbc = STACR_OPBC_83MHZ; break;
462 1.36 kiyohara case 100000000: opbc = STACR_OPBC_100MHZ; break;
463 1.36 kiyohara
464 1.36 kiyohara default:
465 1.36 kiyohara if (opb_freq > 100000000) {
466 1.36 kiyohara opbc = STACR_OPBC_A100MHZ;
467 1.36 kiyohara break;
468 1.36 kiyohara }
469 1.36 kiyohara aprint_error_dev(self, "unsupport OPB frequency %dMHz\n",
470 1.36 kiyohara opb_freq / 1000 / 1000);
471 1.36 kiyohara goto fail_5;
472 1.36 kiyohara }
473 1.36 kiyohara if (oaa->opb_flags & OPB_FLAGS_EMAC_GBE) {
474 1.36 kiyohara sc->sc_mr1 =
475 1.36 kiyohara MR1_RFS_GBE(MR1__FS_16KB) |
476 1.36 kiyohara MR1_TFS_GBE(MR1__FS_16KB) |
477 1.36 kiyohara MR1_TR0_MULTIPLE |
478 1.36 kiyohara MR1_OBCI(opbc);
479 1.36 kiyohara sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
480 1.36 kiyohara
481 1.36 kiyohara if (oaa->opb_flags & OPB_FLAGS_EMAC_STACV2) {
482 1.36 kiyohara sc->sc_stacr_read = STACR_STAOPC_READ;
483 1.36 kiyohara sc->sc_stacr_write = STACR_STAOPC_WRITE;
484 1.36 kiyohara sc->sc_stacr_bits = STACR_OC;
485 1.36 kiyohara sc->sc_stacr_completed = false;
486 1.36 kiyohara } else {
487 1.36 kiyohara sc->sc_stacr_read = STACR_READ;
488 1.36 kiyohara sc->sc_stacr_write = STACR_WRITE;
489 1.36 kiyohara sc->sc_stacr_completed = true;
490 1.36 kiyohara }
491 1.36 kiyohara } else {
492 1.36 kiyohara /*
493 1.36 kiyohara * Set up Mode Register 1 - set receive and transmit FIFOs to
494 1.36 kiyohara * maximum size, allow transmit of multiple packets (only
495 1.36 kiyohara * channel 0 is used).
496 1.36 kiyohara *
497 1.36 kiyohara * XXX: Allow pause packets??
498 1.36 kiyohara */
499 1.36 kiyohara sc->sc_mr1 =
500 1.36 kiyohara MR1_RFS(MR1__FS_4KB) |
501 1.36 kiyohara MR1_TFS(MR1__FS_2KB) |
502 1.36 kiyohara MR1_TR0_MULTIPLE;
503 1.36 kiyohara
504 1.36 kiyohara sc->sc_stacr_read = STACR_READ;
505 1.36 kiyohara sc->sc_stacr_write = STACR_WRITE;
506 1.36 kiyohara sc->sc_stacr_bits = STACR_OPBC(opbc);
507 1.36 kiyohara sc->sc_stacr_completed = true;
508 1.14 thorpej }
509 1.14 thorpej
510 1.36 kiyohara intr_establish(oaa->opb_irq, IST_LEVEL, IPL_NET, emac_intr, sc);
511 1.36 kiyohara mal_intr_establish(sc->sc_instance, sc);
512 1.36 kiyohara
513 1.36 kiyohara if (oaa->opb_flags & OPB_FLAGS_EMAC_HT256)
514 1.36 kiyohara sc->sc_htsize = 256;
515 1.36 kiyohara else
516 1.36 kiyohara sc->sc_htsize = 64;
517 1.36 kiyohara
518 1.36 kiyohara /* Clear all interrupts */
519 1.36 kiyohara EMAC_WRITE(sc, EMAC_ISR, ISR_ALL);
520 1.1 simonb
521 1.3 simonb /*
522 1.3 simonb * Initialise the media structures.
523 1.3 simonb */
524 1.3 simonb mii->mii_ifp = ifp;
525 1.3 simonb mii->mii_readreg = emac_mii_readreg;
526 1.3 simonb mii->mii_writereg = emac_mii_writereg;
527 1.3 simonb mii->mii_statchg = emac_mii_statchg;
528 1.3 simonb
529 1.31 dyoung sc->sc_ethercom.ec_mii = mii;
530 1.31 dyoung ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
531 1.42 msaitoh mii_attach(self, mii, 0xffffffff, mii_phy, MII_OFFSET_ANY,
532 1.42 msaitoh MIIF_DOPAUSE);
533 1.3 simonb if (LIST_FIRST(&mii->mii_phys) == NULL) {
534 1.50 msaitoh ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
535 1.50 msaitoh ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
536 1.3 simonb } else
537 1.50 msaitoh ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
538 1.3 simonb
539 1.3 simonb ifp = &sc->sc_ethercom.ec_if;
540 1.38 matt strcpy(ifp->if_xname, xname);
541 1.3 simonb ifp->if_softc = sc;
542 1.3 simonb ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
543 1.36 kiyohara ifp->if_start = emac_start;
544 1.3 simonb ifp->if_ioctl = emac_ioctl;
545 1.3 simonb ifp->if_init = emac_init;
546 1.3 simonb ifp->if_stop = emac_stop;
547 1.36 kiyohara ifp->if_watchdog = emac_watchdog;
548 1.3 simonb IFQ_SET_READY(&ifp->if_snd);
549 1.3 simonb
550 1.3 simonb /*
551 1.3 simonb * We can support 802.1Q VLAN-sized frames.
552 1.3 simonb */
553 1.3 simonb sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
554 1.3 simonb
555 1.3 simonb /*
556 1.3 simonb * Attach the interface.
557 1.3 simonb */
558 1.3 simonb if_attach(ifp);
559 1.46 ozaki if_deferred_start_init(ifp, NULL);
560 1.14 thorpej ether_ifattach(ifp, enaddr);
561 1.3 simonb
562 1.54 rin rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET,
563 1.54 rin RND_FLAG_DEFAULT);
564 1.54 rin
565 1.3 simonb #ifdef EMAC_EVENT_COUNTERS
566 1.3 simonb /*
567 1.3 simonb * Attach the event counters.
568 1.3 simonb */
569 1.36 kiyohara evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
570 1.38 matt NULL, xname, "txintr");
571 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
572 1.38 matt NULL, xname, "rxintr");
573 1.36 kiyohara evcnt_attach_dynamic(&sc->sc_ev_txde, EVCNT_TYPE_INTR,
574 1.38 matt NULL, xname, "txde");
575 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_rxde, EVCNT_TYPE_INTR,
576 1.38 matt NULL, xname, "rxde");
577 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
578 1.38 matt NULL, xname, "intr");
579 1.3 simonb
580 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_txreap, EVCNT_TYPE_MISC,
581 1.38 matt NULL, xname, "txreap");
582 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
583 1.38 matt NULL, xname, "txsstall");
584 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
585 1.38 matt NULL, xname, "txdstall");
586 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
587 1.38 matt NULL, xname, "txdrop");
588 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
589 1.38 matt NULL, xname, "tu");
590 1.3 simonb #endif /* EMAC_EVENT_COUNTERS */
591 1.3 simonb
592 1.3 simonb /*
593 1.3 simonb * Make sure the interface is shutdown during reboot.
594 1.3 simonb */
595 1.3 simonb sc->sc_sdhook = shutdownhook_establish(emac_shutdown, sc);
596 1.3 simonb if (sc->sc_sdhook == NULL)
597 1.36 kiyohara aprint_error_dev(self,
598 1.36 kiyohara "WARNING: unable to establish shutdown hook\n");
599 1.3 simonb
600 1.3 simonb return;
601 1.3 simonb
602 1.3 simonb /*
603 1.3 simonb * Free any resources we've allocated during the failed attach
604 1.3 simonb * attempt. Do this in reverse order and fall through.
