if_emac.c revision 1.50 1 /* $NetBSD: if_emac.c,v 1.50 2019/05/23 10:57:27 msaitoh Exp $ */
2
3 /*
4 * Copyright 2001, 2002 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Simon Burge and Jason Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * emac(4) supports following ibm4xx's EMACs.
40 * XXXX: ZMII and 'TCP Accelaration Hardware' not support yet...
41 *
42 * tested
43 * ------
44 * 405EP - 10/100 x2
45 * 405EX/EXr o 10/100/1000 x2 (EXr x1), STA v2, 256bit hash-Table, RGMII
46 * 405GP/GPr o 10/100
47 * 440EP - 10/100 x2, ZMII
48 * 440GP - 10/100 x2, ZMII
49 * 440GX - 10/100/1000 x4, ZMII/RGMII(ch 2, 3), TAH(ch 2, 3)
50 * 440SP - 10/100/1000
51 * 440SPe - 10/100/1000, STA v2
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_emac.c,v 1.50 2019/05/23 10:57:27 msaitoh Exp $");
56
57 #include "opt_emac.h"
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/mbuf.h>
62 #include <sys/kernel.h>
63 #include <sys/socket.h>
64 #include <sys/ioctl.h>
65 #include <sys/cpu.h>
66 #include <sys/device.h>
67
68 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
69
70 #include <net/if.h>
71 #include <net/if_dl.h>
72 #include <net/if_media.h>
73 #include <net/if_ether.h>
74
75 #include <net/bpf.h>
76
77 #include <powerpc/ibm4xx/cpu.h>
78 #include <powerpc/ibm4xx/dcr4xx.h>
79 #include <powerpc/ibm4xx/mal405gp.h>
80 #include <powerpc/ibm4xx/dev/emacreg.h>
81 #include <powerpc/ibm4xx/dev/if_emacreg.h>
82 #include <powerpc/ibm4xx/dev/if_emacvar.h>
83 #include <powerpc/ibm4xx/dev/malvar.h>
84 #include <powerpc/ibm4xx/dev/opbreg.h>
85 #include <powerpc/ibm4xx/dev/opbvar.h>
86 #include <powerpc/ibm4xx/dev/plbvar.h>
87 #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
88 #include <powerpc/ibm4xx/dev/rmiivar.h>
89 #endif
90
91 #include <dev/mii/miivar.h>
92
93 #include "locators.h"
94
95
96 /*
97 * Transmit descriptor list size. There are two Tx channels, each with
98 * up to 256 hardware descriptors available. We currently use one Tx
99 * channel. We tell the upper layers that they can queue a lot of
100 * packets, and we go ahead and manage up to 64 of them at a time. We
101 * allow up to 16 DMA segments per packet.
102 */
103 #define EMAC_NTXSEGS 16
104 #define EMAC_TXQUEUELEN 64
105 #define EMAC_TXQUEUELEN_MASK (EMAC_TXQUEUELEN - 1)
106 #define EMAC_TXQUEUE_GC (EMAC_TXQUEUELEN / 4)
107 #define EMAC_NTXDESC 256
108 #define EMAC_NTXDESC_MASK (EMAC_NTXDESC - 1)
109 #define EMAC_NEXTTX(x) (((x) + 1) & EMAC_NTXDESC_MASK)
110 #define EMAC_NEXTTXS(x) (((x) + 1) & EMAC_TXQUEUELEN_MASK)
111
112 /*
113 * Receive descriptor list size. There is one Rx channel with up to 256
114 * hardware descriptors available. We allocate 64 receive descriptors,
115 * each with a 2k buffer (MCLBYTES).
116 */
117 #define EMAC_NRXDESC 64
118 #define EMAC_NRXDESC_MASK (EMAC_NRXDESC - 1)
119 #define EMAC_NEXTRX(x) (((x) + 1) & EMAC_NRXDESC_MASK)
120 #define EMAC_PREVRX(x) (((x) - 1) & EMAC_NRXDESC_MASK)
121
122 /*
123 * Transmit/receive descriptors that are DMA'd to the EMAC.
124 */
125 struct emac_control_data {
126 struct mal_descriptor ecd_txdesc[EMAC_NTXDESC];
127 struct mal_descriptor ecd_rxdesc[EMAC_NRXDESC];
128 };
129
130 #define EMAC_CDOFF(x) offsetof(struct emac_control_data, x)
131 #define EMAC_CDTXOFF(x) EMAC_CDOFF(ecd_txdesc[(x)])
132 #define EMAC_CDRXOFF(x) EMAC_CDOFF(ecd_rxdesc[(x)])
133
134 /*
135 * Software state for transmit jobs.
136 */
137 struct emac_txsoft {
138 struct mbuf *txs_mbuf; /* head of mbuf chain */
139 bus_dmamap_t txs_dmamap; /* our DMA map */
140 int txs_firstdesc; /* first descriptor in packet */
141 int txs_lastdesc; /* last descriptor in packet */
142 int txs_ndesc; /* # of descriptors used */
143 };
144
145 /*
146 * Software state for receive descriptors.
147 */
148 struct emac_rxsoft {
149 struct mbuf *rxs_mbuf; /* head of mbuf chain */
150 bus_dmamap_t rxs_dmamap; /* our DMA map */
151 };
152
153 /*
154 * Software state per device.
155 */
156 struct emac_softc {
157 device_t sc_dev; /* generic device information */
158 int sc_instance; /* instance no. */
159 bus_space_tag_t sc_st; /* bus space tag */
160 bus_space_handle_t sc_sh; /* bus space handle */
161 bus_dma_tag_t sc_dmat; /* bus DMA tag */
162 struct ethercom sc_ethercom; /* ethernet common data */
163 void *sc_sdhook; /* shutdown hook */
164 void *sc_powerhook; /* power management hook */
165
166 struct mii_data sc_mii; /* MII/media information */
167 struct callout sc_callout; /* tick callout */
168
169 uint32_t sc_mr1; /* copy of Mode Register 1 */
170 uint32_t sc_stacr_read; /* Read opcode of STAOPC of STACR */
171 uint32_t sc_stacr_write; /* Write opcode of STAOPC of STACR */
172 uint32_t sc_stacr_bits; /* misc bits of STACR */
173 bool sc_stacr_completed; /* Operation completed of STACR */
174 int sc_htsize; /* Hash Table size */
175
176 bus_dmamap_t sc_cddmamap; /* control data dma map */
177 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
178
179 /* Software state for transmit/receive descriptors. */
180 struct emac_txsoft sc_txsoft[EMAC_TXQUEUELEN];
181 struct emac_rxsoft sc_rxsoft[EMAC_NRXDESC];
182
183 /* Control data structures. */
184 struct emac_control_data *sc_control_data;
185 #define sc_txdescs sc_control_data->ecd_txdesc
186 #define sc_rxdescs sc_control_data->ecd_rxdesc
187
188 #ifdef EMAC_EVENT_COUNTERS
189 struct evcnt sc_ev_rxintr; /* Rx interrupts */
190 struct evcnt sc_ev_txintr; /* Tx interrupts */
191 struct evcnt sc_ev_rxde; /* Rx descriptor interrupts */
192 struct evcnt sc_ev_txde; /* Tx descriptor interrupts */
193 struct evcnt sc_ev_intr; /* General EMAC interrupts */
194
195 struct evcnt sc_ev_txreap; /* Calls to Tx descriptor reaper */
196 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
197 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
198 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
199 struct evcnt sc_ev_tu; /* Tx underrun */
200 #endif /* EMAC_EVENT_COUNTERS */
201
202 int sc_txfree; /* number of free Tx descriptors */
203 int sc_txnext; /* next ready Tx descriptor */
204
205 int sc_txsfree; /* number of free Tx jobs */
206 int sc_txsnext; /* next ready Tx job */
207 int sc_txsdirty; /* dirty Tx jobs */
208
