if_emac.c revision 1.39 1 /* $NetBSD: if_emac.c,v 1.39 2011/06/18 06:41:42 matt Exp $ */
2
3 /*
4 * Copyright 2001, 2002 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Simon Burge and Jason Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * emac(4) supports following ibm4xx's EMACs.
40 * XXXX: ZMII and 'TCP Accelaration Hardware' not support yet...
41 *
42 * tested
43 * ------
44 * 405EP - 10/100 x2
45 * 405EX/EXr o 10/100/1000 x2 (EXr x1), STA v2, 256bit hash-Table, RGMII
46 * 405GP/GPr o 10/100
47 * 440EP - 10/100 x2, ZMII
48 * 440GP - 10/100 x2, ZMII
49 * 440GX - 10/100/1000 x4, ZMII/RGMII(ch 2, 3), TAH(ch 2, 3)
50 * 440SP - 10/100/1000
51 * 440SPe - 10/100/1000, STA v2
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_emac.c,v 1.39 2011/06/18 06:41:42 matt Exp $");
56
57 #include "opt_emac.h"
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/mbuf.h>
62 #include <sys/kernel.h>
63 #include <sys/socket.h>
64 #include <sys/ioctl.h>
65 #include <sys/cpu.h>
66 #include <sys/device.h>
67
68 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
69
70 #include <net/if.h>
71 #include <net/if_dl.h>
72 #include <net/if_media.h>
73 #include <net/if_ether.h>
74
75 #include <net/bpf.h>
76
77 #include <powerpc/ibm4xx/cpu.h>
78 #include <powerpc/ibm4xx/dcr4xx.h>
79 #include <powerpc/ibm4xx/mal405gp.h>
80 #include <powerpc/ibm4xx/dev/emacreg.h>
81 #include <powerpc/ibm4xx/dev/if_emacreg.h>
82 #include <powerpc/ibm4xx/dev/if_emacvar.h>
83 #include <powerpc/ibm4xx/dev/malvar.h>
84 #include <powerpc/ibm4xx/dev/opbreg.h>
85 #include <powerpc/ibm4xx/dev/opbvar.h>
86 #include <powerpc/ibm4xx/dev/plbvar.h>
87 #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
88 #include <powerpc/ibm4xx/dev/rmiivar.h>
89 #endif
90
91 #include <dev/mii/miivar.h>
92
93 #include "locators.h"
94
95
96 /*
97 * Transmit descriptor list size. There are two Tx channels, each with
98 * up to 256 hardware descriptors available. We currently use one Tx
99 * channel. We tell the upper layers that they can queue a lot of
100 * packets, and we go ahead and manage up to 64 of them at a time. We
101 * allow up to 16 DMA segments per packet.
102 */
103 #define EMAC_NTXSEGS 16
104 #define EMAC_TXQUEUELEN 64
105 #define EMAC_TXQUEUELEN_MASK (EMAC_TXQUEUELEN - 1)
106 #define EMAC_TXQUEUE_GC (EMAC_TXQUEUELEN / 4)
107 #define EMAC_NTXDESC 256
108 #define EMAC_NTXDESC_MASK (EMAC_NTXDESC - 1)
109 #define EMAC_NEXTTX(x) (((x) + 1) & EMAC_NTXDESC_MASK)
110 #define EMAC_NEXTTXS(x) (((x) + 1) & EMAC_TXQUEUELEN_MASK)
111
112 /*
113 * Receive descriptor list size. There is one Rx channel with up to 256
114 * hardware descriptors available. We allocate 64 receive descriptors,
115 * each with a 2k buffer (MCLBYTES).
116 */
117 #define EMAC_NRXDESC 64
118 #define EMAC_NRXDESC_MASK (EMAC_NRXDESC - 1)
119 #define EMAC_NEXTRX(x) (((x) + 1) & EMAC_NRXDESC_MASK)
120 #define EMAC_PREVRX(x) (((x) - 1) & EMAC_NRXDESC_MASK)
121
122 /*
123 * Transmit/receive descriptors that are DMA'd to the EMAC.
124 */
125 struct emac_control_data {
126 struct mal_descriptor ecd_txdesc[EMAC_NTXDESC];
127 struct mal_descriptor ecd_rxdesc[EMAC_NRXDESC];
128 };
129
130 #define EMAC_CDOFF(x) offsetof(struct emac_control_data, x)
131 #define EMAC_CDTXOFF(x) EMAC_CDOFF(ecd_txdesc[(x)])
132 #define EMAC_CDRXOFF(x) EMAC_CDOFF(ecd_rxdesc[(x)])
133
134 /*
135 * Software state for transmit jobs.
136 */
137 struct emac_txsoft {
138 struct mbuf *txs_mbuf; /* head of mbuf chain */
139 bus_dmamap_t txs_dmamap; /* our DMA map */
140 int txs_firstdesc; /* first descriptor in packet */
141 int txs_lastdesc; /* last descriptor in packet */
142 int txs_ndesc; /* # of descriptors used */
143 };
144
145 /*
146 * Software state for receive descriptors.
147 */
148 struct emac_rxsoft {
149 struct mbuf *rxs_mbuf; /* head of mbuf chain */
150 bus_dmamap_t rxs_dmamap; /* our DMA map */
151 };
152
153 /*
154 * Software state per device.
155 */
156 struct emac_softc {
157 device_t sc_dev; /* generic device information */
158 int sc_instance; /* instance no. */
159 bus_space_tag_t sc_st; /* bus space tag */
160 bus_space_handle_t sc_sh; /* bus space handle */
161 bus_dma_tag_t sc_dmat; /* bus DMA tag */
162 struct ethercom sc_ethercom; /* ethernet common data */
163 void *sc_sdhook; /* shutdown hook */
164 void *sc_powerhook; /* power management hook */
165
166 struct mii_data sc_mii; /* MII/media information */
167 struct callout sc_callout; /* tick callout */
168
169 uint32_t sc_mr1; /* copy of Mode Register 1 */
170 uint32_t sc_stacr_read; /* Read opcode of STAOPC of STACR */
171 uint32_t sc_stacr_write; /* Write opcode of STAOPC of STACR */
172 uint32_t sc_stacr_bits; /* misc bits of STACR */
173 bool sc_stacr_completed; /* Operation completed of STACR */
174 int sc_htsize; /* Hash Table size */
175
176 bus_dmamap_t sc_cddmamap; /* control data dma map */
177 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
178
179 /* Software state for transmit/receive descriptors. */
180 struct emac_txsoft sc_txsoft[EMAC_TXQUEUELEN];
181 struct emac_rxsoft sc_rxsoft[EMAC_NRXDESC];
182
183 /* Control data structures. */
184 struct emac_control_data *sc_control_data;
185 #define sc_txdescs sc_control_data->ecd_txdesc
186 #define sc_rxdescs sc_control_data->ecd_rxdesc
187
188 #ifdef EMAC_EVENT_COUNTERS
189 struct evcnt sc_ev_rxintr; /* Rx interrupts */
190 struct evcnt sc_ev_txintr; /* Tx interrupts */
191 struct evcnt sc_ev_rxde; /* Rx descriptor interrupts */
192 struct evcnt sc_ev_txde; /* Tx descriptor interrupts */
193 struct evcnt sc_ev_intr; /* General EMAC interrupts */
194
195 struct evcnt sc_ev_txreap; /* Calls to Tx descriptor reaper */
196 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
197 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
198 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
199 struct evcnt sc_ev_tu; /* Tx underrun */
200 #endif /* EMAC_EVENT_COUNTERS */
201
202 int sc_txfree; /* number of free Tx descriptors */
203 int sc_txnext; /* next ready Tx descriptor */
204
205 int sc_txsfree; /* number of free Tx jobs */
206 int sc_txsnext; /* next ready Tx job */
207 int sc_txsdirty; /* dirty Tx jobs */
