Home | History | Annotate | Line # | Download | only in dev
if_emac.c revision 1.37
      1 /*	$NetBSD: if_emac.c,v 1.37 2010/04/05 07:19:31 joerg Exp $	*/
      2 
      3 /*
      4  * Copyright 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Simon Burge and Jason Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * emac(4) supports following ibm4xx's EMACs.
     40  *   XXXX: ZMII and 'TCP Accelaration Hardware' not support yet...
     41  *
     42  *            tested
     43  *            ------
     44  * 405EP	-  10/100 x2
     45  * 405EX/EXr	o  10/100/1000 x2 (EXr x1), STA v2, 256bit hash-Table, RGMII
     46  * 405GP/GPr	o  10/100
     47  * 440EP	-  10/100 x2, ZMII
     48  * 440GP	-  10/100 x2, ZMII
     49  * 440GX	-  10/100/1000 x4, ZMII/RGMII(ch 2, 3), TAH(ch 2, 3)
     50  * 440SP	-  10/100/1000
     51  * 440SPe	-  10/100/1000, STA v2
     52  */
     53 
     54 #include <sys/cdefs.h>
     55 __KERNEL_RCSID(0, "$NetBSD: if_emac.c,v 1.37 2010/04/05 07:19:31 joerg Exp $");
     56 
     57 #include "opt_emac.h"
     58 
     59 #include <sys/param.h>
     60 #include <sys/systm.h>
     61 #include <sys/mbuf.h>
     62 #include <sys/kernel.h>
     63 #include <sys/socket.h>
     64 #include <sys/ioctl.h>
     65 
     66 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     67 
     68 #include <net/if.h>
     69 #include <net/if_dl.h>
     70 #include <net/if_media.h>
     71 #include <net/if_ether.h>
     72 
     73 #include <net/bpf.h>
     74 
     75 #include <powerpc/ibm4xx/dcr4xx.h>
     76 #include <powerpc/ibm4xx/mal405gp.h>
     77 #include <powerpc/ibm4xx/dev/emacreg.h>
     78 #include <powerpc/ibm4xx/dev/if_emacreg.h>
     79 #include <powerpc/ibm4xx/dev/if_emacvar.h>
     80 #include <powerpc/ibm4xx/dev/malvar.h>
     81 #include <powerpc/ibm4xx/dev/opbreg.h>
     82 #include <powerpc/ibm4xx/dev/opbvar.h>
     83 #include <powerpc/ibm4xx/dev/plbvar.h>
     84 #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
     85 #include <powerpc/ibm4xx/dev/rmiivar.h>
     86 #endif
     87 
     88 #include <dev/mii/miivar.h>
     89 
     90 #include "locators.h"
     91 
     92 
     93 /*
     94  * Transmit descriptor list size.  There are two Tx channels, each with
     95  * up to 256 hardware descriptors available.  We currently use one Tx
     96  * channel.  We tell the upper layers that they can queue a lot of
     97  * packets, and we go ahead and manage up to 64 of them at a time.  We
     98  * allow up to 16 DMA segments per packet.
     99  */
    100 #define	EMAC_NTXSEGS		16
    101 #define	EMAC_TXQUEUELEN		64
    102 #define	EMAC_TXQUEUELEN_MASK	(EMAC_TXQUEUELEN - 1)
    103 #define	EMAC_TXQUEUE_GC		(EMAC_TXQUEUELEN / 4)
    104 #define	EMAC_NTXDESC		256
    105 #define	EMAC_NTXDESC_MASK	(EMAC_NTXDESC - 1)
    106 #define	EMAC_NEXTTX(x)		(((x) + 1) & EMAC_NTXDESC_MASK)
    107 #define	EMAC_NEXTTXS(x)		(((x) + 1) & EMAC_TXQUEUELEN_MASK)
    108 
    109 /*
    110  * Receive descriptor list size.  There is one Rx channel with up to 256
    111  * hardware descriptors available.  We allocate 64 receive descriptors,
    112  * each with a 2k buffer (MCLBYTES).
    113  */
    114 #define	EMAC_NRXDESC		64
    115 #define	EMAC_NRXDESC_MASK	(EMAC_NRXDESC - 1)
    116 #define	EMAC_NEXTRX(x)		(((x) + 1) & EMAC_NRXDESC_MASK)
    117 #define	EMAC_PREVRX(x)		(((x) - 1) & EMAC_NRXDESC_MASK)
    118 
    119 /*
    120  * Transmit/receive descriptors that are DMA'd to the EMAC.
    121  */
    122 struct emac_control_data {
    123 	struct mal_descriptor ecd_txdesc[EMAC_NTXDESC];
    124 	struct mal_descriptor ecd_rxdesc[EMAC_NRXDESC];
    125 };
    126 
    127 #define	EMAC_CDOFF(x)		offsetof(struct emac_control_data, x)
    128 #define	EMAC_CDTXOFF(x)		EMAC_CDOFF(ecd_txdesc[(x)])
    129 #define	EMAC_CDRXOFF(x)		EMAC_CDOFF(ecd_rxdesc[(x)])
    130 
    131 /*
    132  * Software state for transmit jobs.
    133  */
    134 struct emac_txsoft {
    135 	struct mbuf *txs_mbuf;		/* head of mbuf chain */
    136 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    137 	int txs_firstdesc;		/* first descriptor in packet */
    138 	int txs_lastdesc;		/* last descriptor in packet */
    139 	int txs_ndesc;			/* # of descriptors used */
    140 };
    141 
    142 /*
    143  * Software state for receive descriptors.
    144  */
    145 struct emac_rxsoft {
    146 	struct mbuf *rxs_mbuf;		/* head of mbuf chain */
    147 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    148 };
    149 
    150 /*
    151  * Software state per device.
    152  */
    153 struct emac_softc {
    154 	device_t sc_dev;		/* generic device information */
    155 	int sc_instance;		/* instance no. */
    156 	bus_space_tag_t sc_st;		/* bus space tag */
    157 	bus_space_handle_t sc_sh;	/* bus space handle */
    158 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    159 	struct ethercom sc_ethercom;	/* ethernet common data */
    160 	void *sc_sdhook;		/* shutdown hook */
    161 	void *sc_powerhook;		/* power management hook */
    162 
    163 	struct mii_data sc_mii;		/* MII/media information */
    164 	struct callout sc_callout;	/* tick callout */
    165 
    166 	uint32_t sc_mr1;		/* copy of Mode Register 1 */
    167 	uint32_t sc_stacr_read;		/* Read opcode of STAOPC of STACR */
    168 	uint32_t sc_stacr_write;	/* Write opcode of STAOPC of STACR */
    169 	uint32_t sc_stacr_bits;		/* misc bits of STACR */
    170 	bool sc_stacr_completed;	/* Operation completed of STACR */
    171 	int sc_htsize;			/* Hash Table size */
    172 
    173 	bus_dmamap_t sc_cddmamap;	/* control data dma map */
    174 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    175 
    176 	/* Software state for transmit/receive descriptors. */
    177 	struct emac_txsoft sc_txsoft[EMAC_TXQUEUELEN];
    178 	struct emac_rxsoft sc_rxsoft[EMAC_NRXDESC];
    179 
    180 	/* Control data structures. */
    181 	struct emac_control_data *sc_control_data;
    182 #define	sc_txdescs	sc_control_data->ecd_txdesc
    183 #define	sc_rxdescs	sc_control_data->ecd_rxdesc
    184 
    185 #ifdef EMAC_EVENT_COUNTERS
    186 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    187 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
    188 	struct evcnt sc_ev_rxde;	/* Rx descriptor interrupts */
    189 	struct evcnt sc_ev_txde;	/* Tx descriptor interrupts */
    190 	struct evcnt sc_ev_intr;	/* General EMAC interrupts */
    191 
    192 	struct evcnt sc_ev_txreap;	/* Calls to Tx descriptor reaper */
    193 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    194 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    195 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    196 	struct evcnt sc_ev_tu;		/* Tx underrun */
    197 #endif /* EMAC_EVENT_COUNTERS */
    198 
    199 	int sc_txfree;			/* number of free Tx descriptors */
    200 	int sc_txnext;			/* next ready Tx descriptor */
    201 
    202 	int sc_txsfree;			/* number of free Tx jobs */
    203 	int sc_txsnext;			/* next ready Tx job */
    204 	int sc_txsdirty;		/* dirty Tx jobs */
    205 
    206 	int sc_rxptr;			/* next ready RX descriptor/descsoft */
    207 
    208 	void (*sc_rmii_enable)(device_t, int);		/* reduced MII enable */
    209 	void (*sc_rmii_disable)(device_t, int);		/* reduced MII disable*/
    210 	void (*sc_rmii_speed)(device_t, int, int);	/* reduced MII speed */
    211 };
    212 
    213 #ifdef EMAC_EVENT_COUNTERS
    214 #define	EMAC_EVCNT_INCR(ev)	(ev)->ev_count++
    215 #else
    216 #define	EMAC_EVCNT_INCR(ev)	/* nothing */
    217 #endif
    218 
    219 #define	EMAC_CDTXADDR(sc, x)	((sc)->sc_cddma + EMAC_CDTXOFF((x)))
    220 #define	EMAC_CDRXADDR(sc, x)	((sc)->sc_cddma + EMAC_CDRXOFF((x)))
    221 
    222 #define	EMAC_CDTXSYNC(sc, x, n, ops)					\
