if_emac.c revision 1.59 1 1.59 andvar /* $NetBSD: if_emac.c,v 1.59 2024/02/10 09:30:05 andvar Exp $ */
2 1.1 simonb
3 1.1 simonb /*
4 1.3 simonb * Copyright 2001, 2002 Wasabi Systems, Inc.
5 1.1 simonb * All rights reserved.
6 1.1 simonb *
7 1.3 simonb * Written by Simon Burge and Jason Thorpe for Wasabi Systems, Inc.
8 1.1 simonb *
9 1.1 simonb * Redistribution and use in source and binary forms, with or without
10 1.1 simonb * modification, are permitted provided that the following conditions
11 1.1 simonb * are met:
12 1.1 simonb * 1. Redistributions of source code must retain the above copyright
13 1.1 simonb * notice, this list of conditions and the following disclaimer.
14 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 simonb * notice, this list of conditions and the following disclaimer in the
16 1.1 simonb * documentation and/or other materials provided with the distribution.
17 1.1 simonb * 3. All advertising materials mentioning features or use of this software
18 1.1 simonb * must display the following acknowledgement:
19 1.1 simonb * This product includes software developed for the NetBSD Project by
20 1.1 simonb * Wasabi Systems, Inc.
21 1.1 simonb * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.1 simonb * or promote products derived from this software without specific prior
23 1.1 simonb * written permission.
24 1.1 simonb *
25 1.1 simonb * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.1 simonb * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 simonb * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 simonb * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.1 simonb * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 simonb * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 simonb * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 simonb * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 simonb * POSSIBILITY OF SUCH DAMAGE.
36 1.1 simonb */
37 1.15 lukem
38 1.36 kiyohara /*
39 1.36 kiyohara * emac(4) supports following ibm4xx's EMACs.
40 1.36 kiyohara * XXXX: ZMII and 'TCP Accelaration Hardware' not support yet...
41 1.36 kiyohara *
42 1.36 kiyohara * tested
43 1.36 kiyohara * ------
44 1.36 kiyohara * 405EP - 10/100 x2
45 1.36 kiyohara * 405EX/EXr o 10/100/1000 x2 (EXr x1), STA v2, 256bit hash-Table, RGMII
46 1.36 kiyohara * 405GP/GPr o 10/100
47 1.36 kiyohara * 440EP - 10/100 x2, ZMII
48 1.36 kiyohara * 440GP - 10/100 x2, ZMII
49 1.36 kiyohara * 440GX - 10/100/1000 x4, ZMII/RGMII(ch 2, 3), TAH(ch 2, 3)
50 1.36 kiyohara * 440SP - 10/100/1000
51 1.36 kiyohara * 440SPe - 10/100/1000, STA v2
52 1.36 kiyohara */
53 1.36 kiyohara
54 1.15 lukem #include <sys/cdefs.h>
55 1.59 andvar __KERNEL_RCSID(0, "$NetBSD: if_emac.c,v 1.59 2024/02/10 09:30:05 andvar Exp $");
56 1.1 simonb
57 1.53 rin #ifdef _KERNEL_OPT
58 1.36 kiyohara #include "opt_emac.h"
59 1.53 rin #endif
60 1.1 simonb
61 1.1 simonb #include <sys/param.h>
62 1.1 simonb #include <sys/systm.h>
63 1.1 simonb #include <sys/mbuf.h>
64 1.1 simonb #include <sys/kernel.h>
65 1.1 simonb #include <sys/socket.h>
66 1.1 simonb #include <sys/ioctl.h>
67 1.39 matt #include <sys/cpu.h>
68 1.39 matt #include <sys/device.h>
69 1.1 simonb
70 1.54 rin #include <sys/rndsource.h>
71 1.54 rin
72 1.3 simonb #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
73 1.1 simonb
74 1.1 simonb #include <net/if.h>
75 1.1 simonb #include <net/if_dl.h>
76 1.1 simonb #include <net/if_media.h>
77 1.1 simonb #include <net/if_ether.h>
78 1.1 simonb
79 1.1 simonb #include <net/bpf.h>
80 1.1 simonb
81 1.39 matt #include <powerpc/ibm4xx/cpu.h>
82 1.36 kiyohara #include <powerpc/ibm4xx/dcr4xx.h>
83 1.3 simonb #include <powerpc/ibm4xx/mal405gp.h>
84 1.7 simonb #include <powerpc/ibm4xx/dev/emacreg.h>
85 1.3 simonb #include <powerpc/ibm4xx/dev/if_emacreg.h>
86 1.36 kiyohara #include <powerpc/ibm4xx/dev/if_emacvar.h>
87 1.36 kiyohara #include <powerpc/ibm4xx/dev/malvar.h>
88 1.36 kiyohara #include <powerpc/ibm4xx/dev/opbreg.h>
89 1.36 kiyohara #include <powerpc/ibm4xx/dev/opbvar.h>
90 1.36 kiyohara #include <powerpc/ibm4xx/dev/plbvar.h>
91 1.36 kiyohara #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
92 1.36 kiyohara #include <powerpc/ibm4xx/dev/rmiivar.h>
93 1.36 kiyohara #endif
94 1.1 simonb
95 1.1 simonb #include <dev/mii/miivar.h>
96 1.1 simonb
97 1.36 kiyohara #include "locators.h"
98 1.36 kiyohara
99 1.36 kiyohara
100 1.3 simonb /*
101 1.3 simonb * Transmit descriptor list size. There are two Tx channels, each with
102 1.3 simonb * up to 256 hardware descriptors available. We currently use one Tx
103 1.3 simonb * channel. We tell the upper layers that they can queue a lot of
104 1.3 simonb * packets, and we go ahead and manage up to 64 of them at a time. We
105 1.3 simonb * allow up to 16 DMA segments per packet.
106 1.3 simonb */
107 1.3 simonb #define EMAC_NTXSEGS 16
108 1.3 simonb #define EMAC_TXQUEUELEN 64
109 1.3 simonb #define EMAC_TXQUEUELEN_MASK (EMAC_TXQUEUELEN - 1)
110 1.3 simonb #define EMAC_TXQUEUE_GC (EMAC_TXQUEUELEN / 4)
111 1.3 simonb #define EMAC_NTXDESC 256
112 1.3 simonb #define EMAC_NTXDESC_MASK (EMAC_NTXDESC - 1)
113 1.3 simonb #define EMAC_NEXTTX(x) (((x) + 1) & EMAC_NTXDESC_MASK)
114 1.3 simonb #define EMAC_NEXTTXS(x) (((x) + 1) & EMAC_TXQUEUELEN_MASK)
115 1.3 simonb
116 1.3 simonb /*
117 1.3 simonb * Receive descriptor list size. There is one Rx channel with up to 256
118 1.3 simonb * hardware descriptors available. We allocate 64 receive descriptors,
119 1.3 simonb * each with a 2k buffer (MCLBYTES).
120 1.3 simonb */
121 1.3 simonb #define EMAC_NRXDESC 64
122 1.3 simonb #define EMAC_NRXDESC_MASK (EMAC_NRXDESC - 1)
123 1.3 simonb #define EMAC_NEXTRX(x) (((x) + 1) & EMAC_NRXDESC_MASK)
124 1.3 simonb #define EMAC_PREVRX(x) (((x) - 1) & EMAC_NRXDESC_MASK)
125 1.3 simonb
126 1.3 simonb /*
127 1.3 simonb * Transmit/receive descriptors that are DMA'd to the EMAC.
128 1.3 simonb */
129 1.3 simonb struct emac_control_data {
130 1.3 simonb struct mal_descriptor ecd_txdesc[EMAC_NTXDESC];
131 1.3 simonb struct mal_descriptor ecd_rxdesc[EMAC_NRXDESC];
132 1.3 simonb };
133 1.3 simonb
134 1.3 simonb #define EMAC_CDOFF(x) offsetof(struct emac_control_data, x)
135 1.3 simonb #define EMAC_CDTXOFF(x) EMAC_CDOFF(ecd_txdesc[(x)])
136 1.3 simonb #define EMAC_CDRXOFF(x) EMAC_CDOFF(ecd_rxdesc[(x)])
137 1.3 simonb
138 1.3 simonb /*
139 1.3 simonb * Software state for transmit jobs.
140 1.3 simonb */
141 1.3 simonb struct emac_txsoft {
142 1.3 simonb struct mbuf *txs_mbuf; /* head of mbuf chain */
143 1.3 simonb bus_dmamap_t txs_dmamap; /* our DMA map */
144 1.3 simonb int txs_firstdesc; /* first descriptor in packet */
145 1.3 simonb int txs_lastdesc; /* last descriptor in packet */
146 1.3 simonb int txs_ndesc; /* # of descriptors used */
147 1.3 simonb };
148 1.3 simonb
149 1.3 simonb /*
150 1.3 simonb * Software state for receive descriptors.
151 1.3 simonb */
152 1.3 simonb struct emac_rxsoft {
153 1.3 simonb struct mbuf *rxs_mbuf; /* head of mbuf chain */
154 1.3 simonb bus_dmamap_t rxs_dmamap; /* our DMA map */
155 1.3 simonb };
156 1.3 simonb
157 1.3 simonb /*
158 1.3 simonb * Software state per device.