208
209 int sc_rxptr; /* next ready RX descriptor/descsoft */
210
211 void (*sc_rmii_enable)(device_t, int); /* reduced MII enable */
212 void (*sc_rmii_disable)(device_t, int); /* reduced MII disable*/
213 void (*sc_rmii_speed)(device_t, int, int); /* reduced MII speed */
214 };
215
216 #ifdef EMAC_EVENT_COUNTERS
217 #define EMAC_EVCNT_INCR(ev) (ev)->ev_count++
218 #else
219 #define EMAC_EVCNT_INCR(ev) /* nothing */
220 #endif
221
222 #define EMAC_CDTXADDR(sc, x) ((sc)->sc_cddma + EMAC_CDTXOFF((x)))
223 #define EMAC_CDRXADDR(sc, x) ((sc)->sc_cddma + EMAC_CDRXOFF((x)))
224
225 #define EMAC_CDTXSYNC(sc, x, n, ops) \
226 do { \
227 int __x, __n; \
228 \
229 __x = (x); \
230 __n = (n); \
231 \
232 /* If it will wrap around, sync to the end of the ring. */ \
233 if ((__x + __n) > EMAC_NTXDESC) { \
234 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
235 EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * \
236 (EMAC_NTXDESC - __x), (ops)); \
237 __n -= (EMAC_NTXDESC - __x); \
238 __x = 0; \
239 } \
240 \
241 /* Now sync whatever is left. */ \
242 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
243 EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * __n, (ops)); \
244 } while (/*CONSTCOND*/0)
245
246 #define EMAC_CDRXSYNC(sc, x, ops) \
247 do { \
248 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
249 EMAC_CDRXOFF((x)), sizeof(struct mal_descriptor), (ops)); \
250 } while (/*CONSTCOND*/0)
251
252 #define EMAC_INIT_RXDESC(sc, x) \
253 do { \
254 struct emac_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
255 struct mal_descriptor *__rxd = &(sc)->sc_rxdescs[(x)]; \
256 struct mbuf *__m = __rxs->rxs_mbuf; \
257 \
258 /* \
259 * Note: We scoot the packet forward 2 bytes in the buffer \
260 * so that the payload after the Ethernet header is aligned \
261 * to a 4-byte boundary. \
262 */ \
263 __m->m_data = __m->m_ext.ext_buf + 2; \
264 \
265 __rxd->md_data = __rxs->rxs_dmamap->dm_segs[0].ds_addr + 2; \
266 __rxd->md_data_len = __m->m_ext.ext_size - 2; \
267 __rxd->md_stat_ctrl = MAL_RX_EMPTY | MAL_RX_INTERRUPT | \
268 /* Set wrap on last descriptor. */ \
269 (((x) == EMAC_NRXDESC - 1) ? MAL_RX_WRAP : 0); \
270 EMAC_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
271 } while (/*CONSTCOND*/0)
272
273 #define EMAC_WRITE(sc, reg, val) \
274 bus_space_write_stream_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
275 #define EMAC_READ(sc, reg) \
276 bus_space_read_stream_4((sc)->sc_st, (sc)->sc_sh, (reg))
277
278 #define EMAC_SET_FILTER(aht, crc) \
279 do { \
280 (aht)[3 - (((crc) >> 26) >> 4)] |= 1 << (((crc) >> 26) & 0xf); \
281 } while (/*CONSTCOND*/0)
282 #define EMAC_SET_FILTER256(aht, crc) \
283 do { \
284 (aht)[7 - (((crc) >> 24) >> 5)] |= 1 << (((crc) >> 24) & 0x1f); \
285 } while (/*CONSTCOND*/0)
286
287 static int emac_match(device_t, cfdata_t, void *);
288 static void emac_attach(device_t, device_t, void *);
289
290 static int emac_intr(void *);
291 static void emac_shutdown(void *);
292
293 static void emac_start(struct ifnet *);
294 static int emac_ioctl(struct ifnet *, u_long, void *);
295 static int emac_init(struct ifnet *);
296 static void emac_stop(struct ifnet *, int);
297 static void emac_watchdog(struct ifnet *);
298
299 static int emac_add_rxbuf(struct emac_softc *, int);
300 static void emac_rxdrain(struct emac_softc *);
301 static int emac_set_filter(struct emac_softc *);
302 static int emac_txreap(struct emac_softc *);
303
304 static void emac_soft_reset(struct emac_softc *);
305 static void emac_smart_reset(struct emac_softc *);
306
307 static int emac_mii_readreg(device_t, int, int);
308 static void emac_mii_writereg(device_t, int, int, int);
309 static void emac_mii_statchg(device_t);
310 static uint32_t emac_mii_wait(struct emac_softc *);
311 static void emac_mii_tick(void *);
312
313 int emac_copy_small = 0;
314
315 CFATTACH_DECL_NEW(emac, sizeof(struct emac_softc),
316 emac_match, emac_attach, NULL, NULL);
317
318
319 static int
320 emac_match(device_t parent, cfdata_t cf, void *aux)
321 {
322 struct opb_attach_args *oaa = aux;
323
324 /* match only on-chip ethernet devices */
325 if (strcmp(oaa->opb_name, cf->cf_name) == 0)
326 return 1;
327
328 return 0;
329 }
330
331 static void
332 emac_attach(device_t parent, device_t self, void *aux)
333 {
334 struct opb_attach_args *oaa = aux;
335 struct emac_softc *sc = device_private(self);
336 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
337 struct mii_data *mii = &sc->sc_mii;
338 const char * xname = device_xname(self);
339 bus_dma_segment_t seg;
340 int error, i, nseg, opb_freq, opbc, mii_phy = MII_PHY_ANY;
341 const uint8_t *enaddr;
342 prop_dictionary_t dict = device_properties(self);
343 prop_data_t ea;
344
345 bus_space_map(oaa->opb_bt, oaa->opb_addr, EMAC_NREG, 0, &sc->sc_sh);
346
347 sc->sc_dev = self;
348 sc->sc_instance = oaa->opb_instance;
349 sc->sc_st = oaa->opb_bt;
350 sc->sc_dmat = oaa->opb_dmat;
351
352 callout_init(&sc->sc_callout, 0);
353
354 aprint_naive("\n");
355 aprint_normal(": Ethernet Media Access Controller\n");
356
357 /* Fetch the Ethernet address. */
358 ea = prop_dictionary_get(dict, "mac-address");
359 if (ea == NULL) {
360 aprint_error_dev(self, "unable to get mac-address property\n");
361 return;
362 }
363 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
364 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
365 enaddr = prop_data_data_nocopy(ea);
366 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
367
368 #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
369 /* Fetch the MII offset. */
370 prop_dictionary_get_uint32(dict, "mii-phy", &mii_phy);
371
372 #ifdef EMAC_ZMII_PHY
373 if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_ZMII)
374 zmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
375 &sc->sc_rmii_disable, &sc->sc_rmii_speed);
376 #endif
377 #ifdef EMAC_RGMII_PHY
378 if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_RGMII)
379 rgmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
380 &sc->sc_rmii_disable, &sc->sc_rmii_speed);
381 #endif
382 #endif
383
384 /*
385 * Allocate the control data structures, and create and load the
386 * DMA map for it.
