Home | History | Annotate | Line # | Download | only in dev
if_emac.c revision 1.53
      1 /*	$NetBSD: if_emac.c,v 1.53 2020/07/06 09:34:17 rin Exp $	*/
      2 
      3 /*
      4  * Copyright 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Simon Burge and Jason Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * emac(4) supports following ibm4xx's EMACs.
     40  *   XXXX: ZMII and 'TCP Accelaration Hardware' not support yet...
     41  *
     42  *            tested
     43  *            ------
     44  * 405EP	-  10/100 x2
     45  * 405EX/EXr	o  10/100/1000 x2 (EXr x1), STA v2, 256bit hash-Table, RGMII
     46  * 405GP/GPr	o  10/100
     47  * 440EP	-  10/100 x2, ZMII
     48  * 440GP	-  10/100 x2, ZMII
     49  * 440GX	-  10/100/1000 x4, ZMII/RGMII(ch 2, 3), TAH(ch 2, 3)
     50  * 440SP	-  10/100/1000
     51  * 440SPe	-  10/100/1000, STA v2
     52  */
     53 
     54 #include <sys/cdefs.h>
     55 __KERNEL_RCSID(0, "$NetBSD: if_emac.c,v 1.53 2020/07/06 09:34:17 rin Exp $");
     56 
     57 #ifdef _KERNEL_OPT
     58 #include "opt_emac.h"
     59 #endif
     60 
     61 #include <sys/param.h>
     62 #include <sys/systm.h>
     63 #include <sys/mbuf.h>
     64 #include <sys/kernel.h>
     65 #include <sys/socket.h>
     66 #include <sys/ioctl.h>
     67 #include <sys/cpu.h>
     68 #include <sys/device.h>
     69 
     70 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
     71 
     72 #include <net/if.h>
     73 #include <net/if_dl.h>
     74 #include <net/if_media.h>
     75 #include <net/if_ether.h>
     76 
     77 #include <net/bpf.h>
     78 
     79 #include <powerpc/ibm4xx/cpu.h>
     80 #include <powerpc/ibm4xx/dcr4xx.h>
     81 #include <powerpc/ibm4xx/mal405gp.h>
     82 #include <powerpc/ibm4xx/dev/emacreg.h>
     83 #include <powerpc/ibm4xx/dev/if_emacreg.h>
     84 #include <powerpc/ibm4xx/dev/if_emacvar.h>
     85 #include <powerpc/ibm4xx/dev/malvar.h>
     86 #include <powerpc/ibm4xx/dev/opbreg.h>
     87 #include <powerpc/ibm4xx/dev/opbvar.h>
     88 #include <powerpc/ibm4xx/dev/plbvar.h>
     89 #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
     90 #include <powerpc/ibm4xx/dev/rmiivar.h>
     91 #endif
     92 
     93 #include <dev/mii/miivar.h>
     94 
     95 #include "locators.h"
     96 
     97 
     98 /*
     99  * Transmit descriptor list size.  There are two Tx channels, each with
    100  * up to 256 hardware descriptors available.  We currently use one Tx
    101  * channel.  We tell the upper layers that they can queue a lot of
    102  * packets, and we go ahead and manage up to 64 of them at a time.  We
    103  * allow up to 16 DMA segments per packet.
    104  */
    105 #define	EMAC_NTXSEGS		16
    106 #define	EMAC_TXQUEUELEN		64
    107 #define	EMAC_TXQUEUELEN_MASK	(EMAC_TXQUEUELEN - 1)
    108 #define	EMAC_TXQUEUE_GC		(EMAC_TXQUEUELEN / 4)
    109 #define	EMAC_NTXDESC		256
    110 #define	EMAC_NTXDESC_MASK	(EMAC_NTXDESC - 1)
    111 #define	EMAC_NEXTTX(x)		(((x) + 1) & EMAC_NTXDESC_MASK)
    112 #define	EMAC_NEXTTXS(x)		(((x) + 1) & EMAC_TXQUEUELEN_MASK)
    113 
    114 /*
    115  * Receive descriptor list size.  There is one Rx channel with up to 256
    116  * hardware descriptors available.  We allocate 64 receive descriptors,
    117  * each with a 2k buffer (MCLBYTES).
    118  */
    119 #define	EMAC_NRXDESC		64
    120 #define	EMAC_NRXDESC_MASK	(EMAC_NRXDESC - 1)
    121 #define	EMAC_NEXTRX(x)		(((x) + 1) & EMAC_NRXDESC_MASK)
    122 #define	EMAC_PREVRX(x)		(((x) - 1) & EMAC_NRXDESC_MASK)
    123 
    124 /*
    125  * Transmit/receive descriptors that are DMA'd to the EMAC.
    126  */
    127 struct emac_control_data {
    128 	struct mal_descriptor ecd_txdesc[EMAC_NTXDESC];
    129 	struct mal_descriptor ecd_rxdesc[EMAC_NRXDESC];
    130 };
    131 
    132 #define	EMAC_CDOFF(x)		offsetof(struct emac_control_data, x)
    133 #define	EMAC_CDTXOFF(x)		EMAC_CDOFF(ecd_txdesc[(x)])
    134 #define	EMAC_CDRXOFF(x)		EMAC_CDOFF(ecd_rxdesc[(x)])
    135 
    136 /*
    137  * Software state for transmit jobs.
    138  */
    139 struct emac_txsoft {
    140 	struct mbuf *txs_mbuf;		/* head of mbuf chain */
    141 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    142 	int txs_firstdesc;		/* first descriptor in packet */
    143 	int txs_lastdesc;		/* last descriptor in packet */
    144 	int txs_ndesc;			/* # of descriptors used */
    145 };
    146 
    147 /*
    148  * Software state for receive descriptors.
    149  */
    150 struct emac_rxsoft {
    151 	struct mbuf *rxs_mbuf;		/* head of mbuf chain */
    152 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    153 };
    154 
    155 /*
    156  * Software state per device.
    157  */
    158 struct emac_softc {
    159 	device_t sc_dev;		/* generic device information */
    160 	int sc_instance;		/* instance no. */
    161 	bus_space_tag_t sc_st;		/* bus space tag */
    162 	bus_space_handle_t sc_sh;	/* bus space handle */
    163 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    164 	struct ethercom sc_ethercom;	/* ethernet common data */
    165 	void *sc_sdhook;		/* shutdown hook */
    166 	void *sc_powerhook;		/* power management hook */
    167 
    168 	struct mii_data sc_mii;		/* MII/media information */
    169 	struct callout sc_callout;	/* tick callout */
    170 
    171 	uint32_t sc_mr1;		/* copy of Mode Register 1 */
    172 	uint32_t sc_stacr_read;		/* Read opcode of STAOPC of STACR */
    173 	uint32_t sc_stacr_write;	/* Write opcode of STAOPC of STACR */
    174 	uint32_t sc_stacr_bits;		/* misc bits of STACR */
    175 	bool sc_stacr_completed;	/* Operation completed of STACR */
    176 	int sc_htsize;			/* Hash Table size */
    177 
    178 	bus_dmamap_t sc_cddmamap;	/* control data dma map */
    179 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    180 
    181 	/* Software state for transmit/receive descriptors. */
    182 	struct emac_txsoft sc_txsoft[EMAC_TXQUEUELEN];
    183 	struct emac_rxsoft sc_rxsoft[EMAC_NRXDESC];
    184 
    185 	/* Control data structures. */
    186 	struct emac_control_data *sc_control_data;
    187 #define	sc_txdescs	sc_control_data->ecd_txdesc
    188 #define	sc_rxdescs	sc_control_data->ecd_rxdesc
    189 
    190 #ifdef EMAC_EVENT_COUNTERS
    191 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    192 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
    193 	struct evcnt sc_ev_rxde;	/* Rx descriptor interrupts */
    194 	struct evcnt sc_ev_txde;	/* Tx descriptor interrupts */
    195 	struct evcnt sc_ev_intr;	/* General EMAC interrupts */
    196 
    197 	struct evcnt sc_ev_txreap;	/* Calls to Tx descriptor reaper */
    198 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    199 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    200 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    201 	struct evcnt sc_ev_tu;		/* Tx underrun */
    202 #endif /* EMAC_EVENT_COUNTERS */
    203 
    204 	int sc_txfree;			/* number of free Tx descriptors */
    205 	int sc_txnext;			/* next ready Tx descriptor */
    206 
    207 	int sc_txsfree;			/* number of free Tx jobs */
    208 	int sc_txsnext;			/* next ready Tx job */
    209 	int sc_txsdirty;		/* dirty Tx jobs */
