1 1.110 andvar /* $NetBSD: pmap.c,v 1.110 2024/02/01 22:02:18 andvar Exp $ */ 2 1.1 simonb 3 1.1 simonb /* 4 1.1 simonb * Copyright 2001 Wasabi Systems, Inc. 5 1.1 simonb * All rights reserved. 6 1.1 simonb * 7 1.1 simonb * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc. 8 1.1 simonb * 9 1.1 simonb * Redistribution and use in source and binary forms, with or without 10 1.1 simonb * modification, are permitted provided that the following conditions 11 1.1 simonb * are met: 12 1.1 simonb * 1. Redistributions of source code must retain the above copyright 13 1.1 simonb * notice, this list of conditions and the following disclaimer. 14 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright 15 1.1 simonb * notice, this list of conditions and the following disclaimer in the 16 1.1 simonb * documentation and/or other materials provided with the distribution. 17 1.1 simonb * 3. All advertising materials mentioning features or use of this software 18 1.1 simonb * must display the following acknowledgement: 19 1.1 simonb * This product includes software developed for the NetBSD Project by 20 1.1 simonb * Wasabi Systems, Inc. 21 1.1 simonb * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 1.1 simonb * or promote products derived from this software without specific prior 23 1.1 simonb * written permission. 24 1.1 simonb * 25 1.1 simonb * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 1.1 simonb * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 1.1 simonb * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 1.1 simonb * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 1.1 simonb * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 1.1 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 1.1 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 1.1 simonb * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 1.1 simonb * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 1.1 simonb * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 1.1 simonb * POSSIBILITY OF SUCH DAMAGE. 36 1.1 simonb */ 37 1.1 simonb 38 1.1 simonb /* 39 1.1 simonb * Copyright (C) 1995, 1996 Wolfgang Solfrank. 40 1.1 simonb * Copyright (C) 1995, 1996 TooLs GmbH. 41 1.1 simonb * All rights reserved. 42 1.1 simonb * 43 1.1 simonb * Redistribution and use in source and binary forms, with or without 44 1.1 simonb * modification, are permitted provided that the following conditions 45 1.1 simonb * are met: 46 1.1 simonb * 1. Redistributions of source code must retain the above copyright 47 1.1 simonb * notice, this list of conditions and the following disclaimer. 48 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright 49 1.1 simonb * notice, this list of conditions and the following disclaimer in the 50 1.1 simonb * documentation and/or other materials provided with the distribution. 51 1.1 simonb * 3. All advertising materials mentioning features or use of this software 52 1.1 simonb * must display the following acknowledgement: 53 1.1 simonb * This product includes software developed by TooLs GmbH. 54 1.1 simonb * 4. The name of TooLs GmbH may not be used to endorse or promote products 55 1.1 simonb * derived from this software without specific prior written permission. 56 1.1 simonb * 57 1.1 simonb * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 58 1.1 simonb * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 59 1.1 simonb * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 60 1.1 simonb * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 61 1.1 simonb * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 62 1.1 simonb * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 63 1.1 simonb * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 64 1.1 simonb * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 65 1.1 simonb * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 66 1.1 simonb * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 67 1.1 simonb */ 68 1.23 lukem 69 1.23 lukem #include <sys/cdefs.h> 70 1.110 andvar __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.110 2024/02/01 22:02:18 andvar Exp $"); 71 1.90 rin 72 1.90 rin #ifdef _KERNEL_OPT 73 1.90 rin #include "opt_ddb.h" 74 1.93 rin #include "opt_pmap.h" 75 1.90 rin #endif 76 1.1 simonb 77 1.1 simonb #include <sys/param.h> 78 1.68 matt #include <sys/cpu.h> 79 1.68 matt #include <sys/device.h> 80 1.72 para #include <sys/kmem.h> 81 1.68 matt #include <sys/pool.h> 82 1.1 simonb #include <sys/proc.h> 83 1.1 simonb #include <sys/queue.h> 84 1.1 simonb #include <sys/systm.h> 85 1.1 simonb 86 1.1 simonb #include <uvm/uvm.h> 87 1.1 simonb 88 1.1 simonb #include <machine/powerpc.h> 89 1.1 simonb 90 1.68 matt #include <powerpc/pcb.h> 91 1.68 matt 92 1.1 simonb #include <powerpc/spr.h> 93 1.62 matt #include <powerpc/ibm4xx/spr.h> 94 1.67 matt 95 1.67 matt #include <powerpc/ibm4xx/cpu.h> 96 1.96 rin #include <powerpc/ibm4xx/tlb.h> 97 1.1 simonb 98 1.1 simonb /* 99 1.1 simonb * kernmap is an array of PTEs large enough to map in 100 1.1 simonb * 4GB. At 16KB/page it is 256K entries or 2MB. 101 1.1 simonb */ 102 1.99 rin #define KERNMAP_SIZE ((0xffffffffU / PAGE_SIZE) + 1) 103 1.47 christos void *kernmap; 104 1.1 simonb 105 1.1 simonb #define MINCTX 2 106 1.1 simonb #define NUMCTX 256 107 1.42 freza 108 1.1 simonb volatile struct pmap *ctxbusy[NUMCTX]; 109 1.1 simonb 110 1.1 simonb #define TLBF_USED 0x1 111 1.1 simonb #define TLBF_REF 0x2 112 1.1 simonb #define TLBF_LOCKED 0x4 113 1.1 simonb #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED) 114 1.42 freza 115 1.1 simonb typedef struct tlb_info_s { 116 1.1 simonb char ti_flags; 117 1.1 simonb char ti_ctx; /* TLB_PID assiciated with the entry */ 118 1.1 simonb u_int ti_va; 119 1.1 simonb } tlb_info_t; 120 1.1 simonb 121 1.1 simonb volatile tlb_info_t tlb_info[NTLB]; 122 1.1 simonb /* We'll use a modified FIFO replacement policy cause it's cheap */ 123 1.42 freza volatile int tlbnext; 124 1.42 freza 125 1.42 freza static int tlb_nreserved = 0; 126 1.42 freza static int pmap_bootstrap_done = 0; 127 1.1 simonb 128 1.14 thorpej /* Event counters */ 129 1.14 thorpej struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 130 1.99 rin NULL, "cpu", "tlbmiss"); 131 1.14 thorpej struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 132 1.99 rin NULL, "cpu", "tlbflush"); 133 1.14 thorpej struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, 134 1.99 rin NULL, "cpu", "tlbenter"); 135 1.66 matt EVCNT_ATTACH_STATIC(tlbmiss_ev); 136 1.66 matt EVCNT_ATTACH_STATIC(tlbflush_ev); 137 1.66 matt EVCNT_ATTACH_STATIC(tlbenter_ev); 138 1.1 simonb 139 1.1 simonb struct pmap kernel_pmap_; 140 1.52 pooka struct pmap *const kernel_pmap_ptr = &kernel_pmap_; 141 1.1 simonb 142 1.1 simonb static int npgs; 143 1.1 simonb static u_int nextavail; 144 1.1 simonb #ifndef MSGBUFADDR 145 1.1 simonb extern paddr_t msgbuf_paddr; 146 1.1 simonb #endif 147 1.1 simonb 148 1.1 simonb static struct mem_region *mem, *avail; 149 1.1 simonb 150 1.1 simonb /* 151 1.1 simonb * This is a cache of referenced/modified bits. 152 1.1 simonb * Bits herein are shifted by ATTRSHFT. 