387 */
388 if ((error = bus_dmamem_alloc(sc->sc_dmat,
389 sizeof(struct emac_control_data), 0, 0, &seg, 1, &nseg, 0)) != 0) {
390 aprint_error_dev(self,
391 "unable to allocate control data, error = %d\n", error);
392 goto fail_0;
393 }
394
395 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
396 sizeof(struct emac_control_data), (void **)&sc->sc_control_data,
397 BUS_DMA_COHERENT)) != 0) {
398 aprint_error_dev(self,
399 "unable to map control data, error = %d\n", error);
400 goto fail_1;
401 }
402
403 if ((error = bus_dmamap_create(sc->sc_dmat,
404 sizeof(struct emac_control_data), 1,
405 sizeof(struct emac_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
406 aprint_error_dev(self,
407 "unable to create control data DMA map, error = %d\n",
408 error);
409 goto fail_2;
410 }
411
412 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
413 sc->sc_control_data, sizeof(struct emac_control_data), NULL,
414 0)) != 0) {
415 aprint_error_dev(self,
416 "unable to load control data DMA map, error = %d\n", error);
417 goto fail_3;
418 }
419
420 /*
421 * Create the transmit buffer DMA maps.
422 */
423 for (i = 0; i < EMAC_TXQUEUELEN; i++) {
424 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
425 EMAC_NTXSEGS, MCLBYTES, 0, 0,
426 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
427 aprint_error_dev(self,
428 "unable to create tx DMA map %d, error = %d\n",
429 i, error);
430 goto fail_4;
431 }
432 }
433
434 /*
435 * Create the receive buffer DMA maps.
436 */
437 for (i = 0; i < EMAC_NRXDESC; i++) {
438 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
439 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
440 aprint_error_dev(self,
441 "unable to create rx DMA map %d, error = %d\n",
442 i, error);
443 goto fail_5;
444 }
445 sc->sc_rxsoft[i].rxs_mbuf = NULL;
446 }
447
448 /* Soft Reset the EMAC. The chip to a known state. */
449 emac_soft_reset(sc);
450
451 opb_freq = opb_get_frequency();
452 switch (opb_freq) {
453 case 50000000: opbc = STACR_OPBC_50MHZ; break;
454 case 66666666: opbc = STACR_OPBC_66MHZ; break;
455 case 83333333: opbc = STACR_OPBC_83MHZ; break;
456 case 100000000: opbc = STACR_OPBC_100MHZ; break;
457
458 default:
459 if (opb_freq > 100000000) {
460 opbc = STACR_OPBC_A100MHZ;
461 break;
462 }
463 aprint_error_dev(self, "unsupport OPB frequency %dMHz\n",
464 opb_freq / 1000 / 1000);
465 goto fail_5;
466 }
467 if (oaa->opb_flags & OPB_FLAGS_EMAC_GBE) {
468 sc->sc_mr1 =
469 MR1_RFS_GBE(MR1__FS_16KB) |
470 MR1_TFS_GBE(MR1__FS_16KB) |
471 MR1_TR0_MULTIPLE |
472 MR1_OBCI(opbc);
473 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
474
475 if (oaa->opb_flags & OPB_FLAGS_EMAC_STACV2) {
476 sc->sc_stacr_read = STACR_STAOPC_READ;
477 sc->sc_stacr_write = STACR_STAOPC_WRITE;
478 sc->sc_stacr_bits = STACR_OC;
479 sc->sc_stacr_completed = false;
480 } else {
481 sc->sc_stacr_read = STACR_READ;
482 sc->sc_stacr_write = STACR_WRITE;
483 sc->sc_stacr_completed = true;
484 }
485 } else {
486 /*
487 * Set up Mode Register 1 - set receive and transmit FIFOs to
488 * maximum size, allow transmit of multiple packets (only
489 * channel 0 is used).
490 *
491 * XXX: Allow pause packets??
492 */
493 sc->sc_mr1 =
494 MR1_RFS(MR1__FS_4KB) |
495 MR1_TFS(MR1__FS_2KB) |
496 MR1_TR0_MULTIPLE;
497
498 sc->sc_stacr_read = STACR_READ;
499 sc->sc_stacr_write = STACR_WRITE;
500 sc->sc_stacr_bits = STACR_OPBC(opbc);
501 sc->sc_stacr_completed = true;
502 }
503
504 intr_establish(oaa->opb_irq, IST_LEVEL, IPL_NET, emac_intr, sc);
505 mal_intr_establish(sc->sc_instance, sc);
506
507 if (oaa->opb_flags & OPB_FLAGS_EMAC_HT256)
508 sc->sc_htsize = 256;
509 else
510 sc->sc_htsize = 64;
511
512 /* Clear all interrupts */
513 EMAC_WRITE(sc, EMAC_ISR, ISR_ALL);
514
515 /*
516 * Initialise the media structures.
517 */
518 mii->mii_ifp = ifp;
519 mii->mii_readreg = emac_mii_readreg;
520 mii->mii_writereg = emac_mii_writereg;
521 mii->mii_statchg = emac_mii_statchg;
522
523 sc->sc_ethercom.ec_mii = mii;
524 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
525 mii_attach(self, mii, 0xffffffff, mii_phy, MII_OFFSET_ANY, 0);
526 if (LIST_FIRST(&mii->mii_phys) == NULL) {
527 ifmedia_add(&mii->mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
528 ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_NONE);
529 } else
530 ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_AUTO);
531
532 ifp = &sc->sc_ethercom.ec_if;
533 strcpy(ifp->if_xname, xname);
534 ifp->if_softc = sc;
535 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
536 ifp->if_start = emac_start;
537 ifp->if_ioctl = emac_ioctl;
538 ifp->if_init = emac_init;
539 ifp->if_stop = emac_stop;
540 ifp->if_watchdog = emac_watchdog;
541 IFQ_SET_READY(&ifp->if_snd);
542
543 /*
544 * We can support 802.1Q VLAN-sized frames.
545 */
546 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
547
548 /*
549 * Attach the interface.
550 */
551 if_attach(ifp);
552 ether_ifattach(ifp, enaddr);
553
554 #ifdef EMAC_EVENT_COUNTERS
555 /*
556 * Attach the event counters.
557 */
558 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
559 NULL, xname, "txintr");
560 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
561 NULL, xname, "rxintr");
562 evcnt_attach_dynamic(&sc->sc_ev_txde, EVCNT_TYPE_INTR,
563 NULL, xname, "txde");
564 evcnt_attach_dynamic(&sc->sc_ev_rxde, EVCNT_TYPE_INTR,
565 NULL, xname, "rxde");
566 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
567 NULL, xname, "intr");
568
569 evcnt_attach_dynamic(&sc->sc_ev_txreap, EVCNT_TYPE_MISC,
570 NULL, xname, "txreap");
571 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
572 NULL, xname, "txsstall");
573 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
574 NULL, xname, "txdstall");
575 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
576 NULL, xname, "txdrop");
577 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
578 NULL, xname, "tu");
579 #endif /* EMAC_EVENT_COUNTERS */
580
581 /*
582 * Make sure the interface is shutdown during reboot.
583 */
584 sc->sc_sdhook = shutdownhook_establish(emac_shutdown, sc);
585 if (sc->sc_sdhook == NULL)
586 aprint_error_dev(self,
587 "WARNING: unable to establish shutdown hook\n");
588
589 return;
590
591 /*
592 * Free any resources we've allocated during the failed attach
593 * attempt. Do this in reverse order and fall through.