    210 
    211 	int sc_rxptr;			/* next ready RX descriptor/descsoft */
    212 
    213 	void (*sc_rmii_enable)(device_t, int);		/* reduced MII enable */
    214 	void (*sc_rmii_disable)(device_t, int);		/* reduced MII disable*/
    215 	void (*sc_rmii_speed)(device_t, int, int);	/* reduced MII speed */
    216 };
    217 
    218 #ifdef EMAC_EVENT_COUNTERS
    219 #define	EMAC_EVCNT_INCR(ev)	(ev)->ev_count++
    220 #else
    221 #define	EMAC_EVCNT_INCR(ev)	/* nothing */
    222 #endif
    223 
    224 #define	EMAC_CDTXADDR(sc, x)	((sc)->sc_cddma + EMAC_CDTXOFF((x)))
    225 #define	EMAC_CDRXADDR(sc, x)	((sc)->sc_cddma + EMAC_CDRXOFF((x)))
    226 
    227 #define	EMAC_CDTXSYNC(sc, x, n, ops)					\
    228 do {									\
    229 	int __x, __n;							\
    230 									\
    231 	__x = (x);							\
    232 	__n = (n);							\
    233 									\
    234 	/* If it will wrap around, sync to the end of the ring. */	\
    235 	if ((__x + __n) > EMAC_NTXDESC) {				\
    236 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    237 		    EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) *	\
    238 		    (EMAC_NTXDESC - __x), (ops));			\
    239 		__n -= (EMAC_NTXDESC - __x);				\
    240 		__x = 0;						\
    241 	}								\
    242 									\
    243 	/* Now sync whatever is left. */				\
    244 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    245 	    EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * __n, (ops)); \
    246 } while (/*CONSTCOND*/0)
    247 
    248 #define	EMAC_CDRXSYNC(sc, x, ops)					\
    249 do {									\
    250 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    251 	    EMAC_CDRXOFF((x)), sizeof(struct mal_descriptor), (ops));	\
    252 } while (/*CONSTCOND*/0)
    253 
    254 #define	EMAC_INIT_RXDESC(sc, x)						\
    255 do {									\
    256 	struct emac_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    257 	struct mal_descriptor *__rxd = &(sc)->sc_rxdescs[(x)];		\
    258 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    259 									\
    260 	/*								\
    261 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    262 	 * so that the payload after the Ethernet header is aligned	\
    263 	 * to a 4-byte boundary.					\
    264 	 */								\
    265 	__m->m_data = __m->m_ext.ext_buf + 2;				\
    266 									\
    267 	__rxd->md_data = __rxs->rxs_dmamap->dm_segs[0].ds_addr + 2;	\
    268 	__rxd->md_data_len = __m->m_ext.ext_size - 2;			\
    269 	__rxd->md_stat_ctrl = MAL_RX_EMPTY | MAL_RX_INTERRUPT |		\
    270 	    /* Set wrap on last descriptor. */				\
    271 	    (((x) == EMAC_NRXDESC - 1) ? MAL_RX_WRAP : 0);		\
    272 	EMAC_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
    273 } while (/*CONSTCOND*/0)
    274 
    275 #define	EMAC_WRITE(sc, reg, val) \
    276 	bus_space_write_stream_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    277 #define	EMAC_READ(sc, reg) \
    278 	bus_space_read_stream_4((sc)->sc_st, (sc)->sc_sh, (reg))
    279 
    280 #define	EMAC_SET_FILTER(aht, crc) \
    281 do {									\
    282 	(aht)[3 - (((crc) >> 26) >> 4)] |= 1 << (((crc) >> 26) & 0xf);	\
    283 } while (/*CONSTCOND*/0)
    284 #define	EMAC_SET_FILTER256(aht, crc) \
    285 do {									\
    286 	(aht)[7 - (((crc) >> 24) >> 5)] |= 1 << (((crc) >> 24) & 0x1f);	\
    287 } while (/*CONSTCOND*/0)
    288 
    289 static int	emac_match(device_t, cfdata_t, void *);
    290 static void	emac_attach(device_t, device_t, void *);
    291 
    292 static int	emac_intr(void *);
    293 static void	emac_shutdown(void *);
    294 
    295 static void	emac_start(struct ifnet *);
    296 static int	emac_ioctl(struct ifnet *, u_long, void *);
    297 static int	emac_init(struct ifnet *);
    298 static void	emac_stop(struct ifnet *, int);
    299 static void	emac_watchdog(struct ifnet *);
    300 
    301 static int	emac_add_rxbuf(struct emac_softc *, int);
    302 static void	emac_rxdrain(struct emac_softc *);
    303 static int	emac_set_filter(struct emac_softc *);
    304 static int	emac_txreap(struct emac_softc *);
    305 
    306 static void	emac_soft_reset(struct emac_softc *);
    307 static void	emac_smart_reset(struct emac_softc *);
    308 
    309 static int	emac_mii_readreg(device_t, int, int, uint16_t *);
    310 static int	emac_mii_writereg(device_t, int, int, uint16_t);
    311 static void	emac_mii_statchg(struct ifnet *);
    312 static uint32_t	emac_mii_wait(struct emac_softc *);
    313 static void	emac_mii_tick(void *);
    314 
    315 int		emac_copy_small = 0;
    316 
    317 CFATTACH_DECL_NEW(emac, sizeof(struct emac_softc),
    318     emac_match, emac_attach, NULL, NULL);
    319 
    320 
    321 static int
    322 emac_match(device_t parent, cfdata_t cf, void *aux)
    323 {
    324 	struct opb_attach_args *oaa = aux;
    325 
    326 	/* match only on-chip ethernet devices */
    327 	if (strcmp(oaa->opb_name, cf->cf_name) == 0)
    328 		return 1;
    329 
    330 	return 0;
    331 }
    332 
    333 static void
    334 emac_attach(device_t parent, device_t self, void *aux)
    335 {
    336 	struct opb_attach_args *oaa = aux;
    337 	struct emac_softc *sc = device_private(self);
    338 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    339 	struct mii_data *mii = &sc->sc_mii;
    340 	const char * xname = device_xname(self);
    341 	bus_dma_segment_t seg;
    342 	int error, i, nseg, opb_freq, opbc, mii_phy = MII_PHY_ANY;
    343 	const uint8_t *enaddr;
    344 	prop_dictionary_t dict = device_properties(self);
    345 	prop_data_t ea;
    346 
    347 	bus_space_map(oaa->opb_bt, oaa->opb_addr, EMAC_NREG, 0, &sc->sc_sh);
    348 
    349 	sc->sc_dev = self;
    350 	sc->sc_instance = oaa->opb_instance;
    351 	sc->sc_st = oaa->opb_bt;
    352 	sc->sc_dmat = oaa->opb_dmat;
    353 
    354 	callout_init(&sc->sc_callout, 0);
    355 
    356 	aprint_naive("\n");
    357 	aprint_normal(": Ethernet Media Access Controller\n");
    358 
    359 	/* Fetch the Ethernet address. */
    360 	ea = prop_dictionary_get(dict, "mac-address");
    361 	if (ea == NULL) {
    362 		aprint_error_dev(self, "unable to get mac-address property\n");
    363 		return;
    364 	}
    365 	KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
    366 	KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
    367 	enaddr = prop_data_data_nocopy(ea);
    368 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
    369 
    370 #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
    371 	/* Fetch the MII offset. */
    372 	prop_dictionary_get_uint32(dict, "mii-phy", &mii_phy);
    373 
    374 #ifdef EMAC_ZMII_PHY
    375 	if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_ZMII)
    376 		zmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
    377 		    &sc->sc_rmii_disable, &sc->sc_rmii_speed);
    378 #endif
    379 #ifdef EMAC_RGMII_PHY
    380 	if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_RGMII)
    381 		rgmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
    382 		    &sc->sc_rmii_disable, &sc->sc_rmii_speed);
    383 #endif
    384 #endif
    385 
    386 	/*
    387 	 * Allocate the control data structures, and create and load the
    388 	 * DMA map for it.