153 1.1 simonb */ 154 1.1 simonb static char *pmap_attrib; 155 1.1 simonb 156 1.1 simonb #define PV_WIRED 0x1 157 1.1 simonb #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED) 158 1.30 chs #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED) 159 1.30 chs #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED) 160 1.91 rin #define PV_VA(pv) ((pv)->pv_va & ~PV_WIRED) 161 1.91 rin #define PV_CMPVA(va,pv) (!(PV_VA(pv) ^ (va))) 162 1.1 simonb 163 1.1 simonb struct pv_entry { 164 1.1 simonb struct pv_entry *pv_next; /* Linked list of mappings */ 165 1.68 matt struct pmap *pv_pm; 166 1.1 simonb vaddr_t pv_va; /* virtual address of mapping */ 167 1.1 simonb }; 168 1.1 simonb 169 1.42 freza /* Each index corresponds to TLB_SIZE_* value. */ 170 1.42 freza static size_t tlbsize[] = { 171 1.42 freza 1024, /* TLB_SIZE_1K */ 172 1.42 freza 4096, /* TLB_SIZE_4K */ 173 1.42 freza 16384, /* TLB_SIZE_16K */ 174 1.42 freza 65536, /* TLB_SIZE_64K */ 175 1.42 freza 262144, /* TLB_SIZE_256K */ 176 1.42 freza 1048576, /* TLB_SIZE_1M */ 177 1.42 freza 4194304, /* TLB_SIZE_4M */ 178 1.42 freza 16777216, /* TLB_SIZE_16M */ 179 1.42 freza }; 180 1.42 freza 181 1.1 simonb struct pv_entry *pv_table; 182 1.1 simonb static struct pool pv_pool; 183 1.1 simonb 184 1.1 simonb static int pmap_initialized; 185 1.1 simonb 186 1.104 rin static void ctx_flush(int); 187 1.1 simonb 188 1.68 matt struct pv_entry *pa_to_pv(paddr_t); 189 1.1 simonb static inline char *pa_to_attr(paddr_t); 190 1.1 simonb 191 1.1 simonb static inline volatile u_int *pte_find(struct pmap *, vaddr_t); 192 1.1 simonb static inline int pte_enter(struct pmap *, vaddr_t, u_int); 193 1.1 simonb 194 1.49 hannken static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int); 195 1.1 simonb static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t); 196 1.1 simonb 197 1.93 rin static inline void tlb_invalidate_entry(int); 198 1.93 rin 199 1.42 freza static int ppc4xx_tlb_size_mask(size_t, int *, int *); 200 1.42 freza 201 1.1 simonb 202 1.68 matt struct pv_entry * 203 1.1 simonb pa_to_pv(paddr_t pa) 204 1.1 simonb { 205 1.75 cherry uvm_physseg_t bank; 206 1.75 cherry psize_t pg; 207 1.1 simonb 208 1.74 cherry bank = uvm_physseg_find(atop(pa), &pg); 209 1.76 cherry if (bank == UVM_PHYSSEG_TYPE_INVALID) 210 1.1 simonb return NULL; 211 1.75 cherry return &uvm_physseg_get_pmseg(bank)->pvent[pg]; 212 1.1 simonb } 213 1.1 simonb 214 1.1 simonb static inline char * 215 1.1 simonb pa_to_attr(paddr_t pa) 216 1.1 simonb { 217 1.75 cherry uvm_physseg_t bank; 218 1.75 cherry psize_t pg; 219 1.1 simonb 220 1.74 cherry bank = uvm_physseg_find(atop(pa), &pg); 221 1.76 cherry if (bank == UVM_PHYSSEG_TYPE_INVALID) 222 1.1 simonb return NULL; 223 1.75 cherry return &uvm_physseg_get_pmseg(bank)->attrs[pg]; 224 1.1 simonb } 225 1.1 simonb 226 1.1 simonb /* 227 1.1 simonb * Insert PTE into page table. 228 1.1 simonb */ 229 1.97 rin static inline int 230 1.1 simonb pte_enter(struct pmap *pm, vaddr_t va, u_int pte) 231 1.1 simonb { 232 1.99 rin int seg = STIDX(va), ptn = PTIDX(va); 233 1.22 scw u_int oldpte; 234 1.1 simonb 235 1.1 simonb if (!pm->pm_ptbl[seg]) { 236 1.1 simonb /* Don't allocate a page to clear a non-existent mapping. */ 237 1.30 chs if (!pte) 238 1.105 rin return 0; 239 1.98 rin 240 1.98 rin vaddr_t km = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, 241 1.98 rin UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT); 242 1.98 rin 243 1.98 rin if (__predict_false(km == 0)) 244 1.105 rin return ENOMEM; 245 1.98 rin 246 1.98 rin pm->pm_ptbl[seg] = (u_int *)km; 247 1.1 simonb } 248 1.22 scw oldpte = pm->pm_ptbl[seg][ptn]; 249 1.1 simonb pm->pm_ptbl[seg][ptn] = pte; 250 1.1 simonb 251 1.1 simonb /* Flush entry. */ 252 1.1 simonb ppc4xx_tlb_flush(va, pm->pm_ctx); 253 1.22 scw if (oldpte != pte) { 254 1.22 scw if (pte == 0) 255 1.22 scw pm->pm_stats.resident_count--; 256 1.22 scw else 257 1.22 scw pm->pm_stats.resident_count++; 258 1.22 scw } 259 1.105 rin return 0; 260 1.1 simonb } 261 1.1 simonb 262 1.1 simonb /* 263 1.1 simonb * Get a pointer to a PTE in a page table. 264 1.1 simonb */ 265 1.1 simonb volatile u_int * 266 1.1 simonb pte_find(struct pmap *pm, vaddr_t va) 267 1.1 simonb { 268 1.99 rin int seg = STIDX(va), ptn = PTIDX(va); 269 1.1 simonb 270 1.1 simonb if (pm->pm_ptbl[seg]) 271 1.97 rin return &pm->pm_ptbl[seg][ptn]; 272 1.1 simonb 273 1.97 rin return NULL; 274 1.1 simonb } 275 1.1 simonb 276 1.1 simonb /* 277 1.1 simonb * This is called during initppc, before the system is really initialized. 278 1.1 simonb */ 279 1.1 simonb void 280 1.1 simonb pmap_bootstrap(u_int kernelstart, u_int kernelend) 281 1.1 simonb { 282 1.1 simonb struct mem_region *mp, *mp1; 283 1.1 simonb int cnt, i; 284 1.1 simonb u_int s, e, sz; 285 1.1 simonb 286 1.42 freza tlbnext = tlb_nreserved; 287 1.42 freza 288 1.1 simonb /* 289 1.1 simonb * Allocate the kernel page table at the end of 290 1.1 simonb * kernel space so it's in the locked TTE. 291 1.1 simonb */ 292 1.47 christos kernmap = (void *)kernelend; 293 1.1 simonb 294 1.1 simonb /* 295 1.1 simonb * Initialize kernel page table. 296 1.1 simonb */ 297 1.99 rin for (i = 0; i < STSZ; i++) 298 1.97 rin pmap_kernel()->pm_ptbl[i] = NULL; 299 1.1 simonb ctxbusy[0] = ctxbusy[1] = pmap_kernel(); 300 1.1 simonb 301 1.1 simonb /* 302 1.1 simonb * Announce page-size to the VM-system 303 1.1 simonb */ 304 1.1 simonb uvmexp.pagesize = NBPG; 305 1.73 cherry uvm_md_init(); 306 1.1 simonb 307 1.1 simonb /* 308 1.1 simonb * Get memory. 309 1.1 simonb */ 310 1.1 simonb mem_regions(&mem, &avail); 311 1.1 simonb for (mp = mem; mp->size; mp++) { 312 1.1 simonb physmem += btoc(mp->size); 313 1.99 rin printf("+%lx,", mp->size); 314 1.1 simonb } 315 1.1 simonb printf("\n"); 316 1.1 simonb ppc4xx_tlb_init(); 317 1.1 simonb /* 318 1.1 simonb * Count the number of available entries. 319 1.1 simonb */ 320 1.1 simonb for (cnt = 0, mp = avail; mp->size; mp++) 321 1.1 simonb cnt++; 322 1.1 simonb 323 1.1 simonb /* 324 1.1 simonb * Page align all regions. 325 1.1 simonb * Non-page aligned memory isn't very interesting to us. 326 1.1 simonb * Also, sort the entries for ascending addresses. 