594 */
595 fail_5:
596 for (i = 0; i < EMAC_NRXDESC; i++) {
597 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
598 bus_dmamap_destroy(sc->sc_dmat,
599 sc->sc_rxsoft[i].rxs_dmamap);
600 }
601 fail_4:
602 for (i = 0; i < EMAC_TXQUEUELEN; i++) {
603 if (sc->sc_txsoft[i].txs_dmamap != NULL)
604 bus_dmamap_destroy(sc->sc_dmat,
605 sc->sc_txsoft[i].txs_dmamap);
606 }
607 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
608 fail_3:
609 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
610 fail_2:
611 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
612 sizeof(struct emac_control_data));
613 fail_1:
614 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
615 fail_0:
616 return;
617 }
618
619 /*
620 * EMAC General interrupt handler
621 */
622 static int
623 emac_intr(void *arg)
624 {
625 struct emac_softc *sc = arg;
626 uint32_t status;
627
628 EMAC_EVCNT_INCR(&sc->sc_ev_intr);
629 status = EMAC_READ(sc, EMAC_ISR);
630
631 /* Clear the interrupt status bits. */
632 EMAC_WRITE(sc, EMAC_ISR, status);
633
634 return 1;
635 }
636
637 static void
638 emac_shutdown(void *arg)
639 {
640 struct emac_softc *sc = arg;
641
642 emac_stop(&sc->sc_ethercom.ec_if, 0);
643 }
644
645
646 /*
647 * ifnet interface functions
648 */
649
650 static void
651 emac_start(struct ifnet *ifp)
652 {
653 struct emac_softc *sc = ifp->if_softc;
654 struct mbuf *m0;
655 struct emac_txsoft *txs;
656 bus_dmamap_t dmamap;
657 int error, firsttx, nexttx, lasttx, ofree, seg;
658
659 lasttx = 0; /* XXX gcc */
660
661 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
662 return;
663
664 /*
665 * Remember the previous number of free descriptors.
666 */
667 ofree = sc->sc_txfree;
668
669 /*
670 * Loop through the send queue, setting up transmit descriptors
671 * until we drain the queue, or use up all available transmit
672 * descriptors.
673 */
674 for (;;) {
675 /* Grab a packet off the queue. */
676 IFQ_POLL(&ifp->if_snd, m0);
677 if (m0 == NULL)
678 break;
679
680 /*
681 * Get a work queue entry. Reclaim used Tx descriptors if
682 * we are running low.
683 */
684 if (sc->sc_txsfree < EMAC_TXQUEUE_GC) {
685 emac_txreap(sc);
686 if (sc->sc_txsfree == 0) {
687 EMAC_EVCNT_INCR(&sc->sc_ev_txsstall);
688 break;
689 }
690 }
691
692 txs = &sc->sc_txsoft[sc->sc_txsnext];
693 dmamap = txs->txs_dmamap;
694
695 /*
696 * Load the DMA map. If this fails, the packet either
697 * didn't fit in the alloted number of segments, or we
698 * were short on resources. In this case, we'll copy
699 * and try again.
700 */
701 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
702 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
703 if (error) {
704 if (error == EFBIG) {
705 EMAC_EVCNT_INCR(&sc->sc_ev_txdrop);
706 aprint_error_ifnet(ifp,
707 "Tx packet consumes too many "
708 "DMA segments, dropping...\n");
709 IFQ_DEQUEUE(&ifp->if_snd, m0);
710 m_freem(m0);
711 continue;
712 }
713 /* Short on resources, just stop for now. */
714 break;
715 }
716
717 /*
718 * Ensure we have enough descriptors free to describe
719 * the packet.
720 */
721 if (dmamap->dm_nsegs > sc->sc_txfree) {
722 /*
723 * Not enough free descriptors to transmit this
724 * packet. We haven't committed anything yet,
725 * so just unload the DMA map, put the packet
726 * back on the queue, and punt. Notify the upper
727 * layer that there are not more slots left.
728 *
729 */
730 ifp->if_flags |= IFF_OACTIVE;
731 bus_dmamap_unload(sc->sc_dmat, dmamap);
732 EMAC_EVCNT_INCR(&sc->sc_ev_txdstall);
733 break;
734 }
735
736 IFQ_DEQUEUE(&ifp->if_snd, m0);
737
738 /*
739 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
740 */
741
742 /* Sync the DMA map. */
743 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
744 BUS_DMASYNC_PREWRITE);
745
746 /*
747 * Store a pointer to the packet so that we can free it
748 * later.
749 */
750 txs->txs_mbuf = m0;
751 txs->txs_firstdesc = sc->sc_txnext;
752 txs->txs_ndesc = dmamap->dm_nsegs;
753
754 /*
755 * Initialize the transmit descriptor.
756 */
757 firsttx = sc->sc_txnext;
758 for (nexttx = sc->sc_txnext, seg = 0;
759 seg < dmamap->dm_nsegs;
760 seg++, nexttx = EMAC_NEXTTX(nexttx)) {
761 struct mal_descriptor *txdesc =
762 &sc->sc_txdescs[nexttx];
763
764 /*
765 * If this is the first descriptor we're
766 * enqueueing, don't set the TX_READY bit just
767 * yet. That could cause a race condition.
768 * We'll do it below.
769 */
770 txdesc->md_data = dmamap->dm_segs[seg].ds_addr;
771 txdesc->md_data_len = dmamap->dm_segs[seg].ds_len;
772 txdesc->md_stat_ctrl =
773 (txdesc->md_stat_ctrl & MAL_TX_WRAP) |
774 (nexttx == firsttx ? 0 : MAL_TX_READY) |
775 EMAC_TXC_GFCS | EMAC_TXC_GPAD;
776 lasttx = nexttx;
777 }
778
779 /* Set the LAST bit on the last segment. */
780 sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_LAST;
781
782 /*
783 * Set up last segment descriptor to send an interrupt after
784 * that descriptor is transmitted, and bypass existing Tx
785 * descriptor reaping method (for now...).
786 */
787 sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_INTERRUPT;
788
789
790 txs->txs_lastdesc = lasttx;
791
792 /* Sync the descriptors we're using. */
793 EMAC_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
794 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
795
796 /*
797 * The entire packet chain is set up. Give the
798 * first descriptor to the chip now.
799 */
800 sc->sc_txdescs[firsttx].md_stat_ctrl |= MAL_TX_READY;
801 EMAC_CDTXSYNC(sc, firsttx, 1,
802 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
803 /*
804 * Tell the EMAC that a new packet is available.
805 */
806 EMAC_WRITE(sc, EMAC_TMR0, TMR0_GNP0 | TMR0_TFAE_2);
807
808 /* Advance the tx pointer. */
809 sc->sc_txfree -= txs->txs_ndesc;
810 sc->sc_txnext = nexttx;
811
812 sc->sc_txsfree--;
813 sc->sc_txsnext = EMAC_NEXTTXS(sc->sc_txsnext);
814
815 /*
816 * Pass the packet to any BPF listeners.
817 */
818 bpf_mtap(ifp, m0);
819 }
820
821 if (sc->sc_txfree == 0)
822 /* No more slots left; notify upper layer. */
823 ifp->if_flags |= IFF_OACTIVE;
824
825 if (sc->sc_txfree != ofree)
826 /* Set a watchdog timer in case the chip flakes out. */
827 ifp->if_timer = 5;
828 }
829
830 static int
831 emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
832 {
833 struct emac_softc *sc = ifp->if_softc;
834 int s, error;
835
836 s = splnet();
837
838 switch (cmd) {
839 case SIOCSIFMTU:
840 {
841 struct ifreq *ifr = (struct ifreq *)data;
842 int maxmtu;
843
844 if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU)
845 maxmtu = EMAC_MAX_MTU;
846 else
847 maxmtu = ETHERMTU;
848
849 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
850 error = EINVAL;
851 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
852 break;
853 else if (ifp->if_flags & IFF_UP)
854 error = emac_init(ifp);
855 else
856 error = 0;
857 break;
858 }
859
860 default:
861 error = ether_ioctl(ifp, cmd, data);
862 if (error == ENETRESET) {
863 /*
864 * Multicast list has changed; set the hardware filter
865 * accordingly.