    223 do {									\
    224 	int __x, __n;							\
    225 									\
    226 	__x = (x);							\
    227 	__n = (n);							\
    228 									\
    229 	/* If it will wrap around, sync to the end of the ring. */	\
    230 	if ((__x + __n) > EMAC_NTXDESC) {				\
    231 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    232 		    EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) *	\
    233 		    (EMAC_NTXDESC - __x), (ops));			\
    234 		__n -= (EMAC_NTXDESC - __x);				\
    235 		__x = 0;						\
    236 	}								\
    237 									\
    238 	/* Now sync whatever is left. */				\
    239 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    240 	    EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * __n, (ops)); \
    241 } while (/*CONSTCOND*/0)
    242 
    243 #define	EMAC_CDRXSYNC(sc, x, ops)					\
    244 do {									\
    245 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    246 	    EMAC_CDRXOFF((x)), sizeof(struct mal_descriptor), (ops));	\
    247 } while (/*CONSTCOND*/0)
    248 
    249 #define	EMAC_INIT_RXDESC(sc, x)						\
    250 do {									\
    251 	struct emac_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    252 	struct mal_descriptor *__rxd = &(sc)->sc_rxdescs[(x)];		\
    253 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    254 									\
    255 	/*								\
    256 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    257 	 * so that the payload after the Ethernet header is aligned	\
    258 	 * to a 4-byte boundary.					\
    259 	 */								\
    260 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    261 									\
    262 	__rxd->md_data = __rxs->rxs_dmamap->dm_segs[0].ds_addr + 2;	\
    263 	__rxd->md_data_len = __m->m_ext.ext_size - 2;			\
    264 	__rxd->md_stat_ctrl = MAL_RX_EMPTY | MAL_RX_INTERRUPT |		\
    265 	    /* Set wrap on last descriptor. */				\
    266 	    (((x) == EMAC_NRXDESC - 1) ? MAL_RX_WRAP : 0);		\
    267 	EMAC_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    268 } while (/*CONSTCOND*/0)
    269 
    270 #define	EMAC_WRITE(sc, reg, val) \
    271 	bus_space_write_stream_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    272 #define	EMAC_READ(sc, reg) \
    273 	bus_space_read_stream_4((sc)->sc_st, (sc)->sc_sh, (reg))
    274 
    275 #define	EMAC_SET_FILTER(aht, crc) \
    276 do {									\
    277 	(aht)[3 - (((crc) >> 26) >> 4)] |= 1 << (((crc) >> 26) & 0xf);	\
    278 } while (/*CONSTCOND*/0)
    279 #define	EMAC_SET_FILTER256(aht, crc) \
    280 do {									\
    281 	(aht)[7 - (((crc) >> 24) >> 5)] |= 1 << (((crc) >> 24) & 0x1f);	\
    282 } while (/*CONSTCOND*/0)
    283 
    284 static int	emac_match(device_t, cfdata_t, void *);
    285 static void	emac_attach(device_t, device_t, void *);
    286 
    287 static int	emac_intr(void *);
    288 static void	emac_shutdown(void *);
    289 
    290 static void	emac_start(struct ifnet *);
    291 static int	emac_ioctl(struct ifnet *, u_long, void *);
    292 static int	emac_init(struct ifnet *);
    293 static void	emac_stop(struct ifnet *, int);
    294 static void	emac_watchdog(struct ifnet *);
    295 
    296 static int	emac_add_rxbuf(struct emac_softc *, int);
    297 static void	emac_rxdrain(struct emac_softc *);
    298 static int	emac_set_filter(struct emac_softc *);
    299 static int	emac_txreap(struct emac_softc *);
    300 
    301 static void	emac_soft_reset(struct emac_softc *);
    302 static void	emac_smart_reset(struct emac_softc *);
    303 
    304 static int	emac_mii_readreg(device_t, int, int);
    305 static void	emac_mii_writereg(device_t, int, int, int);
    306 static void	emac_mii_statchg(device_t);
    307 static uint32_t	emac_mii_wait(struct emac_softc *);
    308 static void	emac_mii_tick(void *);
    309 
    310 int		emac_copy_small = 0;
    311 
    312 CFATTACH_DECL_NEW(emac, sizeof(struct emac_softc),
    313     emac_match, emac_attach, NULL, NULL);
    314 
    315 
    316 static int
    317 emac_match(device_t parent, cfdata_t cf, void *aux)
    318 {
    319 	struct opb_attach_args *oaa = aux;
    320 
    321 	/* match only on-chip ethernet devices */
    322 	if (strcmp(oaa->opb_name, cf->cf_name) == 0)
    323 		return 1;
    324 
    325 	return 0;
    326 }
    327 
    328 static void
    329 emac_attach(device_t parent, device_t self, void *aux)
    330 {
    331 	struct opb_attach_args *oaa = aux;
    332 	struct emac_softc *sc = device_private(self);
    333 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    334 	struct mii_data *mii = &sc->sc_mii;
    335 	bus_dma_segment_t seg;
    336 	int error, i, nseg, opb_freq, opbc, mii_phy = MII_PHY_ANY;
    337 	const uint8_t *enaddr;
    338 	prop_dictionary_t dict = device_properties(self);
    339 	prop_data_t ea;
    340 
    341 	bus_space_map(oaa->opb_bt, oaa->opb_addr, EMAC_NREG, 0, &sc->sc_sh);
    342 
    343 	sc->sc_dev = self;
    344 	sc->sc_instance = oaa->opb_instance;
    345 	sc->sc_st = oaa->opb_bt;
    346 	sc->sc_dmat = oaa->opb_dmat;
    347 
    348 	callout_init(&sc->sc_callout, 0);
    349 
    350 	aprint_naive("\n");
    351 	aprint_normal(": Ethernet Media Access Controller\n");
    352 
    353 	/* Fetch the Ethernet address. */
    354 	ea = prop_dictionary_get(dict, "mac-address");
    355 	if (ea == NULL) {
    356 		aprint_error_dev(self, "unable to get mac-address property\n");
    357 		return;
    358 	}
    359 	KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
    360 	KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
    361 	enaddr = prop_data_data_nocopy(ea);
    362 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
    363 
    364 #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
    365 	/* Fetch the MII offset. */
    366 	prop_dictionary_get_uint32(dict, "mii-phy", &mii_phy);
    367 
    368 #ifdef EMAC_ZMII_PHY
    369 	if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_ZMII)
    370 		zmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
    371 		    &sc->sc_rmii_disable, &sc->sc_rmii_speed);
    372 #endif
    373 #ifdef EMAC_RGMII_PHY
    374 	if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_RGMII)
    375 		rgmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
    376 		    &sc->sc_rmii_disable, &sc->sc_rmii_speed);
    377 #endif
    378 #endif
    379 
    380 	/*
    381 	 * Allocate the control data structures, and create and load the
    382 	 * DMA map for it.
    383 	 */
    384 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    385 	    sizeof(struct emac_control_data), 0, 0, &seg, 1, &nseg, 0)) != 0) {
    386 		aprint_error_dev(self,
    387 		    "unable to allocate control data, error = %d\n", error);
    388 		goto fail_0;
    389 	}
    390 
    391 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    392 	    sizeof(struct emac_control_data), (void **)&sc->sc_control_data,
    393 	    BUS_DMA_COHERENT)) != 0) {
    394 		aprint_error_dev(self,
    395 		    "unable to map control data, error = %d\n", error);
    396 		goto fail_1;
    397 	}
    398 
    399 	if ((error = bus_dmamap_create(sc->sc_dmat,
    400 	    sizeof(struct emac_control_data), 1,
    401 	    sizeof(struct emac_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    402 		aprint_error_dev(self,
    403 		    "unable to create control data DMA map, error = %d\n",
    404 		    error);
    405 		goto fail_2;
    406 	}
    407 
    408 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    409 	    sc->sc_control_data, sizeof(struct emac_control_data), NULL,
    410 	    0)) != 0) {
    411 		aprint_error_dev(self,
    412 		    "unable to load control data DMA map, error = %d\n", error);
    413 		goto fail_3;
    414 	}
    415 
    416 	/*
    417 	 * Create the transmit buffer DMA maps.