    389 	 */
    390 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    391 	    sizeof(struct emac_control_data), 0, 0, &seg, 1, &nseg, 0)) != 0) {
    392 		aprint_error_dev(self,
    393 		    "unable to allocate control data, error = %d\n", error);
    394 		goto fail_0;
    395 	}
    396 
    397 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
    398 	    sizeof(struct emac_control_data), (void **)&sc->sc_control_data,
    399 	    BUS_DMA_COHERENT)) != 0) {
    400 		aprint_error_dev(self,
    401 		    "unable to map control data, error = %d\n", error);
    402 		goto fail_1;
    403 	}
    404 
    405 	if ((error = bus_dmamap_create(sc->sc_dmat,
    406 	    sizeof(struct emac_control_data), 1,
    407 	    sizeof(struct emac_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    408 		aprint_error_dev(self,
    409 		    "unable to create control data DMA map, error = %d\n",
    410 		    error);
    411 		goto fail_2;
    412 	}
    413 
    414 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    415 	    sc->sc_control_data, sizeof(struct emac_control_data), NULL,
    416 	    0)) != 0) {
    417 		aprint_error_dev(self,
    418 		    "unable to load control data DMA map, error = %d\n", error);
    419 		goto fail_3;
    420 	}
    421 
    422 	/*
    423 	 * Create the transmit buffer DMA maps.
    424 	 */
    425 	for (i = 0; i < EMAC_TXQUEUELEN; i++) {
    426 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    427 		    EMAC_NTXSEGS, MCLBYTES, 0, 0,
    428 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    429 			aprint_error_dev(self,
    430 			    "unable to create tx DMA map %d, error = %d\n",
    431 			    i, error);
    432 			goto fail_4;
    433 		}
    434 	}
    435 
    436 	/*
    437 	 * Create the receive buffer DMA maps.
    438 	 */
    439 	for (i = 0; i < EMAC_NRXDESC; i++) {
    440 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    441 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    442 			aprint_error_dev(self,
    443 			    "unable to create rx DMA map %d, error = %d\n",
    444 			    i, error);
    445 			goto fail_5;
    446 		}
    447 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    448 	}
    449 
    450 	/* Soft Reset the EMAC.  The chip to a known state. */
    451 	emac_soft_reset(sc);
    452 
    453 	opb_freq = opb_get_frequency();
    454 	switch (opb_freq) {
    455 	case  50000000: opbc =  STACR_OPBC_50MHZ; break;
    456 	case  66666666: opbc =  STACR_OPBC_66MHZ; break;
    457 	case  83333333: opbc =  STACR_OPBC_83MHZ; break;
    458 	case 100000000: opbc = STACR_OPBC_100MHZ; break;
    459 
    460 	default:
    461 		if (opb_freq > 100000000) {
    462 			opbc = STACR_OPBC_A100MHZ;
    463 			break;
    464 		}
    465 		aprint_error_dev(self, "unsupport OPB frequency %dMHz\n",
    466 		    opb_freq / 1000 / 1000);
    467 		goto fail_5;
    468 	}
    469 	if (oaa->opb_flags & OPB_FLAGS_EMAC_GBE) {
    470 		sc->sc_mr1 =
    471 		    MR1_RFS_GBE(MR1__FS_16KB)	|
    472 		    MR1_TFS_GBE(MR1__FS_16KB)	|
    473 		    MR1_TR0_MULTIPLE		|
    474 		    MR1_OBCI(opbc);
    475 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
    476 
    477 		if (oaa->opb_flags & OPB_FLAGS_EMAC_STACV2) {
    478 			sc->sc_stacr_read = STACR_STAOPC_READ;
    479 			sc->sc_stacr_write = STACR_STAOPC_WRITE;
    480 			sc->sc_stacr_bits = STACR_OC;
    481 			sc->sc_stacr_completed = false;
    482 		} else {
    483 			sc->sc_stacr_read = STACR_READ;
    484 			sc->sc_stacr_write = STACR_WRITE;
    485 			sc->sc_stacr_completed = true;
    486 		}
    487 	} else {
    488 		/*
    489 		 * Set up Mode Register 1 - set receive and transmit FIFOs to
    490 		 * maximum size, allow transmit of multiple packets (only
    491 		 * channel 0 is used).
    492 		 *
    493 		 * XXX: Allow pause packets??
    494 		 */
    495 		sc->sc_mr1 =
    496 		    MR1_RFS(MR1__FS_4KB) |
    497 		    MR1_TFS(MR1__FS_2KB) |
    498 		    MR1_TR0_MULTIPLE;
    499 
    500 		sc->sc_stacr_read = STACR_READ;
    501 		sc->sc_stacr_write = STACR_WRITE;
    502 		sc->sc_stacr_bits = STACR_OPBC(opbc);
    503 		sc->sc_stacr_completed = true;
    504 	}
    505 
    506 	intr_establish(oaa->opb_irq, IST_LEVEL, IPL_NET, emac_intr, sc);
    507 	mal_intr_establish(sc->sc_instance, sc);
    508 
    509 	if (oaa->opb_flags & OPB_FLAGS_EMAC_HT256)
    510 		sc->sc_htsize = 256;
    511 	else
    512 		sc->sc_htsize = 64;
    513 
    514 	/* Clear all interrupts */
    515 	EMAC_WRITE(sc, EMAC_ISR, ISR_ALL);
    516 
    517 	/*
    518 	 * Initialise the media structures.
    519 	 */
    520 	mii->mii_ifp = ifp;
    521 	mii->mii_readreg = emac_mii_readreg;
    522 	mii->mii_writereg = emac_mii_writereg;
    523 	mii->mii_statchg = emac_mii_statchg;
    524 
    525 	sc->sc_ethercom.ec_mii = mii;
    526 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
    527 	mii_attach(self, mii, 0xffffffff, mii_phy, MII_OFFSET_ANY,
    528 	    MIIF_DOPAUSE);
    529 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    530 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
    531 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
    532 	} else
    533 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    534 
    535 	ifp = &sc->sc_ethercom.ec_if;
    536 	strcpy(ifp->if_xname, xname);
    537 	ifp->if_softc = sc;
    538 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    539 	ifp->if_start = emac_start;
    540 	ifp->if_ioctl = emac_ioctl;
    541 	ifp->if_init = emac_init;
    542 	ifp->if_stop = emac_stop;
    543 	ifp->if_watchdog = emac_watchdog;
    544 	IFQ_SET_READY(&ifp->if_snd);
    545 
    546 	/*
    547 	 * We can support 802.1Q VLAN-sized frames.
    548 	 */
    549 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    550 
    551 	/*
    552 	 * Attach the interface.
    553 	 */
    554 	if_attach(ifp);
    555 	if_deferred_start_init(ifp, NULL);
    556 	ether_ifattach(ifp, enaddr);
    557 
    558 #ifdef EMAC_EVENT_COUNTERS
    559 	/*
    560 	 * Attach the event counters.
    561 	 */
    562 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    563 	    NULL, xname, "txintr");
    564 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    565 	    NULL, xname, "rxintr");
    566 	evcnt_attach_dynamic(&sc->sc_ev_txde, EVCNT_TYPE_INTR,
    567 	    NULL, xname, "txde");
    568 	evcnt_attach_dynamic(&sc->sc_ev_rxde, EVCNT_TYPE_INTR,
    569 	    NULL, xname, "rxde");
    570 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    571 	    NULL, xname, "intr");
    572 
    573 	evcnt_attach_dynamic(&sc->sc_ev_txreap, EVCNT_TYPE_MISC,
    574 	    NULL, xname, "txreap");
    575 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    576 	    NULL, xname, "txsstall");
    577 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    578 	    NULL, xname, "txdstall");
    579 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    580 	    NULL, xname, "txdrop");
    581 	evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
    582 	    NULL, xname, "tu");
    583 #endif /* EMAC_EVENT_COUNTERS */
    584 
    585 	/*
    586 	 * Make sure the interface is shutdown during reboot.
    587 	 */
    588 	sc->sc_sdhook = shutdownhook_establish(emac_shutdown, sc);
    589 	if (sc->sc_sdhook == NULL)
    590 		aprint_error_dev(self,
    591 		    "WARNING: unable to establish shutdown hook\n");
    592 
    593 	return;
    594 
    595 	/*
    596 	 * Free any resources we've allocated during the failed attach
    597 	 * attempt.  Do this in reverse order and fall through.