209 int sc_rxptr; /* next ready RX descriptor/descsoft */
210
211 void (*sc_rmii_enable)(device_t, int); /* reduced MII enable */
212 void (*sc_rmii_disable)(device_t, int); /* reduced MII disable*/
213 void (*sc_rmii_speed)(device_t, int, int); /* reduced MII speed */
214 };
215
216 #ifdef EMAC_EVENT_COUNTERS
217 #define EMAC_EVCNT_INCR(ev) (ev)->ev_count++
218 #else
219 #define EMAC_EVCNT_INCR(ev) /* nothing */
220 #endif
221
222 #define EMAC_CDTXADDR(sc, x) ((sc)->sc_cddma + EMAC_CDTXOFF((x)))
223 #define EMAC_CDRXADDR(sc, x) ((sc)->sc_cddma + EMAC_CDRXOFF((x)))
224
225 #define EMAC_CDTXSYNC(sc, x, n, ops) \
226 do { \
227 int __x, __n; \
228 \
229 __x = (x); \
230 __n = (n); \
231 \
232 /* If it will wrap around, sync to the end of the ring. */ \
233 if ((__x + __n) > EMAC_NTXDESC) { \
234 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
235 EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * \
236 (EMAC_NTXDESC - __x), (ops)); \
237 __n -= (EMAC_NTXDESC - __x); \
238 __x = 0; \
239 } \
240 \
241 /* Now sync whatever is left. */ \
242 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
243 EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * __n, (ops)); \
244 } while (/*CONSTCOND*/0)
245
246 #define EMAC_CDRXSYNC(sc, x, ops) \
247 do { \
248 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
249 EMAC_CDRXOFF((x)), sizeof(struct mal_descriptor), (ops)); \
250 } while (/*CONSTCOND*/0)
251
252 #define EMAC_INIT_RXDESC(sc, x) \
253 do { \
254 struct emac_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
255 struct mal_descriptor *__rxd = &(sc)->sc_rxdescs[(x)]; \
256 struct mbuf *__m = __rxs->rxs_mbuf; \
257 \
258 /* \
259 * Note: We scoot the packet forward 2 bytes in the buffer \
260 * so that the payload after the Ethernet header is aligned \
261 * to a 4-byte boundary. \
262 */ \
263 __m->m_data = __m->m_ext.ext_buf + 2; \
264 \
265 __rxd->md_data = __rxs->rxs_dmamap->dm_segs[0].ds_addr + 2; \
266 __rxd->md_data_len = __m->m_ext.ext_size - 2; \
267 __rxd->md_stat_ctrl = MAL_RX_EMPTY | MAL_RX_INTERRUPT | \
268 /* Set wrap on last descriptor. */ \
269 (((x) == EMAC_NRXDESC - 1) ? MAL_RX_WRAP : 0); \
270 EMAC_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
271 } while (/*CONSTCOND*/0)
272
273 #define EMAC_WRITE(sc, reg, val) \
274 bus_space_write_stream_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
275 #define EMAC_READ(sc, reg) \
276 bus_space_read_stream_4((sc)->sc_st, (sc)->sc_sh, (reg))
277
278 #define EMAC_SET_FILTER(aht, crc) \
279 do { \
280 (aht)[3 - (((crc) >> 26) >> 4)] |= 1 << (((crc) >> 26) & 0xf); \
281 } while (/*CONSTCOND*/0)
282 #define EMAC_SET_FILTER256(aht, crc) \
283 do { \
284 (aht)[7 - (((crc) >> 24) >> 5)] |= 1 << (((crc) >> 24) & 0x1f); \
285 } while (/*CONSTCOND*/0)
286
287 static int emac_match(device_t, cfdata_t, void *);
288 static void emac_attach(device_t, device_t, void *);
289
290 static int emac_intr(void *);
291 static void emac_shutdown(void *);
292
293 static void emac_start(struct ifnet *);
294 static int emac_ioctl(struct ifnet *, u_long, void *);
295 static int emac_init(struct ifnet *);
296 static void emac_stop(struct ifnet *, int);
297 static void emac_watchdog(struct ifnet *);
298
299 static int emac_add_rxbuf(struct emac_softc *, int);
300 static void emac_rxdrain(struct emac_softc *);
301 static int emac_set_filter(struct emac_softc *);
302 static int emac_txreap(struct emac_softc *);
303
304 static void emac_soft_reset(struct emac_softc *);
305 static void emac_smart_reset(struct emac_softc *);
306
307 static int emac_mii_readreg(device_t, int, int, uint16_t *);
308 static int emac_mii_writereg(device_t, int, int, uint16_t);
309 static void emac_mii_statchg(struct ifnet *);
310 static uint32_t emac_mii_wait(struct emac_softc *);
311 static void emac_mii_tick(void *);
312
313 int emac_copy_small = 0;
314
315 CFATTACH_DECL_NEW(emac, sizeof(struct emac_softc),
316 emac_match, emac_attach, NULL, NULL);
317
318
319 static int
320 emac_match(device_t parent, cfdata_t cf, void *aux)
321 {
322 struct opb_attach_args *oaa = aux;
323
324 /* match only on-chip ethernet devices */
325 if (strcmp(oaa->opb_name, cf->cf_name) == 0)
326 return 1;
327
328 return 0;
329 }
330
331 static void
332 emac_attach(device_t parent, device_t self, void *aux)
333 {
334 struct opb_attach_args *oaa = aux;
335 struct emac_softc *sc = device_private(self);
336 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
337 struct mii_data *mii = &sc->sc_mii;
338 const char * xname = device_xname(self);
339 bus_dma_segment_t seg;
340 int error, i, nseg, opb_freq, opbc, mii_phy = MII_PHY_ANY;
341 const uint8_t *enaddr;
342 prop_dictionary_t dict = device_properties(self);
343 prop_data_t ea;
344
345 bus_space_map(oaa->opb_bt, oaa->opb_addr, EMAC_NREG, 0, &sc->sc_sh);
346
347 sc->sc_dev = self;
348 sc->sc_instance = oaa->opb_instance;
349 sc->sc_st = oaa->opb_bt;
350 sc->sc_dmat = oaa->opb_dmat;
351
352 callout_init(&sc->sc_callout, 0);
353
354 aprint_naive("\n");
355 aprint_normal(": Ethernet Media Access Controller\n");
356
357 /* Fetch the Ethernet address. */
358 ea = prop_dictionary_get(dict, "mac-address");
359 if (ea == NULL) {
360 aprint_error_dev(self, "unable to get mac-address property\n");
361 return;
362 }
363 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
364 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
365 enaddr = prop_data_data_nocopy(ea);
366 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
367
368 #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
369 /* Fetch the MII offset. */
370 prop_dictionary_get_uint32(dict, "mii-phy", &mii_phy);
371
372 #ifdef EMAC_ZMII_PHY
373 if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_ZMII)
374 zmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
375 &sc->sc_rmii_disable, &sc->sc_rmii_speed);
376 #endif
377 #ifdef EMAC_RGMII_PHY
378 if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_RGMII)
379 rgmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
380 &sc->sc_rmii_disable, &sc->sc_rmii_speed);
381 #endif
382 #endif
383
384 /*
385 * Allocate the control data structures, and create and load the
386 * DMA map for it.