605 1.3 simonb */
606 1.3 simonb fail_5:
607 1.3 simonb for (i = 0; i < EMAC_NRXDESC; i++) {
608 1.3 simonb if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
609 1.3 simonb bus_dmamap_destroy(sc->sc_dmat,
610 1.3 simonb sc->sc_rxsoft[i].rxs_dmamap);
611 1.3 simonb }
612 1.3 simonb fail_4:
613 1.3 simonb for (i = 0; i < EMAC_TXQUEUELEN; i++) {
614 1.3 simonb if (sc->sc_txsoft[i].txs_dmamap != NULL)
615 1.3 simonb bus_dmamap_destroy(sc->sc_dmat,
616 1.3 simonb sc->sc_txsoft[i].txs_dmamap);
617 1.3 simonb }
618 1.3 simonb bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
619 1.3 simonb fail_3:
620 1.3 simonb bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
621 1.3 simonb fail_2:
622 1.28 christos bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
623 1.3 simonb sizeof(struct emac_control_data));
624 1.3 simonb fail_1:
625 1.3 simonb bus_dmamem_free(sc->sc_dmat, &seg, nseg);
626 1.3 simonb fail_0:
627 1.3 simonb return;
628 1.3 simonb }
629 1.3 simonb
630 1.3 simonb /*
631 1.36 kiyohara * EMAC General interrupt handler
632 1.3 simonb */
633 1.36 kiyohara static int
634 1.36 kiyohara emac_intr(void *arg)
635 1.36 kiyohara {
636 1.36 kiyohara struct emac_softc *sc = arg;
637 1.36 kiyohara uint32_t status;
638 1.36 kiyohara
639 1.36 kiyohara EMAC_EVCNT_INCR(&sc->sc_ev_intr);
640 1.36 kiyohara status = EMAC_READ(sc, EMAC_ISR);
641 1.36 kiyohara
642 1.36 kiyohara /* Clear the interrupt status bits. */
643 1.36 kiyohara EMAC_WRITE(sc, EMAC_ISR, status);
644 1.36 kiyohara
645 1.36 kiyohara return 1;
646 1.36 kiyohara }
647 1.36 kiyohara
648 1.3 simonb static void
649 1.3 simonb emac_shutdown(void *arg)
650 1.3 simonb {
651 1.3 simonb struct emac_softc *sc = arg;
652 1.3 simonb
653 1.3 simonb emac_stop(&sc->sc_ethercom.ec_if, 0);
654 1.3 simonb }
655 1.3 simonb
656 1.36 kiyohara
657 1.36 kiyohara /*
658 1.36 kiyohara * ifnet interface functions
659 1.36 kiyohara */
660 1.36 kiyohara
661 1.3 simonb static void
662 1.3 simonb emac_start(struct ifnet *ifp)
663 1.3 simonb {
664 1.3 simonb struct emac_softc *sc = ifp->if_softc;
665 1.3 simonb struct mbuf *m0;
666 1.3 simonb struct emac_txsoft *txs;
667 1.3 simonb bus_dmamap_t dmamap;
668 1.3 simonb int error, firsttx, nexttx, lasttx, ofree, seg;
669 1.17 simonb
670 1.17 simonb lasttx = 0; /* XXX gcc */
671 1.3 simonb
672 1.50 msaitoh if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
673 1.3 simonb return;
674 1.3 simonb
675 1.3 simonb /*
676 1.3 simonb * Remember the previous number of free descriptors.
677 1.3 simonb */
678 1.3 simonb ofree = sc->sc_txfree;
679 1.3 simonb
680 1.3 simonb /*
681 1.3 simonb * Loop through the send queue, setting up transmit descriptors
682 1.3 simonb * until we drain the queue, or use up all available transmit
683 1.3 simonb * descriptors.
684 1.3 simonb */
685 1.3 simonb for (;;) {
686 1.3 simonb /* Grab a packet off the queue. */
687 1.3 simonb IFQ_POLL(&ifp->if_snd, m0);
688 1.3 simonb if (m0 == NULL)
689 1.3 simonb break;
690 1.3 simonb
691 1.3 simonb /*
692 1.3 simonb * Get a work queue entry. Reclaim used Tx descriptors if
693 1.3 simonb * we are running low.
694 1.3 simonb */
695 1.3 simonb if (sc->sc_txsfree < EMAC_TXQUEUE_GC) {
696 1.3 simonb emac_txreap(sc);
697 1.3 simonb if (sc->sc_txsfree == 0) {
698 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_txsstall);
699 1.3 simonb break;
700 1.3 simonb }
701 1.3 simonb }
702 1.3 simonb
703 1.3 simonb txs = &sc->sc_txsoft[sc->sc_txsnext];
704 1.3 simonb dmamap = txs->txs_dmamap;
705 1.3 simonb
706 1.3 simonb /*
707 1.3 simonb * Load the DMA map. If this fails, the packet either
708 1.3 simonb * didn't fit in the alloted number of segments, or we
709 1.3 simonb * were short on resources. In this case, we'll copy
710 1.3 simonb * and try again.
711 1.3 simonb */
712 1.3 simonb error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
713 1.50 msaitoh BUS_DMA_WRITE | BUS_DMA_NOWAIT);
714 1.3 simonb if (error) {
715 1.3 simonb if (error == EFBIG) {
716 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_txdrop);
717 1.36 kiyohara aprint_error_ifnet(ifp,
718 1.36 kiyohara "Tx packet consumes too many "
719 1.36 kiyohara "DMA segments, dropping...\n");
720 1.3 simonb IFQ_DEQUEUE(&ifp->if_snd, m0);
721 1.3 simonb m_freem(m0);
722 1.3 simonb continue;
723 1.3 simonb }
724 1.3 simonb /* Short on resources, just stop for now. */
725 1.3 simonb break;
726 1.3 simonb }
727 1.3 simonb
728 1.3 simonb /*
729 1.3 simonb * Ensure we have enough descriptors free to describe
730 1.3 simonb * the packet.
731 1.3 simonb */
732 1.3 simonb if (dmamap->dm_nsegs > sc->sc_txfree) {
733 1.3 simonb /*
734 1.3 simonb * Not enough free descriptors to transmit this
735 1.3 simonb * packet. We haven't committed anything yet,
736 1.3 simonb * so just unload the DMA map, put the packet
737 1.3 simonb * back on the queue, and punt. Notify the upper
738 1.3 simonb * layer that there are not more slots left.
739 1.3 simonb *
740 1.3 simonb */
741 1.3 simonb ifp->if_flags |= IFF_OACTIVE;
742 1.3 simonb bus_dmamap_unload(sc->sc_dmat, dmamap);
743 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_txdstall);
744 1.3 simonb break;
745 1.3 simonb }
746 1.3 simonb
747 1.3 simonb IFQ_DEQUEUE(&ifp->if_snd, m0);
748 1.3 simonb
749 1.3 simonb /*
750 1.3 simonb * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
751 1.3 simonb */
752 1.3 simonb
753 1.3 simonb /* Sync the DMA map. */
754 1.3 simonb bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
755 1.3 simonb BUS_DMASYNC_PREWRITE);
756 1.3 simonb
757 1.3 simonb /*
758 1.3 simonb * Store a pointer to the packet so that we can free it
759 1.3 simonb * later.
760 1.3 simonb */
761 1.3 simonb txs->txs_mbuf = m0;
762 1.3 simonb txs->txs_firstdesc = sc->sc_txnext;
763 1.3 simonb txs->txs_ndesc = dmamap->dm_nsegs;
764 1.3 simonb
765 1.3 simonb /*
766 1.3 simonb * Initialize the transmit descriptor.
767 1.3 simonb */
768 1.3 simonb firsttx = sc->sc_txnext;
769 1.3 simonb for (nexttx = sc->sc_txnext, seg = 0;
770 1.3 simonb seg < dmamap->dm_nsegs;
771 1.3 simonb seg++, nexttx = EMAC_NEXTTX(nexttx)) {
772 1.36 kiyohara struct mal_descriptor *txdesc =
773 1.36 kiyohara &sc->sc_txdescs[nexttx];
774 1.36 kiyohara
775 1.3 simonb /*
776 1.3 simonb * If this is the first descriptor we're
777 1.3 simonb * enqueueing, don't set the TX_READY bit just
778 1.3 simonb * yet. That could cause a race condition.
779 1.3 simonb * We'll do it below.
780 1.3 simonb */
781 1.36 kiyohara txdesc->md_data = dmamap->dm_segs[seg].ds_addr;
782 1.36 kiyohara txdesc->md_data_len = dmamap->dm_segs[seg].ds_len;
783 1.36 kiyohara txdesc->md_stat_ctrl =
784 1.36 kiyohara (txdesc->md_stat_ctrl & MAL_TX_WRAP) |
785 1.3 simonb (nexttx == firsttx ? 0 : MAL_TX_READY) |
786 1.3 simonb EMAC_TXC_GFCS | EMAC_TXC_GPAD;
787 1.3 simonb lasttx = nexttx;
788 1.3 simonb }
789 1.3 simonb
790 1.3 simonb /* Set the LAST bit on the last segment. */
791 1.3 simonb sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_LAST;
792 1.3 simonb
793 1.21 simonb /*
794 1.21 simonb * Set up last segment descriptor to send an interrupt after
795 1.21 simonb * that descriptor is transmitted, and bypass existing Tx
796 1.21 simonb * descriptor reaping method (for now...).