    598 	 */
    599 fail_5:
    600 	for (i = 0; i < EMAC_NRXDESC; i++) {
    601 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    602 			bus_dmamap_destroy(sc->sc_dmat,
    603 			    sc->sc_rxsoft[i].rxs_dmamap);
    604 	}
    605 fail_4:
    606 	for (i = 0; i < EMAC_TXQUEUELEN; i++) {
    607 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    608 			bus_dmamap_destroy(sc->sc_dmat,
    609 			    sc->sc_txsoft[i].txs_dmamap);
    610 	}
    611 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    612 fail_3:
    613 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    614 fail_2:
    615 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    616 	    sizeof(struct emac_control_data));
    617 fail_1:
    618 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
    619 fail_0:
    620 	return;
    621 }
    622 
    623 /*
    624  * EMAC General interrupt handler
    625  */
    626 static int
    627 emac_intr(void *arg)
    628 {
    629 	struct emac_softc *sc = arg;
    630 	uint32_t status;
    631 
    632 	EMAC_EVCNT_INCR(&sc->sc_ev_intr);
    633 	status = EMAC_READ(sc, EMAC_ISR);
    634 
    635 	/* Clear the interrupt status bits. */
    636 	EMAC_WRITE(sc, EMAC_ISR, status);
    637 
    638 	return 1;
    639 }
    640 
    641 static void
    642 emac_shutdown(void *arg)
    643 {
    644 	struct emac_softc *sc = arg;
    645 
    646 	emac_stop(&sc->sc_ethercom.ec_if, 0);
    647 }
    648 
    649 
    650 /*
    651  * ifnet interface functions
    652  */
    653 
    654 static void
    655 emac_start(struct ifnet *ifp)
    656 {
    657 	struct emac_softc *sc = ifp->if_softc;
    658 	struct mbuf *m0;
    659 	struct emac_txsoft *txs;
    660 	bus_dmamap_t dmamap;
    661 	int error, firsttx, nexttx, lasttx, ofree, seg;
    662 
    663 	lasttx = 0;	/* XXX gcc */
    664 
    665 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    666 		return;
    667 
    668 	/*
    669 	 * Remember the previous number of free descriptors.
    670 	 */
    671 	ofree = sc->sc_txfree;
    672 
    673 	/*
    674 	 * Loop through the send queue, setting up transmit descriptors
    675 	 * until we drain the queue, or use up all available transmit
    676 	 * descriptors.
    677 	 */
    678 	for (;;) {
    679 		/* Grab a packet off the queue. */
    680 		IFQ_POLL(&ifp->if_snd, m0);
    681 		if (m0 == NULL)
    682 			break;
    683 
    684 		/*
    685 		 * Get a work queue entry.  Reclaim used Tx descriptors if
    686 		 * we are running low.
    687 		 */
    688 		if (sc->sc_txsfree < EMAC_TXQUEUE_GC) {
    689 			emac_txreap(sc);
    690 			if (sc->sc_txsfree == 0) {
    691 				EMAC_EVCNT_INCR(&sc->sc_ev_txsstall);
    692 				break;
    693 			}
    694 		}
    695 
    696 		txs = &sc->sc_txsoft[sc->sc_txsnext];
    697 		dmamap = txs->txs_dmamap;
    698 
    699 		/*
    700 		 * Load the DMA map.  If this fails, the packet either
    701 		 * didn't fit in the alloted number of segments, or we
    702 		 * were short on resources.  In this case, we'll copy
    703 		 * and try again.
    704 		 */
    705 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    706 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
    707 		if (error) {
    708 			if (error == EFBIG) {
    709 				EMAC_EVCNT_INCR(&sc->sc_ev_txdrop);
    710 				aprint_error_ifnet(ifp,
    711 				    "Tx packet consumes too many "
    712 				    "DMA segments, dropping...\n");
    713 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
    714 				    m_freem(m0);
    715 				    continue;
    716 			}
    717 			/* Short on resources, just stop for now. */
    718 			break;
    719 		}
    720 
    721 		/*
    722 		 * Ensure we have enough descriptors free to describe
    723 		 * the packet.
    724 		 */
    725 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    726 			/*
    727 			 * Not enough free descriptors to transmit this
    728 			 * packet.  We haven't committed anything yet,
    729 			 * so just unload the DMA map, put the packet
    730 			 * back on the queue, and punt.  Notify the upper
    731 			 * layer that there are not more slots left.
    732 			 *
    733 			 */
    734 			ifp->if_flags |= IFF_OACTIVE;
    735 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    736 			EMAC_EVCNT_INCR(&sc->sc_ev_txdstall);
    737 			break;
    738 		}
    739 
    740 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    741 
    742 		/*
    743 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    744 		 */
    745 
    746 		/* Sync the DMA map. */
    747 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    748 		    BUS_DMASYNC_PREWRITE);
    749 
    750 		/*
    751 		 * Store a pointer to the packet so that we can free it
    752 		 * later.
    753 		 */
    754 		txs->txs_mbuf = m0;
    755 		txs->txs_firstdesc = sc->sc_txnext;
    756 		txs->txs_ndesc = dmamap->dm_nsegs;
    757 
    758 		/*
    759 		 * Initialize the transmit descriptor.
    760 		 */
    761 		firsttx = sc->sc_txnext;
    762 		for (nexttx = sc->sc_txnext, seg = 0;
    763 		     seg < dmamap->dm_nsegs;
    764 		     seg++, nexttx = EMAC_NEXTTX(nexttx)) {
    765 			struct mal_descriptor *txdesc =
    766 			    &sc->sc_txdescs[nexttx];
    767 
    768 			/*
    769 			 * If this is the first descriptor we're
    770 			 * enqueueing, don't set the TX_READY bit just
    771 			 * yet.  That could cause a race condition.
    772 			 * We'll do it below.
    773 			 */
    774 			txdesc->md_data = dmamap->dm_segs[seg].ds_addr;
    775 			txdesc->md_data_len = dmamap->dm_segs[seg].ds_len;
    776 			txdesc->md_stat_ctrl =
    777 			    (txdesc->md_stat_ctrl & MAL_TX_WRAP) |
    778 			    (nexttx == firsttx ? 0 : MAL_TX_READY) |
    779 			    EMAC_TXC_GFCS | EMAC_TXC_GPAD;
    780 			lasttx = nexttx;
    781 		}
    782 
    783 		/* Set the LAST bit on the last segment. */
    784 		sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_LAST;
    785 
    786 		/*
    787 		 * Set up last segment descriptor to send an interrupt after
    788 		 * that descriptor is transmitted, and bypass existing Tx
    789 		 * descriptor reaping method (for now...).
    790 		 */
    791 		sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_INTERRUPT;
    792 
    793 
    794 		txs->txs_lastdesc = lasttx;
    795 
    796 		/* Sync the descriptors we're using. */
    797 		EMAC_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
    798 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    799 
    800 		/*
    801 		 * The entire packet chain is set up.  Give the
    802 		 * first descriptor to the chip now.
    803 		 */
    804 		sc->sc_txdescs[firsttx].md_stat_ctrl |= MAL_TX_READY;
    805 		EMAC_CDTXSYNC(sc, firsttx, 1,
    806 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    807 		/*
    808 		 * Tell the EMAC that a new packet is available.
    809 		 */
    810 		EMAC_WRITE(sc, EMAC_TMR0, TMR0_GNP0 | TMR0_TFAE_2);
    811 
    812 		/* Advance the tx pointer. */
    813 		sc->sc_txfree -= txs->txs_ndesc;
    814 		sc->sc_txnext = nexttx;
    815 
    816 		sc->sc_txsfree--;
    817 		sc->sc_txsnext = EMAC_NEXTTXS(sc->sc_txsnext);
    818 
    819 		/*
    820 		 * Pass the packet to any BPF listeners.
    821 		 */
    822 		bpf_mtap(ifp, m0, BPF_D_OUT);
    823 	}
    824 
    825 	if (sc->sc_txfree == 0)
    826 		/* No more slots left; notify upper layer. */
    827 		ifp->if_flags |= IFF_OACTIVE;
    828 
    829 	if (sc->sc_txfree != ofree)
    830 		/* Set a watchdog timer in case the chip flakes out. */
    831 		ifp->if_timer = 5;
    832 }
    833 
    834 static int
    835 emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    836 {
    837 	struct emac_softc *sc = ifp->if_softc;
    838 	int s, error;
    839 
    840 	s = splnet();
    841 
    842 	switch (cmd) {
    843 	case SIOCSIFMTU:
    844 	{
    845 		struct ifreq *ifr = (struct ifreq *)data;
    846 		int maxmtu;
    847 
    848 		if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU)
    849 			maxmtu = EMAC_MAX_MTU;
    850 		else
    851 			maxmtu = ETHERMTU;
    852 
    853 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
    854 			error = EINVAL;
    855 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
    856 			break;
    857 		else if (ifp->if_flags & IFF_UP)
    858 			error = emac_init(ifp);
    859 		else
    860 			error = 0;
    861 		break;
    862 	}
    863 
    864 	default:
    865 		error = ether_ioctl(ifp, cmd, data);
    866 		if (error == ENETRESET) {
    867 			/*
    868 			 * Multicast list has changed; set the hardware filter
    869 			 * accordingly.