387 */
388 if ((error = bus_dmamem_alloc(sc->sc_dmat,
389 sizeof(struct emac_control_data), 0, 0, &seg, 1, &nseg, 0)) != 0) {
390 aprint_error_dev(self,
391 "unable to allocate control data, error = %d\n", error);
392 goto fail_0;
393 }
394
395 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
396 sizeof(struct emac_control_data), (void **)&sc->sc_control_data,
397 BUS_DMA_COHERENT)) != 0) {
398 aprint_error_dev(self,
399 "unable to map control data, error = %d\n", error);
400 goto fail_1;
401 }
402
403 if ((error = bus_dmamap_create(sc->sc_dmat,
404 sizeof(struct emac_control_data), 1,
405 sizeof(struct emac_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
406 aprint_error_dev(self,
407 "unable to create control data DMA map, error = %d\n",
408 error);
409 goto fail_2;
410 }
411
412 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
413 sc->sc_control_data, sizeof(struct emac_control_data), NULL,
414 0)) != 0) {
415 aprint_error_dev(self,
416 "unable to load control data DMA map, error = %d\n", error);
417 goto fail_3;
418 }
419
420 /*
421 * Create the transmit buffer DMA maps.
422 */
423 for (i = 0; i < EMAC_TXQUEUELEN; i++) {
424 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
425 EMAC_NTXSEGS, MCLBYTES, 0, 0,
426 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
427 aprint_error_dev(self,
428 "unable to create tx DMA map %d, error = %d\n",
429 i, error);
430 goto fail_4;
431 }
432 }
433
434 /*
435 * Create the receive buffer DMA maps.
436 */
437 for (i = 0; i < EMAC_NRXDESC; i++) {
438 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
439 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
440 aprint_error_dev(self,
441 "unable to create rx DMA map %d, error = %d\n",
442 i, error);
443 goto fail_5;
444 }
445 sc->sc_rxsoft[i].rxs_mbuf = NULL;
446 }
447
448 /* Soft Reset the EMAC. The chip to a known state. */
449 emac_soft_reset(sc);
450
451 opb_freq = opb_get_frequency();
452 switch (opb_freq) {
453 case 50000000: opbc = STACR_OPBC_50MHZ; break;
454 case 66666666: opbc = STACR_OPBC_66MHZ; break;
455 case 83333333: opbc = STACR_OPBC_83MHZ; break;
456 case 100000000: opbc = STACR_OPBC_100MHZ; break;
457
458 default:
459 if (opb_freq > 100000000) {
460 opbc = STACR_OPBC_A100MHZ;
461 break;
462 }
463 aprint_error_dev(self, "unsupport OPB frequency %dMHz\n",
464 opb_freq / 1000 / 1000);
465 goto fail_5;
466 }
467 if (oaa->opb_flags & OPB_FLAGS_EMAC_GBE) {
468 sc->sc_mr1 =
469 MR1_RFS_GBE(MR1__FS_16KB) |
470 MR1_TFS_GBE(MR1__FS_16KB) |
471 MR1_TR0_MULTIPLE |
472 MR1_OBCI(opbc);
473 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
474
475 if (oaa->opb_flags & OPB_FLAGS_EMAC_STACV2) {
476 sc->sc_stacr_read = STACR_STAOPC_READ;
477 sc->sc_stacr_write = STACR_STAOPC_WRITE;
478 sc->sc_stacr_bits = STACR_OC;
479 sc->sc_stacr_completed = false;
480 } else {
481 sc->sc_stacr_read = STACR_READ;
482 sc->sc_stacr_write = STACR_WRITE;
483 sc->sc_stacr_completed = true;
484 }
485 } else {
486 /*
487 * Set up Mode Register 1 - set receive and transmit FIFOs to
488 * maximum size, allow transmit of multiple packets (only
489 * channel 0 is used).
490 *
491 * XXX: Allow pause packets??
492 */
493 sc->sc_mr1 =
494 MR1_RFS(MR1__FS_4KB) |
495 MR1_TFS(MR1__FS_2KB) |
496 MR1_TR0_MULTIPLE;
497
498 sc->sc_stacr_read = STACR_READ;
499 sc->sc_stacr_write = STACR_WRITE;
500 sc->sc_stacr_bits = STACR_OPBC(opbc);
501 sc->sc_stacr_completed = true;
502 }
503
504 intr_establish(oaa->opb_irq, IST_LEVEL, IPL_NET, emac_intr, sc);
505 mal_intr_establish(sc->sc_instance, sc);
506
507 if (oaa->opb_flags & OPB_FLAGS_EMAC_HT256)
508 sc->sc_htsize = 256;
509 else
510 sc->sc_htsize = 64;
511
512 /* Clear all interrupts */
513 EMAC_WRITE(sc, EMAC_ISR, ISR_ALL);
514
515 /*
516 * Initialise the media structures.
517 */
518 mii->mii_ifp = ifp;
519 mii->mii_readreg = emac_mii_readreg;
520 mii->mii_writereg = emac_mii_writereg;
521 mii->mii_statchg = emac_mii_statchg;
522
523 sc->sc_ethercom.ec_mii = mii;
524 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
525 mii_attach(self, mii, 0xffffffff, mii_phy, MII_OFFSET_ANY,
526 MIIF_DOPAUSE);
527 if (LIST_FIRST(&mii->mii_phys) == NULL) {
528 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
529 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
530 } else
531 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
532
533 ifp = &sc->sc_ethercom.ec_if;
534 strcpy(ifp->if_xname, xname);
535 ifp->if_softc = sc;
536 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
537 ifp->if_start = emac_start;
538 ifp->if_ioctl = emac_ioctl;
539 ifp->if_init = emac_init;
540 ifp->if_stop = emac_stop;
541 ifp->if_watchdog = emac_watchdog;
542 IFQ_SET_READY(&ifp->if_snd);
543
544 /*
545 * We can support 802.1Q VLAN-sized frames.
546 */
547 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
548
549 /*
550 * Attach the interface.
551 */
552 if_attach(ifp);
553 if_deferred_start_init(ifp, NULL);
554 ether_ifattach(ifp, enaddr);
555
556 #ifdef EMAC_EVENT_COUNTERS
557 /*
558 * Attach the event counters.
559 */
560 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
561 NULL, xname, "txintr");
562 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
563 NULL, xname, "rxintr");
564 evcnt_attach_dynamic(&sc->sc_ev_txde, EVCNT_TYPE_INTR,
565 NULL, xname, "txde");
566 evcnt_attach_dynamic(&sc->sc_ev_rxde, EVCNT_TYPE_INTR,
567 NULL, xname, "rxde");
568 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
569 NULL, xname, "intr");
570
571 evcnt_attach_dynamic(&sc->sc_ev_txreap, EVCNT_TYPE_MISC,
572 NULL, xname, "txreap");
573 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
574 NULL, xname, "txsstall");
575 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
576 NULL, xname, "txdstall");
577 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
578 NULL, xname, "txdrop");
579 evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
580 NULL, xname, "tu");
581 #endif /* EMAC_EVENT_COUNTERS */
582
583 /*
584 * Make sure the interface is shutdown during reboot.
585 */
586 sc->sc_sdhook = shutdownhook_establish(emac_shutdown, sc);
587 if (sc->sc_sdhook == NULL)
588 aprint_error_dev(self,
589 "WARNING: unable to establish shutdown hook\n");
590
591 return;
592
593 /*
594 * Free any resources we've allocated during the failed attach
595 * attempt. Do this in reverse order and fall through.