327 1.1 simonb */ 328 1.1 simonb kernelstart &= ~PGOFSET; 329 1.1 simonb kernelend = (kernelend + PGOFSET) & ~PGOFSET; 330 1.1 simonb for (mp = avail; mp->size; mp++) { 331 1.1 simonb s = mp->start; 332 1.1 simonb e = mp->start + mp->size; 333 1.99 rin printf("%08x-%08x -> ", s, e); 334 1.1 simonb /* 335 1.1 simonb * Check whether this region holds all of the kernel. 336 1.1 simonb */ 337 1.1 simonb if (s < kernelstart && e > kernelend) { 338 1.1 simonb avail[cnt].start = kernelend; 339 1.1 simonb avail[cnt++].size = e - kernelend; 340 1.1 simonb e = kernelstart; 341 1.1 simonb } 342 1.1 simonb /* 343 1.1 simonb * Look whether this regions starts within the kernel. 344 1.1 simonb */ 345 1.1 simonb if (s >= kernelstart && s < kernelend) { 346 1.1 simonb if (e <= kernelend) 347 1.1 simonb goto empty; 348 1.1 simonb s = kernelend; 349 1.1 simonb } 350 1.1 simonb /* 351 1.1 simonb * Now look whether this region ends within the kernel. 352 1.1 simonb */ 353 1.1 simonb if (e > kernelstart && e <= kernelend) { 354 1.1 simonb if (s >= kernelstart) 355 1.1 simonb goto empty; 356 1.1 simonb e = kernelstart; 357 1.1 simonb } 358 1.1 simonb /* 359 1.1 simonb * Now page align the start and size of the region. 360 1.1 simonb */ 361 1.1 simonb s = round_page(s); 362 1.1 simonb e = trunc_page(e); 363 1.1 simonb if (e < s) 364 1.1 simonb e = s; 365 1.1 simonb sz = e - s; 366 1.99 rin printf("%08x-%08x = %x\n", s, e, sz); 367 1.1 simonb /* 368 1.1 simonb * Check whether some memory is left here. 369 1.1 simonb */ 370 1.1 simonb if (sz == 0) { 371 1.99 rin empty: 372 1.3 wiz memmove(mp, mp + 1, 373 1.99 rin (cnt - (mp - avail)) * sizeof(*mp)); 374 1.1 simonb cnt--; 375 1.1 simonb mp--; 376 1.1 simonb continue; 377 1.1 simonb } 378 1.1 simonb /* 379 1.1 simonb * Do an insertion sort. 380 1.1 simonb */ 381 1.1 simonb npgs += btoc(sz); 382 1.1 simonb for (mp1 = avail; mp1 < mp; mp1++) 383 1.1 simonb if (s < mp1->start) 384 1.1 simonb break; 385 1.1 simonb if (mp1 < mp) { 386 1.3 wiz memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1); 387 1.1 simonb mp1->start = s; 388 1.1 simonb mp1->size = sz; 389 1.1 simonb } else { 390 1.1 simonb mp->start = s; 391 1.1 simonb mp->size = sz; 392 1.1 simonb } 393 1.1 simonb } 394 1.1 simonb 395 1.1 simonb /* 396 1.1 simonb * We cannot do pmap_steal_memory here, 397 1.1 simonb * since we don't run with translation enabled yet. 398 1.1 simonb */ 399 1.1 simonb #ifndef MSGBUFADDR 400 1.1 simonb /* 401 1.1 simonb * allow for msgbuf 402 1.1 simonb */ 403 1.1 simonb sz = round_page(MSGBUFSIZE); 404 1.1 simonb mp = NULL; 405 1.1 simonb for (mp1 = avail; mp1->size; mp1++) 406 1.1 simonb if (mp1->size >= sz) 407 1.1 simonb mp = mp1; 408 1.1 simonb if (mp == NULL) 409 1.1 simonb panic("not enough memory?"); 410 1.1 simonb 411 1.1 simonb npgs -= btoc(sz); 412 1.1 simonb msgbuf_paddr = mp->start + mp->size - sz; 413 1.1 simonb mp->size -= sz; 414 1.1 simonb if (mp->size <= 0) 415 1.99 rin memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof(*mp)); 416 1.1 simonb #endif 417 1.1 simonb 418 1.1 simonb for (mp = avail; mp->size; mp++) 419 1.1 simonb uvm_page_physload(atop(mp->start), atop(mp->start + mp->size), 420 1.99 rin atop(mp->start), atop(mp->start + mp->size), 421 1.99 rin VM_FREELIST_DEFAULT); 422 1.1 simonb 423 1.1 simonb /* 424 1.1 simonb * Initialize kernel pmap and hardware. 425 1.1 simonb */ 426 1.1 simonb /* Setup TLB pid allocator so it knows we alreadu using PID 1 */ 427 1.1 simonb pmap_kernel()->pm_ctx = KERNEL_PID; 428 1.1 simonb nextavail = avail->start; 429 1.1 simonb 430 1.42 freza pmap_bootstrap_done = 1; 431 1.1 simonb } 432 1.1 simonb 433 1.1 simonb /* 434 1.1 simonb * Restrict given range to physical memory 435 1.1 simonb * 436 1.1 simonb * (Used by /dev/mem) 437 1.1 simonb */ 438 1.1 simonb void 439 1.1 simonb pmap_real_memory(paddr_t *start, psize_t *size) 440 1.1 simonb { 441 1.1 simonb struct mem_region *mp; 442 1.1 simonb 443 1.1 simonb for (mp = mem; mp->size; mp++) { 444 1.1 simonb if (*start + *size > mp->start && 445 1.1 simonb *start < mp->start + mp->size) { 446 1.1 simonb if (*start < mp->start) { 447 1.1 simonb *size -= mp->start - *start; 448 1.1 simonb *start = mp->start; 449 1.1 simonb } 450 1.1 simonb if (*start + *size > mp->start + mp->size) 451 1.1 simonb *size = mp->start + mp->size - *start; 452 1.1 simonb return; 453 1.1 simonb } 454 1.1 simonb } 455 1.1 simonb *size = 0; 456 1.1 simonb } 457 1.1 simonb 458 1.1 simonb /* 459 1.1 simonb * Initialize anything else for pmap handling. 460 1.1 simonb * Called during vm_init(). 461 1.1 simonb */ 462 1.1 simonb void 463 1.1 simonb pmap_init(void) 464 1.1 simonb { 465 1.1 simonb struct pv_entry *pv; 466 1.1 simonb vsize_t sz; 467 1.1 simonb vaddr_t addr; 468 1.99 rin int bank, i, s; 469 1.1 simonb char *attr; 470 1.1 simonb 471 1.1 simonb sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs); 472 1.1 simonb sz = round_page(sz); 473 1.34 yamt addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO); 474 1.99 rin 475 1.1 simonb s = splvm(); 476 1.99 rin 477 1.1 simonb pv = pv_table = (struct pv_entry *)addr; 478 1.1 simonb for (i = npgs; --i >= 0;) 479 1.1 simonb pv++->pv_pm = NULL; 480 1.1 simonb pmap_attrib = (char *)pv; 481 1.2 wiz memset(pv, 0, npgs); 482 1.1 simonb 483 1.1 simonb pv = pv_table; 484 1.1 simonb attr = pmap_attrib; 485 1.99 rin for (bank = uvm_physseg_get_first(); uvm_physseg_valid_p(bank); 486 1.75 cherry bank = uvm_physseg_get_next(bank)) { 487 1.75 cherry sz = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank); 488 1.75 cherry uvm_physseg_get_pmseg(bank)->pvent = pv; 489 1.75 cherry uvm_physseg_get_pmseg(bank)->attrs = attr; 490 1.1 simonb pv += sz; 491 1.1 simonb attr += sz; 492 1.1 simonb } 493 1.1 simonb 494 1.1 simonb pmap_initialized = 1; 495 1.99 rin 496 1.1 simonb splx(s); 497 1.1 simonb 498 1.1 simonb /* Setup a pool for additional pvlist structures */ 499 1.99 rin pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", 500 1.99 rin NULL, IPL_VM); 501 1.21 thorpej } 502 1.21 thorpej 503 1.21 thorpej /* 504 1.21 thorpej * How much virtual space is available to the kernel? 505 1.21 thorpej */ 506 1.21 thorpej void 507 1.21 thorpej pmap_virtual_space(vaddr_t *start, vaddr_t *end) 508 1.21 thorpej { 509 1.21 thorpej 510 1.21 thorpej *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS; 511 1.21 thorpej *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS; 512 1.1 simonb } 513 1.1 simonb 514 1.5 eeh #ifdef PMAP_GROWKERNEL 515 1.5 eeh /* 516 1.5 eeh * Preallocate kernel page tables to a specified VA. 517 1.5 eeh * This simply loops through the first TTE for each 518 1.12 simonb * page table from the beginning of the kernel pmap, 519 1.5 eeh * reads the entry, and if the result is 520 1.5 eeh * zero (either invalid entry or no page table) it stores 521 1.5 eeh * a zero there, populating page tables in the process. 