    418 	 */
    419 	for (i = 0; i < EMAC_TXQUEUELEN; i++) {
    420 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    421 		    EMAC_NTXSEGS, MCLBYTES, 0, 0,
    422 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    423 			aprint_error_dev(self,
    424 			    "unable to create tx DMA map %d, error = %d\n",
    425 			    i, error);
    426 			goto fail_4;
    427 		}
    428 	}
    429 
    430 	/*
    431 	 * Create the receive buffer DMA maps.
    432 	 */
    433 	for (i = 0; i < EMAC_NRXDESC; i++) {
    434 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    435 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    436 			aprint_error_dev(self,
    437 			    "unable to create rx DMA map %d, error = %d\n",
    438 			    i, error);
    439 			goto fail_5;
    440 		}
    441 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    442 	}
    443 
    444 	/* Soft Reset the EMAC.  The chip to a known state. */
    445 	emac_soft_reset(sc);
    446 
    447 	opb_freq = opb_get_frequency();
    448 	switch (opb_freq) {
    449 	case  50000000: opbc =  STACR_OPBC_50MHZ; break;
    450 	case  66666666: opbc =  STACR_OPBC_66MHZ; break;
    451 	case  83333333: opbc =  STACR_OPBC_83MHZ; break;
    452 	case 100000000: opbc = STACR_OPBC_100MHZ; break;
    453 
    454 	default:
    455 		if (opb_freq > 100000000) {
    456 			opbc = STACR_OPBC_A100MHZ;
    457 			break;
    458 		}
    459 		aprint_error_dev(self, "unsupport OPB frequency %dMHz\n",
    460 		    opb_freq / 1000 / 1000);
    461 		goto fail_5;
    462 	}
    463 	if (oaa->opb_flags & OPB_FLAGS_EMAC_GBE) {
    464 		sc->sc_mr1 =
    465 		    MR1_RFS_GBE(MR1__FS_16KB)	|
    466 		    MR1_TFS_GBE(MR1__FS_16KB)	|
    467 		    MR1_TR0_MULTIPLE		|
    468 		    MR1_OBCI(opbc);
    469 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
    470 
    471 		if (oaa->opb_flags & OPB_FLAGS_EMAC_STACV2) {
    472 			sc->sc_stacr_read = STACR_STAOPC_READ;
    473 			sc->sc_stacr_write = STACR_STAOPC_WRITE;
    474 			sc->sc_stacr_bits = STACR_OC;
    475 			sc->sc_stacr_completed = false;
    476 		} else {
    477 			sc->sc_stacr_read = STACR_READ;
    478 			sc->sc_stacr_write = STACR_WRITE;
    479 			sc->sc_stacr_completed = true;
    480 		}
    481 	} else {
    482 		/*
    483 		 * Set up Mode Register 1 - set receive and transmit FIFOs to
    484 		 * maximum size, allow transmit of multiple packets (only
    485 		 * channel 0 is used).
    486 		 *
    487 		 * XXX: Allow pause packets??
    488 		 */
    489 		sc->sc_mr1 =
    490 		    MR1_RFS(MR1__FS_4KB) |
    491 		    MR1_TFS(MR1__FS_2KB) |
    492 		    MR1_TR0_MULTIPLE;
    493 
    494 		sc->sc_stacr_read = STACR_READ;
    495 		sc->sc_stacr_write = STACR_WRITE;
    496 		sc->sc_stacr_bits = STACR_OPBC(opbc);
    497 		sc->sc_stacr_completed = true;
    498 	}
    499 
    500 	intr_establish(oaa->opb_irq, IST_LEVEL, IPL_NET, emac_intr, sc);
    501 	mal_intr_establish(sc->sc_instance, sc);
    502 
    503 	if (oaa->opb_flags & OPB_FLAGS_EMAC_HT256)
    504 		sc->sc_htsize = 256;
    505 	else
    506 		sc->sc_htsize = 64;
    507 
    508 	/* Clear all interrupts */
    509 	EMAC_WRITE(sc, EMAC_ISR, ISR_ALL);
    510 
    511 	/*
    512 	 * Initialise the media structures.
    513 	 */
    514 	mii->mii_ifp = ifp;
    515 	mii->mii_readreg = emac_mii_readreg;
    516 	mii->mii_writereg = emac_mii_writereg;
    517 	mii->mii_statchg = emac_mii_statchg;
    518 
    519 	sc->sc_ethercom.ec_mii = mii;
    520 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
    521 	mii_attach(self, mii, 0xffffffff, mii_phy, MII_OFFSET_ANY, 0);
    522 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    523 		ifmedia_add(&mii->mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    524 		ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_NONE);
    525 	} else
    526 		ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_AUTO);
    527 
    528 	ifp = &sc->sc_ethercom.ec_if;
    529 	strcpy(ifp->if_xname, self->dv_xname);
    530 	ifp->if_softc = sc;
    531 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    532 	ifp->if_start = emac_start;
    533 	ifp->if_ioctl = emac_ioctl;
    534 	ifp->if_init = emac_init;
    535 	ifp->if_stop = emac_stop;
    536 	ifp->if_watchdog = emac_watchdog;
    537 	IFQ_SET_READY(&ifp->if_snd);
    538 
    539 	/*
    540 	 * We can support 802.1Q VLAN-sized frames.
    541 	 */
    542 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    543 
    544 	/*
    545 	 * Attach the interface.
    546 	 */
    547 	if_attach(ifp);
    548 	ether_ifattach(ifp, enaddr);
    549 
    550 #ifdef EMAC_EVENT_COUNTERS
    551 	/*
    552 	 * Attach the event counters.
    553 	 */
    554 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    555 	    NULL, self->dv_xname, "txintr");
    556 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    557 	    NULL, self->dv_xname, "rxintr");
    558 	evcnt_attach_dynamic(&sc->sc_ev_txde, EVCNT_TYPE_INTR,
    559 	    NULL, self->dv_xname, "txde");
    560 	evcnt_attach_dynamic(&sc->sc_ev_rxde, EVCNT_TYPE_INTR,
    561 	    NULL, self->dv_xname, "rxde");
    562 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    563 	    NULL, self->dv_xname, "intr");
    564 
    565 	evcnt_attach_dynamic(&sc->sc_ev_txreap, EVCNT_TYPE_MISC,
    566 	    NULL, self->dv_xname, "txreap");
    567 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    568 	    NULL, self->dv_xname, "txsstall");
    569 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    570 	    NULL, self->dv_xname, "txdstall");
    571 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    572 	    NULL, self->dv_xname, "txdrop");
    573 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
    574 	    NULL, self->dv_xname, "tu");
    575 #endif /* EMAC_EVENT_COUNTERS */
    576 
    577 	/*
    578 	 * Make sure the interface is shutdown during reboot.
    579 	 */
    580 	sc->sc_sdhook = shutdownhook_establish(emac_shutdown, sc);
    581 	if (sc->sc_sdhook == NULL)
    582 		aprint_error_dev(self,
    583 		    "WARNING: unable to establish shutdown hook\n");
    584 
    585 	return;
    586 
    587 	/*
    588 	 * Free any resources we've allocated during the failed attach
    589 	 * attempt.  Do this in reverse order and fall through.