797 1.21 simonb */
798 1.21 simonb sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_INTERRUPT;
799 1.21 simonb
800 1.21 simonb
801 1.3 simonb txs->txs_lastdesc = lasttx;
802 1.3 simonb
803 1.3 simonb /* Sync the descriptors we're using. */
804 1.3 simonb EMAC_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
805 1.3 simonb BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
806 1.3 simonb
807 1.3 simonb /*
808 1.3 simonb * The entire packet chain is set up. Give the
809 1.3 simonb * first descriptor to the chip now.
810 1.3 simonb */
811 1.3 simonb sc->sc_txdescs[firsttx].md_stat_ctrl |= MAL_TX_READY;
812 1.3 simonb EMAC_CDTXSYNC(sc, firsttx, 1,
813 1.3 simonb BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
814 1.3 simonb /*
815 1.3 simonb * Tell the EMAC that a new packet is available.
816 1.3 simonb */
817 1.36 kiyohara EMAC_WRITE(sc, EMAC_TMR0, TMR0_GNP0 | TMR0_TFAE_2);
818 1.3 simonb
819 1.3 simonb /* Advance the tx pointer. */
820 1.3 simonb sc->sc_txfree -= txs->txs_ndesc;
821 1.3 simonb sc->sc_txnext = nexttx;
822 1.3 simonb
823 1.3 simonb sc->sc_txsfree--;
824 1.3 simonb sc->sc_txsnext = EMAC_NEXTTXS(sc->sc_txsnext);
825 1.3 simonb
826 1.3 simonb /*
827 1.3 simonb * Pass the packet to any BPF listeners.
828 1.3 simonb */
829 1.48 msaitoh bpf_mtap(ifp, m0, BPF_D_OUT);
830 1.3 simonb }
831 1.3 simonb
832 1.36 kiyohara if (sc->sc_txfree == 0)
833 1.3 simonb /* No more slots left; notify upper layer. */
834 1.3 simonb ifp->if_flags |= IFF_OACTIVE;
835 1.3 simonb
836 1.36 kiyohara if (sc->sc_txfree != ofree)
837 1.3 simonb /* Set a watchdog timer in case the chip flakes out. */
838 1.3 simonb ifp->if_timer = 5;
839 1.36 kiyohara }
840 1.36 kiyohara
841 1.36 kiyohara static int
842 1.36 kiyohara emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
843 1.36 kiyohara {
844 1.36 kiyohara struct emac_softc *sc = ifp->if_softc;
845 1.36 kiyohara int s, error;
846 1.36 kiyohara
847 1.36 kiyohara s = splnet();
848 1.36 kiyohara
849 1.36 kiyohara switch (cmd) {
850 1.36 kiyohara case SIOCSIFMTU:
851 1.36 kiyohara {
852 1.36 kiyohara struct ifreq *ifr = (struct ifreq *)data;
853 1.36 kiyohara int maxmtu;
854 1.36 kiyohara
855 1.36 kiyohara if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU)
856 1.36 kiyohara maxmtu = EMAC_MAX_MTU;
857 1.36 kiyohara else
858 1.36 kiyohara maxmtu = ETHERMTU;
859 1.36 kiyohara
860 1.36 kiyohara if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
861 1.36 kiyohara error = EINVAL;
862 1.36 kiyohara else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
863 1.36 kiyohara break;
864 1.36 kiyohara else if (ifp->if_flags & IFF_UP)
865 1.36 kiyohara error = emac_init(ifp);
866 1.36 kiyohara else
867 1.36 kiyohara error = 0;
868 1.36 kiyohara break;
869 1.36 kiyohara }
870 1.36 kiyohara
871 1.36 kiyohara default:
872 1.36 kiyohara error = ether_ioctl(ifp, cmd, data);
873 1.36 kiyohara if (error == ENETRESET) {
874 1.36 kiyohara /*
875 1.36 kiyohara * Multicast list has changed; set the hardware filter
876 1.36 kiyohara * accordingly.
877 1.36 kiyohara */
878 1.36 kiyohara if (ifp->if_flags & IFF_RUNNING)
879 1.36 kiyohara error = emac_set_filter(sc);
880 1.36 kiyohara else
881 1.36 kiyohara error = 0;
882 1.36 kiyohara }
883 1.3 simonb }
884 1.36 kiyohara
885 1.36 kiyohara /* try to get more packets going */
886 1.36 kiyohara emac_start(ifp);
887 1.36 kiyohara
888 1.36 kiyohara splx(s);
889 1.36 kiyohara return error;
890 1.3 simonb }
891 1.3 simonb
892 1.3 simonb static int
893 1.3 simonb emac_init(struct ifnet *ifp)
894 1.3 simonb {
895 1.3 simonb struct emac_softc *sc = ifp->if_softc;
896 1.3 simonb struct emac_rxsoft *rxs;
897 1.29 dyoung const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
898 1.3 simonb int error, i;
899 1.3 simonb
900 1.3 simonb error = 0;
901 1.3 simonb
902 1.3 simonb /* Cancel any pending I/O. */
903 1.3 simonb emac_stop(ifp, 0);
904 1.3 simonb
905 1.3 simonb /* Reset the chip to a known state. */
906 1.36 kiyohara emac_soft_reset(sc);
907 1.3 simonb
908 1.36 kiyohara /*
909 1.3 simonb * Initialise the transmit descriptor ring.
910 1.3 simonb */
911 1.3 simonb memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
912 1.3 simonb /* set wrap on last descriptor */
913 1.3 simonb sc->sc_txdescs[EMAC_NTXDESC - 1].md_stat_ctrl |= MAL_TX_WRAP;
914 1.3 simonb EMAC_CDTXSYNC(sc, 0, EMAC_NTXDESC,
915 1.36 kiyohara BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
916 1.3 simonb sc->sc_txfree = EMAC_NTXDESC;
917 1.3 simonb sc->sc_txnext = 0;
918 1.3 simonb
919 1.3 simonb /*
920 1.3 simonb * Initialise the transmit job descriptors.
921 1.3 simonb */
922 1.3 simonb for (i = 0; i < EMAC_TXQUEUELEN; i++)
923 1.3 simonb sc->sc_txsoft[i].txs_mbuf = NULL;
924 1.3 simonb sc->sc_txsfree = EMAC_TXQUEUELEN;
925 1.3 simonb sc->sc_txsnext = 0;
926 1.3 simonb sc->sc_txsdirty = 0;
927 1.3 simonb
928 1.3 simonb /*
929 1.3 simonb * Initialise the receiver descriptor and receive job
930 1.3 simonb * descriptor rings.
931 1.3 simonb */
932 1.3 simonb for (i = 0; i < EMAC_NRXDESC; i++) {
933 1.3 simonb rxs = &sc->sc_rxsoft[i];
934 1.3 simonb if (rxs->rxs_mbuf == NULL) {
935 1.3 simonb if ((error = emac_add_rxbuf(sc, i)) != 0) {
936 1.36 kiyohara aprint_error_ifnet(ifp,
937 1.36 kiyohara "unable to allocate or map rx buffer %d,"
938 1.36 kiyohara " error = %d\n",
939 1.36 kiyohara i, error);
940 1.3 simonb /*
941 1.3 simonb * XXX Should attempt to run with fewer receive
942 1.3 simonb * XXX buffers instead of just failing.
943 1.3 simonb */
944 1.3 simonb emac_rxdrain(sc);
945 1.3 simonb goto out;
946 1.3 simonb }
947 1.3 simonb } else
948 1.3 simonb EMAC_INIT_RXDESC(sc, i);
949 1.3 simonb }
950 1.3 simonb sc->sc_rxptr = 0;
951 1.3 simonb
952 1.3 simonb /*
953 1.3 simonb * Set the current media.
954 1.3 simonb */
955 1.31 dyoung if ((error = ether_mediachange(ifp)) != 0)
956 1.31 dyoung goto out;
957 1.3 simonb
958 1.3 simonb /*
959 1.3 simonb * Load the MAC address.