522 1.5 eeh * This is not the most efficient technique but i don't 523 1.5 eeh * expect it to be called that often. 524 1.5 eeh */ 525 1.53 dsl extern struct vm_page *vm_page_alloc1(void); 526 1.53 dsl extern void vm_page_free1(struct vm_page *); 527 1.5 eeh 528 1.5 eeh vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS; 529 1.5 eeh 530 1.12 simonb vaddr_t 531 1.30 chs pmap_growkernel(vaddr_t maxkvaddr) 532 1.5 eeh { 533 1.99 rin struct pmap *pm = pmap_kernel(); 534 1.5 eeh paddr_t pg; 535 1.99 rin int seg, s; 536 1.12 simonb 537 1.5 eeh s = splvm(); 538 1.5 eeh 539 1.5 eeh /* Align with the start of a page table */ 540 1.99 rin for (kbreak &= ~(PTMAP - 1); kbreak < maxkvaddr; kbreak += PTMAP) { 541 1.5 eeh seg = STIDX(kbreak); 542 1.5 eeh 543 1.30 chs if (pte_find(pm, kbreak)) 544 1.30 chs continue; 545 1.12 simonb 546 1.99 rin if (uvm.page_init_done) 547 1.5 eeh pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1()); 548 1.99 rin else if (!uvm_page_physget(&pg)) 549 1.99 rin panic("pmap_growkernel: no memory"); 550 1.32 simonb if (!pg) 551 1.32 simonb panic("pmap_growkernel: no pages"); 552 1.5 eeh pmap_zero_page((paddr_t)pg); 553 1.5 eeh 554 1.5 eeh /* XXX This is based on all phymem being addressable */ 555 1.5 eeh pm->pm_ptbl[seg] = (u_int *)pg; 556 1.5 eeh } 557 1.99 rin 558 1.5 eeh splx(s); 559 1.99 rin 560 1.97 rin return kbreak; 561 1.5 eeh } 562 1.5 eeh 563 1.5 eeh /* 564 1.5 eeh * vm_page_alloc1: 565 1.5 eeh * 566 1.5 eeh * Allocate and return a memory cell with no associated object. 567 1.5 eeh */ 568 1.5 eeh struct vm_page * 569 1.30 chs vm_page_alloc1(void) 570 1.5 eeh { 571 1.30 chs struct vm_page *pg; 572 1.30 chs 573 1.30 chs pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE); 574 1.5 eeh if (pg) { 575 1.5 eeh pg->wire_count = 1; /* no mappings yet */ 576 1.5 eeh pg->flags &= ~PG_BUSY; /* never busy */ 577 1.5 eeh } 578 1.5 eeh return pg; 579 1.5 eeh } 580 1.5 eeh 581 1.5 eeh /* 582 1.5 eeh * vm_page_free1: 583 1.5 eeh * 584 1.5 eeh * Returns the given page to the free list, 585 1.5 eeh * disassociating it with any VM object. 586 1.5 eeh * 587 1.5 eeh * Object and page must be locked prior to entry. 588 1.5 eeh */ 589 1.5 eeh void 590 1.36 scw vm_page_free1(struct vm_page *pg) 591 1.5 eeh { 592 1.99 rin 593 1.100 rin KASSERTMSG(pg->flags == (PG_CLEAN | PG_FAKE), 594 1.100 rin "invalid page pg = %p, pa = %" PRIxPADDR, 595 1.100 rin pg, VM_PAGE_TO_PHYS(pg)); 596 1.100 rin 597 1.36 scw pg->flags |= PG_BUSY; 598 1.36 scw pg->wire_count = 0; 599 1.36 scw uvm_pagefree(pg); 600 1.5 eeh } 601 1.5 eeh #endif 602 1.5 eeh 603 1.1 simonb /* 604 1.1 simonb * Create and return a physical map. 605 1.1 simonb */ 606 1.1 simonb struct pmap * 607 1.1 simonb pmap_create(void) 608 1.1 simonb { 609 1.1 simonb struct pmap *pm; 610 1.1 simonb 611 1.72 para pm = kmem_alloc(sizeof(*pm), KM_SLEEP); 612 1.99 rin memset(pm, 0, sizeof(*pm)); 613 1.30 chs pm->pm_refs = 1; 614 1.1 simonb return pm; 615 1.1 simonb } 616 1.1 simonb 617 1.1 simonb /* 618 1.1 simonb * Add a reference to the given pmap. 619 1.1 simonb */ 620 1.1 simonb void 621 1.1 simonb pmap_reference(struct pmap *pm) 622 1.1 simonb { 623 1.1 simonb 624 1.1 simonb pm->pm_refs++; 625 1.1 simonb } 626 1.1 simonb 627 1.1 simonb /* 628 1.1 simonb * Retire the given pmap from service. 629 1.1 simonb * Should only be called if the map contains no valid mappings. 630 1.1 simonb */ 631 1.1 simonb void 632 1.1 simonb pmap_destroy(struct pmap *pm) 633 1.1 simonb { 634 1.30 chs int i; 635 1.1 simonb 636 1.99 rin if (--pm->pm_refs > 0) 637 1.30 chs return; 638 1.30 chs KASSERT(pm->pm_stats.resident_count == 0); 639 1.30 chs KASSERT(pm->pm_stats.wired_count == 0); 640 1.1 simonb for (i = 0; i < STSZ; i++) 641 1.1 simonb if (pm->pm_ptbl[i]) { 642 1.19 thorpej uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i], 643 1.34 yamt PAGE_SIZE, UVM_KMF_WIRED); 644 1.1 simonb pm->pm_ptbl[i] = NULL; 645 1.1 simonb } 646 1.30 chs if (pm->pm_ctx) 647 1.30 chs ctx_free(pm); 648 1.72 para kmem_free(pm, sizeof(*pm)); 649 1.1 simonb } 650 1.1 simonb 651 1.1 simonb /* 652 1.1 simonb * Copy the range specified by src_addr/len 653 1.1 simonb * from the source map to the range dst_addr/len 654 1.1 simonb * in the destination map. 655 1.1 simonb * 656 1.1 simonb * This routine is only advisory and need not do anything. 657 1.1 simonb */ 658 1.1 simonb void 659 1.1 simonb pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr, 660 1.1 simonb vsize_t len, vaddr_t src_addr) 661 1.1 simonb { 662 1.1 simonb } 663 1.1 simonb 664 1.1 simonb /* 665 1.1 simonb * Require that all active physical maps contain no 666 1.1 simonb * incorrect entries NOW. 667 1.1 simonb */ 668 1.1 simonb void 669 1.4 chris pmap_update(struct pmap *pmap) 670 1.1 simonb { 671 1.1 simonb } 672 1.1 simonb 673 1.1 simonb /* 674 1.1 simonb * Fill the given physical page with zeroes. 675 1.1 simonb */ 676 1.1 simonb void 677 1.1 simonb pmap_zero_page(paddr_t pa) 678 1.1 simonb { 679 1.99 rin int i; 680 1.1 simonb 681 1.8 thorpej #ifdef PPC_4XX_NOCACHE 682 1.47 christos memset((void *)pa, 0, PAGE_SIZE); 683 1.1 simonb #else 684 1.1 simonb 685 1.19 thorpej for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) { 686 1.107 rin __asm volatile ("dcbz 0,%0" : : "r" (pa)); 687 1.1 simonb pa += CACHELINESIZE; 688 1.1 simonb } 689 1.1 simonb #endif 690 1.1 simonb } 691 1.1 simonb 692 1.1 simonb /* 693 1.1 simonb * Copy the given physical source page to its destination. 694 1.1 simonb */ 695 1.1 simonb void 696 1.1 simonb pmap_copy_page(paddr_t src, paddr_t dst) 697 1.1 simonb { 698 1.1 simonb 699 1.47 christos memcpy((void *)dst, (void *)src, PAGE_SIZE); 700 1.69 matt dcache_wbinv_page(dst); 701 1.1 simonb } 702 1.1 simonb 703 1.1 simonb static inline int 704 1.49 hannken pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags) 705 1.1 simonb { 706 1.102 rin struct pv_entry *pv, *npv; 707 1.1 simonb int s; 708 1.1 simonb 709 1.103 rin KASSERT(pmap_initialized); 710 1.1 simonb 711 1.1 simonb s = splvm(); 712 1.99 rin 713 1.1 simonb pv = pa_to_pv(pa); 714 1.1 simonb if (!pv->pv_pm) { 715 1.1 simonb /* 716 1.1 simonb * No entries yet, use header as the first entry. 