    590 	 */
    591 fail_5:
    592 	for (i = 0; i < EMAC_NRXDESC; i++) {
    593 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    594 			bus_dmamap_destroy(sc->sc_dmat,
    595 			    sc->sc_rxsoft[i].rxs_dmamap);
    596 	}
    597 fail_4:
    598 	for (i = 0; i < EMAC_TXQUEUELEN; i++) {
    599 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    600 			bus_dmamap_destroy(sc->sc_dmat,
    601 			    sc->sc_txsoft[i].txs_dmamap);
    602 	}
    603 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    604 fail_3:
    605 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    606 fail_2:
    607 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    608 	    sizeof(struct emac_control_data));
    609 fail_1:
    610 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    611 fail_0:
    612 	return;
    613 }
    614 
    615 /*
    616  * EMAC General interrupt handler
    617  */
    618 static int
    619 emac_intr(void *arg)
    620 {
    621 	struct emac_softc *sc = arg;
    622 	uint32_t status;
    623 
    624 	EMAC_EVCNT_INCR(&sc->sc_ev_intr);
    625 	status = EMAC_READ(sc, EMAC_ISR);
    626 
    627 	/* Clear the interrupt status bits. */
    628 	EMAC_WRITE(sc, EMAC_ISR, status);
    629 
    630 	return 1;
    631 }
    632 
    633 static void
    634 emac_shutdown(void *arg)
    635 {
    636 	struct emac_softc *sc = arg;
    637 
    638 	emac_stop(&sc->sc_ethercom.ec_if, 0);
    639 }
    640 
    641 
    642 /*
    643  * ifnet interface functions
    644  */
    645 
    646 static void
    647 emac_start(struct ifnet *ifp)
    648 {
    649 	struct emac_softc *sc = ifp->if_softc;
    650 	struct mbuf *m0;
    651 	struct emac_txsoft *txs;
    652 	bus_dmamap_t dmamap;
    653 	int error, firsttx, nexttx, lasttx, ofree, seg;
    654 
    655 	lasttx = 0;	/* XXX gcc */
    656 
    657 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    658 		return;
    659 
    660 	/*
    661 	 * Remember the previous number of free descriptors.
    662 	 */
    663 	ofree = sc->sc_txfree;
    664 
    665 	/*
    666 	 * Loop through the send queue, setting up transmit descriptors
    667 	 * until we drain the queue, or use up all available transmit
    668 	 * descriptors.
    669 	 */
    670 	for (;;) {
    671 		/* Grab a packet off the queue. */
    672 		IFQ_POLL(&ifp->if_snd, m0);
    673 		if (m0 == NULL)
    674 			break;
    675 
    676 		/*
    677 		 * Get a work queue entry.  Reclaim used Tx descriptors if
    678 		 * we are running low.
    679 		 */
    680 		if (sc->sc_txsfree < EMAC_TXQUEUE_GC) {
    681 			emac_txreap(sc);
    682 			if (sc->sc_txsfree == 0) {
    683 				EMAC_EVCNT_INCR(&sc->sc_ev_txsstall);
    684 				break;
    685 			}
    686 		}
    687 
    688 		txs = &sc->sc_txsoft[sc->sc_txsnext];
    689 		dmamap = txs->txs_dmamap;
    690 
    691 		/*
    692 		 * Load the DMA map.  If this fails, the packet either
    693 		 * didn't fit in the alloted number of segments, or we
    694 		 * were short on resources.  In this case, we'll copy
    695 		 * and try again.
    696 		 */
    697 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    698 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    699 		if (error) {
    700 			if (error == EFBIG) {
    701 				EMAC_EVCNT_INCR(&sc->sc_ev_txdrop);
    702 				aprint_error_ifnet(ifp,
    703 				    "Tx packet consumes too many "
    704 				    "DMA segments, dropping...\n");
    705 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
    706 				    m_freem(m0);
    707 				    continue;
    708 			}
    709 			/* Short on resources, just stop for now. */
    710 			break;
    711 		}
    712 
    713 		/*
    714 		 * Ensure we have enough descriptors free to describe
    715 		 * the packet.
    716 		 */
    717 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    718 			/*
    719 			 * Not enough free descriptors to transmit this
    720 			 * packet.  We haven't committed anything yet,
    721 			 * so just unload the DMA map, put the packet
    722 			 * back on the queue, and punt.  Notify the upper
    723 			 * layer that there are not more slots left.
    724 			 *
    725 			 */
    726 			ifp->if_flags |= IFF_OACTIVE;
    727 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    728 			EMAC_EVCNT_INCR(&sc->sc_ev_txdstall);
    729 			break;
    730 		}
    731 
    732 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    733 
    734 		/*
    735 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    736 		 */
    737 
    738 		/* Sync the DMA map. */
    739 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    740 		    BUS_DMASYNC_PREWRITE);
    741 
    742 		/*
    743 		 * Store a pointer to the packet so that we can free it
    744 		 * later.
    745 		 */
    746 		txs->txs_mbuf = m0;
    747 		txs->txs_firstdesc = sc->sc_txnext;
    748 		txs->txs_ndesc = dmamap->dm_nsegs;
    749 
    750 		/*
    751 		 * Initialize the transmit descriptor.
    752 		 */
    753 		firsttx = sc->sc_txnext;
    754 		for (nexttx = sc->sc_txnext, seg = 0;
    755 		     seg < dmamap->dm_nsegs;
    756 		     seg++, nexttx = EMAC_NEXTTX(nexttx)) {
    757 			struct mal_descriptor *txdesc =
    758 			    &sc->sc_txdescs[nexttx];
    759 
    760 			/*
    761 			 * If this is the first descriptor we're
    762 			 * enqueueing, don't set the TX_READY bit just
    763 			 * yet.  That could cause a race condition.
    764 			 * We'll do it below.
    765 			 */
    766 			txdesc->md_data = dmamap->dm_segs[seg].ds_addr;
    767 			txdesc->md_data_len = dmamap->dm_segs[seg].ds_len;
    768 			txdesc->md_stat_ctrl =
    769 			    (txdesc->md_stat_ctrl & MAL_TX_WRAP) |
    770 			    (nexttx == firsttx ? 0 : MAL_TX_READY) |
    771 			    EMAC_TXC_GFCS | EMAC_TXC_GPAD;
    772 			lasttx = nexttx;
    773 		}
    774 
    775 		/* Set the LAST bit on the last segment. */
    776 		sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_LAST;
    777 
    778 		/*
    779 		 * Set up last segment descriptor to send an interrupt after
    780 		 * that descriptor is transmitted, and bypass existing Tx
    781 		 * descriptor reaping method (for now...).
    782 		 */
    783 		sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_INTERRUPT;
    784 
    785 
    786 		txs->txs_lastdesc = lasttx;
    787 
    788 		/* Sync the descriptors we're using. */
    789 		EMAC_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
    790 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    791 
    792 		/*
    793 		 * The entire packet chain is set up.  Give the
    794 		 * first descriptor to the chip now.
    795 		 */
    796 		sc->sc_txdescs[firsttx].md_stat_ctrl |= MAL_TX_READY;
    797 		EMAC_CDTXSYNC(sc, firsttx, 1,
    798 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    799 		/*
    800 		 * Tell the EMAC that a new packet is available.
    801 		 */
    802 		EMAC_WRITE(sc, EMAC_TMR0, TMR0_GNP0 | TMR0_TFAE_2);
    803 
    804 		/* Advance the tx pointer. */
    805 		sc->sc_txfree -= txs->txs_ndesc;
    806 		sc->sc_txnext = nexttx;
    807 
    808 		sc->sc_txsfree--;
    809 		sc->sc_txsnext = EMAC_NEXTTXS(sc->sc_txsnext);
    810 
    811 		/*
    812 		 * Pass the packet to any BPF listeners.
    813 		 */
    814 		bpf_mtap(ifp, m0);
    815 	}
    816 
    817 	if (sc->sc_txfree == 0)
    818 		/* No more slots left; notify upper layer. */
    819 		ifp->if_flags |= IFF_OACTIVE;
    820 
    821 	if (sc->sc_txfree != ofree)
    822 		/* Set a watchdog timer in case the chip flakes out. */
    823 		ifp->if_timer = 5;
    824 }
    825 
    826 static int
    827 emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    828 {
    829 	struct emac_softc *sc = ifp->if_softc;
    830 	int s, error;
    831 
    832 	s = splnet();
    833 
    834 	switch (cmd) {
    835 	case SIOCSIFMTU:
    836 	{
    837 		struct ifreq *ifr = (struct ifreq *)data;
    838 		int maxmtu;
    839 
    840 		if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU)
    841 			maxmtu = EMAC_MAX_MTU;
    842 		else
    843 			maxmtu = ETHERMTU;
    844 
    845 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
    846 			error = EINVAL;
    847 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
    848 			break;
    849 		else if (ifp->if_flags & IFF_UP)
    850 			error = emac_init(ifp);
    851 		else
    852 			error = 0;
    853 		break;
    854 	}
    855 
    856 	default:
    857 		error = ether_ioctl(ifp, cmd, data);
    858 		if (error == ENETRESET) {
    859 			/*
    860 			 * Multicast list has changed; set the hardware filter
    861 			 * accordingly.