960 1.3 simonb */
961 1.6 simonb EMAC_WRITE(sc, EMAC_IAHR, enaddr[0] << 8 | enaddr[1]);
962 1.6 simonb EMAC_WRITE(sc, EMAC_IALR,
963 1.3 simonb enaddr[2] << 24 | enaddr[3] << 16 | enaddr[4] << 8 | enaddr[5]);
964 1.3 simonb
965 1.36 kiyohara /* Enable the transmit and receive channel on the MAL. */
966 1.36 kiyohara error = mal_start(sc->sc_instance,
967 1.36 kiyohara EMAC_CDTXADDR(sc, 0), EMAC_CDRXADDR(sc, 0));
968 1.36 kiyohara if (error)
969 1.36 kiyohara goto out;
970 1.36 kiyohara
971 1.36 kiyohara sc->sc_mr1 &= ~MR1_JPSM;
972 1.36 kiyohara if (ifp->if_mtu > ETHERMTU)
973 1.36 kiyohara /* Enable Jumbo Packet Support Mode */
974 1.36 kiyohara sc->sc_mr1 |= MR1_JPSM;
975 1.3 simonb
976 1.3 simonb /* Set fifos, media modes. */
977 1.6 simonb EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
978 1.3 simonb
979 1.3 simonb /*
980 1.3 simonb * Enable Individual and (possibly) Broadcast Address modes,
981 1.3 simonb * runt packets, and strip padding.
982 1.3 simonb */
983 1.36 kiyohara EMAC_WRITE(sc, EMAC_RMR, RMR_IAE | RMR_RRP | RMR_SP | RMR_TFAE_2 |
984 1.18 simonb (ifp->if_flags & IFF_PROMISC ? RMR_PME : 0) |
985 1.3 simonb (ifp->if_flags & IFF_BROADCAST ? RMR_BAE : 0));
986 1.3 simonb
987 1.3 simonb /*
988 1.27 kiyohara * Set multicast filter.
989 1.27 kiyohara */
990 1.27 kiyohara emac_set_filter(sc);
991 1.27 kiyohara
992 1.27 kiyohara /*
993 1.3 simonb * Set low- and urgent-priority request thresholds.
994 1.3 simonb */
995 1.6 simonb EMAC_WRITE(sc, EMAC_TMR1,
996 1.3 simonb ((7 << TMR1_TLR_SHIFT) & TMR1_TLR_MASK) | /* 16 word burst */
997 1.3 simonb ((15 << TMR1_TUR_SHIFT) & TMR1_TUR_MASK));
998 1.3 simonb /*
999 1.3 simonb * Set Transmit Request Threshold Register.
1000 1.3 simonb */
1001 1.6 simonb EMAC_WRITE(sc, EMAC_TRTR, TRTR_256);
1002 1.3 simonb
1003 1.3 simonb /*
1004 1.3 simonb * Set high and low receive watermarks.
1005 1.3 simonb */
1006 1.6 simonb EMAC_WRITE(sc, EMAC_RWMR,
1007 1.3 simonb 30 << RWMR_RLWM_SHIFT | 64 << RWMR_RLWM_SHIFT);
1008 1.3 simonb
1009 1.3 simonb /*
1010 1.3 simonb * Set frame gap.
1011 1.3 simonb */
1012 1.6 simonb EMAC_WRITE(sc, EMAC_IPGVR, 8);
1013 1.3 simonb
1014 1.3 simonb /*
1015 1.36 kiyohara * Set interrupt status enable bits for EMAC.
1016 1.3 simonb */
1017 1.6 simonb EMAC_WRITE(sc, EMAC_ISER,
1018 1.36 kiyohara ISR_TXPE | /* TX Parity Error */
1019 1.36 kiyohara ISR_RXPE | /* RX Parity Error */
1020 1.36 kiyohara ISR_TXUE | /* TX Underrun Event */
1021 1.36 kiyohara ISR_RXOE | /* RX Overrun Event */
1022 1.36 kiyohara ISR_OVR | /* Overrun Error */
1023 1.36 kiyohara ISR_PP | /* Pause Packet */
1024 1.36 kiyohara ISR_BP | /* Bad Packet */
1025 1.36 kiyohara ISR_RP | /* Runt Packet */
1026 1.36 kiyohara ISR_SE | /* Short Event */
1027 1.36 kiyohara ISR_ALE | /* Alignment Error */
1028 1.36 kiyohara ISR_BFCS | /* Bad FCS */
1029 1.36 kiyohara ISR_PTLE | /* Packet Too Long Error */
1030 1.36 kiyohara ISR_ORE | /* Out of Range Error */
1031 1.36 kiyohara ISR_IRE | /* In Range Error */
1032 1.36 kiyohara ISR_SE0 | /* Signal Quality Error 0 (SQE) */
1033 1.36 kiyohara ISR_TE0 | /* Transmit Error 0 */
1034 1.36 kiyohara ISR_MOS | /* MMA Operation Succeeded */
1035 1.36 kiyohara ISR_MOF); /* MMA Operation Failed */
1036 1.3 simonb
1037 1.3 simonb /*
1038 1.3 simonb * Enable the transmit and receive channel on the EMAC.
1039 1.3 simonb */
1040 1.6 simonb EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
1041 1.3 simonb
1042 1.3 simonb /*
1043 1.3 simonb * Start the one second MII clock.
1044 1.3 simonb */
1045 1.3 simonb callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
1046 1.3 simonb
1047 1.3 simonb /*
1048 1.3 simonb * ... all done!
1049 1.3 simonb */
1050 1.3 simonb ifp->if_flags |= IFF_RUNNING;
1051 1.3 simonb ifp->if_flags &= ~IFF_OACTIVE;
1052 1.3 simonb
1053 1.3 simonb out:
1054 1.3 simonb if (error) {
1055 1.3 simonb ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1056 1.3 simonb ifp->if_timer = 0;
1057 1.36 kiyohara aprint_error_ifnet(ifp, "interface not running\n");
1058 1.3 simonb }
1059 1.36 kiyohara return error;
1060 1.3 simonb }
1061 1.3 simonb
1062 1.3 simonb static void
1063 1.3 simonb emac_stop(struct ifnet *ifp, int disable)
1064 1.3 simonb {
1065 1.3 simonb struct emac_softc *sc = ifp->if_softc;
1066 1.3 simonb struct emac_txsoft *txs;
1067 1.3 simonb int i;
1068 1.3 simonb
1069 1.3 simonb /* Stop the one second clock. */
1070 1.3 simonb callout_stop(&sc->sc_callout);
1071 1.3 simonb
1072 1.3 simonb /* Down the MII */
1073 1.3 simonb mii_down(&sc->sc_mii);
1074 1.3 simonb
1075 1.3 simonb /* Disable interrupts. */
1076 1.6 simonb EMAC_WRITE(sc, EMAC_ISER, 0);
1077 1.3 simonb
1078 1.3 simonb /* Disable the receive and transmit channels. */
1079 1.36 kiyohara mal_stop(sc->sc_instance);
1080 1.3 simonb
1081 1.3 simonb /* Disable the transmit enable and receive MACs. */
1082 1.6 simonb EMAC_WRITE(sc, EMAC_MR0,
1083 1.6 simonb EMAC_READ(sc, EMAC_MR0) & ~(MR0_TXE | MR0_RXE));
1084 1.3 simonb
1085 1.3 simonb /* Release any queued transmit buffers. */
1086 1.3 simonb for (i = 0; i < EMAC_TXQUEUELEN; i++) {
1087 1.3 simonb txs = &sc->sc_txsoft[i];
1088 1.3 simonb if (txs->txs_mbuf != NULL) {
1089 1.3 simonb bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1090 1.3 simonb m_freem(txs->txs_mbuf);
1091 1.3 simonb txs->txs_mbuf = NULL;
1092 1.3 simonb }
1093 1.3 simonb }
1094 1.3 simonb
1095 1.3 simonb if (disable)
1096 1.3 simonb emac_rxdrain(sc);
1097 1.3 simonb
1098 1.3 simonb /*
1099 1.3 simonb * Mark the interface down and cancel the watchdog timer.
1100 1.3 simonb */
1101 1.3 simonb ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1102 1.3 simonb ifp->if_timer = 0;
1103 1.3 simonb }
1104 1.3 simonb
1105 1.36 kiyohara static void
1106 1.36 kiyohara emac_watchdog(struct ifnet *ifp)
1107 1.3 simonb {
1108 1.3 simonb struct emac_softc *sc = ifp->if_softc;
1109 1.3 simonb
1110 1.36 kiyohara /*
1111 1.36 kiyohara * Since we're not interrupting every packet, sweep
1112 1.36 kiyohara * up before we report an error.