    870 			 */
    871 			if (ifp->if_flags & IFF_RUNNING)
    872 				error = emac_set_filter(sc);
    873 			else
    874 				error = 0;
    875 		}
    876 	}
    877 
    878 	/* try to get more packets going */
    879 	emac_start(ifp);
    880 
    881 	splx(s);
    882 	return error;
    883 }
    884 
    885 static int
    886 emac_init(struct ifnet *ifp)
    887 {
    888 	struct emac_softc *sc = ifp->if_softc;
    889 	struct emac_rxsoft *rxs;
    890 	const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
    891 	int error, i;
    892 
    893 	error = 0;
    894 
    895 	/* Cancel any pending I/O. */
    896 	emac_stop(ifp, 0);
    897 
    898 	/* Reset the chip to a known state. */
    899 	emac_soft_reset(sc);
    900 
    901 	/*
    902 	 * Initialise the transmit descriptor ring.
    903 	 */
    904 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    905 	/* set wrap on last descriptor */
    906 	sc->sc_txdescs[EMAC_NTXDESC - 1].md_stat_ctrl |= MAL_TX_WRAP;
    907 	EMAC_CDTXSYNC(sc, 0, EMAC_NTXDESC,
    908 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    909 	sc->sc_txfree = EMAC_NTXDESC;
    910 	sc->sc_txnext = 0;
    911 
    912 	/*
    913 	 * Initialise the transmit job descriptors.
    914 	 */
    915 	for (i = 0; i < EMAC_TXQUEUELEN; i++)
    916 		sc->sc_txsoft[i].txs_mbuf = NULL;
    917 	sc->sc_txsfree = EMAC_TXQUEUELEN;
    918 	sc->sc_txsnext = 0;
    919 	sc->sc_txsdirty = 0;
    920 
    921 	/*
    922 	 * Initialise the receiver descriptor and receive job
    923 	 * descriptor rings.
    924 	 */
    925 	for (i = 0; i < EMAC_NRXDESC; i++) {
    926 		rxs = &sc->sc_rxsoft[i];
    927 		if (rxs->rxs_mbuf == NULL) {
    928 			if ((error = emac_add_rxbuf(sc, i)) != 0) {
    929 				aprint_error_ifnet(ifp,
    930 				    "unable to allocate or map rx buffer %d,"
    931 				    " error = %d\n",
    932 				    i, error);
    933 				/*
    934 				 * XXX Should attempt to run with fewer receive
    935 				 * XXX buffers instead of just failing.
    936 				 */
    937 				emac_rxdrain(sc);
    938 				goto out;
    939 			}
    940 		} else
    941 			EMAC_INIT_RXDESC(sc, i);
    942 	}
    943 	sc->sc_rxptr = 0;
    944 
    945 	/*
    946 	 * Set the current media.
    947 	 */
    948 	if ((error = ether_mediachange(ifp)) != 0)
    949 		goto out;
    950 
    951 	/*
    952 	 * Load the MAC address.
    953 	 */
    954 	EMAC_WRITE(sc, EMAC_IAHR, enaddr[0] << 8 | enaddr[1]);
    955 	EMAC_WRITE(sc, EMAC_IALR,
    956 	    enaddr[2] << 24 | enaddr[3] << 16 | enaddr[4] << 8 | enaddr[5]);
    957 
    958 	/* Enable the transmit and receive channel on the MAL. */
    959 	error = mal_start(sc->sc_instance,
    960 	    EMAC_CDTXADDR(sc, 0), EMAC_CDRXADDR(sc, 0));
    961 	if (error)
    962 		goto out;
    963 
    964 	sc->sc_mr1 &= ~MR1_JPSM;
    965 	if (ifp->if_mtu > ETHERMTU)
    966 		/* Enable Jumbo Packet Support Mode */
    967 		sc->sc_mr1 |= MR1_JPSM;
    968 
    969 	/* Set fifos, media modes. */
    970 	EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
    971 
    972 	/*
    973 	 * Enable Individual and (possibly) Broadcast Address modes,
    974 	 * runt packets, and strip padding.
    975 	 */
    976 	EMAC_WRITE(sc, EMAC_RMR, RMR_IAE | RMR_RRP | RMR_SP | RMR_TFAE_2 |
    977 	    (ifp->if_flags & IFF_PROMISC ? RMR_PME : 0) |
    978 	    (ifp->if_flags & IFF_BROADCAST ? RMR_BAE : 0));
    979 
    980 	/*
    981 	 * Set multicast filter.
    982 	 */
    983 	emac_set_filter(sc);
    984 
    985 	/*
    986 	 * Set low- and urgent-priority request thresholds.
    987 	 */
    988 	EMAC_WRITE(sc, EMAC_TMR1,
    989 	    ((7 << TMR1_TLR_SHIFT) & TMR1_TLR_MASK) | /* 16 word burst */
    990 	    ((15 << TMR1_TUR_SHIFT) & TMR1_TUR_MASK));
    991 	/*
    992 	 * Set Transmit Request Threshold Register.
    993 	 */
    994 	EMAC_WRITE(sc, EMAC_TRTR, TRTR_256);
    995 
    996 	/*
    997 	 * Set high and low receive watermarks.
    998 	 */
    999 	EMAC_WRITE(sc, EMAC_RWMR,
   1000 	    30 << RWMR_RLWM_SHIFT | 64 << RWMR_RLWM_SHIFT);
   1001 
   1002 	/*
   1003 	 * Set frame gap.
   1004 	 */
   1005 	EMAC_WRITE(sc, EMAC_IPGVR, 8);
   1006 
   1007 	/*
   1008 	 * Set interrupt status enable bits for EMAC.
   1009 	 */
   1010 	EMAC_WRITE(sc, EMAC_ISER,
   1011 	    ISR_TXPE |		/* TX Parity Error */
   1012 	    ISR_RXPE |		/* RX Parity Error */
   1013 	    ISR_TXUE |		/* TX Underrun Event */
   1014 	    ISR_RXOE |		/* RX Overrun Event */
   1015 	    ISR_OVR  |		/* Overrun Error */
   1016 	    ISR_PP   |		/* Pause Packet */
   1017 	    ISR_BP   |		/* Bad Packet */
   1018 	    ISR_RP   |		/* Runt Packet */
   1019 	    ISR_SE   |		/* Short Event */
   1020 	    ISR_ALE  |		/* Alignment Error */
   1021 	    ISR_BFCS |		/* Bad FCS */
   1022 	    ISR_PTLE |		/* Packet Too Long Error */
   1023 	    ISR_ORE  |		/* Out of Range Error */
   1024 	    ISR_IRE  |		/* In Range Error */
   1025 	    ISR_SE0  |		/* Signal Quality Error 0 (SQE) */
   1026 	    ISR_TE0  |		/* Transmit Error 0 */
   1027 	    ISR_MOS  |		/* MMA Operation Succeeded */
   1028 	    ISR_MOF);		/* MMA Operation Failed */
   1029 
   1030 	/*
   1031 	 * Enable the transmit and receive channel on the EMAC.
   1032 	 */
   1033 	EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
   1034 
   1035 	/*
   1036 	 * Start the one second MII clock.
   1037 	 */
   1038 	callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
   1039 
   1040 	/*
   1041 	 * ... all done!
   1042 	 */
   1043 	ifp->if_flags |= IFF_RUNNING;
   1044 	ifp->if_flags &= ~IFF_OACTIVE;
   1045 
   1046  out:
   1047 	if (error) {
   1048 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1049 		ifp->if_timer = 0;
   1050 		aprint_error_ifnet(ifp, "interface not running\n");
   1051 	}
   1052 	return error;
   1053 }
   1054 
   1055 static void
   1056 emac_stop(struct ifnet *ifp, int disable)
   1057 {
   1058 	struct emac_softc *sc = ifp->if_softc;
   1059 	struct emac_txsoft *txs;
   1060 	int i;
   1061 
   1062 	/* Stop the one second clock. */
   1063 	callout_stop(&sc->sc_callout);
   1064 
   1065 	/* Down the MII */
   1066 	mii_down(&sc->sc_mii);
   1067 
   1068 	/* Disable interrupts. */
   1069 	EMAC_WRITE(sc, EMAC_ISER, 0);
   1070 
   1071 	/* Disable the receive and transmit channels. */
   1072 	mal_stop(sc->sc_instance);
   1073 
   1074 	/* Disable the transmit enable and receive MACs. */
   1075 	EMAC_WRITE(sc, EMAC_MR0,
   1076 	    EMAC_READ(sc, EMAC_MR0) & ~(MR0_TXE | MR0_RXE));
   1077 
   1078 	/* Release any queued transmit buffers. */
   1079 	for (i = 0; i < EMAC_TXQUEUELEN; i++) {
   1080 		txs = &sc->sc_txsoft[i];
   1081 		if (txs->txs_mbuf != NULL) {
   1082 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1083 			m_freem(txs->txs_mbuf);
   1084 			txs->txs_mbuf = NULL;
   1085 		}
   1086 	}
   1087 
   1088 	if (disable)
   1089 		emac_rxdrain(sc);
   1090 
   1091 	/*
   1092 	 * Mark the interface down and cancel the watchdog timer.