159 1.3 simonb */
160 1.1 simonb struct emac_softc {
161 1.36 kiyohara device_t sc_dev; /* generic device information */
162 1.36 kiyohara int sc_instance; /* instance no. */
163 1.1 simonb bus_space_tag_t sc_st; /* bus space tag */
164 1.1 simonb bus_space_handle_t sc_sh; /* bus space handle */
165 1.1 simonb bus_dma_tag_t sc_dmat; /* bus DMA tag */
166 1.1 simonb struct ethercom sc_ethercom; /* ethernet common data */
167 1.1 simonb void *sc_sdhook; /* shutdown hook */
168 1.3 simonb void *sc_powerhook; /* power management hook */
169 1.3 simonb
170 1.3 simonb struct mii_data sc_mii; /* MII/media information */
171 1.3 simonb struct callout sc_callout; /* tick callout */
172 1.3 simonb
173 1.36 kiyohara uint32_t sc_mr1; /* copy of Mode Register 1 */
174 1.36 kiyohara uint32_t sc_stacr_read; /* Read opcode of STAOPC of STACR */
175 1.36 kiyohara uint32_t sc_stacr_write; /* Write opcode of STAOPC of STACR */
176 1.36 kiyohara uint32_t sc_stacr_bits; /* misc bits of STACR */
177 1.36 kiyohara bool sc_stacr_completed; /* Operation completed of STACR */
178 1.36 kiyohara int sc_htsize; /* Hash Table size */
179 1.3 simonb
180 1.3 simonb bus_dmamap_t sc_cddmamap; /* control data dma map */
181 1.3 simonb #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
182 1.3 simonb
183 1.3 simonb /* Software state for transmit/receive descriptors. */
184 1.3 simonb struct emac_txsoft sc_txsoft[EMAC_TXQUEUELEN];
185 1.3 simonb struct emac_rxsoft sc_rxsoft[EMAC_NRXDESC];
186 1.3 simonb
187 1.3 simonb /* Control data structures. */
188 1.3 simonb struct emac_control_data *sc_control_data;
189 1.3 simonb #define sc_txdescs sc_control_data->ecd_txdesc
190 1.3 simonb #define sc_rxdescs sc_control_data->ecd_rxdesc
191 1.3 simonb
192 1.3 simonb #ifdef EMAC_EVENT_COUNTERS
193 1.3 simonb struct evcnt sc_ev_rxintr; /* Rx interrupts */
194 1.3 simonb struct evcnt sc_ev_txintr; /* Tx interrupts */
195 1.3 simonb struct evcnt sc_ev_rxde; /* Rx descriptor interrupts */
196 1.3 simonb struct evcnt sc_ev_txde; /* Tx descriptor interrupts */
197 1.3 simonb struct evcnt sc_ev_intr; /* General EMAC interrupts */
198 1.3 simonb
199 1.3 simonb struct evcnt sc_ev_txreap; /* Calls to Tx descriptor reaper */
200 1.3 simonb struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
201 1.3 simonb struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
202 1.3 simonb struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
203 1.3 simonb struct evcnt sc_ev_tu; /* Tx underrun */
204 1.3 simonb #endif /* EMAC_EVENT_COUNTERS */
205 1.3 simonb
206 1.3 simonb int sc_txfree; /* number of free Tx descriptors */
207 1.3 simonb int sc_txnext; /* next ready Tx descriptor */
208 1.3 simonb
209 1.3 simonb int sc_txsfree; /* number of free Tx jobs */
210 1.3 simonb int sc_txsnext; /* next ready Tx job */
211 1.3 simonb int sc_txsdirty; /* dirty Tx jobs */
212 1.3 simonb
213 1.3 simonb int sc_rxptr; /* next ready RX descriptor/descsoft */
214 1.36 kiyohara
215 1.54 rin krndsource_t rnd_source; /* random source */
216 1.54 rin
217 1.36 kiyohara void (*sc_rmii_enable)(device_t, int); /* reduced MII enable */
218 1.36 kiyohara void (*sc_rmii_disable)(device_t, int); /* reduced MII disable*/
219 1.36 kiyohara void (*sc_rmii_speed)(device_t, int, int); /* reduced MII speed */
220 1.1 simonb };
221 1.1 simonb
222 1.3 simonb #ifdef EMAC_EVENT_COUNTERS
223 1.3 simonb #define EMAC_EVCNT_INCR(ev) (ev)->ev_count++
224 1.3 simonb #else
225 1.3 simonb #define EMAC_EVCNT_INCR(ev) /* nothing */
226 1.3 simonb #endif
227 1.3 simonb
228 1.3 simonb #define EMAC_CDTXADDR(sc, x) ((sc)->sc_cddma + EMAC_CDTXOFF((x)))
229 1.3 simonb #define EMAC_CDRXADDR(sc, x) ((sc)->sc_cddma + EMAC_CDRXOFF((x)))
230 1.3 simonb
231 1.3 simonb #define EMAC_CDTXSYNC(sc, x, n, ops) \
232 1.3 simonb do { \
233 1.3 simonb int __x, __n; \
234 1.3 simonb \
235 1.3 simonb __x = (x); \
236 1.3 simonb __n = (n); \
237 1.3 simonb \
238 1.3 simonb /* If it will wrap around, sync to the end of the ring. */ \
239 1.3 simonb if ((__x + __n) > EMAC_NTXDESC) { \
240 1.3 simonb bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
241 1.3 simonb EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * \
242 1.3 simonb (EMAC_NTXDESC - __x), (ops)); \
243 1.3 simonb __n -= (EMAC_NTXDESC - __x); \
244 1.3 simonb __x = 0; \
245 1.3 simonb } \
246 1.3 simonb \
247 1.3 simonb /* Now sync whatever is left. */ \
248 1.3 simonb bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
249 1.3 simonb EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * __n, (ops)); \
250 1.3 simonb } while (/*CONSTCOND*/0)
251 1.3 simonb
252 1.3 simonb #define EMAC_CDRXSYNC(sc, x, ops) \
253 1.3 simonb do { \
254 1.3 simonb bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
255 1.3 simonb EMAC_CDRXOFF((x)), sizeof(struct mal_descriptor), (ops)); \
256 1.3 simonb } while (/*CONSTCOND*/0)
257 1.3 simonb
258 1.3 simonb #define EMAC_INIT_RXDESC(sc, x) \
259 1.3 simonb do { \
260 1.3 simonb struct emac_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
261 1.3 simonb struct mal_descriptor *__rxd = &(sc)->sc_rxdescs[(x)]; \
262 1.3 simonb struct mbuf *__m = __rxs->rxs_mbuf; \
263 1.3 simonb \
264 1.3 simonb /* \
265 1.3 simonb * Note: We scoot the packet forward 2 bytes in the buffer \
266 1.3 simonb * so that the payload after the Ethernet header is aligned \
267 1.3 simonb * to a 4-byte boundary. \
268 1.3 simonb */ \
269 1.3 simonb __m->m_data = __m->m_ext.ext_buf + 2; \
270 1.3 simonb \
271 1.3 simonb __rxd->md_data = __rxs->rxs_dmamap->dm_segs[0].ds_addr + 2; \
272 1.3 simonb __rxd->md_data_len = __m->m_ext.ext_size - 2; \
273 1.3 simonb __rxd->md_stat_ctrl = MAL_RX_EMPTY | MAL_RX_INTERRUPT | \
274 1.3 simonb /* Set wrap on last descriptor. */ \
275 1.3 simonb (((x) == EMAC_NRXDESC - 1) ? MAL_RX_WRAP : 0); \
276 1.50 msaitoh EMAC_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
277 1.3 simonb } while (/*CONSTCOND*/0)
278 1.3 simonb
279 1.3 simonb #define EMAC_WRITE(sc, reg, val) \
280 1.3 simonb bus_space_write_stream_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
281 1.3 simonb #define EMAC_READ(sc, reg) \
282 1.3 simonb bus_space_read_stream_4((sc)->sc_st, (sc)->sc_sh, (reg))
283 1.3 simonb
284 1.36 kiyohara #define EMAC_SET_FILTER(aht, crc) \
285 1.36 kiyohara do { \
286 1.36 kiyohara (aht)[3 - (((crc) >> 26) >> 4)] |= 1 << (((crc) >> 26) & 0xf); \
287 1.36 kiyohara } while (/*CONSTCOND*/0)
288 1.36 kiyohara #define EMAC_SET_FILTER256(aht, crc) \
289 1.18 simonb do { \
290 1.36 kiyohara (aht)[7 - (((crc) >> 24) >> 5)] |= 1 << (((crc) >> 24) & 0x1f); \
291 1.18 simonb } while (/*CONSTCOND*/0)
292 1.18 simonb
293 1.36 kiyohara static int emac_match(device_t, cfdata_t, void *);
294 1.36 kiyohara static void emac_attach(device_t, device_t, void *);
295 1.3 simonb
296 1.36 kiyohara static int emac_intr(void *);
297 1.3 simonb static void emac_shutdown(void *);
298 1.36 kiyohara
299 1.3 simonb static void emac_start(struct ifnet *);
300 1.36 kiyohara static int emac_ioctl(struct ifnet *, u_long, void *);
301 1.36 kiyohara static int emac_init(struct ifnet *);
302 1.3 simonb static void emac_stop(struct ifnet *, int);
303 1.3 simonb static void emac_watchdog(struct ifnet *);
304 1.36 kiyohara
305 1.36 kiyohara static int emac_add_rxbuf(struct emac_softc *, int);
306 1.36 kiyohara static void emac_rxdrain(struct emac_softc *);
307 1.18 simonb static int emac_set_filter(struct emac_softc *);
308 1.36 kiyohara static int emac_txreap(struct emac_softc *);
309 1.3 simonb
310 1.36 kiyohara static void emac_soft_reset(struct emac_softc *);
311 1.36 kiyohara static void emac_smart_reset(struct emac_softc *);
312 1.1 simonb
313 1.49 msaitoh static int emac_mii_readreg(device_t, int, int, uint16_t *);
314 1.49 msaitoh static int emac_mii_writereg(device_t, int, int, uint16_t);
315 1.41 matt static void emac_mii_statchg(struct ifnet *);
316 1.36 kiyohara static uint32_t emac_mii_wait(struct emac_softc *);
317 1.3 simonb static void emac_mii_tick(void *);
318 1.3 simonb
319 1.3 simonb int emac_copy_small = 0;
320 1.3 simonb
321 1.36 kiyohara CFATTACH_DECL_NEW(emac, sizeof(struct emac_softc),
322 1.13 thorpej emac_match, emac_attach, NULL, NULL);
323 1.1 simonb
324 1.36 kiyohara
325 1.1 simonb static int
326 1.36 kiyohara emac_match(device_t parent, cfdata_t cf, void *aux)
327 1.1 simonb {
328 1.5 simonb struct opb_attach_args *oaa = aux;
329 1.1 simonb
330 1.3 simonb /* match only on-chip ethernet devices */
331 1.10 thorpej if (strcmp(oaa->opb_name, cf->cf_name) == 0)
332 1.36 kiyohara return 1;
333 1.1 simonb
334 1.36 kiyohara return 0;
335 1.1 simonb }
336 1.1 simonb
337 1.1 simonb static void
338 1.36 kiyohara emac_attach(device_t parent, device_t self, void *aux)
339 1.1 simonb {
340 1.5 simonb struct opb_attach_args *oaa = aux;
341 1.36 kiyohara struct emac_softc *sc = device_private(self);
342 1.3 simonb struct ifnet *ifp = &sc->sc_ethercom.ec_if;
343 1.3 simonb struct mii_data *mii = &sc->sc_mii;
344 1.38 matt const char * xname = device_xname(self);
345 1.3 simonb bus_dma_segment_t seg;
346 1.36 kiyohara int error, i, nseg, opb_freq, opbc, mii_phy = MII_PHY_ANY;
347 1.26 thorpej const uint8_t *enaddr;
348 1.36 kiyohara prop_dictionary_t dict = device_properties(self);
349 1.26 thorpej prop_data_t ea;
350 1.1 simonb
351 1.27 kiyohara bus_space_map(oaa->opb_bt, oaa->opb_addr, EMAC_NREG, 0, &sc->sc_sh);
352 1.36 kiyohara
353 1.36 kiyohara sc->sc_dev = self;
354 1.36 kiyohara sc->sc_instance = oaa->opb_instance;
355 1.9 simonb sc->sc_st = oaa->opb_bt;
356 1.5 simonb sc->sc_dmat = oaa->opb_dmat;
357 1.1 simonb
358 1.36 kiyohara callout_init(&sc->sc_callout, 0);
359 1.36 kiyohara
360 1.36 kiyohara aprint_naive("\n");
361 1.36 kiyohara aprint_normal(": Ethernet Media Access Controller\n");
362 1.3 simonb
363 1.36 kiyohara /* Fetch the Ethernet address. */
364 1.36 kiyohara ea = prop_dictionary_get(dict, "mac-address");
365 1.36 kiyohara if (ea == NULL) {
366 1.36 kiyohara aprint_error_dev(self, "unable to get mac-address property\n");
367 1.36 kiyohara return;
368 1.36 kiyohara }
369 1.36 kiyohara KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
370 1.36 kiyohara KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
371 1.36 kiyohara enaddr = prop_data_data_nocopy(ea);
372 1.36 kiyohara aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
373 1.33 kiyohara
374 1.36 kiyohara #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
375 1.36 kiyohara /* Fetch the MII offset. */
376 1.36 kiyohara prop_dictionary_get_uint32(dict, "mii-phy", &mii_phy);
377 1.36 kiyohara
378 1.36 kiyohara #ifdef EMAC_ZMII_PHY
379 1.36 kiyohara if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_ZMII)
380 1.36 kiyohara zmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
381 1.36 kiyohara &sc->sc_rmii_disable, &sc->sc_rmii_speed);
382 1.36 kiyohara #endif
383 1.36 kiyohara #ifdef EMAC_RGMII_PHY
384 1.36 kiyohara if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_RGMII)
385 1.36 kiyohara rgmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
386 1.36 kiyohara &sc->sc_rmii_disable, &sc->sc_rmii_speed);
387 1.36 kiyohara #endif
388 1.36 kiyohara #endif
389 1.3 simonb
390 1.3 simonb /*
391 1.3 simonb * Allocate the control data structures, and create and load the
392 1.3 simonb * DMA map for it.