717 1.1 simonb */ 718 1.1 simonb pv->pv_va = va; 719 1.1 simonb pv->pv_pm = pm; 720 1.1 simonb pv->pv_next = NULL; 721 1.1 simonb } else { 722 1.1 simonb /* 723 1.1 simonb * There is at least one other VA mapping this page. 724 1.1 simonb * Place this entry after the header. 725 1.1 simonb */ 726 1.49 hannken npv = pool_get(&pv_pool, PR_NOWAIT); 727 1.49 hannken if (npv == NULL) { 728 1.49 hannken if ((flags & PMAP_CANFAIL) == 0) 729 1.49 hannken panic("pmap_enter_pv: failed"); 730 1.49 hannken splx(s); 731 1.105 rin return ENOMEM; 732 1.49 hannken } 733 1.1 simonb npv->pv_va = va; 734 1.1 simonb npv->pv_pm = pm; 735 1.1 simonb npv->pv_next = pv->pv_next; 736 1.1 simonb pv->pv_next = npv; 737 1.33 chs pv = npv; 738 1.1 simonb } 739 1.49 hannken if (flags & PMAP_WIRED) { 740 1.30 chs PV_WIRE(pv); 741 1.33 chs pm->pm_stats.wired_count++; 742 1.30 chs } 743 1.99 rin 744 1.1 simonb splx(s); 745 1.99 rin 746 1.105 rin return 0; 747 1.1 simonb } 748 1.1 simonb 749 1.1 simonb static void 750 1.1 simonb pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa) 751 1.1 simonb { 752 1.1 simonb struct pv_entry *pv, *npv; 753 1.1 simonb 754 1.1 simonb /* 755 1.1 simonb * Remove from the PV table. 756 1.1 simonb */ 757 1.1 simonb pv = pa_to_pv(pa); 758 1.30 chs if (!pv) 759 1.30 chs return; 760 1.1 simonb 761 1.1 simonb /* 762 1.1 simonb * If it is the first entry on the list, it is actually 763 1.1 simonb * in the header and we must copy the following entry up 764 1.1 simonb * to the header. Otherwise we must search the list for 765 1.1 simonb * the entry. In either case we free the now unused entry. 766 1.1 simonb */ 767 1.1 simonb if (pm == pv->pv_pm && PV_CMPVA(va, pv)) { 768 1.99 rin if (PV_ISWIRED(pv)) 769 1.30 chs pm->pm_stats.wired_count--; 770 1.1 simonb if ((npv = pv->pv_next)) { 771 1.1 simonb *pv = *npv; 772 1.1 simonb pool_put(&pv_pool, npv); 773 1.1 simonb } else 774 1.1 simonb pv->pv_pm = NULL; 775 1.1 simonb } else { 776 1.1 simonb for (; (npv = pv->pv_next) != NULL; pv = npv) 777 1.1 simonb if (pm == npv->pv_pm && PV_CMPVA(va, npv)) 778 1.1 simonb break; 779 1.1 simonb if (npv) { 780 1.1 simonb pv->pv_next = npv->pv_next; 781 1.30 chs if (PV_ISWIRED(npv)) { 782 1.30 chs pm->pm_stats.wired_count--; 783 1.30 chs } 784 1.1 simonb pool_put(&pv_pool, npv); 785 1.1 simonb } 786 1.1 simonb } 787 1.1 simonb } 788 1.1 simonb 789 1.1 simonb /* 790 1.1 simonb * Insert physical page at pa into the given pmap at virtual address va. 791 1.1 simonb */ 792 1.1 simonb int 793 1.55 he pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags) 794 1.1 simonb { 795 1.1 simonb u_int tte; 796 1.57 thorpej bool managed; 797 1.99 rin int s; 798 1.1 simonb 799 1.1 simonb /* 800 1.1 simonb * Have to remove any existing mapping first. 801 1.1 simonb */ 802 1.19 thorpej pmap_remove(pm, va, va + PAGE_SIZE); 803 1.1 simonb 804 1.30 chs if (flags & PMAP_WIRED) 805 1.30 chs flags |= prot; 806 1.1 simonb 807 1.57 thorpej managed = uvm_pageismanaged(pa); 808 1.1 simonb 809 1.1 simonb /* 810 1.1 simonb * Generate TTE. 811 1.1 simonb */ 812 1.26 chs tte = TTE_PA(pa); 813 1.1 simonb /* XXXX -- need to support multiple page sizes. */ 814 1.1 simonb tte |= TTE_SZ_16K; 815 1.99 rin 816 1.100 rin KASSERT((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) != 817 1.100 rin (PMAP_NOCACHE | PME_WRITETHROUG)); 818 1.99 rin 819 1.99 rin if (flags & PMAP_NOCACHE) { 820 1.1 simonb /* Must be I/O mapping */ 821 1.1 simonb tte |= TTE_I | TTE_G; 822 1.99 rin } 823 1.8 thorpej #ifdef PPC_4XX_NOCACHE 824 1.1 simonb tte |= TTE_I; 825 1.1 simonb #else 826 1.99 rin else if (flags & PME_WRITETHROUG) { 827 1.1 simonb /* Uncached and writethrough are not compatible */ 828 1.1 simonb tte |= TTE_W; 829 1.99 rin } 830 1.1 simonb #endif 831 1.99 rin 832 1.1 simonb if (pm == pmap_kernel()) 833 1.1 simonb tte |= TTE_ZONE(ZONE_PRIV); 834 1.1 simonb else 835 1.1 simonb tte |= TTE_ZONE(ZONE_USER); 836 1.1 simonb 837 1.1 simonb if (flags & VM_PROT_WRITE) 838 1.1 simonb tte |= TTE_WR; 839 1.1 simonb 840 1.26 chs if (flags & VM_PROT_EXECUTE) 841 1.26 chs tte |= TTE_EX; 842 1.26 chs 843 1.1 simonb /* 844 1.1 simonb * Now record mapping for later back-translation. 845 1.1 simonb */ 846 1.1 simonb if (pmap_initialized && managed) { 847 1.1 simonb char *attr; 848 1.1 simonb 849 1.105 rin if (pmap_enter_pv(pm, va, pa, flags)) { 850 1.1 simonb /* Could not enter pv on a managed page */ 851 1.98 rin return ENOMEM; 852 1.1 simonb } 853 1.1 simonb 854 1.1 simonb /* Now set attributes. */ 855 1.1 simonb attr = pa_to_attr(pa); 856 1.100 rin KASSERT(attr); 857 1.1 simonb if (flags & VM_PROT_ALL) 858 1.30 chs *attr |= PMAP_ATTR_REF; 859 1.1 simonb if (flags & VM_PROT_WRITE) 860 1.30 chs *attr |= PMAP_ATTR_CHG; 861 1.1 simonb } 862 1.1 simonb 863 1.1 simonb s = splvm(); 864 1.1 simonb 865 1.1 simonb /* Insert page into page table. */ 866 1.105 rin if (__predict_false(pte_enter(pm, va, tte))) { 867 1.98 rin if (__predict_false((flags & PMAP_CANFAIL) == 0)) 868 1.98 rin panic("%s: pte_enter", __func__); 869 1.98 rin splx(s); 870 1.98 rin return ENOMEM; 871 1.98 rin } 872 1.1 simonb 873 1.1 simonb /* If this is a real fault, enter it in the tlb */ 874 1.1 simonb if (tte && ((flags & PMAP_WIRED) == 0)) { 875 1.71 kiyohara int s2 = splhigh(); 876 1.1 simonb ppc4xx_tlb_enter(pm->pm_ctx, va, tte); 877 1.71 kiyohara splx(s2); 878 1.1 simonb } 879 1.99 rin 880 1.1 simonb splx(s); 881 1.6 simonb 882 1.6 simonb /* Flush the real memory from the instruction cache. */ 883 1.6 simonb if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0) 884 1.6 simonb __syncicache((void *)pa, PAGE_SIZE); 885 1.6 simonb 886 1.1 simonb return 0; 887 1.1 simonb } 888 1.1 simonb 889 1.1 simonb void 890 1.1 simonb pmap_unwire(struct pmap *pm, vaddr_t va) 891 1.1 simonb { 892 1.33 chs struct pv_entry *pv; 893 1.1 simonb paddr_t pa; 894 1.30 chs int s; 895 1.1 simonb 896 1.99 rin if (!pmap_extract(pm, va, &pa)) 897 1.1 simonb return; 898 1.1 simonb 899 1.1 simonb pv = pa_to_pv(pa); 900 1.30 chs if (!pv) 901 1.30 chs return; 902 1.1 simonb 903 1.30 chs s = splvm(); 904 1.99 rin 905 1.33 chs while (pv != NULL) { 906 1.33 chs if (pm == pv->pv_pm && PV_CMPVA(va, pv)) { 907 1.33 chs if (PV_ISWIRED(pv)) { 908 1.33 chs PV_UNWIRE(pv); 909 1.30 chs pm->pm_stats.wired_count--; 910 1.30 chs } 911 1.1 simonb break; 912 1.1 simonb } 913 1.33 chs pv = pv->pv_next; 914 1.1 simonb } 915 1.99 rin 916 1.1 simonb splx(s); 917 1.1 simonb } 918 1.1 simonb 919 1.1 simonb void 920 1.59 cegger pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags) 921 1.1 simonb { 922 1.99 rin struct pmap *pm = pmap_kernel(); 923 1.99 rin u_int tte; 924 1.1 simonb int s; 925 1.1 simonb 926 1.1 simonb /* 927 1.1 simonb * Generate TTE. 928 1.1 simonb * 929 1.1 simonb * XXXX 930 1.1 simonb * 931 1.1 simonb * Since the kernel does not handle execution privileges properly, 932 1.1 simonb * we will handle read and execute permissions together. 