    862 			 */
    863 			if (ifp->if_flags & IFF_RUNNING)
    864 				error = emac_set_filter(sc);
    865 			else
    866 				error = 0;
    867 		}
    868 	}
    869 
    870 	/* try to get more packets going */
    871 	emac_start(ifp);
    872 
    873 	splx(s);
    874 	return error;
    875 }
    876 
    877 static int
    878 emac_init(struct ifnet *ifp)
    879 {
    880 	struct emac_softc *sc = ifp->if_softc;
    881 	struct emac_rxsoft *rxs;
    882 	const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
    883 	int error, i;
    884 
    885 	error = 0;
    886 
    887 	/* Cancel any pending I/O. */
    888 	emac_stop(ifp, 0);
    889 
    890 	/* Reset the chip to a known state. */
    891 	emac_soft_reset(sc);
    892 
    893 	/*
    894 	 * Initialise the transmit descriptor ring.
    895 	 */
    896 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    897 	/* set wrap on last descriptor */
    898 	sc->sc_txdescs[EMAC_NTXDESC - 1].md_stat_ctrl |= MAL_TX_WRAP;
    899 	EMAC_CDTXSYNC(sc, 0, EMAC_NTXDESC,
    900 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    901 	sc->sc_txfree = EMAC_NTXDESC;
    902 	sc->sc_txnext = 0;
    903 
    904 	/*
    905 	 * Initialise the transmit job descriptors.
    906 	 */
    907 	for (i = 0; i < EMAC_TXQUEUELEN; i++)
    908 		sc->sc_txsoft[i].txs_mbuf = NULL;
    909 	sc->sc_txsfree = EMAC_TXQUEUELEN;
    910 	sc->sc_txsnext = 0;
    911 	sc->sc_txsdirty = 0;
    912 
    913 	/*
    914 	 * Initialise the receiver descriptor and receive job
    915 	 * descriptor rings.
    916 	 */
    917 	for (i = 0; i < EMAC_NRXDESC; i++) {
    918 		rxs = &sc->sc_rxsoft[i];
    919 		if (rxs->rxs_mbuf == NULL) {
    920 			if ((error = emac_add_rxbuf(sc, i)) != 0) {
    921 				aprint_error_ifnet(ifp,
    922 				    "unable to allocate or map rx buffer %d,"
    923 				    " error = %d\n",
    924 				    i, error);
    925 				/*
    926 				 * XXX Should attempt to run with fewer receive
    927 				 * XXX buffers instead of just failing.
    928 				 */
    929 				emac_rxdrain(sc);
    930 				goto out;
    931 			}
    932 		} else
    933 			EMAC_INIT_RXDESC(sc, i);
    934 	}
    935 	sc->sc_rxptr = 0;
    936 
    937 	/*
    938 	 * Set the current media.
    939 	 */
    940 	if ((error = ether_mediachange(ifp)) != 0)
    941 		goto out;
    942 
    943 	/*
    944 	 * Load the MAC address.
    945 	 */
    946 	EMAC_WRITE(sc, EMAC_IAHR, enaddr[0] << 8 | enaddr[1]);
    947 	EMAC_WRITE(sc, EMAC_IALR,
    948 	    enaddr[2] << 24 | enaddr[3] << 16 | enaddr[4] << 8 | enaddr[5]);
    949 
    950 	/* Enable the transmit and receive channel on the MAL. */
    951 	error = mal_start(sc->sc_instance,
    952 	    EMAC_CDTXADDR(sc, 0), EMAC_CDRXADDR(sc, 0));
    953 	if (error)
    954 		goto out;
    955 
    956 	sc->sc_mr1 &= ~MR1_JPSM;
    957 	if (ifp->if_mtu > ETHERMTU)
    958 		/* Enable Jumbo Packet Support Mode */
    959 		sc->sc_mr1 |= MR1_JPSM;
    960 
    961 	/* Set fifos, media modes. */
    962 	EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
    963 
    964 	/*
    965 	 * Enable Individual and (possibly) Broadcast Address modes,
    966 	 * runt packets, and strip padding.
    967 	 */
    968 	EMAC_WRITE(sc, EMAC_RMR, RMR_IAE | RMR_RRP | RMR_SP | RMR_TFAE_2 |
    969 	    (ifp->if_flags & IFF_PROMISC ? RMR_PME : 0) |
    970 	    (ifp->if_flags & IFF_BROADCAST ? RMR_BAE : 0));
    971 
    972 	/*
    973 	 * Set multicast filter.
    974 	 */
    975 	emac_set_filter(sc);
    976 
    977 	/*
    978 	 * Set low- and urgent-priority request thresholds.
    979 	 */
    980 	EMAC_WRITE(sc, EMAC_TMR1,
    981 	    ((7 << TMR1_TLR_SHIFT) & TMR1_TLR_MASK) | /* 16 word burst */
    982 	    ((15 << TMR1_TUR_SHIFT) & TMR1_TUR_MASK));
    983 	/*
    984 	 * Set Transmit Request Threshold Register.
    985 	 */
    986 	EMAC_WRITE(sc, EMAC_TRTR, TRTR_256);
    987 
    988 	/*
    989 	 * Set high and low receive watermarks.
    990 	 */
    991 	EMAC_WRITE(sc, EMAC_RWMR,
    992 	    30 << RWMR_RLWM_SHIFT | 64 << RWMR_RLWM_SHIFT);
    993 
    994 	/*
    995 	 * Set frame gap.
    996 	 */
    997 	EMAC_WRITE(sc, EMAC_IPGVR, 8);
    998 
    999 	/*
   1000 	 * Set interrupt status enable bits for EMAC.
   1001 	 */
   1002 	EMAC_WRITE(sc, EMAC_ISER,
   1003 	    ISR_TXPE |		/* TX Parity Error */
   1004 	    ISR_RXPE |		/* RX Parity Error */
   1005 	    ISR_TXUE |		/* TX Underrun Event */
   1006 	    ISR_RXOE |		/* RX Overrun Event */
   1007 	    ISR_OVR  |		/* Overrun Error */
   1008 	    ISR_PP   |		/* Pause Packet */
   1009 	    ISR_BP   |		/* Bad Packet */
   1010 	    ISR_RP   |		/* Runt Packet */
   1011 	    ISR_SE   |		/* Short Event */
   1012 	    ISR_ALE  |		/* Alignment Error */
   1013 	    ISR_BFCS |		/* Bad FCS */
   1014 	    ISR_PTLE |		/* Packet Too Long Error */
   1015 	    ISR_ORE  |		/* Out of Range Error */
   1016 	    ISR_IRE  |		/* In Range Error */
   1017 	    ISR_SE0  |		/* Signal Quality Error 0 (SQE) */
   1018 	    ISR_TE0  |		/* Transmit Error 0 */
   1019 	    ISR_MOS  |		/* MMA Operation Succeeded */
   1020 	    ISR_MOF);		/* MMA Operation Failed */
   1021 
   1022 	/*
   1023 	 * Enable the transmit and receive channel on the EMAC.
   1024 	 */
   1025 	EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
   1026 
   1027 	/*
   1028 	 * Start the one second MII clock.
   1029 	 */
   1030 	callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
   1031 
   1032 	/*
   1033 	 * ... all done!
   1034 	 */
   1035 	ifp->if_flags |= IFF_RUNNING;
   1036 	ifp->if_flags &= ~IFF_OACTIVE;
   1037 
   1038  out:
   1039 	if (error) {
   1040 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1041 		ifp->if_timer = 0;
   1042 		aprint_error_ifnet(ifp, "interface not running\n");
   1043 	}
   1044 	return error;
   1045 }
   1046 
   1047 static void
   1048 emac_stop(struct ifnet *ifp, int disable)
   1049 {
   1050 	struct emac_softc *sc = ifp->if_softc;
   1051 	struct emac_txsoft *txs;
   1052 	int i;
   1053 
   1054 	/* Stop the one second clock. */
   1055 	callout_stop(&sc->sc_callout);
   1056 
   1057 	/* Down the MII */
   1058 	mii_down(&sc->sc_mii);
   1059 
   1060 	/* Disable interrupts. */
   1061 	EMAC_WRITE(sc, EMAC_ISER, 0);
   1062 
   1063 	/* Disable the receive and transmit channels. */
   1064 	mal_stop(sc->sc_instance);
   1065 
   1066 	/* Disable the transmit enable and receive MACs. */
   1067 	EMAC_WRITE(sc, EMAC_MR0,
   1068 	    EMAC_READ(sc, EMAC_MR0) & ~(MR0_TXE | MR0_RXE));
   1069 
   1070 	/* Release any queued transmit buffers. */
   1071 	for (i = 0; i < EMAC_TXQUEUELEN; i++) {
   1072 		txs = &sc->sc_txsoft[i];
   1073 		if (txs->txs_mbuf != NULL) {
   1074 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1075 			m_freem(txs->txs_mbuf);
   1076 			txs->txs_mbuf = NULL;
   1077 		}
   1078 	}
   1079 
   1080 	if (disable)
   1081 		emac_rxdrain(sc);
   1082 
   1083 	/*
   1084 	 * Mark the interface down and cancel the watchdog timer.