1113 1.36 kiyohara */
1114 1.36 kiyohara emac_txreap(sc);
1115 1.36 kiyohara
1116 1.36 kiyohara if (sc->sc_txfree != EMAC_NTXDESC) {
1117 1.36 kiyohara aprint_error_ifnet(ifp,
1118 1.36 kiyohara "device timeout (txfree %d txsfree %d txnext %d)\n",
1119 1.36 kiyohara sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
1120 1.52 thorpej if_statinc(ifp, if_oerrors);
1121 1.3 simonb
1122 1.36 kiyohara /* Reset the interface. */
1123 1.36 kiyohara (void)emac_init(ifp);
1124 1.36 kiyohara } else if (ifp->if_flags & IFF_DEBUG)
1125 1.36 kiyohara aprint_error_ifnet(ifp, "recovered from device timeout\n");
1126 1.3 simonb
1127 1.3 simonb /* try to get more packets going */
1128 1.3 simonb emac_start(ifp);
1129 1.3 simonb }
1130 1.3 simonb
1131 1.36 kiyohara static int
1132 1.36 kiyohara emac_add_rxbuf(struct emac_softc *sc, int idx)
1133 1.3 simonb {
1134 1.36 kiyohara struct emac_rxsoft *rxs = &sc->sc_rxsoft[idx];
1135 1.36 kiyohara struct mbuf *m;
1136 1.36 kiyohara int error;
1137 1.36 kiyohara
1138 1.36 kiyohara MGETHDR(m, M_DONTWAIT, MT_DATA);
1139 1.36 kiyohara if (m == NULL)
1140 1.36 kiyohara return ENOBUFS;
1141 1.36 kiyohara
1142 1.36 kiyohara MCLGET(m, M_DONTWAIT);
1143 1.36 kiyohara if ((m->m_flags & M_EXT) == 0) {
1144 1.36 kiyohara m_freem(m);
1145 1.36 kiyohara return ENOBUFS;
1146 1.36 kiyohara }
1147 1.3 simonb
1148 1.36 kiyohara if (rxs->rxs_mbuf != NULL)
1149 1.36 kiyohara bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1150 1.36 kiyohara
1151 1.36 kiyohara rxs->rxs_mbuf = m;
1152 1.3 simonb
1153 1.36 kiyohara error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1154 1.36 kiyohara m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1155 1.36 kiyohara if (error) {
1156 1.36 kiyohara aprint_error_dev(sc->sc_dev,
1157 1.36 kiyohara "can't load rx DMA map %d, error = %d\n", idx, error);
1158 1.36 kiyohara panic("emac_add_rxbuf"); /* XXX */
1159 1.36 kiyohara }
1160 1.3 simonb
1161 1.36 kiyohara bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1162 1.36 kiyohara rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1163 1.3 simonb
1164 1.36 kiyohara EMAC_INIT_RXDESC(sc, idx);
1165 1.3 simonb
1166 1.36 kiyohara return 0;
1167 1.36 kiyohara }
1168 1.36 kiyohara
1169 1.36 kiyohara static void
1170 1.36 kiyohara emac_rxdrain(struct emac_softc *sc)
1171 1.36 kiyohara {
1172 1.36 kiyohara struct emac_rxsoft *rxs;
1173 1.36 kiyohara int i;
1174 1.36 kiyohara
1175 1.36 kiyohara for (i = 0; i < EMAC_NRXDESC; i++) {
1176 1.36 kiyohara rxs = &sc->sc_rxsoft[i];
1177 1.36 kiyohara if (rxs->rxs_mbuf != NULL) {
1178 1.36 kiyohara bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1179 1.36 kiyohara m_freem(rxs->rxs_mbuf);
1180 1.36 kiyohara rxs->rxs_mbuf = NULL;
1181 1.36 kiyohara }
1182 1.36 kiyohara }
1183 1.3 simonb }
1184 1.3 simonb
1185 1.18 simonb static int
1186 1.18 simonb emac_set_filter(struct emac_softc *sc)
1187 1.18 simonb {
1188 1.51 msaitoh struct ethercom *ec = &sc->sc_ethercom;
1189 1.18 simonb struct ether_multistep step;
1190 1.18 simonb struct ether_multi *enm;
1191 1.18 simonb struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1192 1.36 kiyohara uint32_t rmr, crc, mask, tmp, reg, gaht[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1193 1.36 kiyohara int regs, cnt = 0, i;
1194 1.36 kiyohara
1195 1.36 kiyohara if (sc->sc_htsize == 256) {
1196 1.36 kiyohara reg = EMAC_GAHT256(0);
1197 1.36 kiyohara regs = 8;
1198 1.36 kiyohara } else {
1199 1.36 kiyohara reg = EMAC_GAHT64(0);
1200 1.36 kiyohara regs = 4;
1201 1.36 kiyohara }
1202 1.36 kiyohara mask = (1ULL << (sc->sc_htsize / regs)) - 1;
1203 1.18 simonb
1204 1.18 simonb rmr = EMAC_READ(sc, EMAC_RMR);
1205 1.18 simonb rmr &= ~(RMR_PMME | RMR_MAE);
1206 1.18 simonb ifp->if_flags &= ~IFF_ALLMULTI;
1207 1.18 simonb
1208 1.51 msaitoh ETHER_LOCK(ec);
1209 1.51 msaitoh ETHER_FIRST_MULTI(step, ec, enm);
1210 1.18 simonb while (enm != NULL) {
1211 1.18 simonb if (memcmp(enm->enm_addrlo,
1212 1.18 simonb enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1213 1.18 simonb /*
1214 1.18 simonb * We must listen to a range of multicast addresses.
1215 1.18 simonb * For now, just accept all multicasts, rather than
1216 1.18 simonb * trying to set only those filter bits needed to match
1217 1.18 simonb * the range. (At this time, the only use of address
1218 1.18 simonb * ranges is for IP multicast routing, for which the
1219 1.18 simonb * range is big enough to require all bits set.)
1220 1.18 simonb */
1221 1.36 kiyohara gaht[0] = gaht[1] = gaht[2] = gaht[3] =
1222 1.36 kiyohara gaht[4] = gaht[5] = gaht[6] = gaht[7] = mask;
1223 1.18 simonb break;
1224 1.18 simonb }
1225 1.18 simonb
1226 1.18 simonb crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1227 1.18 simonb
1228 1.36 kiyohara if (sc->sc_htsize == 256)
1229 1.36 kiyohara EMAC_SET_FILTER256(gaht, crc);
1230 1.36 kiyohara else
1231 1.36 kiyohara EMAC_SET_FILTER(gaht, crc);
1232 1.18 simonb
1233 1.18 simonb ETHER_NEXT_MULTI(step, enm);
1234 1.18 simonb cnt++;
1235 1.18 simonb }
1236 1.51 msaitoh ETHER_UNLOCK(ec);
1237 1.18 simonb
1238 1.36 kiyohara for (i = 1, tmp = gaht[0]; i < regs; i++)
1239 1.36 kiyohara tmp &= gaht[i];
1240 1.36 kiyohara if (tmp == mask) {
1241 1.18 simonb /* All categories are true. */
1242 1.18 simonb ifp->if_flags |= IFF_ALLMULTI;
1243 1.18 simonb rmr |= RMR_PMME;
1244 1.18 simonb } else if (cnt != 0) {
1245 1.18 simonb /* Some categories are true. */
1246 1.36 kiyohara for (i = 0; i < regs; i++)
1247 1.36 kiyohara EMAC_WRITE(sc, reg + (i << 2), gaht[i]);
1248 1.18 simonb rmr |= RMR_MAE;
1249 1.18 simonb }
1250 1.18 simonb EMAC_WRITE(sc, EMAC_RMR, rmr);
1251 1.18 simonb
1252 1.18 simonb return 0;
1253 1.18 simonb }
1254 1.18 simonb
1255 1.3 simonb /*
1256 1.3 simonb * Reap completed Tx descriptors.
1257 1.3 simonb */
1258 1.3 simonb static int
1259 1.3 simonb emac_txreap(struct emac_softc *sc)
1260 1.3 simonb {
1261 1.3 simonb struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1262 1.3 simonb struct emac_txsoft *txs;
1263 1.20 simonb int handled, i;
1264 1.54 rin uint32_t txstat, count;
1265 1.3 simonb
1266 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_txreap);
1267 1.20 simonb handled = 0;
1268 1.3 simonb
1269 1.3 simonb ifp->if_flags &= ~IFF_OACTIVE;
1270 1.3 simonb
1271 1.54 rin count = 0;
1272 1.3 simonb /*
1273 1.3 simonb * Go through our Tx list and free mbufs for those
1274 1.3 simonb * frames that have been transmitted.