866 */
867 if (ifp->if_flags & IFF_RUNNING)
868 error = emac_set_filter(sc);
869 else
870 error = 0;
871 }
872 }
873
874 /* try to get more packets going */
875 emac_start(ifp);
876
877 splx(s);
878 return error;
879 }
880
881 static int
882 emac_init(struct ifnet *ifp)
883 {
884 struct emac_softc *sc = ifp->if_softc;
885 struct emac_rxsoft *rxs;
886 const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
887 int error, i;
888
889 error = 0;
890
891 /* Cancel any pending I/O. */
892 emac_stop(ifp, 0);
893
894 /* Reset the chip to a known state. */
895 emac_soft_reset(sc);
896
897 /*
898 * Initialise the transmit descriptor ring.
899 */
900 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
901 /* set wrap on last descriptor */
902 sc->sc_txdescs[EMAC_NTXDESC - 1].md_stat_ctrl |= MAL_TX_WRAP;
903 EMAC_CDTXSYNC(sc, 0, EMAC_NTXDESC,
904 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
905 sc->sc_txfree = EMAC_NTXDESC;
906 sc->sc_txnext = 0;
907
908 /*
909 * Initialise the transmit job descriptors.
910 */
911 for (i = 0; i < EMAC_TXQUEUELEN; i++)
912 sc->sc_txsoft[i].txs_mbuf = NULL;
913 sc->sc_txsfree = EMAC_TXQUEUELEN;
914 sc->sc_txsnext = 0;
915 sc->sc_txsdirty = 0;
916
917 /*
918 * Initialise the receiver descriptor and receive job
919 * descriptor rings.
920 */
921 for (i = 0; i < EMAC_NRXDESC; i++) {
922 rxs = &sc->sc_rxsoft[i];
923 if (rxs->rxs_mbuf == NULL) {
924 if ((error = emac_add_rxbuf(sc, i)) != 0) {
925 aprint_error_ifnet(ifp,
926 "unable to allocate or map rx buffer %d,"
927 " error = %d\n",
928 i, error);
929 /*
930 * XXX Should attempt to run with fewer receive
931 * XXX buffers instead of just failing.
932 */
933 emac_rxdrain(sc);
934 goto out;
935 }
936 } else
937 EMAC_INIT_RXDESC(sc, i);
938 }
939 sc->sc_rxptr = 0;
940
941 /*
942 * Set the current media.
943 */
944 if ((error = ether_mediachange(ifp)) != 0)
945 goto out;
946
947 /*
948 * Load the MAC address.
949 */
950 EMAC_WRITE(sc, EMAC_IAHR, enaddr[0] << 8 | enaddr[1]);
951 EMAC_WRITE(sc, EMAC_IALR,
952 enaddr[2] << 24 | enaddr[3] << 16 | enaddr[4] << 8 | enaddr[5]);
953
954 /* Enable the transmit and receive channel on the MAL. */
955 error = mal_start(sc->sc_instance,
956 EMAC_CDTXADDR(sc, 0), EMAC_CDRXADDR(sc, 0));
957 if (error)
958 goto out;
959
960 sc->sc_mr1 &= ~MR1_JPSM;
961 if (ifp->if_mtu > ETHERMTU)
962 /* Enable Jumbo Packet Support Mode */
963 sc->sc_mr1 |= MR1_JPSM;
964
965 /* Set fifos, media modes. */
966 EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
967
968 /*
969 * Enable Individual and (possibly) Broadcast Address modes,
970 * runt packets, and strip padding.
971 */
972 EMAC_WRITE(sc, EMAC_RMR, RMR_IAE | RMR_RRP | RMR_SP | RMR_TFAE_2 |
973 (ifp->if_flags & IFF_PROMISC ? RMR_PME : 0) |
974 (ifp->if_flags & IFF_BROADCAST ? RMR_BAE : 0));
975
976 /*
977 * Set multicast filter.
978 */
979 emac_set_filter(sc);
980
981 /*
982 * Set low- and urgent-priority request thresholds.
983 */
984 EMAC_WRITE(sc, EMAC_TMR1,
985 ((7 << TMR1_TLR_SHIFT) & TMR1_TLR_MASK) | /* 16 word burst */
986 ((15 << TMR1_TUR_SHIFT) & TMR1_TUR_MASK));
987 /*
988 * Set Transmit Request Threshold Register.
989 */
990 EMAC_WRITE(sc, EMAC_TRTR, TRTR_256);
991
992 /*
993 * Set high and low receive watermarks.
994 */
995 EMAC_WRITE(sc, EMAC_RWMR,
996 30 << RWMR_RLWM_SHIFT | 64 << RWMR_RLWM_SHIFT);
997
998 /*
999 * Set frame gap.
1000 */
1001 EMAC_WRITE(sc, EMAC_IPGVR, 8);
1002
1003 /*
1004 * Set interrupt status enable bits for EMAC.
1005 */
1006 EMAC_WRITE(sc, EMAC_ISER,
1007 ISR_TXPE | /* TX Parity Error */
1008 ISR_RXPE | /* RX Parity Error */
1009 ISR_TXUE | /* TX Underrun Event */
1010 ISR_RXOE | /* RX Overrun Event */
1011 ISR_OVR | /* Overrun Error */
1012 ISR_PP | /* Pause Packet */
1013 ISR_BP | /* Bad Packet */
1014 ISR_RP | /* Runt Packet */
1015 ISR_SE | /* Short Event */
1016 ISR_ALE | /* Alignment Error */
1017 ISR_BFCS | /* Bad FCS */
1018 ISR_PTLE | /* Packet Too Long Error */
1019 ISR_ORE | /* Out of Range Error */
1020 ISR_IRE | /* In Range Error */
1021 ISR_SE0 | /* Signal Quality Error 0 (SQE) */
1022 ISR_TE0 | /* Transmit Error 0 */
1023 ISR_MOS | /* MMA Operation Succeeded */
1024 ISR_MOF); /* MMA Operation Failed */
1025
1026 /*
1027 * Enable the transmit and receive channel on the EMAC.
1028 */
1029 EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
1030
1031 /*
1032 * Start the one second MII clock.
1033 */
1034 callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
1035
1036 /*
1037 * ... all done!
1038 */
1039 ifp->if_flags |= IFF_RUNNING;
1040 ifp->if_flags &= ~IFF_OACTIVE;
1041
1042 out:
1043 if (error) {
1044 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1045 ifp->if_timer = 0;
1046 aprint_error_ifnet(ifp, "interface not running\n");
1047 }
1048 return error;
1049 }
1050
1051 static void
1052 emac_stop(struct ifnet *ifp, int disable)
1053 {
1054 struct emac_softc *sc = ifp->if_softc;
1055 struct emac_txsoft *txs;
1056 int i;
1057
1058 /* Stop the one second clock. */
1059 callout_stop(&sc->sc_callout);
1060
1061 /* Down the MII */
1062 mii_down(&sc->sc_mii);
1063
1064 /* Disable interrupts. */
1065 EMAC_WRITE(sc, EMAC_ISER, 0);
1066
1067 /* Disable the receive and transmit channels. */
1068 mal_stop(sc->sc_instance);
1069
1070 /* Disable the transmit enable and receive MACs. */
1071 EMAC_WRITE(sc, EMAC_MR0,
1072 EMAC_READ(sc, EMAC_MR0) & ~(MR0_TXE | MR0_RXE));
1073
1074 /* Release any queued transmit buffers. */
1075 for (i = 0; i < EMAC_TXQUEUELEN; i++) {
1076 txs = &sc->sc_txsoft[i];
1077 if (txs->txs_mbuf != NULL) {
1078 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1079 m_freem(txs->txs_mbuf);
1080 txs->txs_mbuf = NULL;
1081 }
1082 }
1083
1084 if (disable)
1085 emac_rxdrain(sc);
1086
1087 /*
1088 * Mark the interface down and cancel the watchdog timer.