   1085 	 */
   1086 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1087 	ifp->if_timer = 0;
   1088 }
   1089 
   1090 static void
   1091 emac_watchdog(struct ifnet *ifp)
   1092 {
   1093 	struct emac_softc *sc = ifp->if_softc;
   1094 
   1095 	/*
   1096 	 * Since we're not interrupting every packet, sweep
   1097 	 * up before we report an error.
   1098 	 */
   1099 	emac_txreap(sc);
   1100 
   1101 	if (sc->sc_txfree != EMAC_NTXDESC) {
   1102 		aprint_error_ifnet(ifp,
   1103 		    "device timeout (txfree %d txsfree %d txnext %d)\n",
   1104 		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
   1105 		ifp->if_oerrors++;
   1106 
   1107 		/* Reset the interface. */
   1108 		(void)emac_init(ifp);
   1109 	} else if (ifp->if_flags & IFF_DEBUG)
   1110 		aprint_error_ifnet(ifp, "recovered from device timeout\n");
   1111 
   1112 	/* try to get more packets going */
   1113 	emac_start(ifp);
   1114 }
   1115 
   1116 static int
   1117 emac_add_rxbuf(struct emac_softc *sc, int idx)
   1118 {
   1119 	struct emac_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1120 	struct mbuf *m;
   1121 	int error;
   1122 
   1123 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1124 	if (m == NULL)
   1125 		return ENOBUFS;
   1126 
   1127 	MCLGET(m, M_DONTWAIT);
   1128 	if ((m->m_flags & M_EXT) == 0) {
   1129 		m_freem(m);
   1130 		return ENOBUFS;
   1131 	}
   1132 
   1133 	if (rxs->rxs_mbuf != NULL)
   1134 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1135 
   1136 	rxs->rxs_mbuf = m;
   1137 
   1138 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1139 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1140 	if (error) {
   1141 		aprint_error_dev(sc->sc_dev,
   1142 		    "can't load rx DMA map %d, error = %d\n", idx, error);
   1143 		panic("emac_add_rxbuf");		/* XXX */
   1144 	}
   1145 
   1146 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1147 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1148 
   1149 	EMAC_INIT_RXDESC(sc, idx);
   1150 
   1151 	return 0;
   1152 }
   1153 
   1154 static void
   1155 emac_rxdrain(struct emac_softc *sc)
   1156 {
   1157 	struct emac_rxsoft *rxs;
   1158 	int i;
   1159 
   1160 	for (i = 0; i < EMAC_NRXDESC; i++) {
   1161 		rxs = &sc->sc_rxsoft[i];
   1162 		if (rxs->rxs_mbuf != NULL) {
   1163 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1164 			m_freem(rxs->rxs_mbuf);
   1165 			rxs->rxs_mbuf = NULL;
   1166 		}
   1167 	}
   1168 }
   1169 
   1170 static int
   1171 emac_set_filter(struct emac_softc *sc)
   1172 {
   1173 	struct ether_multistep step;
   1174 	struct ether_multi *enm;
   1175 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1176 	uint32_t rmr, crc, mask, tmp, reg, gaht[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   1177 	int regs, cnt = 0, i;
   1178 
   1179 	if (sc->sc_htsize == 256) {
   1180 		reg = EMAC_GAHT256(0);
   1181 		regs = 8;
   1182 	} else {
   1183 		reg = EMAC_GAHT64(0);
   1184 		regs = 4;
   1185 	}
   1186 	mask = (1ULL << (sc->sc_htsize / regs)) - 1;
   1187 
   1188 	rmr = EMAC_READ(sc, EMAC_RMR);
   1189 	rmr &= ~(RMR_PMME | RMR_MAE);
   1190 	ifp->if_flags &= ~IFF_ALLMULTI;
   1191 
   1192 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
   1193 	while (enm != NULL) {
   1194 		if (memcmp(enm->enm_addrlo,
   1195 		    enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
   1196 			/*
   1197 			 * We must listen to a range of multicast addresses.
   1198 			 * For now, just accept all multicasts, rather than
   1199 			 * trying to set only those filter bits needed to match
   1200 			 * the range.  (At this time, the only use of address
   1201 			 * ranges is for IP multicast routing, for which the
   1202 			 * range is big enough to require all bits set.)
   1203 			 */
   1204 			gaht[0] = gaht[1] = gaht[2] = gaht[3] =
   1205 			    gaht[4] = gaht[5] = gaht[6] = gaht[7] = mask;
   1206 			break;
   1207 		}
   1208 
   1209 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1210 
   1211 		if (sc->sc_htsize == 256)
   1212 			EMAC_SET_FILTER256(gaht, crc);
   1213 		else
   1214 			EMAC_SET_FILTER(gaht, crc);
   1215 
   1216 		ETHER_NEXT_MULTI(step, enm);
   1217 		cnt++;
   1218 	}
   1219 
   1220 	for (i = 1, tmp = gaht[0]; i < regs; i++)
   1221 		tmp &= gaht[i];
   1222 	if (tmp == mask) {
   1223 		/* All categories are true. */
   1224 		ifp->if_flags |= IFF_ALLMULTI;
   1225 		rmr |= RMR_PMME;
   1226 	} else if (cnt != 0) {
   1227 		/* Some categories are true. */
   1228 		for (i = 0; i < regs; i++)
   1229 			EMAC_WRITE(sc, reg + (i << 2), gaht[i]);
   1230 		rmr |= RMR_MAE;
   1231 	}
   1232 	EMAC_WRITE(sc, EMAC_RMR, rmr);
   1233 
   1234 	return 0;
   1235 }
   1236 
   1237 /*
   1238  * Reap completed Tx descriptors.
   1239  */
   1240 static int
   1241 emac_txreap(struct emac_softc *sc)
   1242 {
   1243 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1244 	struct emac_txsoft *txs;
   1245 	int handled, i;
   1246 	uint32_t txstat;
   1247 
   1248 	EMAC_EVCNT_INCR(&sc->sc_ev_txreap);
   1249 	handled = 0;
   1250 
   1251 	ifp->if_flags &= ~IFF_OACTIVE;
   1252 
   1253 	/*
   1254 	 * Go through our Tx list and free mbufs for those
   1255 	 * frames that have been transmitted.
   1256 	 */
   1257 	for (i = sc->sc_txsdirty; sc->sc_txsfree != EMAC_TXQUEUELEN;
   1258 	    i = EMAC_NEXTTXS(i), sc->sc_txsfree++) {
   1259 		txs = &sc->sc_txsoft[i];
   1260 
   1261 		EMAC_CDTXSYNC(sc, txs->txs_lastdesc,
   1262 		    txs->txs_dmamap->dm_nsegs,
   1263 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1264 
   1265 		txstat = sc->sc_txdescs[txs->txs_lastdesc].md_stat_ctrl;
   1266 		if (txstat & MAL_TX_READY)
   1267 			break;
   1268 
   1269 		handled = 1;
   1270 
   1271 		/*
   1272 		 * Check for errors and collisions.