393 1.3 simonb */
394 1.3 simonb if ((error = bus_dmamem_alloc(sc->sc_dmat,
395 1.3 simonb sizeof(struct emac_control_data), 0, 0, &seg, 1, &nseg, 0)) != 0) {
396 1.36 kiyohara aprint_error_dev(self,
397 1.36 kiyohara "unable to allocate control data, error = %d\n", error);
398 1.3 simonb goto fail_0;
399 1.3 simonb }
400 1.3 simonb
401 1.3 simonb if ((error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
402 1.28 christos sizeof(struct emac_control_data), (void **)&sc->sc_control_data,
403 1.3 simonb BUS_DMA_COHERENT)) != 0) {
404 1.36 kiyohara aprint_error_dev(self,
405 1.36 kiyohara "unable to map control data, error = %d\n", error);
406 1.3 simonb goto fail_1;
407 1.3 simonb }
408 1.3 simonb
409 1.3 simonb if ((error = bus_dmamap_create(sc->sc_dmat,
410 1.3 simonb sizeof(struct emac_control_data), 1,
411 1.3 simonb sizeof(struct emac_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
412 1.36 kiyohara aprint_error_dev(self,
413 1.36 kiyohara "unable to create control data DMA map, error = %d\n",
414 1.36 kiyohara error);
415 1.3 simonb goto fail_2;
416 1.3 simonb }
417 1.3 simonb
418 1.3 simonb if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
419 1.3 simonb sc->sc_control_data, sizeof(struct emac_control_data), NULL,
420 1.3 simonb 0)) != 0) {
421 1.36 kiyohara aprint_error_dev(self,
422 1.36 kiyohara "unable to load control data DMA map, error = %d\n", error);
423 1.3 simonb goto fail_3;
424 1.3 simonb }
425 1.3 simonb
426 1.3 simonb /*
427 1.3 simonb * Create the transmit buffer DMA maps.
428 1.3 simonb */
429 1.3 simonb for (i = 0; i < EMAC_TXQUEUELEN; i++) {
430 1.3 simonb if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
431 1.3 simonb EMAC_NTXSEGS, MCLBYTES, 0, 0,
432 1.3 simonb &sc->sc_txsoft[i].txs_dmamap)) != 0) {
433 1.36 kiyohara aprint_error_dev(self,
434 1.36 kiyohara "unable to create tx DMA map %d, error = %d\n",
435 1.36 kiyohara i, error);
436 1.3 simonb goto fail_4;
437 1.3 simonb }
438 1.3 simonb }
439 1.3 simonb
440 1.3 simonb /*
441 1.3 simonb * Create the receive buffer DMA maps.
442 1.3 simonb */
443 1.3 simonb for (i = 0; i < EMAC_NRXDESC; i++) {
444 1.3 simonb if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
445 1.3 simonb MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
446 1.36 kiyohara aprint_error_dev(self,
447 1.36 kiyohara "unable to create rx DMA map %d, error = %d\n",
448 1.36 kiyohara i, error);
449 1.3 simonb goto fail_5;
450 1.3 simonb }
451 1.3 simonb sc->sc_rxsoft[i].rxs_mbuf = NULL;
452 1.3 simonb }
453 1.3 simonb
454 1.36 kiyohara /* Soft Reset the EMAC. The chip to a known state. */
455 1.36 kiyohara emac_soft_reset(sc);
456 1.3 simonb
457 1.36 kiyohara opb_freq = opb_get_frequency();
458 1.36 kiyohara switch (opb_freq) {
459 1.56 rin case 33333333: opbc = STACR_OPBC_33MHZ; break;
460 1.36 kiyohara case 50000000: opbc = STACR_OPBC_50MHZ; break;
461 1.36 kiyohara case 66666666: opbc = STACR_OPBC_66MHZ; break;
462 1.36 kiyohara case 83333333: opbc = STACR_OPBC_83MHZ; break;
463 1.36 kiyohara case 100000000: opbc = STACR_OPBC_100MHZ; break;
464 1.36 kiyohara
465 1.36 kiyohara default:
466 1.36 kiyohara if (opb_freq > 100000000) {
467 1.36 kiyohara opbc = STACR_OPBC_A100MHZ;
468 1.36 kiyohara break;
469 1.36 kiyohara }
470 1.58 andvar aprint_error_dev(self, "unsupported OPB frequency %dMHz\n",
471 1.36 kiyohara opb_freq / 1000 / 1000);
472 1.36 kiyohara goto fail_5;
473 1.36 kiyohara }
474 1.36 kiyohara if (oaa->opb_flags & OPB_FLAGS_EMAC_GBE) {
475 1.36 kiyohara sc->sc_mr1 =
476 1.36 kiyohara MR1_RFS_GBE(MR1__FS_16KB) |
477 1.36 kiyohara MR1_TFS_GBE(MR1__FS_16KB) |
478 1.36 kiyohara MR1_TR0_MULTIPLE |
479 1.36 kiyohara MR1_OBCI(opbc);
480 1.36 kiyohara sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
481 1.36 kiyohara
482 1.36 kiyohara if (oaa->opb_flags & OPB_FLAGS_EMAC_STACV2) {
483 1.36 kiyohara sc->sc_stacr_read = STACR_STAOPC_READ;
484 1.36 kiyohara sc->sc_stacr_write = STACR_STAOPC_WRITE;
485 1.36 kiyohara sc->sc_stacr_bits = STACR_OC;
486 1.36 kiyohara sc->sc_stacr_completed = false;
487 1.36 kiyohara } else {
488 1.36 kiyohara sc->sc_stacr_read = STACR_READ;
489 1.36 kiyohara sc->sc_stacr_write = STACR_WRITE;
490 1.36 kiyohara sc->sc_stacr_completed = true;
491 1.36 kiyohara }
492 1.36 kiyohara } else {
493 1.36 kiyohara /*
494 1.36 kiyohara * Set up Mode Register 1 - set receive and transmit FIFOs to
495 1.36 kiyohara * maximum size, allow transmit of multiple packets (only
496 1.36 kiyohara * channel 0 is used).
497 1.36 kiyohara *
498 1.36 kiyohara * XXX: Allow pause packets??
499 1.36 kiyohara */
500 1.36 kiyohara sc->sc_mr1 =
501 1.36 kiyohara MR1_RFS(MR1__FS_4KB) |
502 1.36 kiyohara MR1_TFS(MR1__FS_2KB) |
503 1.36 kiyohara MR1_TR0_MULTIPLE;
504 1.36 kiyohara
505 1.36 kiyohara sc->sc_stacr_read = STACR_READ;
506 1.36 kiyohara sc->sc_stacr_write = STACR_WRITE;
507 1.36 kiyohara sc->sc_stacr_bits = STACR_OPBC(opbc);
508 1.36 kiyohara sc->sc_stacr_completed = true;
509 1.14 thorpej }
510 1.14 thorpej
511 1.55 rin intr_establish_xname(oaa->opb_irq, IST_LEVEL, IPL_NET, emac_intr, sc,
512 1.55 rin device_xname(self));
513 1.36 kiyohara mal_intr_establish(sc->sc_instance, sc);
514 1.36 kiyohara
515 1.36 kiyohara if (oaa->opb_flags & OPB_FLAGS_EMAC_HT256)
516 1.36 kiyohara sc->sc_htsize = 256;
517 1.36 kiyohara else
518 1.36 kiyohara sc->sc_htsize = 64;
519 1.36 kiyohara
520 1.36 kiyohara /* Clear all interrupts */
521 1.36 kiyohara EMAC_WRITE(sc, EMAC_ISR, ISR_ALL);
522 1.1 simonb
523 1.3 simonb /*
524 1.3 simonb * Initialise the media structures.
525 1.3 simonb */
526 1.3 simonb mii->mii_ifp = ifp;
527 1.3 simonb mii->mii_readreg = emac_mii_readreg;
528 1.3 simonb mii->mii_writereg = emac_mii_writereg;
529 1.3 simonb mii->mii_statchg = emac_mii_statchg;
530 1.3 simonb
531 1.31 dyoung sc->sc_ethercom.ec_mii = mii;
532 1.31 dyoung ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
533 1.42 msaitoh mii_attach(self, mii, 0xffffffff, mii_phy, MII_OFFSET_ANY,
534 1.42 msaitoh MIIF_DOPAUSE);
535 1.3 simonb if (LIST_FIRST(&mii->mii_phys) == NULL) {
536 1.50 msaitoh ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
537 1.50 msaitoh ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
538 1.3 simonb } else
539 1.50 msaitoh ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
540 1.3 simonb
541 1.3 simonb ifp = &sc->sc_ethercom.ec_if;
542 1.38 matt strcpy(ifp->if_xname, xname);
543 1.3 simonb ifp->if_softc = sc;
544 1.3 simonb ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
545 1.36 kiyohara ifp->if_start = emac_start;
546 1.3 simonb ifp->if_ioctl = emac_ioctl;
547 1.3 simonb ifp->if_init = emac_init;
548 1.3 simonb ifp->if_stop = emac_stop;
549 1.36 kiyohara ifp->if_watchdog = emac_watchdog;
550 1.3 simonb IFQ_SET_READY(&ifp->if_snd);
551 1.3 simonb
552 1.3 simonb /*
553 1.3 simonb * We can support 802.1Q VLAN-sized frames.
554 1.3 simonb */
555 1.3 simonb sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
556 1.3 simonb
557 1.3 simonb /*
558 1.3 simonb * Attach the interface.
559 1.3 simonb */
560 1.3 simonb if_attach(ifp);
561 1.46 ozaki if_deferred_start_init(ifp, NULL);
562 1.14 thorpej ether_ifattach(ifp, enaddr);
563 1.3 simonb
564 1.54 rin rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET,
565 1.54 rin RND_FLAG_DEFAULT);
566 1.54 rin
567 1.3 simonb #ifdef EMAC_EVENT_COUNTERS
568 1.3 simonb /*
569 1.3 simonb * Attach the event counters.
570 1.3 simonb */
571 1.36 kiyohara evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
572 1.38 matt NULL, xname, "txintr");
573 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
574 1.38 matt NULL, xname, "rxintr");
575 1.36 kiyohara evcnt_attach_dynamic(&sc->sc_ev_txde, EVCNT_TYPE_INTR,
576 1.38 matt NULL, xname, "txde");
577 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_rxde, EVCNT_TYPE_INTR,
578 1.38 matt NULL, xname, "rxde");
579 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
580 1.38 matt NULL, xname, "intr");
581 1.3 simonb
582 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_txreap, EVCNT_TYPE_MISC,
583 1.38 matt NULL, xname, "txreap");
584 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
585 1.38 matt NULL, xname, "txsstall");
586 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
587 1.38 matt NULL, xname, "txdstall");
588 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
589 1.38 matt NULL, xname, "txdrop");
590 1.3 simonb evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
591 1.38 matt NULL, xname, "tu");
592 1.3 simonb #endif /* EMAC_EVENT_COUNTERS */
593 1.3 simonb
594 1.3 simonb /*
595 1.3 simonb * Make sure the interface is shutdown during reboot.
596 1.3 simonb */
597 1.3 simonb sc->sc_sdhook = shutdownhook_establish(emac_shutdown, sc);
598 1.3 simonb if (sc->sc_sdhook == NULL)
599 1.36 kiyohara aprint_error_dev(self,
600 1.36 kiyohara "WARNING: unable to establish shutdown hook\n");
601 1.3 simonb
602 1.3 simonb return;
603 1.3 simonb
604 1.3 simonb /*
605 1.3 simonb * Free any resources we've allocated during the failed attach
606 1.3 simonb * attempt. Do this in reverse order and fall through.