   1093 	 */
   1094 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1095 	ifp->if_timer = 0;
   1096 }
   1097 
   1098 static void
   1099 emac_watchdog(struct ifnet *ifp)
   1100 {
   1101 	struct emac_softc *sc = ifp->if_softc;
   1102 
   1103 	/*
   1104 	 * Since we're not interrupting every packet, sweep
   1105 	 * up before we report an error.
   1106 	 */
   1107 	emac_txreap(sc);
   1108 
   1109 	if (sc->sc_txfree != EMAC_NTXDESC) {
   1110 		aprint_error_ifnet(ifp,
   1111 		    "device timeout (txfree %d txsfree %d txnext %d)\n",
   1112 		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
   1113 		if_statinc(ifp, if_oerrors);
   1114 
   1115 		/* Reset the interface. */
   1116 		(void)emac_init(ifp);
   1117 	} else if (ifp->if_flags & IFF_DEBUG)
   1118 		aprint_error_ifnet(ifp, "recovered from device timeout\n");
   1119 
   1120 	/* try to get more packets going */
   1121 	emac_start(ifp);
   1122 }
   1123 
   1124 static int
   1125 emac_add_rxbuf(struct emac_softc *sc, int idx)
   1126 {
   1127 	struct emac_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1128 	struct mbuf *m;
   1129 	int error;
   1130 
   1131 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1132 	if (m == NULL)
   1133 		return ENOBUFS;
   1134 
   1135 	MCLGET(m, M_DONTWAIT);
   1136 	if ((m->m_flags & M_EXT) == 0) {
   1137 		m_freem(m);
   1138 		return ENOBUFS;
   1139 	}
   1140 
   1141 	if (rxs->rxs_mbuf != NULL)
   1142 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1143 
   1144 	rxs->rxs_mbuf = m;
   1145 
   1146 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1147 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1148 	if (error) {
   1149 		aprint_error_dev(sc->sc_dev,
   1150 		    "can't load rx DMA map %d, error = %d\n", idx, error);
   1151 		panic("emac_add_rxbuf");		/* XXX */
   1152 	}
   1153 
   1154 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1155 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1156 
   1157 	EMAC_INIT_RXDESC(sc, idx);
   1158 
   1159 	return 0;
   1160 }
   1161 
   1162 static void
   1163 emac_rxdrain(struct emac_softc *sc)
   1164 {
   1165 	struct emac_rxsoft *rxs;
   1166 	int i;
   1167 
   1168 	for (i = 0; i < EMAC_NRXDESC; i++) {
   1169 		rxs = &sc->sc_rxsoft[i];
   1170 		if (rxs->rxs_mbuf != NULL) {
   1171 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1172 			m_freem(rxs->rxs_mbuf);
   1173 			rxs->rxs_mbuf = NULL;
   1174 		}
   1175 	}
   1176 }
   1177 
   1178 static int
   1179 emac_set_filter(struct emac_softc *sc)
   1180 {
   1181 	struct ethercom *ec = &sc->sc_ethercom;
   1182 	struct ether_multistep step;
   1183 	struct ether_multi *enm;
   1184 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1185 	uint32_t rmr, crc, mask, tmp, reg, gaht[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   1186 	int regs, cnt = 0, i;
   1187 
   1188 	if (sc->sc_htsize == 256) {
   1189 		reg = EMAC_GAHT256(0);
   1190 		regs = 8;
   1191 	} else {
   1192 		reg = EMAC_GAHT64(0);
   1193 		regs = 4;
   1194 	}
   1195 	mask = (1ULL << (sc->sc_htsize / regs)) - 1;
   1196 
   1197 	rmr = EMAC_READ(sc, EMAC_RMR);
   1198 	rmr &= ~(RMR_PMME | RMR_MAE);
   1199 	ifp->if_flags &= ~IFF_ALLMULTI;
   1200 
   1201 	ETHER_LOCK(ec);
   1202 	ETHER_FIRST_MULTI(step, ec, enm);
   1203 	while (enm != NULL) {
   1204 		if (memcmp(enm->enm_addrlo,
   1205 		    enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
   1206 			/*
   1207 			 * We must listen to a range of multicast addresses.
   1208 			 * For now, just accept all multicasts, rather than
   1209 			 * trying to set only those filter bits needed to match
   1210 			 * the range.  (At this time, the only use of address
   1211 			 * ranges is for IP multicast routing, for which the
   1212 			 * range is big enough to require all bits set.)
   1213 			 */
   1214 			gaht[0] = gaht[1] = gaht[2] = gaht[3] =
   1215 			    gaht[4] = gaht[5] = gaht[6] = gaht[7] = mask;
   1216 			break;
   1217 		}
   1218 
   1219 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
   1220 
   1221 		if (sc->sc_htsize == 256)
   1222 			EMAC_SET_FILTER256(gaht, crc);
   1223 		else
   1224 			EMAC_SET_FILTER(gaht, crc);
   1225 
   1226 		ETHER_NEXT_MULTI(step, enm);
   1227 		cnt++;
   1228 	}
   1229 	ETHER_UNLOCK(ec);
   1230 
   1231 	for (i = 1, tmp = gaht[0]; i < regs; i++)
   1232 		tmp &= gaht[i];
   1233 	if (tmp == mask) {
   1234 		/* All categories are true. */
   1235 		ifp->if_flags |= IFF_ALLMULTI;
   1236 		rmr |= RMR_PMME;
   1237 	} else if (cnt != 0) {
   1238 		/* Some categories are true. */
   1239 		for (i = 0; i < regs; i++)
   1240 			EMAC_WRITE(sc, reg + (i << 2), gaht[i]);
   1241 		rmr |= RMR_MAE;
   1242 	}
   1243 	EMAC_WRITE(sc, EMAC_RMR, rmr);
   1244 
   1245 	return 0;
   1246 }
   1247 
   1248 /*
   1249  * Reap completed Tx descriptors.
   1250  */
   1251 static int
   1252 emac_txreap(struct emac_softc *sc)
   1253 {
   1254 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1255 	struct emac_txsoft *txs;
   1256 	int handled, i;
   1257 	uint32_t txstat;
   1258 
   1259 	EMAC_EVCNT_INCR(&sc->sc_ev_txreap);
   1260 	handled = 0;
   1261 
   1262 	ifp->if_flags &= ~IFF_OACTIVE;
   1263 
   1264 	/*
   1265 	 * Go through our Tx list and free mbufs for those
   1266 	 * frames that have been transmitted.
   1267 	 */
   1268 	for (i = sc->sc_txsdirty; sc->sc_txsfree != EMAC_TXQUEUELEN;
   1269 	    i = EMAC_NEXTTXS(i), sc->sc_txsfree++) {
   1270 		txs = &sc->sc_txsoft[i];
   1271 
   1272 		EMAC_CDTXSYNC(sc, txs->txs_lastdesc,
   1273 		    txs->txs_dmamap->dm_nsegs,
   1274 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1275 
   1276 		txstat = sc->sc_txdescs[txs->txs_lastdesc].md_stat_ctrl;
   1277 		if (txstat & MAL_TX_READY)
   1278 			break;
   1279 
   1280 		handled = 1;
   1281 
   1282 		/*
   1283 		 * Check for errors and collisions.