596 */
597 fail_5:
598 for (i = 0; i < EMAC_NRXDESC; i++) {
599 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
600 bus_dmamap_destroy(sc->sc_dmat,
601 sc->sc_rxsoft[i].rxs_dmamap);
602 }
603 fail_4:
604 for (i = 0; i < EMAC_TXQUEUELEN; i++) {
605 if (sc->sc_txsoft[i].txs_dmamap != NULL)
606 bus_dmamap_destroy(sc->sc_dmat,
607 sc->sc_txsoft[i].txs_dmamap);
608 }
609 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
610 fail_3:
611 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
612 fail_2:
613 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
614 sizeof(struct emac_control_data));
615 fail_1:
616 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
617 fail_0:
618 return;
619 }
620
621 /*
622 * EMAC General interrupt handler
623 */
624 static int
625 emac_intr(void *arg)
626 {
627 struct emac_softc *sc = arg;
628 uint32_t status;
629
630 EMAC_EVCNT_INCR(&sc->sc_ev_intr);
631 status = EMAC_READ(sc, EMAC_ISR);
632
633 /* Clear the interrupt status bits. */
634 EMAC_WRITE(sc, EMAC_ISR, status);
635
636 return 1;
637 }
638
639 static void
640 emac_shutdown(void *arg)
641 {
642 struct emac_softc *sc = arg;
643
644 emac_stop(&sc->sc_ethercom.ec_if, 0);
645 }
646
647
648 /*
649 * ifnet interface functions
650 */
651
652 static void
653 emac_start(struct ifnet *ifp)
654 {
655 struct emac_softc *sc = ifp->if_softc;
656 struct mbuf *m0;
657 struct emac_txsoft *txs;
658 bus_dmamap_t dmamap;
659 int error, firsttx, nexttx, lasttx, ofree, seg;
660
661 lasttx = 0; /* XXX gcc */
662
663 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
664 return;
665
666 /*
667 * Remember the previous number of free descriptors.
668 */
669 ofree = sc->sc_txfree;
670
671 /*
672 * Loop through the send queue, setting up transmit descriptors
673 * until we drain the queue, or use up all available transmit
674 * descriptors.
675 */
676 for (;;) {
677 /* Grab a packet off the queue. */
678 IFQ_POLL(&ifp->if_snd, m0);
679 if (m0 == NULL)
680 break;
681
682 /*
683 * Get a work queue entry. Reclaim used Tx descriptors if
684 * we are running low.
685 */
686 if (sc->sc_txsfree < EMAC_TXQUEUE_GC) {
687 emac_txreap(sc);
688 if (sc->sc_txsfree == 0) {
689 EMAC_EVCNT_INCR(&sc->sc_ev_txsstall);
690 break;
691 }
692 }
693
694 txs = &sc->sc_txsoft[sc->sc_txsnext];
695 dmamap = txs->txs_dmamap;
696
697 /*
698 * Load the DMA map. If this fails, the packet either
699 * didn't fit in the alloted number of segments, or we
700 * were short on resources. In this case, we'll copy
701 * and try again.
702 */
703 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
704 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
705 if (error) {
706 if (error == EFBIG) {
707 EMAC_EVCNT_INCR(&sc->sc_ev_txdrop);
708 aprint_error_ifnet(ifp,
709 "Tx packet consumes too many "
710 "DMA segments, dropping...\n");
711 IFQ_DEQUEUE(&ifp->if_snd, m0);
712 m_freem(m0);
713 continue;
714 }
715 /* Short on resources, just stop for now. */
716 break;
717 }
718
719 /*
720 * Ensure we have enough descriptors free to describe
721 * the packet.
722 */
723 if (dmamap->dm_nsegs > sc->sc_txfree) {
724 /*
725 * Not enough free descriptors to transmit this
726 * packet. We haven't committed anything yet,
727 * so just unload the DMA map, put the packet
728 * back on the queue, and punt. Notify the upper
729 * layer that there are not more slots left.
730 *
731 */
732 ifp->if_flags |= IFF_OACTIVE;
733 bus_dmamap_unload(sc->sc_dmat, dmamap);
734 EMAC_EVCNT_INCR(&sc->sc_ev_txdstall);
735 break;
736 }
737
738 IFQ_DEQUEUE(&ifp->if_snd, m0);
739
740 /*
741 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
742 */
743
744 /* Sync the DMA map. */
745 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
746 BUS_DMASYNC_PREWRITE);
747
748 /*
749 * Store a pointer to the packet so that we can free it
750 * later.
751 */
752 txs->txs_mbuf = m0;
753 txs->txs_firstdesc = sc->sc_txnext;
754 txs->txs_ndesc = dmamap->dm_nsegs;
755
756 /*
757 * Initialize the transmit descriptor.
758 */
759 firsttx = sc->sc_txnext;
760 for (nexttx = sc->sc_txnext, seg = 0;
761 seg < dmamap->dm_nsegs;
762 seg++, nexttx = EMAC_NEXTTX(nexttx)) {
763 struct mal_descriptor *txdesc =
764 &sc->sc_txdescs[nexttx];
765
766 /*
767 * If this is the first descriptor we're
768 * enqueueing, don't set the TX_READY bit just
769 * yet. That could cause a race condition.
770 * We'll do it below.
771 */
772 txdesc->md_data = dmamap->dm_segs[seg].ds_addr;
773 txdesc->md_data_len = dmamap->dm_segs[seg].ds_len;
774 txdesc->md_stat_ctrl =
775 (txdesc->md_stat_ctrl & MAL_TX_WRAP) |
776 (nexttx == firsttx ? 0 : MAL_TX_READY) |
777 EMAC_TXC_GFCS | EMAC_TXC_GPAD;
778 lasttx = nexttx;
779 }
780
781 /* Set the LAST bit on the last segment. */
782 sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_LAST;
783
784 /*
785 * Set up last segment descriptor to send an interrupt after
786 * that descriptor is transmitted, and bypass existing Tx
787 * descriptor reaping method (for now...).
788 */
789 sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_INTERRUPT;
790
791
792 txs->txs_lastdesc = lasttx;
793
794 /* Sync the descriptors we're using. */
795 EMAC_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
796 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
797
798 /*
799 * The entire packet chain is set up. Give the
800 * first descriptor to the chip now.
801 */
802 sc->sc_txdescs[firsttx].md_stat_ctrl |= MAL_TX_READY;
803 EMAC_CDTXSYNC(sc, firsttx, 1,
804 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
805 /*
806 * Tell the EMAC that a new packet is available.
807 */
808 EMAC_WRITE(sc, EMAC_TMR0, TMR0_GNP0 | TMR0_TFAE_2);
809
810 /* Advance the tx pointer. */
811 sc->sc_txfree -= txs->txs_ndesc;
812 sc->sc_txnext = nexttx;
813
814 sc->sc_txsfree--;
815 sc->sc_txsnext = EMAC_NEXTTXS(sc->sc_txsnext);
816
817 /*
818 * Pass the packet to any BPF listeners.
819 */
820 bpf_mtap(ifp, m0, BPF_D_OUT);
821 }
822
823 if (sc->sc_txfree == 0)
824 /* No more slots left; notify upper layer. */
825 ifp->if_flags |= IFF_OACTIVE;
826
827 if (sc->sc_txfree != ofree)
828 /* Set a watchdog timer in case the chip flakes out. */
829 ifp->if_timer = 5;
830 }
831
832 static int
833 emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
834 {
835 struct emac_softc *sc = ifp->if_softc;
836 int s, error;
837
838 s = splnet();
839
840 switch (cmd) {
841 case SIOCSIFMTU:
842 {
843 struct ifreq *ifr = (struct ifreq *)data;
844 int maxmtu;
845
846 if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU)
847 maxmtu = EMAC_MAX_MTU;
848 else
849 maxmtu = ETHERMTU;
850
851 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
852 error = EINVAL;
853 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
854 break;
855 else if (ifp->if_flags & IFF_UP)
856 error = emac_init(ifp);
857 else
858 error = 0;
859 break;
860 }
861
862 default:
863 error = ether_ioctl(ifp, cmd, data);
864 if (error == ENETRESET) {
865 /*
866 * Multicast list has changed; set the hardware filter
867 * accordingly.