607 1.3 simonb */
608 1.3 simonb fail_5:
609 1.3 simonb for (i = 0; i < EMAC_NRXDESC; i++) {
610 1.3 simonb if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
611 1.3 simonb bus_dmamap_destroy(sc->sc_dmat,
612 1.3 simonb sc->sc_rxsoft[i].rxs_dmamap);
613 1.3 simonb }
614 1.3 simonb fail_4:
615 1.3 simonb for (i = 0; i < EMAC_TXQUEUELEN; i++) {
616 1.3 simonb if (sc->sc_txsoft[i].txs_dmamap != NULL)
617 1.3 simonb bus_dmamap_destroy(sc->sc_dmat,
618 1.3 simonb sc->sc_txsoft[i].txs_dmamap);
619 1.3 simonb }
620 1.3 simonb bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
621 1.3 simonb fail_3:
622 1.3 simonb bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
623 1.3 simonb fail_2:
624 1.28 christos bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
625 1.3 simonb sizeof(struct emac_control_data));
626 1.3 simonb fail_1:
627 1.3 simonb bus_dmamem_free(sc->sc_dmat, &seg, nseg);
628 1.3 simonb fail_0:
629 1.3 simonb return;
630 1.3 simonb }
631 1.3 simonb
632 1.3 simonb /*
633 1.36 kiyohara * EMAC General interrupt handler
634 1.3 simonb */
635 1.36 kiyohara static int
636 1.36 kiyohara emac_intr(void *arg)
637 1.36 kiyohara {
638 1.36 kiyohara struct emac_softc *sc = arg;
639 1.36 kiyohara uint32_t status;
640 1.36 kiyohara
641 1.36 kiyohara EMAC_EVCNT_INCR(&sc->sc_ev_intr);
642 1.36 kiyohara status = EMAC_READ(sc, EMAC_ISR);
643 1.36 kiyohara
644 1.36 kiyohara /* Clear the interrupt status bits. */
645 1.36 kiyohara EMAC_WRITE(sc, EMAC_ISR, status);
646 1.36 kiyohara
647 1.36 kiyohara return 1;
648 1.36 kiyohara }
649 1.36 kiyohara
650 1.3 simonb static void
651 1.3 simonb emac_shutdown(void *arg)
652 1.3 simonb {
653 1.3 simonb struct emac_softc *sc = arg;
654 1.3 simonb
655 1.3 simonb emac_stop(&sc->sc_ethercom.ec_if, 0);
656 1.3 simonb }
657 1.3 simonb
658 1.36 kiyohara
659 1.36 kiyohara /*
660 1.36 kiyohara * ifnet interface functions
661 1.36 kiyohara */
662 1.36 kiyohara
663 1.3 simonb static void
664 1.3 simonb emac_start(struct ifnet *ifp)
665 1.3 simonb {
666 1.3 simonb struct emac_softc *sc = ifp->if_softc;
667 1.3 simonb struct mbuf *m0;
668 1.3 simonb struct emac_txsoft *txs;
669 1.3 simonb bus_dmamap_t dmamap;
670 1.3 simonb int error, firsttx, nexttx, lasttx, ofree, seg;
671 1.17 simonb
672 1.17 simonb lasttx = 0; /* XXX gcc */
673 1.3 simonb
674 1.57 thorpej if ((ifp->if_flags & IFF_RUNNING) == 0)
675 1.3 simonb return;
676 1.3 simonb
677 1.3 simonb /*
678 1.3 simonb * Remember the previous number of free descriptors.
679 1.3 simonb */
680 1.3 simonb ofree = sc->sc_txfree;
681 1.3 simonb
682 1.3 simonb /*
683 1.3 simonb * Loop through the send queue, setting up transmit descriptors
684 1.3 simonb * until we drain the queue, or use up all available transmit
685 1.3 simonb * descriptors.
686 1.3 simonb */
687 1.3 simonb for (;;) {
688 1.3 simonb /* Grab a packet off the queue. */
689 1.3 simonb IFQ_POLL(&ifp->if_snd, m0);
690 1.3 simonb if (m0 == NULL)
691 1.3 simonb break;
692 1.3 simonb
693 1.3 simonb /*
694 1.3 simonb * Get a work queue entry. Reclaim used Tx descriptors if
695 1.3 simonb * we are running low.
696 1.3 simonb */
697 1.3 simonb if (sc->sc_txsfree < EMAC_TXQUEUE_GC) {
698 1.3 simonb emac_txreap(sc);
699 1.3 simonb if (sc->sc_txsfree == 0) {
700 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_txsstall);
701 1.3 simonb break;
702 1.3 simonb }
703 1.3 simonb }
704 1.3 simonb
705 1.3 simonb txs = &sc->sc_txsoft[sc->sc_txsnext];
706 1.3 simonb dmamap = txs->txs_dmamap;
707 1.3 simonb
708 1.3 simonb /*
709 1.3 simonb * Load the DMA map. If this fails, the packet either
710 1.59 andvar * didn't fit in the allotted number of segments, or we
711 1.3 simonb * were short on resources. In this case, we'll copy
712 1.3 simonb * and try again.
713 1.3 simonb */
714 1.3 simonb error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
715 1.50 msaitoh BUS_DMA_WRITE | BUS_DMA_NOWAIT);
716 1.3 simonb if (error) {
717 1.3 simonb if (error == EFBIG) {
718 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_txdrop);
719 1.36 kiyohara aprint_error_ifnet(ifp,
720 1.36 kiyohara "Tx packet consumes too many "
721 1.36 kiyohara "DMA segments, dropping...\n");
722 1.3 simonb IFQ_DEQUEUE(&ifp->if_snd, m0);
723 1.3 simonb m_freem(m0);
724 1.3 simonb continue;
725 1.3 simonb }
726 1.3 simonb /* Short on resources, just stop for now. */
727 1.3 simonb break;
728 1.3 simonb }
729 1.3 simonb
730 1.3 simonb /*
731 1.3 simonb * Ensure we have enough descriptors free to describe
732 1.3 simonb * the packet.
733 1.3 simonb */
734 1.3 simonb if (dmamap->dm_nsegs > sc->sc_txfree) {
735 1.3 simonb /*
736 1.3 simonb * Not enough free descriptors to transmit this
737 1.3 simonb * packet. We haven't committed anything yet,
738 1.3 simonb * so just unload the DMA map, put the packet
739 1.3 simonb * back on the queue, and punt. Notify the upper
740 1.3 simonb * layer that there are not more slots left.
741 1.3 simonb *
742 1.3 simonb */
743 1.3 simonb bus_dmamap_unload(sc->sc_dmat, dmamap);
744 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_txdstall);
745 1.3 simonb break;
746 1.3 simonb }
747 1.3 simonb
748 1.3 simonb IFQ_DEQUEUE(&ifp->if_snd, m0);
749 1.3 simonb
750 1.3 simonb /*
751 1.3 simonb * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
752 1.3 simonb */
753 1.3 simonb
754 1.3 simonb /* Sync the DMA map. */
755 1.3 simonb bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
756 1.3 simonb BUS_DMASYNC_PREWRITE);
757 1.3 simonb
758 1.3 simonb /*
759 1.3 simonb * Store a pointer to the packet so that we can free it
760 1.3 simonb * later.
761 1.3 simonb */
762 1.3 simonb txs->txs_mbuf = m0;
763 1.3 simonb txs->txs_firstdesc = sc->sc_txnext;
764 1.3 simonb txs->txs_ndesc = dmamap->dm_nsegs;
765 1.3 simonb
766 1.3 simonb /*
767 1.3 simonb * Initialize the transmit descriptor.
768 1.3 simonb */
769 1.3 simonb firsttx = sc->sc_txnext;
770 1.3 simonb for (nexttx = sc->sc_txnext, seg = 0;
771 1.3 simonb seg < dmamap->dm_nsegs;
772 1.3 simonb seg++, nexttx = EMAC_NEXTTX(nexttx)) {
773 1.36 kiyohara struct mal_descriptor *txdesc =
774 1.36 kiyohara &sc->sc_txdescs[nexttx];
775 1.36 kiyohara
776 1.3 simonb /*
777 1.3 simonb * If this is the first descriptor we're
778 1.3 simonb * enqueueing, don't set the TX_READY bit just
779 1.3 simonb * yet. That could cause a race condition.
780 1.3 simonb * We'll do it below.
781 1.3 simonb */
782 1.36 kiyohara txdesc->md_data = dmamap->dm_segs[seg].ds_addr;
783 1.36 kiyohara txdesc->md_data_len = dmamap->dm_segs[seg].ds_len;
784 1.36 kiyohara txdesc->md_stat_ctrl =
785 1.36 kiyohara (txdesc->md_stat_ctrl & MAL_TX_WRAP) |
786 1.3 simonb (nexttx == firsttx ? 0 : MAL_TX_READY) |
787 1.3 simonb EMAC_TXC_GFCS | EMAC_TXC_GPAD;
788 1.3 simonb lasttx = nexttx;
789 1.3 simonb }
790 1.3 simonb
791 1.3 simonb /* Set the LAST bit on the last segment. */
792 1.3 simonb sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_LAST;
793 1.3 simonb
794 1.21 simonb /*
795 1.21 simonb * Set up last segment descriptor to send an interrupt after
796 1.21 simonb * that descriptor is transmitted, and bypass existing Tx
797 1.21 simonb * descriptor reaping method (for now...).
798 1.21 simonb */
799 1.21 simonb sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_INTERRUPT;
800 1.21 simonb
801 1.21 simonb
802 1.3 simonb txs->txs_lastdesc = lasttx;
803 1.3 simonb
804 1.3 simonb /* Sync the descriptors we're using. */
805 1.3 simonb EMAC_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
806 1.3 simonb BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
807 1.3 simonb
808 1.3 simonb /*
809 1.3 simonb * The entire packet chain is set up. Give the
810 1.3 simonb * first descriptor to the chip now.
811 1.3 simonb */
812 1.3 simonb sc->sc_txdescs[firsttx].md_stat_ctrl |= MAL_TX_READY;
813 1.3 simonb EMAC_CDTXSYNC(sc, firsttx, 1,
814 1.3 simonb BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
815 1.3 simonb /*
816 1.3 simonb * Tell the EMAC that a new packet is available.
817 1.3 simonb */
818 1.36 kiyohara EMAC_WRITE(sc, EMAC_TMR0, TMR0_GNP0 | TMR0_TFAE_2);
819 1.3 simonb
820 1.3 simonb /* Advance the tx pointer. */
821 1.3 simonb sc->sc_txfree -= txs->txs_ndesc;
822 1.3 simonb sc->sc_txnext = nexttx;
823 1.3 simonb
824 1.3 simonb sc->sc_txsfree--;
825 1.3 simonb sc->sc_txsnext = EMAC_NEXTTXS(sc->sc_txsnext);
826 1.3 simonb
827 1.3 simonb /*
828 1.3 simonb * Pass the packet to any BPF listeners.
829 1.3 simonb */
830 1.48 msaitoh bpf_mtap(ifp, m0, BPF_D_OUT);
831 1.3 simonb }
832 1.3 simonb
833 1.36 kiyohara if (sc->sc_txfree != ofree)
834 1.3 simonb /* Set a watchdog timer in case the chip flakes out. */
835 1.3 simonb ifp->if_timer = 5;
836 1.36 kiyohara }
837 1.36 kiyohara
838 1.36 kiyohara static int
839 1.36 kiyohara emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
840 1.36 kiyohara {
841 1.36 kiyohara struct emac_softc *sc = ifp->if_softc;
842 1.36 kiyohara int s, error;
843 1.36 kiyohara
844 1.36 kiyohara s = splnet();
845 1.36 kiyohara
846 1.36 kiyohara switch (cmd) {
847 1.36 kiyohara case SIOCSIFMTU:
848 1.36 kiyohara {
849 1.36 kiyohara struct ifreq *ifr = (struct ifreq *)data;
850 1.36 kiyohara int maxmtu;
851 1.36 kiyohara
852 1.36 kiyohara if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU)
853 1.36 kiyohara maxmtu = EMAC_MAX_MTU;
854 1.36 kiyohara else
855 1.36 kiyohara maxmtu = ETHERMTU;
856 1.36 kiyohara
857 1.36 kiyohara if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
858 1.36 kiyohara error = EINVAL;
859 1.36 kiyohara else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
860 1.36 kiyohara break;
861 1.36 kiyohara else if (ifp->if_flags & IFF_UP)
862 1.36 kiyohara error = emac_init(ifp);
863 1.36 kiyohara else
864 1.36 kiyohara error = 0;
865 1.36 kiyohara break;
866 1.36 kiyohara }
867 1.36 kiyohara
868 1.36 kiyohara default:
869 1.36 kiyohara error = ether_ioctl(ifp, cmd, data);
870 1.36 kiyohara if (error == ENETRESET) {
871 1.36 kiyohara /*
872 1.36 kiyohara * Multicast list has changed; set the hardware filter
873 1.36 kiyohara * accordingly.