   1284 		 */
   1285 		if (txstat & (EMAC_TXS_UR | EMAC_TXS_ED))
   1286 			if_statinc(ifp, if_oerrors);
   1287 
   1288 #ifdef EMAC_EVENT_COUNTERS
   1289 		if (txstat & EMAC_TXS_UR)
   1290 			EMAC_EVCNT_INCR(&sc->sc_ev_tu);
   1291 #endif /* EMAC_EVENT_COUNTERS */
   1292 
   1293 		if (txstat &
   1294 		    (EMAC_TXS_EC | EMAC_TXS_MC | EMAC_TXS_SC | EMAC_TXS_LC)) {
   1295 			if (txstat & EMAC_TXS_EC)
   1296 				if_statadd(ifp, if_collisions, 16);
   1297 			else if (txstat & EMAC_TXS_MC)
   1298 				if_statadd(ifp, if_collisions, 2); /* XXX? */
   1299 			else if (txstat & EMAC_TXS_SC)
   1300 				if_statinc(ifp, if_collisions);
   1301 			if (txstat & EMAC_TXS_LC)
   1302 				if_statinc(ifp, if_collisions);
   1303 		} else
   1304 			if_statinc(ifp, if_opackets);
   1305 
   1306 		if (ifp->if_flags & IFF_DEBUG) {
   1307 			if (txstat & EMAC_TXS_ED)
   1308 				aprint_error_ifnet(ifp, "excessive deferral\n");
   1309 			if (txstat & EMAC_TXS_EC)
   1310 				aprint_error_ifnet(ifp,
   1311 				    "excessive collisions\n");
   1312 		}
   1313 
   1314 		sc->sc_txfree += txs->txs_ndesc;
   1315 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1316 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1317 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1318 		m_freem(txs->txs_mbuf);
   1319 		txs->txs_mbuf = NULL;
   1320 	}
   1321 
   1322 	/* Update the dirty transmit buffer pointer. */
   1323 	sc->sc_txsdirty = i;
   1324 
   1325 	/*
   1326 	 * If there are no more pending transmissions, cancel the watchdog
   1327 	 * timer.
   1328 	 */
   1329 	if (sc->sc_txsfree == EMAC_TXQUEUELEN)
   1330 		ifp->if_timer = 0;
   1331 
   1332 	return handled;
   1333 }
   1334 
   1335 
   1336 /*
   1337  * Reset functions
   1338  */
   1339 
   1340 static void
   1341 emac_soft_reset(struct emac_softc *sc)
   1342 {
   1343 	uint32_t sdr;
   1344 	int t = 0;
   1345 
   1346 	/*
   1347 	 * The PHY must provide a TX Clk in order perform a soft reset the
   1348 	 * EMAC.  If none is present, select the internal clock,
   1349 	 * SDR0_MFR[E0CS, E1CS].  After the soft reset, select the external
   1350 	 * clock.
   1351 	 */
   1352 
   1353 	sdr = mfsdr(DCR_SDR0_MFR);
   1354 	sdr |= SDR0_MFR_ECS(sc->sc_instance);
   1355 	mtsdr(DCR_SDR0_MFR, sdr);
   1356 
   1357 	EMAC_WRITE(sc, EMAC_MR0, MR0_SRST);
   1358 
   1359 	sdr = mfsdr(DCR_SDR0_MFR);
   1360 	sdr &= ~SDR0_MFR_ECS(sc->sc_instance);
   1361 	mtsdr(DCR_SDR0_MFR, sdr);
   1362 
   1363 	delay(5);
   1364 
   1365 	/* wait finish */
   1366 	while (EMAC_READ(sc, EMAC_MR0) & MR0_SRST) {
   1367 		if (++t == 1000000 /* 1sec XXXXX */) {
   1368 			aprint_error_dev(sc->sc_dev, "Soft Reset failed\n");
   1369 			return;
   1370 		}
   1371 		delay(1);
   1372 	}
   1373 }
   1374 
   1375 static void
   1376 emac_smart_reset(struct emac_softc *sc)
   1377 {
   1378 	uint32_t mr0;
   1379 	int t = 0;
   1380 
   1381 	mr0 = EMAC_READ(sc, EMAC_MR0);
   1382 	if (mr0 & (MR0_TXE | MR0_RXE)) {
   1383 		mr0 &= ~(MR0_TXE | MR0_RXE);
   1384 		EMAC_WRITE(sc, EMAC_MR0, mr0);
   1385 
   1386 		/* wait idel state */
   1387 		while ((EMAC_READ(sc, EMAC_MR0) & (MR0_TXI | MR0_RXI)) !=
   1388 		    (MR0_TXI | MR0_RXI)) {
   1389 			if (++t == 1000000 /* 1sec XXXXX */) {
   1390 				aprint_error_dev(sc->sc_dev,
   1391 				    "Smart Reset failed\n");
   1392 				return;
   1393 			}
   1394 			delay(1);
   1395 		}
   1396 	}
   1397 }
   1398 
   1399 
   1400 /*
   1401  * MII related functions
   1402  */
   1403 
   1404 static int
   1405 emac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1406 {
   1407 	struct emac_softc *sc = device_private(self);
   1408 	uint32_t sta_reg;
   1409 	int rv;
   1410 
   1411 	if (sc->sc_rmii_enable)
   1412 		sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
   1413 
   1414 	/* wait for PHY data transfer to complete */
   1415 	if ((rv = emac_mii_wait(sc)) != 0)
   1416 		goto fail;
   1417 
   1418 	sta_reg =
   1419 	    sc->sc_stacr_read		|
   1420 	    (reg << STACR_PRA_SHIFT)	|
   1421 	    (phy << STACR_PCDA_SHIFT)	|
   1422 	    sc->sc_stacr_bits;
   1423 	EMAC_WRITE(sc, EMAC_STACR, sta_reg);
   1424 
   1425 	if ((rv = emac_mii_wait(sc)) != 0)
   1426 		goto fail;
   1427 	sta_reg = EMAC_READ(sc, EMAC_STACR);
   1428 
   1429 	if (sta_reg & STACR_PHYE) {
   1430 		rv = -1;
   1431 		goto fail;
   1432 	}
   1433 	*val = sta_reg >> STACR_PHYD_SHIFT;
   1434 
   1435 fail:
   1436 	if (sc->sc_rmii_disable)
   1437 		sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
   1438 	return rv;
   1439 }
   1440 
   1441 static int
   1442 emac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1443 {
   1444 	struct emac_softc *sc = device_private(self);
   1445 	uint32_t sta_reg;
   1446 	int rv;
   1447 
   1448 	if (sc->sc_rmii_enable)
   1449 		sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
   1450 
   1451 	/* wait for PHY data transfer to complete */
   1452 	if ((rv = emac_mii_wait(sc)) != 0)
   1453 		goto out;
   1454 
   1455 	sta_reg =
   1456 	    (val << STACR_PHYD_SHIFT)	|
   1457 	    sc->sc_stacr_write		|
   1458 	    (reg << STACR_PRA_SHIFT)	|
   1459 	    (phy << STACR_PCDA_SHIFT)	|
   1460 	    sc->sc_stacr_bits;
   1461 	EMAC_WRITE(sc, EMAC_STACR, sta_reg);
   1462 
   1463 	if ((rv = emac_mii_wait(sc)) != 0)
   1464 		goto out;
   1465 	if (EMAC_READ(sc, EMAC_STACR) & STACR_PHYE) {
   1466 		aprint_error_dev(sc->sc_dev, "MII PHY Error\n");
   1467 		rv = -1;
   1468 	}
   1469 
   1470 out:
   1471 	if (sc->sc_rmii_disable)
   1472 		sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
   1473 
   1474 	return rv;
   1475 }
   1476 
   1477 static void
   1478 emac_mii_statchg(struct ifnet *ifp)
   1479 {
   1480 	struct emac_softc *sc = ifp->if_softc;
   1481 	struct mii_data *mii = &sc->sc_mii;
   1482 
   1483 	/*
   1484 	 * MR1 can only be written immediately after a reset...