933 1.1 simonb */ 934 1.1 simonb tte = 0; 935 1.1 simonb if (prot & VM_PROT_ALL) { 936 1.1 simonb tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV); 937 1.1 simonb /* XXXX -- need to support multiple page sizes. */ 938 1.1 simonb tte |= TTE_SZ_16K; 939 1.99 rin 940 1.100 rin KASSERT((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) != 941 1.100 rin (PMAP_NOCACHE | PME_WRITETHROUG)); 942 1.99 rin 943 1.70 matt if (flags & PMAP_NOCACHE) 944 1.1 simonb /* Must be I/O mapping */ 945 1.1 simonb tte |= TTE_I | TTE_G; 946 1.8 thorpej #ifdef PPC_4XX_NOCACHE 947 1.1 simonb tte |= TTE_I; 948 1.1 simonb #else 949 1.99 rin else if (prot & PME_WRITETHROUG) { 950 1.1 simonb /* Uncached and writethrough are not compatible */ 951 1.1 simonb tte |= TTE_W; 952 1.99 rin } 953 1.1 simonb #endif 954 1.1 simonb if (prot & VM_PROT_WRITE) 955 1.1 simonb tte |= TTE_WR; 956 1.1 simonb } 957 1.1 simonb 958 1.1 simonb s = splvm(); 959 1.1 simonb 960 1.1 simonb /* Insert page into page table. */ 961 1.105 rin if (__predict_false(pte_enter(pm, va, tte))) 962 1.98 rin panic("%s: pte_enter", __func__); 963 1.99 rin 964 1.1 simonb splx(s); 965 1.1 simonb } 966 1.1 simonb 967 1.1 simonb void 968 1.1 simonb pmap_kremove(vaddr_t va, vsize_t len) 969 1.1 simonb { 970 1.1 simonb 971 1.1 simonb while (len > 0) { 972 1.98 rin (void)pte_enter(pmap_kernel(), va, 0); /* never fail */ 973 1.1 simonb va += PAGE_SIZE; 974 1.1 simonb len -= PAGE_SIZE; 975 1.1 simonb } 976 1.1 simonb } 977 1.1 simonb 978 1.1 simonb /* 979 1.1 simonb * Remove the given range of mapping entries. 980 1.1 simonb */ 981 1.1 simonb void 982 1.1 simonb pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva) 983 1.1 simonb { 984 1.1 simonb paddr_t pa; 985 1.1 simonb volatile u_int *ptp; 986 1.99 rin int s; 987 1.1 simonb 988 1.1 simonb s = splvm(); 989 1.99 rin 990 1.1 simonb while (va < endva) { 991 1.1 simonb if ((ptp = pte_find(pm, va)) && (pa = *ptp)) { 992 1.1 simonb pa = TTE_PA(pa); 993 1.1 simonb pmap_remove_pv(pm, va, pa); 994 1.1 simonb *ptp = 0; 995 1.1 simonb ppc4xx_tlb_flush(va, pm->pm_ctx); 996 1.1 simonb pm->pm_stats.resident_count--; 997 1.1 simonb } 998 1.19 thorpej va += PAGE_SIZE; 999 1.1 simonb } 1000 1.1 simonb 1001 1.1 simonb splx(s); 1002 1.1 simonb } 1003 1.1 simonb 1004 1.1 simonb /* 1005 1.1 simonb * Get the physical page address for the given pmap/virtual address. 1006 1.1 simonb */ 1007 1.45 thorpej bool 1008 1.1 simonb pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap) 1009 1.1 simonb { 1010 1.99 rin int seg = STIDX(va), ptn = PTIDX(va); 1011 1.1 simonb u_int pa = 0; 1012 1.30 chs int s; 1013 1.1 simonb 1014 1.30 chs s = splvm(); 1015 1.99 rin 1016 1.99 rin if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn]) && pap) 1017 1.1 simonb *pap = TTE_PA(pa) | (va & PGOFSET); 1018 1.99 rin 1019 1.1 simonb splx(s); 1020 1.99 rin 1021 1.97 rin return pa != 0; 1022 1.1 simonb } 1023 1.1 simonb 1024 1.1 simonb /* 1025 1.1 simonb * Lower the protection on the specified range of this pmap. 1026 1.1 simonb * 1027 1.1 simonb * There are only two cases: either the protection is going to 0, 1028 1.1 simonb * or it is going to read-only. 1029 1.1 simonb */ 1030 1.1 simonb void 1031 1.1 simonb pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot) 1032 1.1 simonb { 1033 1.1 simonb volatile u_int *ptp; 1034 1.26 chs int s, bic; 1035 1.1 simonb 1036 1.26 chs if ((prot & VM_PROT_READ) == 0) { 1037 1.26 chs pmap_remove(pm, sva, eva); 1038 1.26 chs return; 1039 1.26 chs } 1040 1.26 chs bic = 0; 1041 1.99 rin if ((prot & VM_PROT_WRITE) == 0) 1042 1.26 chs bic |= TTE_WR; 1043 1.99 rin if ((prot & VM_PROT_EXECUTE) == 0) 1044 1.26 chs bic |= TTE_EX; 1045 1.99 rin if (bic == 0) 1046 1.26 chs return; 1047 1.99 rin 1048 1.26 chs s = splvm(); 1049 1.99 rin 1050 1.26 chs while (sva < eva) { 1051 1.26 chs if ((ptp = pte_find(pm, sva)) != NULL) { 1052 1.26 chs *ptp &= ~bic; 1053 1.26 chs ppc4xx_tlb_flush(sva, pm->pm_ctx); 1054 1.1 simonb } 1055 1.26 chs sva += PAGE_SIZE; 1056 1.1 simonb } 1057 1.99 rin 1058 1.26 chs splx(s); 1059 1.1 simonb } 1060 1.1 simonb 1061 1.45 thorpej bool 1062 1.30 chs pmap_check_attr(struct vm_page *pg, u_int mask, int clear) 1063 1.1 simonb { 1064 1.30 chs paddr_t pa; 1065 1.1 simonb char *attr; 1066 1.30 chs int s, rv; 1067 1.1 simonb 1068 1.1 simonb /* 1069 1.1 simonb * First modify bits in cache. 1070 1.1 simonb */ 1071 1.30 chs pa = VM_PAGE_TO_PHYS(pg); 1072 1.1 simonb attr = pa_to_attr(pa); 1073 1.1 simonb if (attr == NULL) 1074 1.46 thorpej return false; 1075 1.1 simonb 1076 1.30 chs s = splvm(); 1077 1.99 rin 1078 1.99 rin rv = (*attr & mask) != 0; 1079 1.11 eeh if (clear) { 1080 1.1 simonb *attr &= ~mask; 1081 1.99 rin pmap_page_protect(pg, 1082 1.99 rin mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0); 1083 1.11 eeh } 1084 1.99 rin 1085 1.1 simonb splx(s); 1086 1.99 rin 1087 1.1 simonb return rv; 1088 1.1 simonb } 1089 1.1 simonb 1090 1.1 simonb 1091 1.1 simonb /* 1092 1.1 simonb * Lower the protection on the specified physical page. 1093 1.1 simonb * 1094 1.1 simonb * There are only two cases: either the protection is going to 0, 1095 1.1 simonb * or it is going to read-only. 1096 1.1 simonb */ 1097 1.1 simonb void 1098 1.1 simonb pmap_page_protect(struct vm_page *pg, vm_prot_t prot) 1099 1.1 simonb { 1100 1.99 rin struct pv_entry *pvh, *pv, *npv; 1101 1.99 rin struct pmap *pm; 1102 1.1 simonb paddr_t pa = VM_PAGE_TO_PHYS(pg); 1103 1.1 simonb vaddr_t va; 1104 1.1 simonb 1105 1.1 simonb pvh = pa_to_pv(pa); 1106 1.1 simonb if (pvh == NULL) 1107 1.1 simonb return; 1108 1.1 simonb 1109 1.1 simonb /* Handle extra pvs which may be deleted in the operation */ 1110 1.1 simonb for (pv = pvh->pv_next; pv; pv = npv) { 1111 1.1 simonb npv = pv->pv_next; 1112 1.1 simonb 1113 1.1 simonb pm = pv->pv_pm; 1114 1.91 rin va = PV_VA(pv); 1115 1.26 chs pmap_protect(pm, va, va + PAGE_SIZE, prot); 1116 1.1 simonb } 1117 1.99 rin 1118 1.1 simonb /* Now check the head pv */ 1119 1.1 simonb if (pvh->pv_pm) { 1120 1.1 simonb pv = pvh; 1121 1.1 simonb pm = pv->pv_pm; 1122 1.91 rin va = PV_VA(pv); 1123 1.26 chs pmap_protect(pm, va, va + PAGE_SIZE, prot); 1124 1.1 simonb } 1125 1.1 simonb } 1126 1.1 simonb 1127 1.1 simonb /* 1128 1.1 simonb * Activate the address space for the specified process. If the process 1129 1.1 simonb * is the current process, load the new MMU context. 