868 */
869 if (ifp->if_flags & IFF_RUNNING)
870 error = emac_set_filter(sc);
871 else
872 error = 0;
873 }
874 }
875
876 /* try to get more packets going */
877 emac_start(ifp);
878
879 splx(s);
880 return error;
881 }
882
883 static int
884 emac_init(struct ifnet *ifp)
885 {
886 struct emac_softc *sc = ifp->if_softc;
887 struct emac_rxsoft *rxs;
888 const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
889 int error, i;
890
891 error = 0;
892
893 /* Cancel any pending I/O. */
894 emac_stop(ifp, 0);
895
896 /* Reset the chip to a known state. */
897 emac_soft_reset(sc);
898
899 /*
900 * Initialise the transmit descriptor ring.
901 */
902 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
903 /* set wrap on last descriptor */
904 sc->sc_txdescs[EMAC_NTXDESC - 1].md_stat_ctrl |= MAL_TX_WRAP;
905 EMAC_CDTXSYNC(sc, 0, EMAC_NTXDESC,
906 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
907 sc->sc_txfree = EMAC_NTXDESC;
908 sc->sc_txnext = 0;
909
910 /*
911 * Initialise the transmit job descriptors.
912 */
913 for (i = 0; i < EMAC_TXQUEUELEN; i++)
914 sc->sc_txsoft[i].txs_mbuf = NULL;
915 sc->sc_txsfree = EMAC_TXQUEUELEN;
916 sc->sc_txsnext = 0;
917 sc->sc_txsdirty = 0;
918
919 /*
920 * Initialise the receiver descriptor and receive job
921 * descriptor rings.
922 */
923 for (i = 0; i < EMAC_NRXDESC; i++) {
924 rxs = &sc->sc_rxsoft[i];
925 if (rxs->rxs_mbuf == NULL) {
926 if ((error = emac_add_rxbuf(sc, i)) != 0) {
927 aprint_error_ifnet(ifp,
928 "unable to allocate or map rx buffer %d,"
929 " error = %d\n",
930 i, error);
931 /*
932 * XXX Should attempt to run with fewer receive
933 * XXX buffers instead of just failing.
934 */
935 emac_rxdrain(sc);
936 goto out;
937 }
938 } else
939 EMAC_INIT_RXDESC(sc, i);
940 }
941 sc->sc_rxptr = 0;
942
943 /*
944 * Set the current media.
945 */
946 if ((error = ether_mediachange(ifp)) != 0)
947 goto out;
948
949 /*
950 * Load the MAC address.
951 */
952 EMAC_WRITE(sc, EMAC_IAHR, enaddr[0] << 8 | enaddr[1]);
953 EMAC_WRITE(sc, EMAC_IALR,
954 enaddr[2] << 24 | enaddr[3] << 16 | enaddr[4] << 8 | enaddr[5]);
955
956 /* Enable the transmit and receive channel on the MAL. */
957 error = mal_start(sc->sc_instance,
958 EMAC_CDTXADDR(sc, 0), EMAC_CDRXADDR(sc, 0));
959 if (error)
960 goto out;
961
962 sc->sc_mr1 &= ~MR1_JPSM;
963 if (ifp->if_mtu > ETHERMTU)
964 /* Enable Jumbo Packet Support Mode */
965 sc->sc_mr1 |= MR1_JPSM;
966
967 /* Set fifos, media modes. */
968 EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
969
970 /*
971 * Enable Individual and (possibly) Broadcast Address modes,
972 * runt packets, and strip padding.
973 */
974 EMAC_WRITE(sc, EMAC_RMR, RMR_IAE | RMR_RRP | RMR_SP | RMR_TFAE_2 |
975 (ifp->if_flags & IFF_PROMISC ? RMR_PME : 0) |
976 (ifp->if_flags & IFF_BROADCAST ? RMR_BAE : 0));
977
978 /*
979 * Set multicast filter.
980 */
981 emac_set_filter(sc);
982
983 /*
984 * Set low- and urgent-priority request thresholds.
985 */
986 EMAC_WRITE(sc, EMAC_TMR1,
987 ((7 << TMR1_TLR_SHIFT) & TMR1_TLR_MASK) | /* 16 word burst */
988 ((15 << TMR1_TUR_SHIFT) & TMR1_TUR_MASK));
989 /*
990 * Set Transmit Request Threshold Register.
991 */
992 EMAC_WRITE(sc, EMAC_TRTR, TRTR_256);
993
994 /*
995 * Set high and low receive watermarks.
996 */
997 EMAC_WRITE(sc, EMAC_RWMR,
998 30 << RWMR_RLWM_SHIFT | 64 << RWMR_RLWM_SHIFT);
999
1000 /*
1001 * Set frame gap.
1002 */
1003 EMAC_WRITE(sc, EMAC_IPGVR, 8);
1004
1005 /*
1006 * Set interrupt status enable bits for EMAC.
1007 */
1008 EMAC_WRITE(sc, EMAC_ISER,
1009 ISR_TXPE | /* TX Parity Error */
1010 ISR_RXPE | /* RX Parity Error */
1011 ISR_TXUE | /* TX Underrun Event */
1012 ISR_RXOE | /* RX Overrun Event */
1013 ISR_OVR | /* Overrun Error */
1014 ISR_PP | /* Pause Packet */
1015 ISR_BP | /* Bad Packet */
1016 ISR_RP | /* Runt Packet */
1017 ISR_SE | /* Short Event */
1018 ISR_ALE | /* Alignment Error */
1019 ISR_BFCS | /* Bad FCS */
1020 ISR_PTLE | /* Packet Too Long Error */
1021 ISR_ORE | /* Out of Range Error */
1022 ISR_IRE | /* In Range Error */
1023 ISR_SE0 | /* Signal Quality Error 0 (SQE) */
1024 ISR_TE0 | /* Transmit Error 0 */
1025 ISR_MOS | /* MMA Operation Succeeded */
1026 ISR_MOF); /* MMA Operation Failed */
1027
1028 /*
1029 * Enable the transmit and receive channel on the EMAC.
1030 */
1031 EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
1032
1033 /*
1034 * Start the one second MII clock.
1035 */
1036 callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
1037
1038 /*
1039 * ... all done!
1040 */
1041 ifp->if_flags |= IFF_RUNNING;
1042 ifp->if_flags &= ~IFF_OACTIVE;
1043
1044 out:
1045 if (error) {
1046 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1047 ifp->if_timer = 0;
1048 aprint_error_ifnet(ifp, "interface not running\n");
1049 }
1050 return error;
1051 }
1052
1053 static void
1054 emac_stop(struct ifnet *ifp, int disable)
1055 {
1056 struct emac_softc *sc = ifp->if_softc;
1057 struct emac_txsoft *txs;
1058 int i;
1059
1060 /* Stop the one second clock. */
1061 callout_stop(&sc->sc_callout);
1062
1063 /* Down the MII */
1064 mii_down(&sc->sc_mii);
1065
1066 /* Disable interrupts. */
1067 EMAC_WRITE(sc, EMAC_ISER, 0);
1068
1069 /* Disable the receive and transmit channels. */
1070 mal_stop(sc->sc_instance);
1071
1072 /* Disable the transmit enable and receive MACs. */
1073 EMAC_WRITE(sc, EMAC_MR0,
1074 EMAC_READ(sc, EMAC_MR0) & ~(MR0_TXE | MR0_RXE));
1075
1076 /* Release any queued transmit buffers. */
1077 for (i = 0; i < EMAC_TXQUEUELEN; i++) {
1078 txs = &sc->sc_txsoft[i];
1079 if (txs->txs_mbuf != NULL) {
1080 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1081 m_freem(txs->txs_mbuf);
1082 txs->txs_mbuf = NULL;
1083 }
1084 }
1085
1086 if (disable)
1087 emac_rxdrain(sc);
1088
1089 /*
1090 * Mark the interface down and cancel the watchdog timer.