   1485 	 */
   1486 	emac_smart_reset(sc);
   1487 
   1488 	sc->sc_mr1 &= ~(MR1_FDE | MR1_ILE | MR1_EIFC | MR1_MF_MASK | MR1_IST);
   1489 	if (mii->mii_media_active & IFM_FDX)
   1490 		sc->sc_mr1 |= (MR1_FDE | MR1_EIFC | MR1_IST);
   1491 	if (mii->mii_media_active & IFM_FLOW)
   1492 		sc->sc_mr1 |= MR1_EIFC;
   1493 	if (mii->mii_media_active & IFM_LOOP)
   1494 		sc->sc_mr1 |= MR1_ILE;
   1495 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1496 	case IFM_1000_T:
   1497 		sc->sc_mr1 |= (MR1_MF_1000MBS | MR1_IST);
   1498 		break;
   1499 
   1500 	case IFM_100_TX:
   1501 		sc->sc_mr1 |= (MR1_MF_100MBS | MR1_IST);
   1502 		break;
   1503 
   1504 	case IFM_10_T:
   1505 		sc->sc_mr1 |= MR1_MF_10MBS;
   1506 		break;
   1507 
   1508 	case IFM_NONE:
   1509 		break;
   1510 
   1511 	default:
   1512 		aprint_error_dev(sc->sc_dev, "unknown sub-type %d\n",
   1513 		    IFM_SUBTYPE(mii->mii_media_active));
   1514 		break;
   1515 	}
   1516 	if (sc->sc_rmii_speed)
   1517 		sc->sc_rmii_speed(device_parent(sc->sc_dev), sc->sc_instance,
   1518 		    IFM_SUBTYPE(mii->mii_media_active));
   1519 
   1520 	EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
   1521 
   1522 	/* Enable TX and RX if already RUNNING */
   1523 	if (ifp->if_flags & IFF_RUNNING)
   1524 		EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
   1525 }
   1526 
   1527 static uint32_t
   1528 emac_mii_wait(struct emac_softc *sc)
   1529 {
   1530 	int i;
   1531 	uint32_t oc;
   1532 
   1533 	/* wait for PHY data transfer to complete */
   1534 	i = 0;
   1535 	oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
   1536 	while ((oc == STACR_OC) != sc->sc_stacr_completed) {
   1537 		delay(7);
   1538 		if (i++ > 5) {
   1539 			aprint_error_dev(sc->sc_dev, "MII timed out\n");
   1540 			return ETIMEDOUT;
   1541 		}
   1542 		oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
   1543 	}
   1544 	return 0;
   1545 }
   1546 
   1547 static void
   1548 emac_mii_tick(void *arg)
   1549 {
   1550 	struct emac_softc *sc = arg;
   1551 	int s;
   1552 
   1553 	if (!device_is_active(sc->sc_dev))
   1554 		return;
   1555 
   1556 	s = splnet();
   1557 	mii_tick(&sc->sc_mii);
   1558 	splx(s);
   1559 
   1560 	callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
   1561 }
   1562 
   1563 int
   1564 emac_txeob_intr(void *arg)
   1565 {
   1566 	struct emac_softc *sc = arg;
   1567 	int handled = 0;
   1568 
   1569 	EMAC_EVCNT_INCR(&sc->sc_ev_txintr);
   1570 	handled |= emac_txreap(sc);
   1571 
   1572 	/* try to get more packets going */
   1573 	if_schedule_deferred_start(&sc->sc_ethercom.ec_if);
   1574 
   1575 	return handled;
   1576 }
   1577 
   1578 int
   1579 emac_rxeob_intr(void *arg)
   1580 {
   1581 	struct emac_softc *sc = arg;
   1582 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1583 	struct emac_rxsoft *rxs;
   1584 	struct mbuf *m;
   1585 	uint32_t rxstat;
   1586 	int i, len;
   1587 
   1588 	EMAC_EVCNT_INCR(&sc->sc_ev_rxintr);
   1589 
   1590 	for (i = sc->sc_rxptr; ; i = EMAC_NEXTRX(i)) {
   1591 		rxs = &sc->sc_rxsoft[i];
   1592 
   1593 		EMAC_CDRXSYNC(sc, i,
   1594 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1595 
   1596 		rxstat = sc->sc_rxdescs[i].md_stat_ctrl;
   1597 
   1598 		if (rxstat & MAL_RX_EMPTY) {
   1599 			/*
   1600 			 * We have processed all of the receive buffers.
   1601 			 */
   1602 			/* Flush current empty descriptor */
   1603 			EMAC_CDRXSYNC(sc, i,
   1604 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1605 			break;
   1606 		}
   1607 
   1608 		/*
   1609 		 * If an error occurred, update stats, clear the status
   1610 		 * word, and leave the packet buffer in place.  It will
   1611 		 * simply be reused the next time the ring comes around.
   1612 		 */
   1613 		if (rxstat & (EMAC_RXS_OE | EMAC_RXS_BP | EMAC_RXS_SE |
   1614 		    EMAC_RXS_AE | EMAC_RXS_BFCS | EMAC_RXS_PTL | EMAC_RXS_ORE |
   1615 		    EMAC_RXS_IRE)) {
   1616 #define	PRINTERR(bit, str)					\
   1617 			if (rxstat & (bit))			\
   1618 				aprint_error_ifnet(ifp,		\
   1619 				    "receive error: %s\n", str)
   1620 			if_statinc(ifp, if_ierrors);
   1621 			PRINTERR(EMAC_RXS_OE, "overrun error");
   1622 			PRINTERR(EMAC_RXS_BP, "bad packet");
   1623 			PRINTERR(EMAC_RXS_RP, "runt packet");
   1624 			PRINTERR(EMAC_RXS_SE, "short event");
   1625 			PRINTERR(EMAC_RXS_AE, "alignment error");
   1626 			PRINTERR(EMAC_RXS_BFCS, "bad FCS");
   1627 			PRINTERR(EMAC_RXS_PTL, "packet too long");
   1628 			PRINTERR(EMAC_RXS_ORE, "out of range error");
   1629 			PRINTERR(EMAC_RXS_IRE, "in range error");
   1630 #undef PRINTERR
   1631 			EMAC_INIT_RXDESC(sc, i);
   1632 			continue;
   1633 		}
   1634 
   1635 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1636 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1637 
   1638 		/*
   1639 		 * No errors; receive the packet.  Note, the 405GP emac
   1640 		 * includes the CRC with every packet.
   1641 		 */
   1642 		len = sc->sc_rxdescs[i].md_data_len - ETHER_CRC_LEN;
   1643 
   1644 		/*
   1645 		 * If the packet is small enough to fit in a
   1646 		 * single header mbuf, allocate one and copy
   1647 		 * the data into it.  This greatly reduces
   1648 		 * memory consumption when we receive lots
   1649 		 * of small packets.
   1650 		 *
   1651 		 * Otherwise, we add a new buffer to the receive
   1652 		 * chain.  If this fails, we drop the packet and
   1653 		 * recycle the old buffer.
   1654 		 */
   1655 		if (emac_copy_small != 0 && len <= MHLEN) {
   1656 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1657 			if (m == NULL)
   1658 				goto dropit;
   1659 			memcpy(mtod(m, void *),
   1660 			    mtod(rxs->rxs_mbuf, void *), len);
   1661 			EMAC_INIT_RXDESC(sc, i);
   1662 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1663 			    rxs->rxs_dmamap->dm_mapsize,
   1664 			    BUS_DMASYNC_PREREAD);
   1665 		} else {
   1666 			m = rxs->rxs_mbuf;
   1667 			if (emac_add_rxbuf(sc, i) != 0) {
   1668  dropit:
   1669 				if_statinc(ifp, if_ierrors);
   1670 				EMAC_INIT_RXDESC(sc, i);
   1671 				bus_dmamap_sync(sc->sc_dmat,
   1672 				    rxs->rxs_dmamap, 0,
   1673 				    rxs->rxs_dmamap->dm_mapsize,
   1674 				    BUS_DMASYNC_PREREAD);
   1675 				continue;
   1676 			}
   1677 		}
   1678 
   1679 		m_set_rcvif(m, ifp);
   1680 		m->m_pkthdr.len = m->m_len = len;
   1681 
   1682 		/* Pass it on. */
   1683 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1684 	}
   1685 
   1686 	/* Update the receive pointer. */
   1687 	sc->sc_rxptr = i;
   1688 
   1689 	return 1;
   1690 }
   1691 
   1692 int
   1693 emac_txde_intr(void *arg)
   1694 {
   1695 	struct emac_softc *sc = arg;
   1696 
   1697 	EMAC_EVCNT_INCR(&sc->sc_ev_txde);
   1698 	aprint_error_dev(sc->sc_dev, "emac_txde_intr\n");
   1699 	return 1;
   1700 }
   1701 
   1702 int
   1703 emac_rxde_intr(void *arg)
   1704 {
   1705 	struct emac_softc *sc = arg;
   1706 	int i;
   1707 
   1708 	EMAC_EVCNT_INCR(&sc->sc_ev_rxde);
   1709 	aprint_error_dev(sc->sc_dev, "emac_rxde_intr\n");
   1710 	/*
   1711 	 * XXX!
   1712 	 * This is a bit drastic; we just drop all descriptors that aren't
   1713 	 * "clean".  We should probably send any that are up the stack.
   1714 	 */
   1715 	for (i = 0; i < EMAC_NRXDESC; i++) {
   1716 		EMAC_CDRXSYNC(sc, i,
   1717 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1718 
   1719 		if (sc->sc_rxdescs[i].md_data_len != MCLBYTES)
   1720 			EMAC_INIT_RXDESC(sc, i);
   1721 	}
   1722 
   1723 	return 1;
   1724 }
   1725