   1273 		 */
   1274 		if (txstat & (EMAC_TXS_UR | EMAC_TXS_ED))
   1275 			ifp->if_oerrors++;
   1276 
   1277 #ifdef EMAC_EVENT_COUNTERS
   1278 		if (txstat & EMAC_TXS_UR)
   1279 			EMAC_EVCNT_INCR(&sc->sc_ev_tu);
   1280 #endif /* EMAC_EVENT_COUNTERS */
   1281 
   1282 		if (txstat &
   1283 		    (EMAC_TXS_EC | EMAC_TXS_MC | EMAC_TXS_SC | EMAC_TXS_LC)) {
   1284 			if (txstat & EMAC_TXS_EC)
   1285 				ifp->if_collisions += 16;
   1286 			else if (txstat & EMAC_TXS_MC)
   1287 				ifp->if_collisions += 2;	/* XXX? */
   1288 			else if (txstat & EMAC_TXS_SC)
   1289 				ifp->if_collisions++;
   1290 			if (txstat & EMAC_TXS_LC)
   1291 				ifp->if_collisions++;
   1292 		} else
   1293 			ifp->if_opackets++;
   1294 
   1295 		if (ifp->if_flags & IFF_DEBUG) {
   1296 			if (txstat & EMAC_TXS_ED)
   1297 				aprint_error_ifnet(ifp, "excessive deferral\n");
   1298 			if (txstat & EMAC_TXS_EC)
   1299 				aprint_error_ifnet(ifp,
   1300 				    "excessive collisions\n");
   1301 		}
   1302 
   1303 		sc->sc_txfree += txs->txs_ndesc;
   1304 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1305 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1306 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1307 		m_freem(txs->txs_mbuf);
   1308 		txs->txs_mbuf = NULL;
   1309 	}
   1310 
   1311 	/* Update the dirty transmit buffer pointer. */
   1312 	sc->sc_txsdirty = i;
   1313 
   1314 	/*
   1315 	 * If there are no more pending transmissions, cancel the watchdog
   1316 	 * timer.
   1317 	 */
   1318 	if (sc->sc_txsfree == EMAC_TXQUEUELEN)
   1319 		ifp->if_timer = 0;
   1320 
   1321 	return handled;
   1322 }
   1323 
   1324 
   1325 /*
   1326  * Reset functions
   1327  */
   1328 
   1329 static void
   1330 emac_soft_reset(struct emac_softc *sc)
   1331 {
   1332 	uint32_t sdr;
   1333 	int t = 0;
   1334 
   1335 	/*
   1336 	 * The PHY must provide a TX Clk in order perform a soft reset the
   1337 	 * EMAC.  If none is present, select the internal clock,
   1338 	 * SDR0_MFR[E0CS,E1CS].  After the soft reset, select the external
   1339 	 * clock.
   1340 	 */
   1341 
   1342 	sdr = mfsdr(DCR_SDR0_MFR);
   1343 	sdr |= SDR0_MFR_ECS(sc->sc_instance);
   1344 	mtsdr(DCR_SDR0_MFR, sdr);
   1345 
   1346 	EMAC_WRITE(sc, EMAC_MR0, MR0_SRST);
   1347 
   1348 	sdr = mfsdr(DCR_SDR0_MFR);
   1349 	sdr &= ~SDR0_MFR_ECS(sc->sc_instance);
   1350 	mtsdr(DCR_SDR0_MFR, sdr);
   1351 
   1352 	delay(5);
   1353 
   1354 	/* wait finish */
   1355 	while (EMAC_READ(sc, EMAC_MR0) & MR0_SRST) {
   1356 		if (++t == 1000000 /* 1sec XXXXX */) {
   1357 			aprint_error_dev(sc->sc_dev, "Soft Reset failed\n");
   1358 			return;
   1359 		}
   1360 		delay(1);
   1361 	}
   1362 }
   1363 
   1364 static void
   1365 emac_smart_reset(struct emac_softc *sc)
   1366 {
   1367 	uint32_t mr0;
   1368 	int t = 0;
   1369 
   1370 	mr0 = EMAC_READ(sc, EMAC_MR0);
   1371 	if (mr0 & (MR0_TXE | MR0_RXE)) {
   1372 		mr0 &= ~(MR0_TXE | MR0_RXE);
   1373 		EMAC_WRITE(sc, EMAC_MR0, mr0);
   1374 
   1375 		/* wait idel state */
   1376 		while ((EMAC_READ(sc, EMAC_MR0) & (MR0_TXI | MR0_RXI)) !=
   1377 		    (MR0_TXI | MR0_RXI)) {
   1378 			if (++t == 1000000 /* 1sec XXXXX */) {
   1379 				aprint_error_dev(sc->sc_dev,
   1380 				    "Smart Reset failed\n");
   1381 				return;
   1382 			}
   1383 			delay(1);
   1384 		}
   1385 	}
   1386 }
   1387 
   1388 
   1389 /*
   1390  * MII related functions
   1391  */
   1392 
   1393 static int
   1394 emac_mii_readreg(device_t self, int phy, int reg)
   1395 {
   1396 	struct emac_softc *sc = device_private(self);
   1397 	uint32_t sta_reg;
   1398 
   1399 	if (sc->sc_rmii_enable)
   1400 		sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
   1401 
   1402 	/* wait for PHY data transfer to complete */
   1403 	if (emac_mii_wait(sc))
   1404 		goto fail;
   1405 
   1406 	sta_reg =
   1407 	    sc->sc_stacr_read		|
   1408 	    (reg << STACR_PRA_SHIFT)	|
   1409 	    (phy << STACR_PCDA_SHIFT)	|
   1410 	    sc->sc_stacr_bits;
   1411 	EMAC_WRITE(sc, EMAC_STACR, sta_reg);
   1412 
   1413 	if (emac_mii_wait(sc))
   1414 		goto fail;
   1415 	sta_reg = EMAC_READ(sc, EMAC_STACR);
   1416 
   1417 	if (sc->sc_rmii_disable)
   1418 		sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
   1419 
   1420 	if (sta_reg & STACR_PHYE)
   1421 		return 0;
   1422 	return sta_reg >> STACR_PHYD_SHIFT;
   1423 
   1424 fail:
   1425 	if (sc->sc_rmii_disable)
   1426 		sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
   1427 	return 0;
   1428 }
   1429 
   1430 static void
   1431 emac_mii_writereg(device_t self, int phy, int reg, int val)
   1432 {
   1433 	struct emac_softc *sc = device_private(self);
   1434 	uint32_t sta_reg;
   1435 
   1436 	if (sc->sc_rmii_enable)
   1437 		sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
   1438 
   1439 	/* wait for PHY data transfer to complete */
   1440 	if (emac_mii_wait(sc))
   1441 		goto out;
   1442 
   1443 	sta_reg =
   1444 	    (val << STACR_PHYD_SHIFT)	|
   1445 	    sc->sc_stacr_write		|
   1446 	    (reg << STACR_PRA_SHIFT)	|
   1447 	    (phy << STACR_PCDA_SHIFT)	|
   1448 	    sc->sc_stacr_bits;
   1449 	EMAC_WRITE(sc, EMAC_STACR, sta_reg);
   1450 
   1451 	if (emac_mii_wait(sc))
   1452 		goto out;
   1453 	if (EMAC_READ(sc, EMAC_STACR) & STACR_PHYE)
   1454 		aprint_error_dev(sc->sc_dev, "MII PHY Error\n");
   1455 
   1456 out:
   1457 	if (sc->sc_rmii_disable)
   1458 		sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
   1459 }
   1460 
   1461 static void
   1462 emac_mii_statchg(device_t self)
   1463 {
   1464 	struct emac_softc *sc = device_private(self);
   1465 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1466 	struct mii_data *mii = &sc->sc_mii;
   1467 
   1468 	/*
   1469 	 * MR1 can only be written immediately after a reset...