1091 */
1092 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1093 ifp->if_timer = 0;
1094 }
1095
1096 static void
1097 emac_watchdog(struct ifnet *ifp)
1098 {
1099 struct emac_softc *sc = ifp->if_softc;
1100
1101 /*
1102 * Since we're not interrupting every packet, sweep
1103 * up before we report an error.
1104 */
1105 emac_txreap(sc);
1106
1107 if (sc->sc_txfree != EMAC_NTXDESC) {
1108 aprint_error_ifnet(ifp,
1109 "device timeout (txfree %d txsfree %d txnext %d)\n",
1110 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
1111 ifp->if_oerrors++;
1112
1113 /* Reset the interface. */
1114 (void)emac_init(ifp);
1115 } else if (ifp->if_flags & IFF_DEBUG)
1116 aprint_error_ifnet(ifp, "recovered from device timeout\n");
1117
1118 /* try to get more packets going */
1119 emac_start(ifp);
1120 }
1121
1122 static int
1123 emac_add_rxbuf(struct emac_softc *sc, int idx)
1124 {
1125 struct emac_rxsoft *rxs = &sc->sc_rxsoft[idx];
1126 struct mbuf *m;
1127 int error;
1128
1129 MGETHDR(m, M_DONTWAIT, MT_DATA);
1130 if (m == NULL)
1131 return ENOBUFS;
1132
1133 MCLGET(m, M_DONTWAIT);
1134 if ((m->m_flags & M_EXT) == 0) {
1135 m_freem(m);
1136 return ENOBUFS;
1137 }
1138
1139 if (rxs->rxs_mbuf != NULL)
1140 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1141
1142 rxs->rxs_mbuf = m;
1143
1144 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1145 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1146 if (error) {
1147 aprint_error_dev(sc->sc_dev,
1148 "can't load rx DMA map %d, error = %d\n", idx, error);
1149 panic("emac_add_rxbuf"); /* XXX */
1150 }
1151
1152 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1153 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1154
1155 EMAC_INIT_RXDESC(sc, idx);
1156
1157 return 0;
1158 }
1159
1160 static void
1161 emac_rxdrain(struct emac_softc *sc)
1162 {
1163 struct emac_rxsoft *rxs;
1164 int i;
1165
1166 for (i = 0; i < EMAC_NRXDESC; i++) {
1167 rxs = &sc->sc_rxsoft[i];
1168 if (rxs->rxs_mbuf != NULL) {
1169 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1170 m_freem(rxs->rxs_mbuf);
1171 rxs->rxs_mbuf = NULL;
1172 }
1173 }
1174 }
1175
1176 static int
1177 emac_set_filter(struct emac_softc *sc)
1178 {
1179 struct ether_multistep step;
1180 struct ether_multi *enm;
1181 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1182 uint32_t rmr, crc, mask, tmp, reg, gaht[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1183 int regs, cnt = 0, i;
1184
1185 if (sc->sc_htsize == 256) {
1186 reg = EMAC_GAHT256(0);
1187 regs = 8;
1188 } else {
1189 reg = EMAC_GAHT64(0);
1190 regs = 4;
1191 }
1192 mask = (1ULL << (sc->sc_htsize / regs)) - 1;
1193
1194 rmr = EMAC_READ(sc, EMAC_RMR);
1195 rmr &= ~(RMR_PMME | RMR_MAE);
1196 ifp->if_flags &= ~IFF_ALLMULTI;
1197
1198 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1199 while (enm != NULL) {
1200 if (memcmp(enm->enm_addrlo,
1201 enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1202 /*
1203 * We must listen to a range of multicast addresses.
1204 * For now, just accept all multicasts, rather than
1205 * trying to set only those filter bits needed to match
1206 * the range. (At this time, the only use of address
1207 * ranges is for IP multicast routing, for which the
1208 * range is big enough to require all bits set.)
1209 */
1210 gaht[0] = gaht[1] = gaht[2] = gaht[3] =
1211 gaht[4] = gaht[5] = gaht[6] = gaht[7] = mask;
1212 break;
1213 }
1214
1215 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1216
1217 if (sc->sc_htsize == 256)
1218 EMAC_SET_FILTER256(gaht, crc);
1219 else
1220 EMAC_SET_FILTER(gaht, crc);
1221
1222 ETHER_NEXT_MULTI(step, enm);
1223 cnt++;
1224 }
1225
1226 for (i = 1, tmp = gaht[0]; i < regs; i++)
1227 tmp &= gaht[i];
1228 if (tmp == mask) {
1229 /* All categories are true. */
1230 ifp->if_flags |= IFF_ALLMULTI;
1231 rmr |= RMR_PMME;
1232 } else if (cnt != 0) {
1233 /* Some categories are true. */
1234 for (i = 0; i < regs; i++)
1235 EMAC_WRITE(sc, reg + (i << 2), gaht[i]);
1236 rmr |= RMR_MAE;
1237 }
1238 EMAC_WRITE(sc, EMAC_RMR, rmr);
1239
1240 return 0;
1241 }
1242
1243 /*
1244 * Reap completed Tx descriptors.
1245 */
1246 static int
1247 emac_txreap(struct emac_softc *sc)
1248 {
1249 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1250 struct emac_txsoft *txs;
1251 int handled, i;
1252 uint32_t txstat;
1253
1254 EMAC_EVCNT_INCR(&sc->sc_ev_txreap);
1255 handled = 0;
1256
1257 ifp->if_flags &= ~IFF_OACTIVE;
1258
1259 /*
1260 * Go through our Tx list and free mbufs for those
1261 * frames that have been transmitted.
1262 */
1263 for (i = sc->sc_txsdirty; sc->sc_txsfree != EMAC_TXQUEUELEN;
1264 i = EMAC_NEXTTXS(i), sc->sc_txsfree++) {
1265 txs = &sc->sc_txsoft[i];
1266
1267 EMAC_CDTXSYNC(sc, txs->txs_lastdesc,
1268 txs->txs_dmamap->dm_nsegs,
1269 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1270
1271 txstat = sc->sc_txdescs[txs->txs_lastdesc].md_stat_ctrl;
1272 if (txstat & MAL_TX_READY)
1273 break;
1274
1275 handled = 1;
1276
1277 /*
1278 * Check for errors and collisions.