874 1.36 kiyohara */
875 1.36 kiyohara if (ifp->if_flags & IFF_RUNNING)
876 1.36 kiyohara error = emac_set_filter(sc);
877 1.36 kiyohara else
878 1.36 kiyohara error = 0;
879 1.36 kiyohara }
880 1.3 simonb }
881 1.36 kiyohara
882 1.36 kiyohara /* try to get more packets going */
883 1.36 kiyohara emac_start(ifp);
884 1.36 kiyohara
885 1.36 kiyohara splx(s);
886 1.36 kiyohara return error;
887 1.3 simonb }
888 1.3 simonb
889 1.3 simonb static int
890 1.3 simonb emac_init(struct ifnet *ifp)
891 1.3 simonb {
892 1.3 simonb struct emac_softc *sc = ifp->if_softc;
893 1.3 simonb struct emac_rxsoft *rxs;
894 1.29 dyoung const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
895 1.3 simonb int error, i;
896 1.3 simonb
897 1.3 simonb error = 0;
898 1.3 simonb
899 1.3 simonb /* Cancel any pending I/O. */
900 1.3 simonb emac_stop(ifp, 0);
901 1.3 simonb
902 1.3 simonb /* Reset the chip to a known state. */
903 1.36 kiyohara emac_soft_reset(sc);
904 1.3 simonb
905 1.36 kiyohara /*
906 1.3 simonb * Initialise the transmit descriptor ring.
907 1.3 simonb */
908 1.3 simonb memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
909 1.3 simonb /* set wrap on last descriptor */
910 1.3 simonb sc->sc_txdescs[EMAC_NTXDESC - 1].md_stat_ctrl |= MAL_TX_WRAP;
911 1.3 simonb EMAC_CDTXSYNC(sc, 0, EMAC_NTXDESC,
912 1.36 kiyohara BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
913 1.3 simonb sc->sc_txfree = EMAC_NTXDESC;
914 1.3 simonb sc->sc_txnext = 0;
915 1.3 simonb
916 1.3 simonb /*
917 1.3 simonb * Initialise the transmit job descriptors.
918 1.3 simonb */
919 1.3 simonb for (i = 0; i < EMAC_TXQUEUELEN; i++)
920 1.3 simonb sc->sc_txsoft[i].txs_mbuf = NULL;
921 1.3 simonb sc->sc_txsfree = EMAC_TXQUEUELEN;
922 1.3 simonb sc->sc_txsnext = 0;
923 1.3 simonb sc->sc_txsdirty = 0;
924 1.3 simonb
925 1.3 simonb /*
926 1.3 simonb * Initialise the receiver descriptor and receive job
927 1.3 simonb * descriptor rings.
928 1.3 simonb */
929 1.3 simonb for (i = 0; i < EMAC_NRXDESC; i++) {
930 1.3 simonb rxs = &sc->sc_rxsoft[i];
931 1.3 simonb if (rxs->rxs_mbuf == NULL) {
932 1.3 simonb if ((error = emac_add_rxbuf(sc, i)) != 0) {
933 1.36 kiyohara aprint_error_ifnet(ifp,
934 1.36 kiyohara "unable to allocate or map rx buffer %d,"
935 1.36 kiyohara " error = %d\n",
936 1.36 kiyohara i, error);
937 1.3 simonb /*
938 1.3 simonb * XXX Should attempt to run with fewer receive
939 1.3 simonb * XXX buffers instead of just failing.
940 1.3 simonb */
941 1.3 simonb emac_rxdrain(sc);
942 1.3 simonb goto out;
943 1.3 simonb }
944 1.3 simonb } else
945 1.3 simonb EMAC_INIT_RXDESC(sc, i);
946 1.3 simonb }
947 1.3 simonb sc->sc_rxptr = 0;
948 1.3 simonb
949 1.3 simonb /*
950 1.3 simonb * Set the current media.
951 1.3 simonb */
952 1.31 dyoung if ((error = ether_mediachange(ifp)) != 0)
953 1.31 dyoung goto out;
954 1.3 simonb
955 1.3 simonb /*
956 1.3 simonb * Load the MAC address.
957 1.3 simonb */
958 1.6 simonb EMAC_WRITE(sc, EMAC_IAHR, enaddr[0] << 8 | enaddr[1]);
959 1.6 simonb EMAC_WRITE(sc, EMAC_IALR,
960 1.3 simonb enaddr[2] << 24 | enaddr[3] << 16 | enaddr[4] << 8 | enaddr[5]);
961 1.3 simonb
962 1.36 kiyohara /* Enable the transmit and receive channel on the MAL. */
963 1.36 kiyohara error = mal_start(sc->sc_instance,
964 1.36 kiyohara EMAC_CDTXADDR(sc, 0), EMAC_CDRXADDR(sc, 0));
965 1.36 kiyohara if (error)
966 1.36 kiyohara goto out;
967 1.36 kiyohara
968 1.36 kiyohara sc->sc_mr1 &= ~MR1_JPSM;
969 1.36 kiyohara if (ifp->if_mtu > ETHERMTU)
970 1.36 kiyohara /* Enable Jumbo Packet Support Mode */
971 1.36 kiyohara sc->sc_mr1 |= MR1_JPSM;
972 1.3 simonb
973 1.3 simonb /* Set fifos, media modes. */
974 1.6 simonb EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
975 1.3 simonb
976 1.3 simonb /*
977 1.3 simonb * Enable Individual and (possibly) Broadcast Address modes,
978 1.3 simonb * runt packets, and strip padding.
979 1.3 simonb */
980 1.36 kiyohara EMAC_WRITE(sc, EMAC_RMR, RMR_IAE | RMR_RRP | RMR_SP | RMR_TFAE_2 |
981 1.18 simonb (ifp->if_flags & IFF_PROMISC ? RMR_PME : 0) |
982 1.3 simonb (ifp->if_flags & IFF_BROADCAST ? RMR_BAE : 0));
983 1.3 simonb
984 1.3 simonb /*
985 1.27 kiyohara * Set multicast filter.
986 1.27 kiyohara */
987 1.27 kiyohara emac_set_filter(sc);
988 1.27 kiyohara
989 1.27 kiyohara /*
990 1.3 simonb * Set low- and urgent-priority request thresholds.
991 1.3 simonb */
992 1.6 simonb EMAC_WRITE(sc, EMAC_TMR1,
993 1.3 simonb ((7 << TMR1_TLR_SHIFT) & TMR1_TLR_MASK) | /* 16 word burst */
994 1.3 simonb ((15 << TMR1_TUR_SHIFT) & TMR1_TUR_MASK));
995 1.3 simonb /*
996 1.3 simonb * Set Transmit Request Threshold Register.
997 1.3 simonb */
998 1.6 simonb EMAC_WRITE(sc, EMAC_TRTR, TRTR_256);
999 1.3 simonb
1000 1.3 simonb /*
1001 1.3 simonb * Set high and low receive watermarks.
1002 1.3 simonb */
1003 1.6 simonb EMAC_WRITE(sc, EMAC_RWMR,
1004 1.3 simonb 30 << RWMR_RLWM_SHIFT | 64 << RWMR_RLWM_SHIFT);
1005 1.3 simonb
1006 1.3 simonb /*
1007 1.3 simonb * Set frame gap.
1008 1.3 simonb */
1009 1.6 simonb EMAC_WRITE(sc, EMAC_IPGVR, 8);
1010 1.3 simonb
1011 1.3 simonb /*
1012 1.36 kiyohara * Set interrupt status enable bits for EMAC.
1013 1.3 simonb */
1014 1.6 simonb EMAC_WRITE(sc, EMAC_ISER,
1015 1.36 kiyohara ISR_TXPE | /* TX Parity Error */
1016 1.36 kiyohara ISR_RXPE | /* RX Parity Error */
1017 1.36 kiyohara ISR_TXUE | /* TX Underrun Event */
1018 1.36 kiyohara ISR_RXOE | /* RX Overrun Event */
1019 1.36 kiyohara ISR_OVR | /* Overrun Error */
1020 1.36 kiyohara ISR_PP | /* Pause Packet */
1021 1.36 kiyohara ISR_BP | /* Bad Packet */
1022 1.36 kiyohara ISR_RP | /* Runt Packet */
1023 1.36 kiyohara ISR_SE | /* Short Event */
1024 1.36 kiyohara ISR_ALE | /* Alignment Error */
1025 1.36 kiyohara ISR_BFCS | /* Bad FCS */
1026 1.36 kiyohara ISR_PTLE | /* Packet Too Long Error */
1027 1.36 kiyohara ISR_ORE | /* Out of Range Error */
1028 1.36 kiyohara ISR_IRE | /* In Range Error */
1029 1.36 kiyohara ISR_SE0 | /* Signal Quality Error 0 (SQE) */
1030 1.36 kiyohara ISR_TE0 | /* Transmit Error 0 */
1031 1.36 kiyohara ISR_MOS | /* MMA Operation Succeeded */
1032 1.36 kiyohara ISR_MOF); /* MMA Operation Failed */
1033 1.3 simonb
1034 1.3 simonb /*
1035 1.3 simonb * Enable the transmit and receive channel on the EMAC.
1036 1.3 simonb */
1037 1.6 simonb EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
1038 1.3 simonb
1039 1.3 simonb /*
1040 1.3 simonb * Start the one second MII clock.
1041 1.3 simonb */
1042 1.3 simonb callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
1043 1.3 simonb
1044 1.3 simonb /*
1045 1.3 simonb * ... all done!
1046 1.3 simonb */
1047 1.3 simonb ifp->if_flags |= IFF_RUNNING;
1048 1.3 simonb
1049 1.3 simonb out:
1050 1.3 simonb if (error) {
1051 1.57 thorpej ifp->if_flags &= ~IFF_RUNNING;
1052 1.3 simonb ifp->if_timer = 0;
1053 1.36 kiyohara aprint_error_ifnet(ifp, "interface not running\n");
1054 1.3 simonb }
1055 1.36 kiyohara return error;
1056 1.3 simonb }
1057 1.3 simonb
1058 1.3 simonb static void
1059 1.3 simonb emac_stop(struct ifnet *ifp, int disable)
1060 1.3 simonb {
1061 1.3 simonb struct emac_softc *sc = ifp->if_softc;
1062 1.3 simonb struct emac_txsoft *txs;
1063 1.3 simonb int i;
1064 1.3 simonb
1065 1.3 simonb /* Stop the one second clock. */
1066 1.3 simonb callout_stop(&sc->sc_callout);
1067 1.3 simonb
1068 1.3 simonb /* Down the MII */
1069 1.3 simonb mii_down(&sc->sc_mii);
1070 1.3 simonb
1071 1.3 simonb /* Disable interrupts. */
1072 1.6 simonb EMAC_WRITE(sc, EMAC_ISER, 0);
1073 1.3 simonb
1074 1.3 simonb /* Disable the receive and transmit channels. */
1075 1.36 kiyohara mal_stop(sc->sc_instance);
1076 1.3 simonb
1077 1.3 simonb /* Disable the transmit enable and receive MACs. */
1078 1.6 simonb EMAC_WRITE(sc, EMAC_MR0,
1079 1.6 simonb EMAC_READ(sc, EMAC_MR0) & ~(MR0_TXE | MR0_RXE));
1080 1.3 simonb
1081 1.3 simonb /* Release any queued transmit buffers. */
1082 1.3 simonb for (i = 0; i < EMAC_TXQUEUELEN; i++) {
1083 1.3 simonb txs = &sc->sc_txsoft[i];
1084 1.3 simonb if (txs->txs_mbuf != NULL) {
1085 1.3 simonb bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1086 1.3 simonb m_freem(txs->txs_mbuf);
1087 1.3 simonb txs->txs_mbuf = NULL;
1088 1.3 simonb }
1089 1.3 simonb }
1090 1.3 simonb
1091 1.3 simonb if (disable)
1092 1.3 simonb emac_rxdrain(sc);
1093 1.3 simonb
1094 1.3 simonb /*
1095 1.3 simonb * Mark the interface down and cancel the watchdog timer.