   1470 	 */
   1471 	emac_smart_reset(sc);
   1472 
   1473 	sc->sc_mr1 &= ~(MR1_FDE | MR1_ILE | MR1_EIFC | MR1_MF_MASK | MR1_IST);
   1474 	if (mii->mii_media_active & IFM_FDX)
   1475 		sc->sc_mr1 |= (MR1_FDE | MR1_EIFC | MR1_IST);
   1476 	if (mii->mii_media_active & IFM_FLOW)
   1477 		sc->sc_mr1 |= MR1_EIFC;
   1478 	if (mii->mii_media_active & IFM_LOOP)
   1479 		sc->sc_mr1 |= MR1_ILE;
   1480 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1481 	case IFM_1000_T:
   1482 		sc->sc_mr1 |= (MR1_MF_1000MBS | MR1_IST);
   1483 		break;
   1484 
   1485 	case IFM_100_TX:
   1486 		sc->sc_mr1 |= (MR1_MF_100MBS | MR1_IST);
   1487 		break;
   1488 
   1489 	case IFM_10_T:
   1490 		sc->sc_mr1 |= MR1_MF_10MBS;
   1491 		break;
   1492 
   1493 	case IFM_NONE:
   1494 		break;
   1495 
   1496 	default:
   1497 		aprint_error_dev(self, "unknown sub-type %d\n",
   1498 		    IFM_SUBTYPE(mii->mii_media_active));
   1499 		break;
   1500 	}
   1501 	if (sc->sc_rmii_speed)
   1502 		sc->sc_rmii_speed(device_parent(self), sc->sc_instance,
   1503 		    IFM_SUBTYPE(mii->mii_media_active));
   1504 
   1505 	EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
   1506 
   1507 	/* Enable TX and RX if already RUNNING */
   1508 	if (ifp->if_flags & IFF_RUNNING)
   1509 		EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
   1510 }
   1511 
   1512 static uint32_t
   1513 emac_mii_wait(struct emac_softc *sc)
   1514 {
   1515 	int i;
   1516 	uint32_t oc;
   1517 
   1518 	/* wait for PHY data transfer to complete */
   1519 	i = 0;
   1520 	oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
   1521 	while ((oc == STACR_OC) != sc->sc_stacr_completed) {
   1522 		delay(7);
   1523 		if (i++ > 5) {
   1524 			aprint_error_dev(sc->sc_dev, "MII timed out\n");
   1525 			return -1;
   1526 		}
   1527 		oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
   1528 	}
   1529 	return 0;
   1530 }
   1531 
   1532 static void
   1533 emac_mii_tick(void *arg)
   1534 {
   1535 	struct emac_softc *sc = arg;
   1536 	int s;
   1537 
   1538 	if (!device_is_active(sc->sc_dev))
   1539 		return;
   1540 
   1541 	s = splnet();
   1542 	mii_tick(&sc->sc_mii);
   1543 	splx(s);
   1544 
   1545 	callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
   1546 }
   1547 
   1548 int
   1549 emac_txeob_intr(void *arg)
   1550 {
   1551 	struct emac_softc *sc = arg;
   1552 	int handled = 0;
   1553 
   1554 	EMAC_EVCNT_INCR(&sc->sc_ev_txintr);
   1555 	handled |= emac_txreap(sc);
   1556 
   1557 	/* try to get more packets going */
   1558 	emac_start(&sc->sc_ethercom.ec_if);
   1559 
   1560 	return handled;
   1561 }
   1562 
   1563 int
   1564 emac_rxeob_intr(void *arg)
   1565 {
   1566 	struct emac_softc *sc = arg;
   1567 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1568 	struct emac_rxsoft *rxs;
   1569 	struct mbuf *m;
   1570 	uint32_t rxstat;
   1571 	int i, len;
   1572 
   1573 	EMAC_EVCNT_INCR(&sc->sc_ev_rxintr);
   1574 
   1575 	for (i = sc->sc_rxptr; ; i = EMAC_NEXTRX(i)) {
   1576 		rxs = &sc->sc_rxsoft[i];
   1577 
   1578 		EMAC_CDRXSYNC(sc, i,
   1579 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1580 
   1581 		rxstat = sc->sc_rxdescs[i].md_stat_ctrl;
   1582 
   1583 		if (rxstat & MAL_RX_EMPTY)
   1584 			/*
   1585 			 * We have processed all of the receive buffers.
   1586 			 */
   1587 			break;
   1588 
   1589 		/*
   1590 		 * If an error occurred, update stats, clear the status
   1591 		 * word, and leave the packet buffer in place.  It will
   1592 		 * simply be reused the next time the ring comes around.
   1593 		 */
   1594 		if (rxstat & (EMAC_RXS_OE | EMAC_RXS_BP | EMAC_RXS_SE |
   1595 		    EMAC_RXS_AE | EMAC_RXS_BFCS | EMAC_RXS_PTL | EMAC_RXS_ORE |
   1596 		    EMAC_RXS_IRE)) {
   1597 #define	PRINTERR(bit, str)					\
   1598 			if (rxstat & (bit))			\
   1599 				aprint_error_ifnet(ifp,		\
   1600 				    "receive error: %s\n", str)
   1601 			ifp->if_ierrors++;
   1602 			PRINTERR(EMAC_RXS_OE, "overrun error");
   1603 			PRINTERR(EMAC_RXS_BP, "bad packet");
   1604 			PRINTERR(EMAC_RXS_RP, "runt packet");
   1605 			PRINTERR(EMAC_RXS_SE, "short event");
   1606 			PRINTERR(EMAC_RXS_AE, "alignment error");
   1607 			PRINTERR(EMAC_RXS_BFCS, "bad FCS");
   1608 			PRINTERR(EMAC_RXS_PTL, "packet too long");
   1609 			PRINTERR(EMAC_RXS_ORE, "out of range error");
   1610 			PRINTERR(EMAC_RXS_IRE, "in range error");
   1611 #undef PRINTERR
   1612 			EMAC_INIT_RXDESC(sc, i);
   1613 			continue;
   1614 		}
   1615 
   1616 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1617 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1618 
   1619 		/*
   1620 		 * No errors; receive the packet.  Note, the 405GP emac
   1621 		 * includes the CRC with every packet.
   1622 		 */
   1623 		len = sc->sc_rxdescs[i].md_data_len - ETHER_CRC_LEN;
   1624 
   1625 		/*
   1626 		 * If the packet is small enough to fit in a
   1627 		 * single header mbuf, allocate one and copy
   1628 		 * the data into it.  This greatly reduces
   1629 		 * memory consumption when we receive lots
   1630 		 * of small packets.
   1631 		 *
   1632 		 * Otherwise, we add a new buffer to the receive
   1633 		 * chain.  If this fails, we drop the packet and
   1634 		 * recycle the old buffer.
   1635 		 */
   1636 		if (emac_copy_small != 0 && len <= MHLEN) {
   1637 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1638 			if (m == NULL)
   1639 				goto dropit;
   1640 			memcpy(mtod(m, void *),
   1641 			    mtod(rxs->rxs_mbuf, void *), len);
   1642 			EMAC_INIT_RXDESC(sc, i);
   1643 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1644 			    rxs->rxs_dmamap->dm_mapsize,
   1645 			    BUS_DMASYNC_PREREAD);
   1646 		} else {
   1647 			m = rxs->rxs_mbuf;
   1648 			if (emac_add_rxbuf(sc, i) != 0) {
   1649  dropit:
   1650 				ifp->if_ierrors++;
   1651 				EMAC_INIT_RXDESC(sc, i);
   1652 				bus_dmamap_sync(sc->sc_dmat,
   1653 				    rxs->rxs_dmamap, 0,
   1654 				    rxs->rxs_dmamap->dm_mapsize,
   1655 				    BUS_DMASYNC_PREREAD);
   1656 				continue;
   1657 			}
   1658 		}
   1659 
   1660 		ifp->if_ipackets++;
   1661 		m->m_pkthdr.rcvif = ifp;
   1662 		m->m_pkthdr.len = m->m_len = len;
   1663 
   1664 		/*
   1665 		 * Pass this up to any BPF listeners, but only
   1666 		 * pass if up the stack if it's for us.
   1667 		 */
   1668 		bpf_mtap(ifp, m);
   1669 
   1670 		/* Pass it on. */
   1671 		(*ifp->if_input)(ifp, m);
   1672 	}
   1673 
   1674 	/* Update the receive pointer. */
   1675 	sc->sc_rxptr = i;
   1676 
   1677 	return 1;
   1678 }
   1679 
   1680 int
   1681 emac_txde_intr(void *arg)
   1682 {
   1683 	struct emac_softc *sc = arg;
   1684 
   1685 	EMAC_EVCNT_INCR(&sc->sc_ev_txde);
   1686 	aprint_error_dev(sc->sc_dev, "emac_txde_intr\n");
   1687 	return 1;
   1688 }
   1689 
   1690 int
   1691 emac_rxde_intr(void *arg)
   1692 {
   1693 	struct emac_softc *sc = arg;
   1694 	int i;
   1695 
   1696 	EMAC_EVCNT_INCR(&sc->sc_ev_rxde);
   1697 	aprint_error_dev(sc->sc_dev, "emac_rxde_intr\n");
   1698 	/*
   1699 	 * XXX!
   1700 	 * This is a bit drastic; we just drop all descriptors that aren't
   1701 	 * "clean".  We should probably send any that are up the stack.
   1702 	 */
   1703 	for (i = 0; i < EMAC_NRXDESC; i++) {
   1704 		EMAC_CDRXSYNC(sc, i,
   1705 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1706 
   1707 		if (sc->sc_rxdescs[i].md_data_len != MCLBYTES)
   1708 			EMAC_INIT_RXDESC(sc, i);
   1709 	}
   1710 
   1711 	return 1;
   1712 }
   1713