1279 */
1280 if (txstat & (EMAC_TXS_UR | EMAC_TXS_ED))
1281 ifp->if_oerrors++;
1282
1283 #ifdef EMAC_EVENT_COUNTERS
1284 if (txstat & EMAC_TXS_UR)
1285 EMAC_EVCNT_INCR(&sc->sc_ev_tu);
1286 #endif /* EMAC_EVENT_COUNTERS */
1287
1288 if (txstat &
1289 (EMAC_TXS_EC | EMAC_TXS_MC | EMAC_TXS_SC | EMAC_TXS_LC)) {
1290 if (txstat & EMAC_TXS_EC)
1291 ifp->if_collisions += 16;
1292 else if (txstat & EMAC_TXS_MC)
1293 ifp->if_collisions += 2; /* XXX? */
1294 else if (txstat & EMAC_TXS_SC)
1295 ifp->if_collisions++;
1296 if (txstat & EMAC_TXS_LC)
1297 ifp->if_collisions++;
1298 } else
1299 ifp->if_opackets++;
1300
1301 if (ifp->if_flags & IFF_DEBUG) {
1302 if (txstat & EMAC_TXS_ED)
1303 aprint_error_ifnet(ifp, "excessive deferral\n");
1304 if (txstat & EMAC_TXS_EC)
1305 aprint_error_ifnet(ifp,
1306 "excessive collisions\n");
1307 }
1308
1309 sc->sc_txfree += txs->txs_ndesc;
1310 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1311 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1312 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1313 m_freem(txs->txs_mbuf);
1314 txs->txs_mbuf = NULL;
1315 }
1316
1317 /* Update the dirty transmit buffer pointer. */
1318 sc->sc_txsdirty = i;
1319
1320 /*
1321 * If there are no more pending transmissions, cancel the watchdog
1322 * timer.
1323 */
1324 if (sc->sc_txsfree == EMAC_TXQUEUELEN)
1325 ifp->if_timer = 0;
1326
1327 return handled;
1328 }
1329
1330
1331 /*
1332 * Reset functions
1333 */
1334
1335 static void
1336 emac_soft_reset(struct emac_softc *sc)
1337 {
1338 uint32_t sdr;
1339 int t = 0;
1340
1341 /*
1342 * The PHY must provide a TX Clk in order perform a soft reset the
1343 * EMAC. If none is present, select the internal clock,
1344 * SDR0_MFR[E0CS, E1CS]. After the soft reset, select the external
1345 * clock.
1346 */
1347
1348 sdr = mfsdr(DCR_SDR0_MFR);
1349 sdr |= SDR0_MFR_ECS(sc->sc_instance);
1350 mtsdr(DCR_SDR0_MFR, sdr);
1351
1352 EMAC_WRITE(sc, EMAC_MR0, MR0_SRST);
1353
1354 sdr = mfsdr(DCR_SDR0_MFR);
1355 sdr &= ~SDR0_MFR_ECS(sc->sc_instance);
1356 mtsdr(DCR_SDR0_MFR, sdr);
1357
1358 delay(5);
1359
1360 /* wait finish */
1361 while (EMAC_READ(sc, EMAC_MR0) & MR0_SRST) {
1362 if (++t == 1000000 /* 1sec XXXXX */) {
1363 aprint_error_dev(sc->sc_dev, "Soft Reset failed\n");
1364 return;
1365 }
1366 delay(1);
1367 }
1368 }
1369
1370 static void
1371 emac_smart_reset(struct emac_softc *sc)
1372 {
1373 uint32_t mr0;
1374 int t = 0;
1375
1376 mr0 = EMAC_READ(sc, EMAC_MR0);
1377 if (mr0 & (MR0_TXE | MR0_RXE)) {
1378 mr0 &= ~(MR0_TXE | MR0_RXE);
1379 EMAC_WRITE(sc, EMAC_MR0, mr0);
1380
1381 /* wait idel state */
1382 while ((EMAC_READ(sc, EMAC_MR0) & (MR0_TXI | MR0_RXI)) !=
1383 (MR0_TXI | MR0_RXI)) {
1384 if (++t == 1000000 /* 1sec XXXXX */) {
1385 aprint_error_dev(sc->sc_dev,
1386 "Smart Reset failed\n");
1387 return;
1388 }
1389 delay(1);
1390 }
1391 }
1392 }
1393
1394
1395 /*
1396 * MII related functions
1397 */
1398
1399 static int
1400 emac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1401 {
1402 struct emac_softc *sc = device_private(self);
1403 uint32_t sta_reg;
1404 int rv;
1405
1406 if (sc->sc_rmii_enable)
1407 sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
1408
1409 /* wait for PHY data transfer to complete */
1410 if ((rv = emac_mii_wait(sc)) != 0)
1411 goto fail;
1412
1413 sta_reg =
1414 sc->sc_stacr_read |
1415 (reg << STACR_PRA_SHIFT) |
1416 (phy << STACR_PCDA_SHIFT) |
1417 sc->sc_stacr_bits;
1418 EMAC_WRITE(sc, EMAC_STACR, sta_reg);
1419
1420 if ((rv = emac_mii_wait(sc)) != 0)
1421 goto fail;
1422 sta_reg = EMAC_READ(sc, EMAC_STACR);
1423
1424 if (sta_reg & STACR_PHYE) {
1425 rv = -1;
1426 goto fail;
1427 }
1428 *val = sta_reg >> STACR_PHYD_SHIFT;
1429
1430 fail:
1431 if (sc->sc_rmii_disable)
1432 sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
1433 return rv;
1434 }
1435
1436 static int
1437 emac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1438 {
1439 struct emac_softc *sc = device_private(self);
1440 uint32_t sta_reg;
1441 int rv;
1442
1443 if (sc->sc_rmii_enable)
1444 sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
1445
1446 /* wait for PHY data transfer to complete */
1447 if ((rv = emac_mii_wait(sc)) != 0)
1448 goto out;
1449
1450 sta_reg =
1451 (val << STACR_PHYD_SHIFT) |
1452 sc->sc_stacr_write |
1453 (reg << STACR_PRA_SHIFT) |
1454 (phy << STACR_PCDA_SHIFT) |
1455 sc->sc_stacr_bits;
1456 EMAC_WRITE(sc, EMAC_STACR, sta_reg);
1457
1458 if ((rv = emac_mii_wait(sc)) != 0)
1459 goto out;
1460 if (EMAC_READ(sc, EMAC_STACR) & STACR_PHYE) {
1461 aprint_error_dev(sc->sc_dev, "MII PHY Error\n");
1462 rv = -1;
1463 }
1464
1465 out:
1466 if (sc->sc_rmii_disable)
1467 sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
1468
1469 return rv;
1470 }
1471
1472 static void
1473 emac_mii_statchg(struct ifnet *ifp)
1474 {
1475 struct emac_softc *sc = ifp->if_softc;
1476 struct mii_data *mii = &sc->sc_mii;
1477
1478 /*
1479 * MR1 can only be written immediately after a reset...