1089 */
1090 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1091 ifp->if_timer = 0;
1092 }
1093
1094 static void
1095 emac_watchdog(struct ifnet *ifp)
1096 {
1097 struct emac_softc *sc = ifp->if_softc;
1098
1099 /*
1100 * Since we're not interrupting every packet, sweep
1101 * up before we report an error.
1102 */
1103 emac_txreap(sc);
1104
1105 if (sc->sc_txfree != EMAC_NTXDESC) {
1106 aprint_error_ifnet(ifp,
1107 "device timeout (txfree %d txsfree %d txnext %d)\n",
1108 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
1109 ifp->if_oerrors++;
1110
1111 /* Reset the interface. */
1112 (void)emac_init(ifp);
1113 } else if (ifp->if_flags & IFF_DEBUG)
1114 aprint_error_ifnet(ifp, "recovered from device timeout\n");
1115
1116 /* try to get more packets going */
1117 emac_start(ifp);
1118 }
1119
1120 static int
1121 emac_add_rxbuf(struct emac_softc *sc, int idx)
1122 {
1123 struct emac_rxsoft *rxs = &sc->sc_rxsoft[idx];
1124 struct mbuf *m;
1125 int error;
1126
1127 MGETHDR(m, M_DONTWAIT, MT_DATA);
1128 if (m == NULL)
1129 return ENOBUFS;
1130
1131 MCLGET(m, M_DONTWAIT);
1132 if ((m->m_flags & M_EXT) == 0) {
1133 m_freem(m);
1134 return ENOBUFS;
1135 }
1136
1137 if (rxs->rxs_mbuf != NULL)
1138 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1139
1140 rxs->rxs_mbuf = m;
1141
1142 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1143 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1144 if (error) {
1145 aprint_error_dev(sc->sc_dev,
1146 "can't load rx DMA map %d, error = %d\n", idx, error);
1147 panic("emac_add_rxbuf"); /* XXX */
1148 }
1149
1150 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1151 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1152
1153 EMAC_INIT_RXDESC(sc, idx);
1154
1155 return 0;
1156 }
1157
1158 static void
1159 emac_rxdrain(struct emac_softc *sc)
1160 {
1161 struct emac_rxsoft *rxs;
1162 int i;
1163
1164 for (i = 0; i < EMAC_NRXDESC; i++) {
1165 rxs = &sc->sc_rxsoft[i];
1166 if (rxs->rxs_mbuf != NULL) {
1167 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1168 m_freem(rxs->rxs_mbuf);
1169 rxs->rxs_mbuf = NULL;
1170 }
1171 }
1172 }
1173
1174 static int
1175 emac_set_filter(struct emac_softc *sc)
1176 {
1177 struct ether_multistep step;
1178 struct ether_multi *enm;
1179 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1180 uint32_t rmr, crc, mask, tmp, reg, gaht[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1181 int regs, cnt = 0, i;
1182
1183 if (sc->sc_htsize == 256) {
1184 reg = EMAC_GAHT256(0);
1185 regs = 8;
1186 } else {
1187 reg = EMAC_GAHT64(0);
1188 regs = 4;
1189 }
1190 mask = (1ULL << (sc->sc_htsize / regs)) - 1;
1191
1192 rmr = EMAC_READ(sc, EMAC_RMR);
1193 rmr &= ~(RMR_PMME | RMR_MAE);
1194 ifp->if_flags &= ~IFF_ALLMULTI;
1195
1196 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1197 while (enm != NULL) {
1198 if (memcmp(enm->enm_addrlo,
1199 enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1200 /*
1201 * We must listen to a range of multicast addresses.
1202 * For now, just accept all multicasts, rather than
1203 * trying to set only those filter bits needed to match
1204 * the range. (At this time, the only use of address
1205 * ranges is for IP multicast routing, for which the
1206 * range is big enough to require all bits set.)
1207 */
1208 gaht[0] = gaht[1] = gaht[2] = gaht[3] =
1209 gaht[4] = gaht[5] = gaht[6] = gaht[7] = mask;
1210 break;
1211 }
1212
1213 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1214
1215 if (sc->sc_htsize == 256)
1216 EMAC_SET_FILTER256(gaht, crc);
1217 else
1218 EMAC_SET_FILTER(gaht, crc);
1219
1220 ETHER_NEXT_MULTI(step, enm);
1221 cnt++;
1222 }
1223
1224 for (i = 1, tmp = gaht[0]; i < regs; i++)
1225 tmp &= gaht[i];
1226 if (tmp == mask) {
1227 /* All categories are true. */
1228 ifp->if_flags |= IFF_ALLMULTI;
1229 rmr |= RMR_PMME;
1230 } else if (cnt != 0) {
1231 /* Some categories are true. */
1232 for (i = 0; i < regs; i++)
1233 EMAC_WRITE(sc, reg + (i << 2), gaht[i]);
1234 rmr |= RMR_MAE;
1235 }
1236 EMAC_WRITE(sc, EMAC_RMR, rmr);
1237
1238 return 0;
1239 }
1240
1241 /*
1242 * Reap completed Tx descriptors.
1243 */
1244 static int
1245 emac_txreap(struct emac_softc *sc)
1246 {
1247 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1248 struct emac_txsoft *txs;
1249 int handled, i;
1250 uint32_t txstat;
1251
1252 EMAC_EVCNT_INCR(&sc->sc_ev_txreap);
1253 handled = 0;
1254
1255 ifp->if_flags &= ~IFF_OACTIVE;
1256
1257 /*
1258 * Go through our Tx list and free mbufs for those
1259 * frames that have been transmitted.
1260 */
1261 for (i = sc->sc_txsdirty; sc->sc_txsfree != EMAC_TXQUEUELEN;
1262 i = EMAC_NEXTTXS(i), sc->sc_txsfree++) {
1263 txs = &sc->sc_txsoft[i];
1264
1265 EMAC_CDTXSYNC(sc, txs->txs_lastdesc,
1266 txs->txs_dmamap->dm_nsegs,
1267 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1268
1269 txstat = sc->sc_txdescs[txs->txs_lastdesc].md_stat_ctrl;
1270 if (txstat & MAL_TX_READY)
1271 break;
1272
1273 handled = 1;
1274
1275 /*
1276 * Check for errors and collisions.