1275 1.3 simonb */
1276 1.3 simonb for (i = sc->sc_txsdirty; sc->sc_txsfree != EMAC_TXQUEUELEN;
1277 1.3 simonb i = EMAC_NEXTTXS(i), sc->sc_txsfree++) {
1278 1.3 simonb txs = &sc->sc_txsoft[i];
1279 1.3 simonb
1280 1.3 simonb EMAC_CDTXSYNC(sc, txs->txs_lastdesc,
1281 1.3 simonb txs->txs_dmamap->dm_nsegs,
1282 1.50 msaitoh BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1283 1.3 simonb
1284 1.3 simonb txstat = sc->sc_txdescs[txs->txs_lastdesc].md_stat_ctrl;
1285 1.3 simonb if (txstat & MAL_TX_READY)
1286 1.3 simonb break;
1287 1.3 simonb
1288 1.20 simonb handled = 1;
1289 1.20 simonb
1290 1.3 simonb /*
1291 1.3 simonb * Check for errors and collisions.
1292 1.3 simonb */
1293 1.3 simonb if (txstat & (EMAC_TXS_UR | EMAC_TXS_ED))
1294 1.52 thorpej if_statinc(ifp, if_oerrors);
1295 1.3 simonb
1296 1.3 simonb #ifdef EMAC_EVENT_COUNTERS
1297 1.3 simonb if (txstat & EMAC_TXS_UR)
1298 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_tu);
1299 1.3 simonb #endif /* EMAC_EVENT_COUNTERS */
1300 1.3 simonb
1301 1.36 kiyohara if (txstat &
1302 1.36 kiyohara (EMAC_TXS_EC | EMAC_TXS_MC | EMAC_TXS_SC | EMAC_TXS_LC)) {
1303 1.3 simonb if (txstat & EMAC_TXS_EC)
1304 1.52 thorpej if_statadd(ifp, if_collisions, 16);
1305 1.3 simonb else if (txstat & EMAC_TXS_MC)
1306 1.52 thorpej if_statadd(ifp, if_collisions, 2); /* XXX? */
1307 1.3 simonb else if (txstat & EMAC_TXS_SC)
1308 1.52 thorpej if_statinc(ifp, if_collisions);
1309 1.3 simonb if (txstat & EMAC_TXS_LC)
1310 1.52 thorpej if_statinc(ifp, if_collisions);
1311 1.3 simonb } else
1312 1.52 thorpej if_statinc(ifp, if_opackets);
1313 1.3 simonb
1314 1.3 simonb if (ifp->if_flags & IFF_DEBUG) {
1315 1.3 simonb if (txstat & EMAC_TXS_ED)
1316 1.36 kiyohara aprint_error_ifnet(ifp, "excessive deferral\n");
1317 1.3 simonb if (txstat & EMAC_TXS_EC)
1318 1.36 kiyohara aprint_error_ifnet(ifp,
1319 1.36 kiyohara "excessive collisions\n");
1320 1.3 simonb }
1321 1.3 simonb
1322 1.3 simonb sc->sc_txfree += txs->txs_ndesc;
1323 1.3 simonb bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1324 1.3 simonb 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1325 1.3 simonb bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1326 1.3 simonb m_freem(txs->txs_mbuf);
1327 1.3 simonb txs->txs_mbuf = NULL;
1328 1.54 rin
1329 1.54 rin count++;
1330 1.3 simonb }
1331 1.3 simonb
1332 1.3 simonb /* Update the dirty transmit buffer pointer. */
1333 1.3 simonb sc->sc_txsdirty = i;
1334 1.3 simonb
1335 1.3 simonb /*
1336 1.3 simonb * If there are no more pending transmissions, cancel the watchdog
1337 1.3 simonb * timer.
1338 1.3 simonb */
1339 1.3 simonb if (sc->sc_txsfree == EMAC_TXQUEUELEN)
1340 1.3 simonb ifp->if_timer = 0;
1341 1.3 simonb
1342 1.54 rin if (count != 0)
1343 1.54 rin rnd_add_uint32(&sc->rnd_source, count);
1344 1.54 rin
1345 1.36 kiyohara return handled;
1346 1.36 kiyohara }
1347 1.36 kiyohara
1348 1.36 kiyohara
1349 1.36 kiyohara /*
1350 1.36 kiyohara * Reset functions
1351 1.36 kiyohara */
1352 1.36 kiyohara
1353 1.36 kiyohara static void
1354 1.36 kiyohara emac_soft_reset(struct emac_softc *sc)
1355 1.36 kiyohara {
1356 1.36 kiyohara uint32_t sdr;
1357 1.36 kiyohara int t = 0;
1358 1.36 kiyohara
1359 1.36 kiyohara /*
1360 1.36 kiyohara * The PHY must provide a TX Clk in order perform a soft reset the
1361 1.36 kiyohara * EMAC. If none is present, select the internal clock,
1362 1.50 msaitoh * SDR0_MFR[E0CS, E1CS]. After the soft reset, select the external
1363 1.36 kiyohara * clock.
1364 1.36 kiyohara */
1365 1.36 kiyohara
1366 1.36 kiyohara sdr = mfsdr(DCR_SDR0_MFR);
1367 1.36 kiyohara sdr |= SDR0_MFR_ECS(sc->sc_instance);
1368 1.36 kiyohara mtsdr(DCR_SDR0_MFR, sdr);
1369 1.36 kiyohara
1370 1.36 kiyohara EMAC_WRITE(sc, EMAC_MR0, MR0_SRST);
1371 1.36 kiyohara
1372 1.36 kiyohara sdr = mfsdr(DCR_SDR0_MFR);
1373 1.36 kiyohara sdr &= ~SDR0_MFR_ECS(sc->sc_instance);
1374 1.36 kiyohara mtsdr(DCR_SDR0_MFR, sdr);
1375 1.36 kiyohara
1376 1.36 kiyohara delay(5);
1377 1.36 kiyohara
1378 1.36 kiyohara /* wait finish */
1379 1.36 kiyohara while (EMAC_READ(sc, EMAC_MR0) & MR0_SRST) {
1380 1.36 kiyohara if (++t == 1000000 /* 1sec XXXXX */) {
1381 1.36 kiyohara aprint_error_dev(sc->sc_dev, "Soft Reset failed\n");
1382 1.36 kiyohara return;
1383 1.36 kiyohara }
1384 1.36 kiyohara delay(1);
1385 1.36 kiyohara }
1386 1.36 kiyohara }
1387 1.36 kiyohara
1388 1.36 kiyohara static void
1389 1.36 kiyohara emac_smart_reset(struct emac_softc *sc)
1390 1.36 kiyohara {
1391 1.36 kiyohara uint32_t mr0;
1392 1.36 kiyohara int t = 0;
1393 1.36 kiyohara
1394 1.36 kiyohara mr0 = EMAC_READ(sc, EMAC_MR0);
1395 1.36 kiyohara if (mr0 & (MR0_TXE | MR0_RXE)) {
1396 1.36 kiyohara mr0 &= ~(MR0_TXE | MR0_RXE);
1397 1.36 kiyohara EMAC_WRITE(sc, EMAC_MR0, mr0);
1398 1.36 kiyohara
1399 1.36 kiyohara /* wait idel state */
1400 1.36 kiyohara while ((EMAC_READ(sc, EMAC_MR0) & (MR0_TXI | MR0_RXI)) !=
1401 1.36 kiyohara (MR0_TXI | MR0_RXI)) {
1402 1.36 kiyohara if (++t == 1000000 /* 1sec XXXXX */) {
1403 1.36 kiyohara aprint_error_dev(sc->sc_dev,
1404 1.36 kiyohara "Smart Reset failed\n");
1405 1.36 kiyohara return;
1406 1.36 kiyohara }
1407 1.36 kiyohara delay(1);
1408 1.36 kiyohara }
1409 1.36 kiyohara }
1410 1.3 simonb }
1411 1.3 simonb
1412 1.36 kiyohara
1413 1.3 simonb /*
1414 1.36 kiyohara * MII related functions
1415 1.3 simonb */
1416 1.36 kiyohara
1417 1.3 simonb static int
1418 1.49 msaitoh emac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1419 1.36 kiyohara {
1420 1.36 kiyohara struct emac_softc *sc = device_private(self);
1421 1.36 kiyohara uint32_t sta_reg;
1422 1.49 msaitoh int rv;
1423 1.36 kiyohara
1424 1.36 kiyohara if (sc->sc_rmii_enable)
1425 1.36 kiyohara sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
1426 1.36 kiyohara
1427 1.36 kiyohara /* wait for PHY data transfer to complete */
1428 1.49 msaitoh if ((rv = emac_mii_wait(sc)) != 0)
1429 1.36 kiyohara goto fail;
1430 1.36 kiyohara
1431 1.36 kiyohara sta_reg =
1432 1.36 kiyohara sc->sc_stacr_read |
1433 1.36 kiyohara (reg << STACR_PRA_SHIFT) |
1434 1.36 kiyohara (phy << STACR_PCDA_SHIFT) |
1435 1.36 kiyohara sc->sc_stacr_bits;
1436 1.36 kiyohara EMAC_WRITE(sc, EMAC_STACR, sta_reg);
1437 1.36 kiyohara
1438 1.49 msaitoh if ((rv = emac_mii_wait(sc)) != 0)
1439 1.36 kiyohara goto fail;
1440 1.36 kiyohara sta_reg = EMAC_READ(sc, EMAC_STACR);
1441 1.36 kiyohara
1442 1.49 msaitoh if (sta_reg & STACR_PHYE) {
1443 1.49 msaitoh rv = -1;
1444 1.49 msaitoh goto fail;
1445 1.49 msaitoh }