1096 1.3 simonb */
1097 1.57 thorpej ifp->if_flags &= ~IFF_RUNNING;
1098 1.3 simonb ifp->if_timer = 0;
1099 1.3 simonb }
1100 1.3 simonb
1101 1.36 kiyohara static void
1102 1.36 kiyohara emac_watchdog(struct ifnet *ifp)
1103 1.3 simonb {
1104 1.3 simonb struct emac_softc *sc = ifp->if_softc;
1105 1.3 simonb
1106 1.36 kiyohara /*
1107 1.36 kiyohara * Since we're not interrupting every packet, sweep
1108 1.36 kiyohara * up before we report an error.
1109 1.36 kiyohara */
1110 1.36 kiyohara emac_txreap(sc);
1111 1.36 kiyohara
1112 1.36 kiyohara if (sc->sc_txfree != EMAC_NTXDESC) {
1113 1.36 kiyohara aprint_error_ifnet(ifp,
1114 1.36 kiyohara "device timeout (txfree %d txsfree %d txnext %d)\n",
1115 1.36 kiyohara sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
1116 1.52 thorpej if_statinc(ifp, if_oerrors);
1117 1.3 simonb
1118 1.36 kiyohara /* Reset the interface. */
1119 1.36 kiyohara (void)emac_init(ifp);
1120 1.36 kiyohara } else if (ifp->if_flags & IFF_DEBUG)
1121 1.36 kiyohara aprint_error_ifnet(ifp, "recovered from device timeout\n");
1122 1.3 simonb
1123 1.3 simonb /* try to get more packets going */
1124 1.3 simonb emac_start(ifp);
1125 1.3 simonb }
1126 1.3 simonb
1127 1.36 kiyohara static int
1128 1.36 kiyohara emac_add_rxbuf(struct emac_softc *sc, int idx)
1129 1.3 simonb {
1130 1.36 kiyohara struct emac_rxsoft *rxs = &sc->sc_rxsoft[idx];
1131 1.36 kiyohara struct mbuf *m;
1132 1.36 kiyohara int error;
1133 1.36 kiyohara
1134 1.36 kiyohara MGETHDR(m, M_DONTWAIT, MT_DATA);
1135 1.36 kiyohara if (m == NULL)
1136 1.36 kiyohara return ENOBUFS;
1137 1.36 kiyohara
1138 1.36 kiyohara MCLGET(m, M_DONTWAIT);
1139 1.36 kiyohara if ((m->m_flags & M_EXT) == 0) {
1140 1.36 kiyohara m_freem(m);
1141 1.36 kiyohara return ENOBUFS;
1142 1.36 kiyohara }
1143 1.3 simonb
1144 1.36 kiyohara if (rxs->rxs_mbuf != NULL)
1145 1.36 kiyohara bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1146 1.36 kiyohara
1147 1.36 kiyohara rxs->rxs_mbuf = m;
1148 1.3 simonb
1149 1.36 kiyohara error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1150 1.36 kiyohara m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1151 1.36 kiyohara if (error) {
1152 1.36 kiyohara aprint_error_dev(sc->sc_dev,
1153 1.36 kiyohara "can't load rx DMA map %d, error = %d\n", idx, error);
1154 1.36 kiyohara panic("emac_add_rxbuf"); /* XXX */
1155 1.36 kiyohara }
1156 1.3 simonb
1157 1.36 kiyohara bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1158 1.36 kiyohara rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1159 1.3 simonb
1160 1.36 kiyohara EMAC_INIT_RXDESC(sc, idx);
1161 1.3 simonb
1162 1.36 kiyohara return 0;
1163 1.36 kiyohara }
1164 1.36 kiyohara
1165 1.36 kiyohara static void
1166 1.36 kiyohara emac_rxdrain(struct emac_softc *sc)
1167 1.36 kiyohara {
1168 1.36 kiyohara struct emac_rxsoft *rxs;
1169 1.36 kiyohara int i;
1170 1.36 kiyohara
1171 1.36 kiyohara for (i = 0; i < EMAC_NRXDESC; i++) {
1172 1.36 kiyohara rxs = &sc->sc_rxsoft[i];
1173 1.36 kiyohara if (rxs->rxs_mbuf != NULL) {
1174 1.36 kiyohara bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1175 1.36 kiyohara m_freem(rxs->rxs_mbuf);
1176 1.36 kiyohara rxs->rxs_mbuf = NULL;
1177 1.36 kiyohara }
1178 1.36 kiyohara }
1179 1.3 simonb }
1180 1.3 simonb
1181 1.18 simonb static int
1182 1.18 simonb emac_set_filter(struct emac_softc *sc)
1183 1.18 simonb {
1184 1.51 msaitoh struct ethercom *ec = &sc->sc_ethercom;
1185 1.18 simonb struct ether_multistep step;
1186 1.18 simonb struct ether_multi *enm;
1187 1.18 simonb struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1188 1.36 kiyohara uint32_t rmr, crc, mask, tmp, reg, gaht[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1189 1.36 kiyohara int regs, cnt = 0, i;
1190 1.36 kiyohara
1191 1.36 kiyohara if (sc->sc_htsize == 256) {
1192 1.36 kiyohara reg = EMAC_GAHT256(0);
1193 1.36 kiyohara regs = 8;
1194 1.36 kiyohara } else {
1195 1.36 kiyohara reg = EMAC_GAHT64(0);
1196 1.36 kiyohara regs = 4;
1197 1.36 kiyohara }
1198 1.36 kiyohara mask = (1ULL << (sc->sc_htsize / regs)) - 1;
1199 1.18 simonb
1200 1.18 simonb rmr = EMAC_READ(sc, EMAC_RMR);
1201 1.18 simonb rmr &= ~(RMR_PMME | RMR_MAE);
1202 1.18 simonb ifp->if_flags &= ~IFF_ALLMULTI;
1203 1.18 simonb
1204 1.51 msaitoh ETHER_LOCK(ec);
1205 1.51 msaitoh ETHER_FIRST_MULTI(step, ec, enm);
1206 1.18 simonb while (enm != NULL) {
1207 1.18 simonb if (memcmp(enm->enm_addrlo,
1208 1.18 simonb enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1209 1.18 simonb /*
1210 1.18 simonb * We must listen to a range of multicast addresses.
1211 1.18 simonb * For now, just accept all multicasts, rather than
1212 1.18 simonb * trying to set only those filter bits needed to match
1213 1.18 simonb * the range. (At this time, the only use of address
1214 1.18 simonb * ranges is for IP multicast routing, for which the
1215 1.18 simonb * range is big enough to require all bits set.)
1216 1.18 simonb */
1217 1.36 kiyohara gaht[0] = gaht[1] = gaht[2] = gaht[3] =
1218 1.36 kiyohara gaht[4] = gaht[5] = gaht[6] = gaht[7] = mask;
1219 1.18 simonb break;
1220 1.18 simonb }
1221 1.18 simonb
1222 1.18 simonb crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1223 1.18 simonb
1224 1.36 kiyohara if (sc->sc_htsize == 256)
1225 1.36 kiyohara EMAC_SET_FILTER256(gaht, crc);
1226 1.36 kiyohara else
1227 1.36 kiyohara EMAC_SET_FILTER(gaht, crc);
1228 1.18 simonb
1229 1.18 simonb ETHER_NEXT_MULTI(step, enm);
1230 1.18 simonb cnt++;
1231 1.18 simonb }
1232 1.51 msaitoh ETHER_UNLOCK(ec);
1233 1.18 simonb
1234 1.36 kiyohara for (i = 1, tmp = gaht[0]; i < regs; i++)
1235 1.36 kiyohara tmp &= gaht[i];
1236 1.36 kiyohara if (tmp == mask) {
1237 1.18 simonb /* All categories are true. */
1238 1.18 simonb ifp->if_flags |= IFF_ALLMULTI;
1239 1.18 simonb rmr |= RMR_PMME;
1240 1.18 simonb } else if (cnt != 0) {
1241 1.18 simonb /* Some categories are true. */
1242 1.36 kiyohara for (i = 0; i < regs; i++)
1243 1.36 kiyohara EMAC_WRITE(sc, reg + (i << 2), gaht[i]);
1244 1.18 simonb rmr |= RMR_MAE;
1245 1.18 simonb }
1246 1.18 simonb EMAC_WRITE(sc, EMAC_RMR, rmr);
1247 1.18 simonb
1248 1.18 simonb return 0;
1249 1.18 simonb }
1250 1.18 simonb
1251 1.3 simonb /*
1252 1.3 simonb * Reap completed Tx descriptors.
1253 1.3 simonb */
1254 1.3 simonb static int
1255 1.3 simonb emac_txreap(struct emac_softc *sc)
1256 1.3 simonb {
1257 1.3 simonb struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1258 1.3 simonb struct emac_txsoft *txs;
1259 1.20 simonb int handled, i;
1260 1.54 rin uint32_t txstat, count;
1261 1.3 simonb
1262 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_txreap);
1263 1.20 simonb handled = 0;
1264 1.3 simonb
1265 1.54 rin count = 0;
1266 1.3 simonb /*
1267 1.3 simonb * Go through our Tx list and free mbufs for those
1268 1.3 simonb * frames that have been transmitted.
1269 1.3 simonb */
1270 1.3 simonb for (i = sc->sc_txsdirty; sc->sc_txsfree != EMAC_TXQUEUELEN;
1271 1.3 simonb i = EMAC_NEXTTXS(i), sc->sc_txsfree++) {
1272 1.3 simonb txs = &sc->sc_txsoft[i];
1273 1.3 simonb
1274 1.3 simonb EMAC_CDTXSYNC(sc, txs->txs_lastdesc,
1275 1.3 simonb txs->txs_dmamap->dm_nsegs,
1276 1.50 msaitoh BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1277 1.3 simonb
1278 1.3 simonb txstat = sc->sc_txdescs[txs->txs_lastdesc].md_stat_ctrl;
1279 1.3 simonb if (txstat & MAL_TX_READY)
1280 1.3 simonb break;
1281 1.3 simonb
1282 1.20 simonb handled = 1;
1283 1.20 simonb
1284 1.3 simonb /*
1285 1.3 simonb * Check for errors and collisions.