1277 */
1278 if (txstat & (EMAC_TXS_UR | EMAC_TXS_ED))
1279 ifp->if_oerrors++;
1280
1281 #ifdef EMAC_EVENT_COUNTERS
1282 if (txstat & EMAC_TXS_UR)
1283 EMAC_EVCNT_INCR(&sc->sc_ev_tu);
1284 #endif /* EMAC_EVENT_COUNTERS */
1285
1286 if (txstat &
1287 (EMAC_TXS_EC | EMAC_TXS_MC | EMAC_TXS_SC | EMAC_TXS_LC)) {
1288 if (txstat & EMAC_TXS_EC)
1289 ifp->if_collisions += 16;
1290 else if (txstat & EMAC_TXS_MC)
1291 ifp->if_collisions += 2; /* XXX? */
1292 else if (txstat & EMAC_TXS_SC)
1293 ifp->if_collisions++;
1294 if (txstat & EMAC_TXS_LC)
1295 ifp->if_collisions++;
1296 } else
1297 ifp->if_opackets++;
1298
1299 if (ifp->if_flags & IFF_DEBUG) {
1300 if (txstat & EMAC_TXS_ED)
1301 aprint_error_ifnet(ifp, "excessive deferral\n");
1302 if (txstat & EMAC_TXS_EC)
1303 aprint_error_ifnet(ifp,
1304 "excessive collisions\n");
1305 }
1306
1307 sc->sc_txfree += txs->txs_ndesc;
1308 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1309 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1310 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1311 m_freem(txs->txs_mbuf);
1312 txs->txs_mbuf = NULL;
1313 }
1314
1315 /* Update the dirty transmit buffer pointer. */
1316 sc->sc_txsdirty = i;
1317
1318 /*
1319 * If there are no more pending transmissions, cancel the watchdog
1320 * timer.
1321 */
1322 if (sc->sc_txsfree == EMAC_TXQUEUELEN)
1323 ifp->if_timer = 0;
1324
1325 return handled;
1326 }
1327
1328
1329 /*
1330 * Reset functions
1331 */
1332
1333 static void
1334 emac_soft_reset(struct emac_softc *sc)
1335 {
1336 uint32_t sdr;
1337 int t = 0;
1338
1339 /*
1340 * The PHY must provide a TX Clk in order perform a soft reset the
1341 * EMAC. If none is present, select the internal clock,
1342 * SDR0_MFR[E0CS,E1CS]. After the soft reset, select the external
1343 * clock.
1344 */
1345
1346 sdr = mfsdr(DCR_SDR0_MFR);
1347 sdr |= SDR0_MFR_ECS(sc->sc_instance);
1348 mtsdr(DCR_SDR0_MFR, sdr);
1349
1350 EMAC_WRITE(sc, EMAC_MR0, MR0_SRST);
1351
1352 sdr = mfsdr(DCR_SDR0_MFR);
1353 sdr &= ~SDR0_MFR_ECS(sc->sc_instance);
1354 mtsdr(DCR_SDR0_MFR, sdr);
1355
1356 delay(5);
1357
1358 /* wait finish */
1359 while (EMAC_READ(sc, EMAC_MR0) & MR0_SRST) {
1360 if (++t == 1000000 /* 1sec XXXXX */) {
1361 aprint_error_dev(sc->sc_dev, "Soft Reset failed\n");
1362 return;
1363 }
1364 delay(1);
1365 }
1366 }
1367
1368 static void
1369 emac_smart_reset(struct emac_softc *sc)
1370 {
1371 uint32_t mr0;
1372 int t = 0;
1373
1374 mr0 = EMAC_READ(sc, EMAC_MR0);
1375 if (mr0 & (MR0_TXE | MR0_RXE)) {
1376 mr0 &= ~(MR0_TXE | MR0_RXE);
1377 EMAC_WRITE(sc, EMAC_MR0, mr0);
1378
1379 /* wait idel state */
1380 while ((EMAC_READ(sc, EMAC_MR0) & (MR0_TXI | MR0_RXI)) !=
1381 (MR0_TXI | MR0_RXI)) {
1382 if (++t == 1000000 /* 1sec XXXXX */) {
1383 aprint_error_dev(sc->sc_dev,
1384 "Smart Reset failed\n");
1385 return;
1386 }
1387 delay(1);
1388 }
1389 }
1390 }
1391
1392
1393 /*
1394 * MII related functions
1395 */
1396
1397 static int
1398 emac_mii_readreg(device_t self, int phy, int reg)
1399 {
1400 struct emac_softc *sc = device_private(self);
1401 uint32_t sta_reg;
1402
1403 if (sc->sc_rmii_enable)
1404 sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
1405
1406 /* wait for PHY data transfer to complete */
1407 if (emac_mii_wait(sc))
1408 goto fail;
1409
1410 sta_reg =
1411 sc->sc_stacr_read |
1412 (reg << STACR_PRA_SHIFT) |
1413 (phy << STACR_PCDA_SHIFT) |
1414 sc->sc_stacr_bits;
1415 EMAC_WRITE(sc, EMAC_STACR, sta_reg);
1416
1417 if (emac_mii_wait(sc))
1418 goto fail;
1419 sta_reg = EMAC_READ(sc, EMAC_STACR);
1420
1421 if (sc->sc_rmii_disable)
1422 sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
1423
1424 if (sta_reg & STACR_PHYE)
1425 return 0;
1426 return sta_reg >> STACR_PHYD_SHIFT;
1427
1428 fail:
1429 if (sc->sc_rmii_disable)
1430 sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
1431 return 0;
1432 }
1433
1434 static void
1435 emac_mii_writereg(device_t self, int phy, int reg, int val)
1436 {
1437 struct emac_softc *sc = device_private(self);
1438 uint32_t sta_reg;
1439
1440 if (sc->sc_rmii_enable)
1441 sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
1442
1443 /* wait for PHY data transfer to complete */
1444 if (emac_mii_wait(sc))
1445 goto out;
1446
1447 sta_reg =
1448 (val << STACR_PHYD_SHIFT) |
1449 sc->sc_stacr_write |
1450 (reg << STACR_PRA_SHIFT) |
1451 (phy << STACR_PCDA_SHIFT) |
1452 sc->sc_stacr_bits;
1453 EMAC_WRITE(sc, EMAC_STACR, sta_reg);
1454
1455 if (emac_mii_wait(sc))
1456 goto out;
1457 if (EMAC_READ(sc, EMAC_STACR) & STACR_PHYE)
1458 aprint_error_dev(sc->sc_dev, "MII PHY Error\n");
1459
1460 out:
1461 if (sc->sc_rmii_disable)
1462 sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
1463 }
1464
1465 static void
1466 emac_mii_statchg(device_t self)
1467 {
1468 struct emac_softc *sc = device_private(self);
1469 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1470 struct mii_data *mii = &sc->sc_mii;
1471
1472 /*
1473 * MR1 can only be written immediately after a reset...