1446 1.49 msaitoh *val = sta_reg >> STACR_PHYD_SHIFT;
1447 1.36 kiyohara
1448 1.36 kiyohara fail:
1449 1.36 kiyohara if (sc->sc_rmii_disable)
1450 1.36 kiyohara sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
1451 1.49 msaitoh return rv;
1452 1.36 kiyohara }
1453 1.36 kiyohara
1454 1.49 msaitoh static int
1455 1.49 msaitoh emac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1456 1.36 kiyohara {
1457 1.36 kiyohara struct emac_softc *sc = device_private(self);
1458 1.36 kiyohara uint32_t sta_reg;
1459 1.49 msaitoh int rv;
1460 1.36 kiyohara
1461 1.36 kiyohara if (sc->sc_rmii_enable)
1462 1.36 kiyohara sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
1463 1.36 kiyohara
1464 1.36 kiyohara /* wait for PHY data transfer to complete */
1465 1.49 msaitoh if ((rv = emac_mii_wait(sc)) != 0)
1466 1.36 kiyohara goto out;
1467 1.36 kiyohara
1468 1.36 kiyohara sta_reg =
1469 1.36 kiyohara (val << STACR_PHYD_SHIFT) |
1470 1.36 kiyohara sc->sc_stacr_write |
1471 1.36 kiyohara (reg << STACR_PRA_SHIFT) |
1472 1.36 kiyohara (phy << STACR_PCDA_SHIFT) |
1473 1.36 kiyohara sc->sc_stacr_bits;
1474 1.36 kiyohara EMAC_WRITE(sc, EMAC_STACR, sta_reg);
1475 1.36 kiyohara
1476 1.49 msaitoh if ((rv = emac_mii_wait(sc)) != 0)
1477 1.36 kiyohara goto out;
1478 1.49 msaitoh if (EMAC_READ(sc, EMAC_STACR) & STACR_PHYE) {
1479 1.36 kiyohara aprint_error_dev(sc->sc_dev, "MII PHY Error\n");
1480 1.49 msaitoh rv = -1;
1481 1.49 msaitoh }
1482 1.36 kiyohara
1483 1.36 kiyohara out:
1484 1.36 kiyohara if (sc->sc_rmii_disable)
1485 1.36 kiyohara sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
1486 1.49 msaitoh
1487 1.49 msaitoh return rv;
1488 1.36 kiyohara }
1489 1.36 kiyohara
1490 1.36 kiyohara static void
1491 1.41 matt emac_mii_statchg(struct ifnet *ifp)
1492 1.36 kiyohara {
1493 1.41 matt struct emac_softc *sc = ifp->if_softc;
1494 1.36 kiyohara struct mii_data *mii = &sc->sc_mii;
1495 1.36 kiyohara
1496 1.36 kiyohara /*
1497 1.36 kiyohara * MR1 can only be written immediately after a reset...
1498 1.36 kiyohara */
1499 1.36 kiyohara emac_smart_reset(sc);
1500 1.36 kiyohara
1501 1.36 kiyohara sc->sc_mr1 &= ~(MR1_FDE | MR1_ILE | MR1_EIFC | MR1_MF_MASK | MR1_IST);
1502 1.36 kiyohara if (mii->mii_media_active & IFM_FDX)
1503 1.36 kiyohara sc->sc_mr1 |= (MR1_FDE | MR1_EIFC | MR1_IST);
1504 1.36 kiyohara if (mii->mii_media_active & IFM_FLOW)
1505 1.36 kiyohara sc->sc_mr1 |= MR1_EIFC;
1506 1.36 kiyohara if (mii->mii_media_active & IFM_LOOP)
1507 1.36 kiyohara sc->sc_mr1 |= MR1_ILE;
1508 1.36 kiyohara switch (IFM_SUBTYPE(mii->mii_media_active)) {
1509 1.36 kiyohara case IFM_1000_T:
1510 1.36 kiyohara sc->sc_mr1 |= (MR1_MF_1000MBS | MR1_IST);
1511 1.36 kiyohara break;
1512 1.36 kiyohara
1513 1.36 kiyohara case IFM_100_TX:
1514 1.36 kiyohara sc->sc_mr1 |= (MR1_MF_100MBS | MR1_IST);
1515 1.36 kiyohara break;
1516 1.36 kiyohara
1517 1.36 kiyohara case IFM_10_T:
1518 1.36 kiyohara sc->sc_mr1 |= MR1_MF_10MBS;
1519 1.36 kiyohara break;
1520 1.36 kiyohara
1521 1.36 kiyohara case IFM_NONE:
1522 1.36 kiyohara break;
1523 1.36 kiyohara
1524 1.36 kiyohara default:
1525 1.41 matt aprint_error_dev(sc->sc_dev, "unknown sub-type %d\n",
1526 1.36 kiyohara IFM_SUBTYPE(mii->mii_media_active));
1527 1.36 kiyohara break;
1528 1.36 kiyohara }
1529 1.36 kiyohara if (sc->sc_rmii_speed)
1530 1.41 matt sc->sc_rmii_speed(device_parent(sc->sc_dev), sc->sc_instance,
1531 1.36 kiyohara IFM_SUBTYPE(mii->mii_media_active));
1532 1.36 kiyohara
1533 1.36 kiyohara EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
1534 1.36 kiyohara
1535 1.36 kiyohara /* Enable TX and RX if already RUNNING */
1536 1.36 kiyohara if (ifp->if_flags & IFF_RUNNING)
1537 1.36 kiyohara EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
1538 1.36 kiyohara }
1539 1.36 kiyohara
1540 1.36 kiyohara static uint32_t
1541 1.36 kiyohara emac_mii_wait(struct emac_softc *sc)
1542 1.36 kiyohara {
1543 1.36 kiyohara int i;
1544 1.36 kiyohara uint32_t oc;
1545 1.36 kiyohara
1546 1.36 kiyohara /* wait for PHY data transfer to complete */
1547 1.36 kiyohara i = 0;
1548 1.36 kiyohara oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
1549 1.36 kiyohara while ((oc == STACR_OC) != sc->sc_stacr_completed) {
1550 1.36 kiyohara delay(7);
1551 1.36 kiyohara if (i++ > 5) {
1552 1.36 kiyohara aprint_error_dev(sc->sc_dev, "MII timed out\n");
1553 1.49 msaitoh return ETIMEDOUT;
1554 1.36 kiyohara }
1555 1.36 kiyohara oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
1556 1.36 kiyohara }
1557 1.36 kiyohara return 0;
1558 1.36 kiyohara }
1559 1.36 kiyohara
1560 1.36 kiyohara static void
1561 1.36 kiyohara emac_mii_tick(void *arg)
1562 1.36 kiyohara {
1563 1.36 kiyohara struct emac_softc *sc = arg;
1564 1.36 kiyohara int s;
1565 1.36 kiyohara
1566 1.36 kiyohara if (!device_is_active(sc->sc_dev))
1567 1.36 kiyohara return;
1568 1.36 kiyohara
1569 1.36 kiyohara s = splnet();
1570 1.36 kiyohara mii_tick(&sc->sc_mii);
1571 1.36 kiyohara splx(s);
1572 1.36 kiyohara
1573 1.36 kiyohara callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
1574 1.36 kiyohara }
1575 1.36 kiyohara
1576 1.36 kiyohara int
1577 1.36 kiyohara emac_txeob_intr(void *arg)
1578 1.36 kiyohara {
1579 1.36 kiyohara struct emac_softc *sc = arg;
1580 1.36 kiyohara int handled = 0;
1581 1.36 kiyohara
1582 1.36 kiyohara EMAC_EVCNT_INCR(&sc->sc_ev_txintr);
1583 1.36 kiyohara handled |= emac_txreap(sc);
1584 1.36 kiyohara
1585 1.36 kiyohara /* try to get more packets going */
1586 1.46 ozaki if_schedule_deferred_start(&sc->sc_ethercom.ec_if);
1587 1.36 kiyohara
1588 1.36 kiyohara return handled;
1589 1.36 kiyohara }
1590 1.36 kiyohara
1591 1.36 kiyohara int
1592 1.3 simonb emac_rxeob_intr(void *arg)
1593 1.3 simonb {
1594 1.3 simonb struct emac_softc *sc = arg;
1595 1.3 simonb struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1596 1.3 simonb struct emac_rxsoft *rxs;
1597 1.3 simonb struct mbuf *m;
1598 1.54 rin uint32_t rxstat, count;
1599 1.3 simonb int i, len;
1600 1.3 simonb
1601 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_rxintr);
1602 1.3 simonb
1603 1.54 rin count = 0;
1604 1.36 kiyohara for (i = sc->sc_rxptr; ; i = EMAC_NEXTRX(i)) {
1605 1.3 simonb rxs = &sc->sc_rxsoft[i];
1606 1.3 simonb
1607 1.3 simonb EMAC_CDRXSYNC(sc, i,
1608 1.50 msaitoh BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1609 1.3 simonb
1610 1.3 simonb rxstat = sc->sc_rxdescs[i].md_stat_ctrl;
1611 1.3 simonb
1612 1.40 kiyohara if (rxstat & MAL_RX_EMPTY) {
1613 1.3 simonb /*
1614 1.3 simonb * We have processed all of the receive buffers.