1286 1.3 simonb */
1287 1.3 simonb if (txstat & (EMAC_TXS_UR | EMAC_TXS_ED))
1288 1.52 thorpej if_statinc(ifp, if_oerrors);
1289 1.3 simonb
1290 1.3 simonb #ifdef EMAC_EVENT_COUNTERS
1291 1.3 simonb if (txstat & EMAC_TXS_UR)
1292 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_tu);
1293 1.3 simonb #endif /* EMAC_EVENT_COUNTERS */
1294 1.3 simonb
1295 1.36 kiyohara if (txstat &
1296 1.36 kiyohara (EMAC_TXS_EC | EMAC_TXS_MC | EMAC_TXS_SC | EMAC_TXS_LC)) {
1297 1.3 simonb if (txstat & EMAC_TXS_EC)
1298 1.52 thorpej if_statadd(ifp, if_collisions, 16);
1299 1.3 simonb else if (txstat & EMAC_TXS_MC)
1300 1.52 thorpej if_statadd(ifp, if_collisions, 2); /* XXX? */
1301 1.3 simonb else if (txstat & EMAC_TXS_SC)
1302 1.52 thorpej if_statinc(ifp, if_collisions);
1303 1.3 simonb if (txstat & EMAC_TXS_LC)
1304 1.52 thorpej if_statinc(ifp, if_collisions);
1305 1.3 simonb } else
1306 1.52 thorpej if_statinc(ifp, if_opackets);
1307 1.3 simonb
1308 1.3 simonb if (ifp->if_flags & IFF_DEBUG) {
1309 1.3 simonb if (txstat & EMAC_TXS_ED)
1310 1.36 kiyohara aprint_error_ifnet(ifp, "excessive deferral\n");
1311 1.3 simonb if (txstat & EMAC_TXS_EC)
1312 1.36 kiyohara aprint_error_ifnet(ifp,
1313 1.36 kiyohara "excessive collisions\n");
1314 1.3 simonb }
1315 1.3 simonb
1316 1.3 simonb sc->sc_txfree += txs->txs_ndesc;
1317 1.3 simonb bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1318 1.3 simonb 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1319 1.3 simonb bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1320 1.3 simonb m_freem(txs->txs_mbuf);
1321 1.3 simonb txs->txs_mbuf = NULL;
1322 1.54 rin
1323 1.54 rin count++;
1324 1.3 simonb }
1325 1.3 simonb
1326 1.3 simonb /* Update the dirty transmit buffer pointer. */
1327 1.3 simonb sc->sc_txsdirty = i;
1328 1.3 simonb
1329 1.3 simonb /*
1330 1.3 simonb * If there are no more pending transmissions, cancel the watchdog
1331 1.3 simonb * timer.
1332 1.3 simonb */
1333 1.3 simonb if (sc->sc_txsfree == EMAC_TXQUEUELEN)
1334 1.3 simonb ifp->if_timer = 0;
1335 1.3 simonb
1336 1.54 rin if (count != 0)
1337 1.54 rin rnd_add_uint32(&sc->rnd_source, count);
1338 1.54 rin
1339 1.36 kiyohara return handled;
1340 1.36 kiyohara }
1341 1.36 kiyohara
1342 1.36 kiyohara
1343 1.36 kiyohara /*
1344 1.36 kiyohara * Reset functions
1345 1.36 kiyohara */
1346 1.36 kiyohara
1347 1.36 kiyohara static void
1348 1.36 kiyohara emac_soft_reset(struct emac_softc *sc)
1349 1.36 kiyohara {
1350 1.36 kiyohara uint32_t sdr;
1351 1.36 kiyohara int t = 0;
1352 1.36 kiyohara
1353 1.36 kiyohara /*
1354 1.36 kiyohara * The PHY must provide a TX Clk in order perform a soft reset the
1355 1.36 kiyohara * EMAC. If none is present, select the internal clock,
1356 1.50 msaitoh * SDR0_MFR[E0CS, E1CS]. After the soft reset, select the external
1357 1.36 kiyohara * clock.
1358 1.36 kiyohara */
1359 1.36 kiyohara
1360 1.36 kiyohara sdr = mfsdr(DCR_SDR0_MFR);
1361 1.36 kiyohara sdr |= SDR0_MFR_ECS(sc->sc_instance);
1362 1.36 kiyohara mtsdr(DCR_SDR0_MFR, sdr);
1363 1.36 kiyohara
1364 1.36 kiyohara EMAC_WRITE(sc, EMAC_MR0, MR0_SRST);
1365 1.36 kiyohara
1366 1.36 kiyohara sdr = mfsdr(DCR_SDR0_MFR);
1367 1.36 kiyohara sdr &= ~SDR0_MFR_ECS(sc->sc_instance);
1368 1.36 kiyohara mtsdr(DCR_SDR0_MFR, sdr);
1369 1.36 kiyohara
1370 1.36 kiyohara delay(5);
1371 1.36 kiyohara
1372 1.36 kiyohara /* wait finish */
1373 1.36 kiyohara while (EMAC_READ(sc, EMAC_MR0) & MR0_SRST) {
1374 1.36 kiyohara if (++t == 1000000 /* 1sec XXXXX */) {
1375 1.36 kiyohara aprint_error_dev(sc->sc_dev, "Soft Reset failed\n");
1376 1.36 kiyohara return;
1377 1.36 kiyohara }
1378 1.36 kiyohara delay(1);
1379 1.36 kiyohara }
1380 1.36 kiyohara }
1381 1.36 kiyohara
1382 1.36 kiyohara static void
1383 1.36 kiyohara emac_smart_reset(struct emac_softc *sc)
1384 1.36 kiyohara {
1385 1.36 kiyohara uint32_t mr0;
1386 1.36 kiyohara int t = 0;
1387 1.36 kiyohara
1388 1.36 kiyohara mr0 = EMAC_READ(sc, EMAC_MR0);
1389 1.36 kiyohara if (mr0 & (MR0_TXE | MR0_RXE)) {
1390 1.36 kiyohara mr0 &= ~(MR0_TXE | MR0_RXE);
1391 1.36 kiyohara EMAC_WRITE(sc, EMAC_MR0, mr0);
1392 1.36 kiyohara
1393 1.36 kiyohara /* wait idel state */
1394 1.36 kiyohara while ((EMAC_READ(sc, EMAC_MR0) & (MR0_TXI | MR0_RXI)) !=
1395 1.36 kiyohara (MR0_TXI | MR0_RXI)) {
1396 1.36 kiyohara if (++t == 1000000 /* 1sec XXXXX */) {
1397 1.36 kiyohara aprint_error_dev(sc->sc_dev,
1398 1.36 kiyohara "Smart Reset failed\n");
1399 1.36 kiyohara return;
1400 1.36 kiyohara }
1401 1.36 kiyohara delay(1);
1402 1.36 kiyohara }
1403 1.36 kiyohara }
1404 1.3 simonb }
1405 1.3 simonb
1406 1.36 kiyohara
1407 1.3 simonb /*
1408 1.36 kiyohara * MII related functions
1409 1.3 simonb */
1410 1.36 kiyohara
1411 1.3 simonb static int
1412 1.49 msaitoh emac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1413 1.36 kiyohara {
1414 1.36 kiyohara struct emac_softc *sc = device_private(self);
1415 1.36 kiyohara uint32_t sta_reg;
1416 1.49 msaitoh int rv;
1417 1.36 kiyohara
1418 1.36 kiyohara if (sc->sc_rmii_enable)
1419 1.36 kiyohara sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
1420 1.36 kiyohara
1421 1.36 kiyohara /* wait for PHY data transfer to complete */
1422 1.49 msaitoh if ((rv = emac_mii_wait(sc)) != 0)
1423 1.36 kiyohara goto fail;
1424 1.36 kiyohara
1425 1.36 kiyohara sta_reg =
1426 1.36 kiyohara sc->sc_stacr_read |
1427 1.36 kiyohara (reg << STACR_PRA_SHIFT) |
1428 1.36 kiyohara (phy << STACR_PCDA_SHIFT) |
1429 1.36 kiyohara sc->sc_stacr_bits;
1430 1.36 kiyohara EMAC_WRITE(sc, EMAC_STACR, sta_reg);
1431 1.36 kiyohara
1432 1.49 msaitoh if ((rv = emac_mii_wait(sc)) != 0)
1433 1.36 kiyohara goto fail;
1434 1.36 kiyohara sta_reg = EMAC_READ(sc, EMAC_STACR);
1435 1.36 kiyohara
1436 1.49 msaitoh if (sta_reg & STACR_PHYE) {
1437 1.49 msaitoh rv = -1;
1438 1.49 msaitoh goto fail;
1439 1.49 msaitoh }
1440 1.49 msaitoh *val = sta_reg >> STACR_PHYD_SHIFT;
1441 1.36 kiyohara
1442 1.36 kiyohara fail:
1443 1.36 kiyohara if (sc->sc_rmii_disable)
1444 1.36 kiyohara sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
1445 1.49 msaitoh return rv;
1446 1.36 kiyohara }
1447 1.36 kiyohara
1448 1.49 msaitoh static int
1449 1.49 msaitoh emac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1450 1.36 kiyohara {
1451 1.36 kiyohara struct emac_softc *sc = device_private(self);
1452 1.36 kiyohara uint32_t sta_reg;
1453 1.49 msaitoh int rv;
1454 1.36 kiyohara
1455 1.36 kiyohara if (sc->sc_rmii_enable)
1456 1.36 kiyohara sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
1457 1.36 kiyohara
1458 1.36 kiyohara /* wait for PHY data transfer to complete */
1459 1.49 msaitoh if ((rv = emac_mii_wait(sc)) != 0)
1460 1.36 kiyohara goto out;
1461 1.36 kiyohara
1462 1.36 kiyohara sta_reg =
1463 1.36 kiyohara (val << STACR_PHYD_SHIFT) |
1464 1.36 kiyohara sc->sc_stacr_write |
1465 1.36 kiyohara (reg << STACR_PRA_SHIFT) |
1466 1.36 kiyohara (phy << STACR_PCDA_SHIFT) |
1467 1.36 kiyohara sc->sc_stacr_bits;
1468 1.36 kiyohara EMAC_WRITE(sc, EMAC_STACR, sta_reg);
1469 1.36 kiyohara
1470 1.49 msaitoh if ((rv = emac_mii_wait(sc)) != 0)
1471 1.36 kiyohara goto out;
1472 1.49 msaitoh if (EMAC_READ(sc, EMAC_STACR) & STACR_PHYE) {
1473 1.36 kiyohara aprint_error_dev(sc->sc_dev, "MII PHY Error\n");
1474 1.49 msaitoh rv = -1;
1475 1.49 msaitoh }
1476 1.36 kiyohara
1477 1.36 kiyohara out:
1478 1.36 kiyohara if (sc->sc_rmii_disable)
1479 1.36 kiyohara sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
1480 1.49 msaitoh
1481 1.49 msaitoh return rv;
1482 1.36 kiyohara }
1483 1.36 kiyohara
1484 1.36 kiyohara static void
1485 1.41 matt emac_mii_statchg(struct ifnet *ifp)
1486 1.36 kiyohara {
1487 1.41 matt struct emac_softc *sc = ifp->if_softc;
1488 1.36 kiyohara struct mii_data *mii = &sc->sc_mii;
1489 1.36 kiyohara
1490 1.36 kiyohara /*
1491 1.36 kiyohara * MR1 can only be written immediately after a reset...