1480 */
1481 emac_smart_reset(sc);
1482
1483 sc->sc_mr1 &= ~(MR1_FDE | MR1_ILE | MR1_EIFC | MR1_MF_MASK | MR1_IST);
1484 if (mii->mii_media_active & IFM_FDX)
1485 sc->sc_mr1 |= (MR1_FDE | MR1_EIFC | MR1_IST);
1486 if (mii->mii_media_active & IFM_FLOW)
1487 sc->sc_mr1 |= MR1_EIFC;
1488 if (mii->mii_media_active & IFM_LOOP)
1489 sc->sc_mr1 |= MR1_ILE;
1490 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1491 case IFM_1000_T:
1492 sc->sc_mr1 |= (MR1_MF_1000MBS | MR1_IST);
1493 break;
1494
1495 case IFM_100_TX:
1496 sc->sc_mr1 |= (MR1_MF_100MBS | MR1_IST);
1497 break;
1498
1499 case IFM_10_T:
1500 sc->sc_mr1 |= MR1_MF_10MBS;
1501 break;
1502
1503 case IFM_NONE:
1504 break;
1505
1506 default:
1507 aprint_error_dev(sc->sc_dev, "unknown sub-type %d\n",
1508 IFM_SUBTYPE(mii->mii_media_active));
1509 break;
1510 }
1511 if (sc->sc_rmii_speed)
1512 sc->sc_rmii_speed(device_parent(sc->sc_dev), sc->sc_instance,
1513 IFM_SUBTYPE(mii->mii_media_active));
1514
1515 EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
1516
1517 /* Enable TX and RX if already RUNNING */
1518 if (ifp->if_flags & IFF_RUNNING)
1519 EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
1520 }
1521
1522 static uint32_t
1523 emac_mii_wait(struct emac_softc *sc)
1524 {
1525 int i;
1526 uint32_t oc;
1527
1528 /* wait for PHY data transfer to complete */
1529 i = 0;
1530 oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
1531 while ((oc == STACR_OC) != sc->sc_stacr_completed) {
1532 delay(7);
1533 if (i++ > 5) {
1534 aprint_error_dev(sc->sc_dev, "MII timed out\n");
1535 return ETIMEDOUT;
1536 }
1537 oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
1538 }
1539 return 0;
1540 }
1541
1542 static void
1543 emac_mii_tick(void *arg)
1544 {
1545 struct emac_softc *sc = arg;
1546 int s;
1547
1548 if (!device_is_active(sc->sc_dev))
1549 return;
1550
1551 s = splnet();
1552 mii_tick(&sc->sc_mii);
1553 splx(s);
1554
1555 callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
1556 }
1557
1558 int
1559 emac_txeob_intr(void *arg)
1560 {
1561 struct emac_softc *sc = arg;
1562 int handled = 0;
1563
1564 EMAC_EVCNT_INCR(&sc->sc_ev_txintr);
1565 handled |= emac_txreap(sc);
1566
1567 /* try to get more packets going */
1568 if_schedule_deferred_start(&sc->sc_ethercom.ec_if);
1569
1570 return handled;
1571 }
1572
1573 int
1574 emac_rxeob_intr(void *arg)
1575 {
1576 struct emac_softc *sc = arg;
1577 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1578 struct emac_rxsoft *rxs;
1579 struct mbuf *m;
1580 uint32_t rxstat;
1581 int i, len;
1582
1583 EMAC_EVCNT_INCR(&sc->sc_ev_rxintr);
1584
1585 for (i = sc->sc_rxptr; ; i = EMAC_NEXTRX(i)) {
1586 rxs = &sc->sc_rxsoft[i];
1587
1588 EMAC_CDRXSYNC(sc, i,
1589 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1590
1591 rxstat = sc->sc_rxdescs[i].md_stat_ctrl;
1592
1593 if (rxstat & MAL_RX_EMPTY) {
1594 /*
1595 * We have processed all of the receive buffers.
1596 */
1597 /* Flush current empty descriptor */
1598 EMAC_CDRXSYNC(sc, i,
1599 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1600 break;
1601 }
1602
1603 /*
1604 * If an error occurred, update stats, clear the status
1605 * word, and leave the packet buffer in place. It will
1606 * simply be reused the next time the ring comes around.
1607 */
1608 if (rxstat & (EMAC_RXS_OE | EMAC_RXS_BP | EMAC_RXS_SE |
1609 EMAC_RXS_AE | EMAC_RXS_BFCS | EMAC_RXS_PTL | EMAC_RXS_ORE |
1610 EMAC_RXS_IRE)) {
1611 #define PRINTERR(bit, str) \
1612 if (rxstat & (bit)) \
1613 aprint_error_ifnet(ifp, \
1614 "receive error: %s\n", str)
1615 ifp->if_ierrors++;
1616 PRINTERR(EMAC_RXS_OE, "overrun error");
1617 PRINTERR(EMAC_RXS_BP, "bad packet");
1618 PRINTERR(EMAC_RXS_RP, "runt packet");
1619 PRINTERR(EMAC_RXS_SE, "short event");
1620 PRINTERR(EMAC_RXS_AE, "alignment error");
1621 PRINTERR(EMAC_RXS_BFCS, "bad FCS");
1622 PRINTERR(EMAC_RXS_PTL, "packet too long");
1623 PRINTERR(EMAC_RXS_ORE, "out of range error");
1624 PRINTERR(EMAC_RXS_IRE, "in range error");
1625 #undef PRINTERR
1626 EMAC_INIT_RXDESC(sc, i);
1627 continue;
1628 }
1629
1630 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1631 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1632
1633 /*
1634 * No errors; receive the packet. Note, the 405GP emac
1635 * includes the CRC with every packet.
1636 */
1637 len = sc->sc_rxdescs[i].md_data_len - ETHER_CRC_LEN;
1638
1639 /*
1640 * If the packet is small enough to fit in a
1641 * single header mbuf, allocate one and copy
1642 * the data into it. This greatly reduces
1643 * memory consumption when we receive lots
1644 * of small packets.
1645 *
1646 * Otherwise, we add a new buffer to the receive
1647 * chain. If this fails, we drop the packet and
1648 * recycle the old buffer.
1649 */
1650 if (emac_copy_small != 0 && len <= MHLEN) {
1651 MGETHDR(m, M_DONTWAIT, MT_DATA);
1652 if (m == NULL)
1653 goto dropit;
1654 memcpy(mtod(m, void *),
1655 mtod(rxs->rxs_mbuf, void *), len);
1656 EMAC_INIT_RXDESC(sc, i);
1657 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1658 rxs->rxs_dmamap->dm_mapsize,
1659 BUS_DMASYNC_PREREAD);
1660 } else {
1661 m = rxs->rxs_mbuf;
1662 if (emac_add_rxbuf(sc, i) != 0) {
1663 dropit:
1664 ifp->if_ierrors++;
1665 EMAC_INIT_RXDESC(sc, i);
1666 bus_dmamap_sync(sc->sc_dmat,
1667 rxs->rxs_dmamap, 0,
1668 rxs->rxs_dmamap->dm_mapsize,
1669 BUS_DMASYNC_PREREAD);
1670 continue;
1671 }
1672 }
1673
1674 m_set_rcvif(m, ifp);
1675 m->m_pkthdr.len = m->m_len = len;
1676
1677 /* Pass it on. */
1678 if_percpuq_enqueue(ifp->if_percpuq, m);
1679 }
1680
1681 /* Update the receive pointer. */
1682 sc->sc_rxptr = i;
1683
1684 return 1;
1685 }
1686
1687 int
1688 emac_txde_intr(void *arg)
1689 {
1690 struct emac_softc *sc = arg;
1691
1692 EMAC_EVCNT_INCR(&sc->sc_ev_txde);
1693 aprint_error_dev(sc->sc_dev, "emac_txde_intr\n");
1694 return 1;
1695 }
1696
1697 int
1698 emac_rxde_intr(void *arg)
1699 {
1700 struct emac_softc *sc = arg;
1701 int i;
1702
1703 EMAC_EVCNT_INCR(&sc->sc_ev_rxde);
1704 aprint_error_dev(sc->sc_dev, "emac_rxde_intr\n");
1705 /*
1706 * XXX!
1707 * This is a bit drastic; we just drop all descriptors that aren't
1708 * "clean". We should probably send any that are up the stack.
1709 */
1710 for (i = 0; i < EMAC_NRXDESC; i++) {
1711 EMAC_CDRXSYNC(sc, i,
1712 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1713
1714 if (sc->sc_rxdescs[i].md_data_len != MCLBYTES)
1715 EMAC_INIT_RXDESC(sc, i);
1716 }
1717
1718 return 1;
1719 }
1720