1130 1.1 simonb */ 1131 1.1 simonb void 1132 1.17 thorpej pmap_activate(struct lwp *l) 1133 1.1 simonb { 1134 1.1 simonb #if 0 1135 1.65 rmind struct pcb *pcb = lwp_getpcb(l); 1136 1.17 thorpej pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap; 1137 1.1 simonb 1138 1.1 simonb /* 1139 1.61 skrll * XXX Normally performed in cpu_lwp_fork(). 1140 1.1 simonb */ 1141 1.17 thorpej printf("pmap_activate(%p), pmap=%p\n",l,pmap); 1142 1.25 matt pcb->pcb_pm = pmap; 1143 1.1 simonb #endif 1144 1.1 simonb } 1145 1.1 simonb 1146 1.1 simonb /* 1147 1.1 simonb * Deactivate the specified process's address space. 1148 1.1 simonb */ 1149 1.1 simonb void 1150 1.17 thorpej pmap_deactivate(struct lwp *l) 1151 1.1 simonb { 1152 1.1 simonb } 1153 1.1 simonb 1154 1.1 simonb /* 1155 1.1 simonb * Synchronize caches corresponding to [addr, addr+len) in p. 1156 1.1 simonb */ 1157 1.1 simonb void 1158 1.1 simonb pmap_procwr(struct proc *p, vaddr_t va, size_t len) 1159 1.1 simonb { 1160 1.95 rin struct pmap *pm = p->p_vmspace->vm_map.pmap; 1161 1.18 hannken 1162 1.94 rin if (__predict_true(p == curproc)) { 1163 1.108 rin int msr, ctx, pid; 1164 1.1 simonb 1165 1.94 rin /* 1166 1.94 rin * Take it easy! TLB miss handler takes care of us. 1167 1.94 rin */ 1168 1.94 rin 1169 1.94 rin /* 1170 1.94 rin * Need to turn off IMMU and switch to user context. 1171 1.94 rin * (icbi uses DMMU). 1172 1.94 rin */ 1173 1.94 rin 1174 1.94 rin if (!(ctx = pm->pm_ctx)) { 1175 1.94 rin /* No context -- assign it one */ 1176 1.94 rin ctx_alloc(pm); 1177 1.94 rin ctx = pm->pm_ctx; 1178 1.94 rin } 1179 1.94 rin 1180 1.99 rin __asm volatile ( 1181 1.108 rin "mfmsr %[msr];" 1182 1.108 rin "li %[pid],0x20;" /* Turn off IMMU */ 1183 1.108 rin "andc %[pid],%[msr],%[pid];" 1184 1.108 rin "ori %[pid],%[pid],0x10;" /* Turn on DMMU for sure */ 1185 1.108 rin "mtmsr %[pid];" 1186 1.94 rin "isync;" 1187 1.108 rin MFPID(%[pid]) 1188 1.108 rin MTPID(%[ctx]) 1189 1.94 rin "isync;" 1190 1.94 rin "1:" 1191 1.108 rin "dcbst 0,%[va];" 1192 1.108 rin "icbi 0,%[va];" 1193 1.108 rin "add %[va],%[va],%[size];" 1194 1.108 rin "sub. %[len],%[len],%[size];" 1195 1.99 rin "bge 1b;" 1196 1.94 rin "sync;" 1197 1.108 rin MTPID(%[pid]) 1198 1.108 rin "mtmsr %[msr];" 1199 1.94 rin "isync;" 1200 1.108 rin : [msr] "=&r" (msr), [pid] "=&r" (pid) 1201 1.108 rin : [ctx] "r" (ctx), [va] "r" (va), [len] "r" (len), 1202 1.108 rin [size] "r" (CACHELINESIZE)); 1203 1.94 rin } else { 1204 1.94 rin paddr_t pa; 1205 1.94 rin vaddr_t tva, eva; 1206 1.94 rin int tlen; 1207 1.94 rin 1208 1.94 rin /* 1209 1.94 rin * For p != curproc, we cannot rely upon TLB miss handler in 1210 1.110 andvar * user context. Therefore, extract pa and operate against it. 1211 1.94 rin * 1212 1.94 rin * Note that va below VM_MIN_KERNEL_ADDRESS is reserved for 1213 1.94 rin * direct mapping. 1214 1.94 rin */ 1215 1.94 rin 1216 1.94 rin for (tva = va; len > 0; tva = eva, len -= tlen) { 1217 1.94 rin eva = uimin(tva + len, trunc_page(tva + PAGE_SIZE)); 1218 1.94 rin tlen = eva - tva; 1219 1.94 rin if (!pmap_extract(pm, tva, &pa)) { 1220 1.94 rin /* XXX should be already unmapped */ 1221 1.94 rin continue; 1222 1.94 rin } 1223 1.94 rin __syncicache((void *)pa, tlen); 1224 1.94 rin } 1225 1.1 simonb } 1226 1.1 simonb } 1227 1.1 simonb 1228 1.93 rin static inline void 1229 1.93 rin tlb_invalidate_entry(int i) 1230 1.93 rin { 1231 1.93 rin #ifdef PMAP_TLBDEBUG 1232 1.93 rin /* 1233 1.93 rin * Clear only TLBHI[V] bit so that we can track invalidated entry. 1234 1.93 rin */ 1235 1.93 rin register_t msr, pid, hi; 1236 1.93 rin 1237 1.93 rin KASSERT(mfspr(SPR_PID) == KERNEL_PID); 1238 1.93 rin 1239 1.99 rin __asm volatile ( 1240 1.108 rin "mfmsr %[msr];" 1241 1.108 rin "li %[pid],0;" 1242 1.108 rin "mtmsr %[pid];" 1243 1.108 rin MFPID(%[pid]) 1244 1.108 rin "tlbre %[hi],%[i],0;" 1245 1.108 rin "andc %[hi],%[hi],%[valid];" 1246 1.108 rin "tlbwe %[hi],%[i],0;" 1247 1.108 rin MTPID(%[pid]) 1248 1.108 rin "mtmsr %[msr];" 1249 1.93 rin "isync;" 1250 1.108 rin : [msr] "=&r" (msr), [pid] "=&r" (pid), [hi] "=&r" (hi) 1251 1.108 rin : [i] "r" (i), [valid] "r" (TLB_VALID)); 1252 1.93 rin #else 1253 1.93 rin /* 1254 1.93 rin * Just clear entire TLBHI register. 1255 1.93 rin */ 1256 1.99 rin __asm volatile ( 1257 1.107 rin "tlbwe %0,%1,0;" 1258 1.93 rin "isync;" 1259 1.107 rin : : "r" (0), "r" (i)); 1260 1.93 rin #endif 1261 1.93 rin 1262 1.93 rin tlb_info[i].ti_ctx = 0; 1263 1.93 rin tlb_info[i].ti_flags = 0; 1264 1.93 rin } 1265 1.1 simonb 1266 1.1 simonb /* This has to be done in real mode !!! */ 1267 1.1 simonb void 1268 1.1 simonb ppc4xx_tlb_flush(vaddr_t va, int pid) 1269 1.1 simonb { 1270 1.99 rin u_long msr, i, found; 1271 1.1 simonb 1272 1.1 simonb /* If there's no context then it can't be mapped. */ 1273 1.26 chs if (!pid) 1274 1.26 chs return; 1275 1.1 simonb 1276 1.99 rin __asm volatile ( 1277 1.108 rin MFPID(%[found]) /* Save PID */ 1278 1.108 rin "mfmsr %[msr];" /* Save MSR */ 1279 1.108 rin "li %[i],0;" /* Now clear MSR */ 1280 1.108 rin "mtmsr %[i];" 1281 1.88 rin "isync;" 1282 1.108 rin MTPID(%[pid]) /* Set PID */ 1283 1.88 rin "isync;" 1284 1.108 rin "tlbsx. %[i],0,%[va];" /* Search TLB */ 1285 1.88 rin "isync;" 1286 1.108 rin MTPID(%[found]) /* Restore PID */ 1287 1.108 rin "mtmsr %[msr];" /* Restore MSR */ 1288 1.88 rin "isync;" 1289 1.108 rin "li %[found],1;" 1290 1.99 rin "beq 1f;" 1291 1.108 rin "li %[found],0;" 1292 1.99 rin "1:" 1293 1.108 rin : [i] "=&r" (i), [found] "=&r" (found), [msr] "=&r" (msr) 1294 1.108 rin : [va] "r" (va), [pid] "r" (pid)); 1295 1.99 rin 1296 1.1 simonb if (found && !TLB_LOCKED(i)) { 1297 1.1 simonb /* Now flush translation */ 1298 1.93 rin tlb_invalidate_entry(i); 1299 1.1 simonb tlbnext = i; 1300 1.1 simonb /* Successful flushes */ 1301 1.1 simonb tlbflush_ev.ev_count++; 1302 1.1 simonb } 1303 1.1 simonb } 1304 1.1 simonb 1305 1.1 simonb void 1306 1.1 simonb ppc4xx_tlb_flush_all(void) 1307 1.1 simonb { 1308 1.1 simonb u_long i; 1309 1.1 simonb 1310 1.1 simonb for (i = 0; i < NTLB; i++) 1311 1.93 rin if (!TLB_LOCKED(i)) 1312 1.93 rin tlb_invalidate_entry(i); 1313 1.1 simonb 1314 1.99 rin __asm volatile ("isync"); 1315 1.1 simonb } 1316 1.1 simonb 1317 1.1 simonb /* Find a TLB entry to evict. */ 1318 1.1 simonb static int 1319 1.1 simonb ppc4xx_tlb_find_victim(void) 1320 1.1 simonb { 1321 1.1 simonb int flags; 1322 1.1 simonb 1323 1.1 simonb for (;;) { 1324 1.1 simonb if (++tlbnext >= NTLB) 1325 1.42 freza tlbnext = tlb_nreserved; 1326 1.1 simonb flags = tlb_info[tlbnext].ti_flags; 1327 1.12 simonb if (!