1474 */
1475 emac_smart_reset(sc);
1476
1477 sc->sc_mr1 &= ~(MR1_FDE | MR1_ILE | MR1_EIFC | MR1_MF_MASK | MR1_IST);
1478 if (mii->mii_media_active & IFM_FDX)
1479 sc->sc_mr1 |= (MR1_FDE | MR1_EIFC | MR1_IST);
1480 if (mii->mii_media_active & IFM_FLOW)
1481 sc->sc_mr1 |= MR1_EIFC;
1482 if (mii->mii_media_active & IFM_LOOP)
1483 sc->sc_mr1 |= MR1_ILE;
1484 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1485 case IFM_1000_T:
1486 sc->sc_mr1 |= (MR1_MF_1000MBS | MR1_IST);
1487 break;
1488
1489 case IFM_100_TX:
1490 sc->sc_mr1 |= (MR1_MF_100MBS | MR1_IST);
1491 break;
1492
1493 case IFM_10_T:
1494 sc->sc_mr1 |= MR1_MF_10MBS;
1495 break;
1496
1497 case IFM_NONE:
1498 break;
1499
1500 default:
1501 aprint_error_dev(self, "unknown sub-type %d\n",
1502 IFM_SUBTYPE(mii->mii_media_active));
1503 break;
1504 }
1505 if (sc->sc_rmii_speed)
1506 sc->sc_rmii_speed(device_parent(self), sc->sc_instance,
1507 IFM_SUBTYPE(mii->mii_media_active));
1508
1509 EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
1510
1511 /* Enable TX and RX if already RUNNING */
1512 if (ifp->if_flags & IFF_RUNNING)
1513 EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
1514 }
1515
1516 static uint32_t
1517 emac_mii_wait(struct emac_softc *sc)
1518 {
1519 int i;
1520 uint32_t oc;
1521
1522 /* wait for PHY data transfer to complete */
1523 i = 0;
1524 oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
1525 while ((oc == STACR_OC) != sc->sc_stacr_completed) {
1526 delay(7);
1527 if (i++ > 5) {
1528 aprint_error_dev(sc->sc_dev, "MII timed out\n");
1529 return -1;
1530 }
1531 oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
1532 }
1533 return 0;
1534 }
1535
1536 static void
1537 emac_mii_tick(void *arg)
1538 {
1539 struct emac_softc *sc = arg;
1540 int s;
1541
1542 if (!device_is_active(sc->sc_dev))
1543 return;
1544
1545 s = splnet();
1546 mii_tick(&sc->sc_mii);
1547 splx(s);
1548
1549 callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
1550 }
1551
1552 int
1553 emac_txeob_intr(void *arg)
1554 {
1555 struct emac_softc *sc = arg;
1556 int handled = 0;
1557
1558 EMAC_EVCNT_INCR(&sc->sc_ev_txintr);
1559 handled |= emac_txreap(sc);
1560
1561 /* try to get more packets going */
1562 emac_start(&sc->sc_ethercom.ec_if);
1563
1564 return handled;
1565 }
1566
1567 int
1568 emac_rxeob_intr(void *arg)
1569 {
1570 struct emac_softc *sc = arg;
1571 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1572 struct emac_rxsoft *rxs;
1573 struct mbuf *m;
1574 uint32_t rxstat;
1575 int i, len;
1576
1577 EMAC_EVCNT_INCR(&sc->sc_ev_rxintr);
1578
1579 for (i = sc->sc_rxptr; ; i = EMAC_NEXTRX(i)) {
1580 rxs = &sc->sc_rxsoft[i];
1581
1582 EMAC_CDRXSYNC(sc, i,
1583 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1584
1585 rxstat = sc->sc_rxdescs[i].md_stat_ctrl;
1586
1587 if (rxstat & MAL_RX_EMPTY)
1588 /*
1589 * We have processed all of the receive buffers.
1590 */
1591 break;
1592
1593 /*
1594 * If an error occurred, update stats, clear the status
1595 * word, and leave the packet buffer in place. It will
1596 * simply be reused the next time the ring comes around.
1597 */
1598 if (rxstat & (EMAC_RXS_OE | EMAC_RXS_BP | EMAC_RXS_SE |
1599 EMAC_RXS_AE | EMAC_RXS_BFCS | EMAC_RXS_PTL | EMAC_RXS_ORE |
1600 EMAC_RXS_IRE)) {
1601 #define PRINTERR(bit, str) \
1602 if (rxstat & (bit)) \
1603 aprint_error_ifnet(ifp, \
1604 "receive error: %s\n", str)
1605 ifp->if_ierrors++;
1606 PRINTERR(EMAC_RXS_OE, "overrun error");
1607 PRINTERR(EMAC_RXS_BP, "bad packet");
1608 PRINTERR(EMAC_RXS_RP, "runt packet");
1609 PRINTERR(EMAC_RXS_SE, "short event");
1610 PRINTERR(EMAC_RXS_AE, "alignment error");
1611 PRINTERR(EMAC_RXS_BFCS, "bad FCS");
1612 PRINTERR(EMAC_RXS_PTL, "packet too long");
1613 PRINTERR(EMAC_RXS_ORE, "out of range error");
1614 PRINTERR(EMAC_RXS_IRE, "in range error");
1615 #undef PRINTERR
1616 EMAC_INIT_RXDESC(sc, i);
1617 continue;
1618 }
1619
1620 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1621 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1622
1623 /*
1624 * No errors; receive the packet. Note, the 405GP emac
1625 * includes the CRC with every packet.
1626 */
1627 len = sc->sc_rxdescs[i].md_data_len - ETHER_CRC_LEN;
1628
1629 /*
1630 * If the packet is small enough to fit in a
1631 * single header mbuf, allocate one and copy
1632 * the data into it. This greatly reduces
1633 * memory consumption when we receive lots
1634 * of small packets.
1635 *
1636 * Otherwise, we add a new buffer to the receive
1637 * chain. If this fails, we drop the packet and
1638 * recycle the old buffer.
1639 */
1640 if (emac_copy_small != 0 && len <= MHLEN) {
1641 MGETHDR(m, M_DONTWAIT, MT_DATA);
1642 if (m == NULL)
1643 goto dropit;
1644 memcpy(mtod(m, void *),
1645 mtod(rxs->rxs_mbuf, void *), len);
1646 EMAC_INIT_RXDESC(sc, i);
1647 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1648 rxs->rxs_dmamap->dm_mapsize,
1649 BUS_DMASYNC_PREREAD);
1650 } else {
1651 m = rxs->rxs_mbuf;
1652 if (emac_add_rxbuf(sc, i) != 0) {
1653 dropit:
1654 ifp->if_ierrors++;
1655 EMAC_INIT_RXDESC(sc, i);
1656 bus_dmamap_sync(sc->sc_dmat,
1657 rxs->rxs_dmamap, 0,
1658 rxs->rxs_dmamap->dm_mapsize,
1659 BUS_DMASYNC_PREREAD);
1660 continue;
1661 }
1662 }
1663
1664 ifp->if_ipackets++;
1665 m->m_pkthdr.rcvif = ifp;
1666 m->m_pkthdr.len = m->m_len = len;
1667
1668 /*
1669 * Pass this up to any BPF listeners, but only
1670 * pass if up the stack if it's for us.
1671 */
1672 bpf_mtap(ifp, m);
1673
1674 /* Pass it on. */
1675 (*ifp->if_input)(ifp, m);
1676 }
1677
1678 /* Update the receive pointer. */
1679 sc->sc_rxptr = i;
1680
1681 return 1;
1682 }
1683
1684 int
1685 emac_txde_intr(void *arg)
1686 {
1687 struct emac_softc *sc = arg;
1688
1689 EMAC_EVCNT_INCR(&sc->sc_ev_txde);
1690 aprint_error_dev(sc->sc_dev, "emac_txde_intr\n");
1691 return 1;
1692 }
1693
1694 int
1695 emac_rxde_intr(void *arg)
1696 {
1697 struct emac_softc *sc = arg;
1698 int i;
1699
1700 EMAC_EVCNT_INCR(&sc->sc_ev_rxde);
1701 aprint_error_dev(sc->sc_dev, "emac_rxde_intr\n");
1702 /*
1703 * XXX!
1704 * This is a bit drastic; we just drop all descriptors that aren't
1705 * "clean". We should probably send any that are up the stack.
1706 */
1707 for (i = 0; i < EMAC_NRXDESC; i++) {
1708 EMAC_CDRXSYNC(sc, i,
1709 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1710
1711 if (sc->sc_rxdescs[i].md_data_len != MCLBYTES)
1712 EMAC_INIT_RXDESC(sc, i);
1713 }
1714
1715 return 1;
1716 }
1717