1492 1.36 kiyohara */
1493 1.36 kiyohara emac_smart_reset(sc);
1494 1.36 kiyohara
1495 1.36 kiyohara sc->sc_mr1 &= ~(MR1_FDE | MR1_ILE | MR1_EIFC | MR1_MF_MASK | MR1_IST);
1496 1.36 kiyohara if (mii->mii_media_active & IFM_FDX)
1497 1.36 kiyohara sc->sc_mr1 |= (MR1_FDE | MR1_EIFC | MR1_IST);
1498 1.36 kiyohara if (mii->mii_media_active & IFM_FLOW)
1499 1.36 kiyohara sc->sc_mr1 |= MR1_EIFC;
1500 1.36 kiyohara if (mii->mii_media_active & IFM_LOOP)
1501 1.36 kiyohara sc->sc_mr1 |= MR1_ILE;
1502 1.36 kiyohara switch (IFM_SUBTYPE(mii->mii_media_active)) {
1503 1.36 kiyohara case IFM_1000_T:
1504 1.36 kiyohara sc->sc_mr1 |= (MR1_MF_1000MBS | MR1_IST);
1505 1.36 kiyohara break;
1506 1.36 kiyohara
1507 1.36 kiyohara case IFM_100_TX:
1508 1.36 kiyohara sc->sc_mr1 |= (MR1_MF_100MBS | MR1_IST);
1509 1.36 kiyohara break;
1510 1.36 kiyohara
1511 1.36 kiyohara case IFM_10_T:
1512 1.36 kiyohara sc->sc_mr1 |= MR1_MF_10MBS;
1513 1.36 kiyohara break;
1514 1.36 kiyohara
1515 1.36 kiyohara case IFM_NONE:
1516 1.36 kiyohara break;
1517 1.36 kiyohara
1518 1.36 kiyohara default:
1519 1.41 matt aprint_error_dev(sc->sc_dev, "unknown sub-type %d\n",
1520 1.36 kiyohara IFM_SUBTYPE(mii->mii_media_active));
1521 1.36 kiyohara break;
1522 1.36 kiyohara }
1523 1.36 kiyohara if (sc->sc_rmii_speed)
1524 1.41 matt sc->sc_rmii_speed(device_parent(sc->sc_dev), sc->sc_instance,
1525 1.36 kiyohara IFM_SUBTYPE(mii->mii_media_active));
1526 1.36 kiyohara
1527 1.36 kiyohara EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
1528 1.36 kiyohara
1529 1.36 kiyohara /* Enable TX and RX if already RUNNING */
1530 1.36 kiyohara if (ifp->if_flags & IFF_RUNNING)
1531 1.36 kiyohara EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
1532 1.36 kiyohara }
1533 1.36 kiyohara
1534 1.36 kiyohara static uint32_t
1535 1.36 kiyohara emac_mii_wait(struct emac_softc *sc)
1536 1.36 kiyohara {
1537 1.36 kiyohara int i;
1538 1.36 kiyohara uint32_t oc;
1539 1.36 kiyohara
1540 1.36 kiyohara /* wait for PHY data transfer to complete */
1541 1.36 kiyohara i = 0;
1542 1.36 kiyohara oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
1543 1.36 kiyohara while ((oc == STACR_OC) != sc->sc_stacr_completed) {
1544 1.36 kiyohara delay(7);
1545 1.36 kiyohara if (i++ > 5) {
1546 1.36 kiyohara aprint_error_dev(sc->sc_dev, "MII timed out\n");
1547 1.49 msaitoh return ETIMEDOUT;
1548 1.36 kiyohara }
1549 1.36 kiyohara oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
1550 1.36 kiyohara }
1551 1.36 kiyohara return 0;
1552 1.36 kiyohara }
1553 1.36 kiyohara
1554 1.36 kiyohara static void
1555 1.36 kiyohara emac_mii_tick(void *arg)
1556 1.36 kiyohara {
1557 1.36 kiyohara struct emac_softc *sc = arg;
1558 1.36 kiyohara int s;
1559 1.36 kiyohara
1560 1.36 kiyohara if (!device_is_active(sc->sc_dev))
1561 1.36 kiyohara return;
1562 1.36 kiyohara
1563 1.36 kiyohara s = splnet();
1564 1.36 kiyohara mii_tick(&sc->sc_mii);
1565 1.36 kiyohara splx(s);
1566 1.36 kiyohara
1567 1.36 kiyohara callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
1568 1.36 kiyohara }
1569 1.36 kiyohara
1570 1.36 kiyohara int
1571 1.36 kiyohara emac_txeob_intr(void *arg)
1572 1.36 kiyohara {
1573 1.36 kiyohara struct emac_softc *sc = arg;
1574 1.36 kiyohara int handled = 0;
1575 1.36 kiyohara
1576 1.36 kiyohara EMAC_EVCNT_INCR(&sc->sc_ev_txintr);
1577 1.36 kiyohara handled |= emac_txreap(sc);
1578 1.36 kiyohara
1579 1.36 kiyohara /* try to get more packets going */
1580 1.46 ozaki if_schedule_deferred_start(&sc->sc_ethercom.ec_if);
1581 1.36 kiyohara
1582 1.36 kiyohara return handled;
1583 1.36 kiyohara }
1584 1.36 kiyohara
1585 1.36 kiyohara int
1586 1.3 simonb emac_rxeob_intr(void *arg)
1587 1.3 simonb {
1588 1.3 simonb struct emac_softc *sc = arg;
1589 1.3 simonb struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1590 1.3 simonb struct emac_rxsoft *rxs;
1591 1.3 simonb struct mbuf *m;
1592 1.54 rin uint32_t rxstat, count;
1593 1.3 simonb int i, len;
1594 1.3 simonb
1595 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_rxintr);
1596 1.3 simonb
1597 1.54 rin count = 0;
1598 1.36 kiyohara for (i = sc->sc_rxptr; ; i = EMAC_NEXTRX(i)) {
1599 1.3 simonb rxs = &sc->sc_rxsoft[i];
1600 1.3 simonb
1601 1.3 simonb EMAC_CDRXSYNC(sc, i,
1602 1.50 msaitoh BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1603 1.3 simonb
1604 1.3 simonb rxstat = sc->sc_rxdescs[i].md_stat_ctrl;
1605 1.3 simonb
1606 1.40 kiyohara if (rxstat & MAL_RX_EMPTY) {
1607 1.3 simonb /*
1608 1.3 simonb * We have processed all of the receive buffers.
1609 1.3 simonb */
1610 1.40 kiyohara /* Flush current empty descriptor */
1611 1.40 kiyohara EMAC_CDRXSYNC(sc, i,
1612 1.50 msaitoh BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1613 1.3 simonb break;
1614 1.40 kiyohara }
1615 1.3 simonb
1616 1.3 simonb /*
1617 1.3 simonb * If an error occurred, update stats, clear the status
1618 1.3 simonb * word, and leave the packet buffer in place. It will
1619 1.3 simonb * simply be reused the next time the ring comes around.
1620 1.3 simonb */
1621 1.3 simonb if (rxstat & (EMAC_RXS_OE | EMAC_RXS_BP | EMAC_RXS_SE |
1622 1.3 simonb EMAC_RXS_AE | EMAC_RXS_BFCS | EMAC_RXS_PTL | EMAC_RXS_ORE |
1623 1.3 simonb EMAC_RXS_IRE)) {
1624 1.36 kiyohara #define PRINTERR(bit, str) \
1625 1.36 kiyohara if (rxstat & (bit)) \
1626 1.36 kiyohara aprint_error_ifnet(ifp, \
1627 1.36 kiyohara "receive error: %s\n", str)
1628 1.52 thorpej if_statinc(ifp, if_ierrors);
1629 1.3 simonb PRINTERR(EMAC_RXS_OE, "overrun error");
1630 1.3 simonb PRINTERR(EMAC_RXS_BP, "bad packet");
1631 1.3 simonb PRINTERR(EMAC_RXS_RP, "runt packet");
1632 1.3 simonb PRINTERR(EMAC_RXS_SE, "short event");
1633 1.3 simonb PRINTERR(EMAC_RXS_AE, "alignment error");
1634 1.3 simonb PRINTERR(EMAC_RXS_BFCS, "bad FCS");
1635 1.3 simonb PRINTERR(EMAC_RXS_PTL, "packet too long");
1636 1.3 simonb PRINTERR(EMAC_RXS_ORE, "out of range error");
1637 1.3 simonb PRINTERR(EMAC_RXS_IRE, "in range error");
1638 1.3 simonb #undef PRINTERR
1639 1.3 simonb EMAC_INIT_RXDESC(sc, i);
1640 1.3 simonb continue;
1641 1.3 simonb }
1642 1.3 simonb
1643 1.3 simonb bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1644 1.3 simonb rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1645 1.3 simonb
1646 1.3 simonb /*
1647 1.3 simonb * No errors; receive the packet. Note, the 405GP emac
1648 1.3 simonb * includes the CRC with every packet.
1649 1.3 simonb */
1650 1.22 thorpej len = sc->sc_rxdescs[i].md_data_len - ETHER_CRC_LEN;
1651 1.3 simonb
1652 1.3 simonb /*
1653 1.3 simonb * If the packet is small enough to fit in a
1654 1.3 simonb * single header mbuf, allocate one and copy
1655 1.3 simonb * the data into it. This greatly reduces
1656 1.3 simonb * memory consumption when we receive lots
1657 1.3 simonb * of small packets.
1658 1.3 simonb *
1659 1.3 simonb * Otherwise, we add a new buffer to the receive
1660 1.3 simonb * chain. If this fails, we drop the packet and
1661 1.3 simonb * recycle the old buffer.
1662 1.3 simonb */
1663 1.3 simonb if (emac_copy_small != 0 && len <= MHLEN) {
1664 1.3 simonb MGETHDR(m, M_DONTWAIT, MT_DATA);
1665 1.3 simonb if (m == NULL)
1666 1.3 simonb goto dropit;
1667 1.28 christos memcpy(mtod(m, void *),
1668 1.28 christos mtod(rxs->rxs_mbuf, void *), len);
1669 1.3 simonb EMAC_INIT_RXDESC(sc, i);
1670 1.3 simonb bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1671 1.3 simonb rxs->rxs_dmamap->dm_mapsize,
1672 1.3 simonb BUS_DMASYNC_PREREAD);
1673 1.3 simonb } else {
1674 1.3 simonb m = rxs->rxs_mbuf;
1675 1.3 simonb if (emac_add_rxbuf(sc, i) != 0) {
1676 1.3 simonb dropit:
1677 1.52 thorpej if_statinc(ifp, if_ierrors);
1678 1.3 simonb EMAC_INIT_RXDESC(sc, i);
1679 1.3 simonb bus_dmamap_sync(sc->sc_dmat,
1680 1.3 simonb rxs->rxs_dmamap, 0,
1681 1.3 simonb rxs->rxs_dmamap->dm_mapsize,
1682 1.3 simonb BUS_DMASYNC_PREREAD);
1683 1.3 simonb continue;
1684 1.3 simonb }
1685 1.3 simonb }
1686 1.3 simonb
1687 1.45 ozaki m_set_rcvif(m, ifp);
1688 1.3 simonb m->m_pkthdr.len = m->m_len = len;
1689 1.3 simonb
1690 1.3 simonb /* Pass it on. */
1691 1.44 ozaki if_percpuq_enqueue(ifp->if_percpuq, m);
1692 1.54 rin
1693 1.54 rin count++;
1694 1.3 simonb }
1695 1.3 simonb
1696 1.3 simonb /* Update the receive pointer. */
1697 1.3 simonb sc->sc_rxptr = i;
1698 1.3 simonb
1699 1.54 rin if (count != 0)
1700 1.54 rin rnd_add_uint32(&sc->rnd_source, count);
1701 1.54 rin
1702 1.36 kiyohara return 1;
1703 1.3 simonb }
1704 1.3 simonb
1705 1.36 kiyohara int
1706 1.3 simonb emac_txde_intr(void *arg)
1707 1.3 simonb {
1708 1.3 simonb struct emac_softc *sc = arg;
1709 1.3 simonb
1710 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_txde);
1711 1.36 kiyohara aprint_error_dev(sc->sc_dev, "emac_txde_intr\n");
1712 1.36 kiyohara return 1;
1713 1.3 simonb }
1714 1.3 simonb
1715 1.36 kiyohara int
1716 1.3 simonb emac_rxde_intr(void *arg)
1717 1.3 simonb {
1718 1.36 kiyohara struct emac_softc *sc = arg;
1719 1.3 simonb int i;
1720 1.3 simonb
1721 1.3 simonb EMAC_EVCNT_INCR(&sc->sc_ev_rxde);
1722 1.36 kiyohara aprint_error_dev(sc->sc_dev, "emac_rxde_intr\n");
1723 1.3 simonb /*
1724 1.3 simonb * XXX!
1725 1.3 simonb * This is a bit drastic; we just drop all descriptors that aren't
1726 1.3 simonb * "clean". We should probably send any that are up the stack.
1727 1.3 simonb */
1728 1.3 simonb for (i = 0; i < EMAC_NRXDESC; i++) {
1729 1.36 kiyohara EMAC_CDRXSYNC(sc, i,
1730 1.36 kiyohara BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1731 1.3 simonb
1732 1.36 kiyohara if (sc->sc_rxdescs[i].md_data_len != MCLBYTES)
1733 1.3 simonb EMAC_INIT_RXDESC(sc, i);
1734 1.3 simonb }
1735 1.3 simonb
1736 1.36 kiyohara return 1;
1737 1.3 simonb }
1738