1615 1.3 simonb */
1616 1.40 kiyohara /* Flush current empty descriptor */
1617 1.40 kiyohara EMAC_CDRXSYNC(sc, i,
1618 1.50 msaitoh BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1619 1.3 simonb break;
1620 1.40 kiyohara }
1621 1.3 simonb
1622 1.3 simonb /*
1623 1.3 simonb * If an error occurred, update stats, clear the status
1624 1.3 simonb * word, and leave the packet buffer in place. It will
1625 1.3 simonb * simply be reused the next time the ring comes around.
1626 1.3 simonb */
1627 1.3 simonb if (rxstat & (EMAC_RXS_OE | EMAC_RXS_BP | EMAC_RXS_SE |
1628 1.3 simonb EMAC_RXS_AE | EMAC_RXS_BFCS | EMAC_RXS_PTL | EMAC_RXS_ORE |
1629 1.3 simonb EMAC_RXS_IRE)) {
1630 1.36 kiyohara #define PRINTERR(bit, str) \
1631 1.36 kiyohara if (rxstat & (bit)) \
1632 1.36 kiyohara aprint_error_ifnet(ifp, \
1633 1.36 kiyohara "receive error: %s\n", str)
1634 1.52 thorpej if_statinc(ifp, if_ierrors);
1635 1.3 simonb PRINTERR(EMAC_RXS_OE, "overrun error");
1636 1.3 simonb PRINTERR(EMAC_RXS_BP, "bad packet");
1637 1.3 simonb PRINTERR(EMAC_RXS_RP, "runt packet");
1638 1.3 simonb PRINTERR(EMAC_RXS_SE, "short event");
1639 1.3 simonb PRINTERR(EMAC_RXS_AE, "alignment error");
1640 1.3 simonb PRINTERR(EMAC_RXS_BFCS, "bad FCS");
1641 1.3 simonb PRINTERR(EMAC_RXS_PTL, "packet too long");
1642 1.3 simonb PRINTERR(EMAC_RXS_ORE, "out of range error");
1643 1.3 simonb PRINTERR(EMAC_RXS_IRE, "in range error");
1644 1.3 simonb #undef PRINTERR
1645 1.3 simonb EMAC_INIT_RXDESC(sc, i);
1646 1.3 simonb continue;
1647 1.3 simonb }
1648 1.3 simonb
1649 1.3 simonb bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1650 1.3 simonb rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1651 1.3 simonb
1652 1.3 simonb /*
1653 1.3 simonb * No errors; receive the packet. Note, the 405GP emac
1654 1.3 simonb * includes the CRC with every packet.
1655 1.3 simonb */
1656 1.22 thorpej len = sc->sc_rxdescs[i].md_data_len - ETHER_CRC_LEN;
1657 1.3 simonb
1658 1.3 simonb /*
1659 1.3 simonb * If the packet is small enough to fit in a
1660 1.3 simonb * single header mbuf, allocate one and copy
1661 1.3 simonb * the data into it. This greatly reduces
1662 1.3 simonb * memory consumption when we receive lots
1663 1.3 simonb * of small packets.
1664 1.3 simonb *
1665 1.3 simonb * Otherwise, we add a new buffer to the receive
1666 1.3 simonb * chain. If this fails, we drop the packet and
1667 1.3 simonb * recycle the old buffer.
1668 1.3 simonb */
1669 1.3 simonb if (emac_copy_small != 0 && len <= MHLEN) {
1670 1.3 simonb MGETHDR(m, M_DONTWAIT, MT_DATA);
1671 1.3 simonb if (m == NULL)
1672 1.3 simonb goto dropit;
1673 1.28 christos memcpy(mtod(m, void *),
1674 1.28 christos mtod(rxs->rxs_mbuf, void *), len);
1675 1.3 simonb EMAC_INIT_RXDESC(sc, i);
1676 1.3 simonb bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1677 1.3 simonb rxs->rxs_dmamap->dm_mapsize,
1678 1.3 simonb BUS_DMASYNC_PREREAD);
1679 1.3 simonb } else {
1680 1.3 simonb m = rxs->rxs_mbuf;
1681 1.3 simonb if (emac_add_rxbuf(sc, i) != 0) {
1682 1.3 simonb dropit:
1683 1.52 thorpej if_statinc(ifp, if_ierrors);
1684 1.3 simonb EMAC_INIT_RXDESC(sc, i);
1685 1.3 simonb bus_dmamap_sync(sc->sc_dmat,
1686 1.3 simonb rxs->rxs_dmamap, 0,
1687 1.3 simonb rxs->rxs_dmamap->dm_mapsize,
1688 1.3 simonb BUS_DMASYNC_PREREAD);
1689 1.3 simonb continue;
1690 1.3 simonb }
1691 1.3 simonb }
1692 1.3 simonb
1693 1.45 ozaki m_set_rcvif(m, ifp);
1694 1.3 simonb m->m_pkthdr.len = m->m_len = len;
1695 1.3 simonb
1696 1.3 simonb /* Pass it on. */
1697 1.44 ozaki if_percpuq_enqueue(ifp->if_percpuq, m);
1698 1.54 rin
1699 1.54 rin count++;
1700 1.3 simonb }
1701 1.3 simonb
1702 1.3 simonb /* Update the receive pointer. */
1703 1.3 simonb sc->sc_rxptr = i;
1704 1.3 simonb
1705 1.54 rin if (count != 0)
1706 1.54 rin rnd_add_uint32(&sc->rnd_source, count);
1707 1.54 rin
1708 1.36 kiyohara return 1;
1709 1.3 simonb }
1710 1.3 simonb
1711 1.36 kiyohara int
1712 1.3 simonb emac_txde_intr(void *arg)
1713 1.3 simonb {
1714 1.3 simonb struct emac_softc *sc = arg;
1715 1.3 simonb
1716 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_txde);
1717 1.36 kiyohara aprint_error_dev(sc->sc_dev, "emac_txde_intr\n");
1718 1.36 kiyohara return 1;
1719 1.3 simonb }
1720 1.3 simonb
1721 1.36 kiyohara int
1722 1.3 simonb emac_rxde_intr(void *arg)
1723 1.3 simonb {
1724 1.36 kiyohara struct emac_softc *sc = arg;
1725 1.3 simonb int i;
1726 1.3 simonb
1727 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_rxde);
1728 1.36 kiyohara aprint_error_dev(sc->sc_dev, "emac_rxde_intr\n");
1729 1.3 simonb /*
1730 1.3 simonb * XXX!
1731 1.3 simonb * This is a bit drastic; we just drop all descriptors that aren't
1732 1.3 simonb * "clean". We should probably send any that are up the stack.
1733 1.3 simonb */
1734 1.3 simonb for (i = 0; i < EMAC_NRXDESC; i++) {
1735 1.36 kiyohara EMAC_CDRXSYNC(sc, i,
1736 1.36 kiyohara BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1737 1.3 simonb
1738 1.36 kiyohara if (sc->sc_rxdescs[i].md_data_len != MCLBYTES)
1739 1.3 simonb EMAC_INIT_RXDESC(sc, i);
1740 1.3 simonb }
1741 1.3 simonb
1742 1.36 kiyohara return 1;
1743 1.3 simonb }
1744