(flags & TLBF_USED) || 1328 1.99 rin (flags & (TLBF_LOCKED | TLBF_REF)) == 0) { 1329 1.1 simonb u_long va, stack = (u_long)&va; 1330 1.1 simonb 1331 1.99 rin if (!((tlb_info[tlbnext].ti_va ^ stack) & 1332 1.99 rin (~PGOFSET)) && 1333 1.1 simonb (tlb_info[tlbnext].ti_ctx == KERNEL_PID) && 1334 1.99 rin (flags & TLBF_USED)) { 1335 1.1 simonb /* Kernel stack page */ 1336 1.80 rin flags |= TLBF_REF; 1337 1.1 simonb tlb_info[tlbnext].ti_flags = flags; 1338 1.1 simonb } else { 1339 1.1 simonb /* Found it! */ 1340 1.97 rin return tlbnext; 1341 1.1 simonb } 1342 1.99 rin } else 1343 1.1 simonb tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF); 1344 1.1 simonb } 1345 1.1 simonb } 1346 1.1 simonb 1347 1.1 simonb void 1348 1.1 simonb ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte) 1349 1.1 simonb { 1350 1.109 rin u_long hi, lo, i; 1351 1.10 eeh paddr_t pa; 1352 1.99 rin int msr, pid, sz; 1353 1.10 eeh 1354 1.1 simonb tlbenter_ev.ev_count++; 1355 1.1 simonb 1356 1.10 eeh sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT; 1357 1.10 eeh pa = (pte & TTE_RPN_MASK(sz)); 1358 1.109 rin hi = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID; 1359 1.109 rin lo = (pte & ~TLB_RPN_MASK) | pa; 1360 1.109 rin lo |= ppc4xx_tlbflags(va, pa); 1361 1.1 simonb 1362 1.108 rin i = ppc4xx_tlb_find_victim(); 1363 1.1 simonb 1364 1.108 rin KASSERTMSG(i >= tlb_nreserved && i < NTLB, 1365 1.108 rin "invalid entry %ld", i); 1366 1.12 simonb 1367 1.108 rin tlb_info[i].ti_va = (va & TLB_EPN_MASK); 1368 1.108 rin tlb_info[i].ti_ctx = ctx; 1369 1.108 rin tlb_info[i].ti_flags = TLBF_USED | TLBF_REF; 1370 1.1 simonb 1371 1.99 rin __asm volatile ( 1372 1.108 rin "mfmsr %[msr];" /* Save MSR */ 1373 1.108 rin "li %[pid],0;" 1374 1.108 rin "mtmsr %[pid];" /* Clear MSR */ 1375 1.88 rin "isync;" 1376 1.108 rin "tlbwe %[pid],%[i],0;" /* Invalidate old entry. */ 1377 1.108 rin MFPID(%[pid]) /* Save old PID */ 1378 1.108 rin MTPID(%[ctx]) /* Load translation ctx */ 1379 1.88 rin "isync;" 1380 1.109 rin "tlbwe %[lo],%[i],1;" /* Set TLB */ 1381 1.109 rin "tlbwe %[hi],%[i],0;" 1382 1.88 rin "isync;" 1383 1.108 rin MTPID(%[pid]) /* Restore PID */ 1384 1.108 rin "mtmsr %[msr];" /* and MSR */ 1385 1.88 rin "isync;" 1386 1.108 rin : [msr] "=&r" (msr), [pid] "=&r" (pid) 1387 1.109 rin : [ctx] "r" (ctx), [i] "r" (i), [lo] "r" (lo), [hi] "r" (hi)); 1388 1.1 simonb } 1389 1.1 simonb 1390 1.1 simonb void 1391 1.1 simonb ppc4xx_tlb_init(void) 1392 1.1 simonb { 1393 1.1 simonb int i; 1394 1.1 simonb 1395 1.1 simonb /* Mark reserved TLB entries */ 1396 1.42 freza for (i = 0; i < tlb_nreserved; i++) { 1397 1.1 simonb tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED; 1398 1.1 simonb tlb_info[i].ti_ctx = KERNEL_PID; 1399 1.1 simonb } 1400 1.1 simonb 1401 1.1 simonb /* Setup security zones */ 1402 1.1 simonb /* Z0 - accessible by kernel only if TLB entry permissions allow 1403 1.1 simonb * Z1,Z2 - access is controlled by TLB entry permissions 1404 1.1 simonb * Z3 - full access regardless of TLB entry permissions 1405 1.1 simonb */ 1406 1.1 simonb 1407 1.99 rin __asm volatile ( 1408 1.99 rin "mtspr %0,%1;" 1409 1.88 rin "isync;" 1410 1.107 rin : : "K" (SPR_ZPR), "r" (0x1b000000)); 1411 1.1 simonb } 1412 1.1 simonb 1413 1.42 freza /* 1414 1.42 freza * ppc4xx_tlb_size_mask: 1415 1.42 freza * 1416 1.42 freza * Roundup size to supported page size, return TLBHI mask and real size. 1417 1.42 freza */ 1418 1.42 freza static int 1419 1.42 freza ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz) 1420 1.42 freza { 1421 1.99 rin int i; 1422 1.42 freza 1423 1.42 freza for (i = 0; i < __arraycount(tlbsize); i++) 1424 1.42 freza if (size <= tlbsize[i]) { 1425 1.42 freza *mask = (i << TLB_SIZE_SHFT); 1426 1.42 freza *rsiz = tlbsize[i]; 1427 1.97 rin return 0; 1428 1.42 freza } 1429 1.97 rin return EINVAL; 1430 1.42 freza } 1431 1.42 freza 1432 1.42 freza /* 1433 1.42 freza * ppc4xx_tlb_mapiodev: 1434 1.42 freza * 1435 1.42 freza * Lookup virtual address of mapping previously entered via 1436 1.42 freza * ppc4xx_tlb_reserve. Search TLB directly so that we don't 1437 1.42 freza * need to waste extra storage for reserved mappings. Note 1438 1.42 freza * that reading TLBHI also sets PID, but all reserved mappings 1439 1.42 freza * use KERNEL_PID, so the side effect is nil. 1440 1.42 freza */ 1441 1.42 freza void * 1442 1.42 freza ppc4xx_tlb_mapiodev(paddr_t base, psize_t len) 1443 1.42 freza { 1444 1.99 rin paddr_t pa; 1445 1.99 rin vaddr_t va; 1446 1.99 rin u_int lo, hi, sz; 1447 1.99 rin int i; 1448 1.42 freza 1449 1.42 freza /* tlb_nreserved is only allowed to grow, so this is safe. */ 1450 1.42 freza for (i = 0; i < tlb_nreserved; i++) { 1451 1.42 freza __asm volatile ( 1452 1.108 rin "tlbre %[lo],%[i],1;" /* TLBLO */ 1453 1.108 rin "tlbre %[hi],%[i],0;" /* TLBHI */ 1454 1.108 rin : [lo] "=&r" (lo), [hi] "=&r" (hi) 1455 1.108 rin : [i] "r" (i)); 1456 1.42 freza 1457 1.42 freza KASSERT(hi & TLB_VALID); 1458 1.42 freza KASSERT(mfspr(SPR_PID) == KERNEL_PID); 1459 1.42 freza 1460 1.42 freza pa = (lo & TLB_RPN_MASK); 1461 1.42 freza if (base < pa) 1462 1.42 freza continue; 1463 1.42 freza 1464 1.42 freza sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT]; 1465 1.99 rin if (base + len > pa + sz) 1466 1.42 freza continue; 1467 1.42 freza 1468 1.42 freza va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); /* sz = 2^n */ 1469 1.97 rin return (void *)va; 1470 1.42 freza } 1471 1.42 freza 1472 1.97 rin return NULL; 1473 1.42 freza } 1474 1.42 freza 1475 1.42 freza /* 1476 1.42 freza * ppc4xx_tlb_reserve: 1477 1.42 freza * 1478 1.42 freza * Map physical range to kernel virtual chunk via reserved TLB entry. 1479 1.42 freza */ 1480 1.42 freza void 1481 1.42 freza ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags) 1482 1.42 freza { 1483 1.99 rin u_int lo, hi; 1484 1.99 rin int szmask, rsize; 1485 1.42 freza 1486 1.42 freza /* Called before pmap_bootstrap(), va outside kernel space. */ 1487 1.42 freza KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS); 1488 1.99 rin KASSERT(!pmap_bootstrap_done); 1489 1.42 freza KASSERT(tlb_nreserved < NTLB); 1490 1.42 freza 1491 1.42 freza /* Resolve size. */ 1492 1.42 freza if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0) 1493 1.42 freza panic("ppc4xx_tlb_reserve: entry %d, %zuB too large", 1494 1.42 freza size, tlb_nreserved); 1495 1.42 freza 1496 1.42 freza /* Real size will be power of two >= 1024, so this is OK. */ 1497 1.42 freza pa &= ~(rsize - 1); /* RPN */ 1498 1.42 freza va &= ~(rsize - 1); /* EPN */ 1499 1.42 freza 1500 1.42 freza lo = pa | TLB_WR | flags; 1501 1.43 kiyohara hi = va | TLB_VALID | szmask; 1502 1.42 freza 1503 1.42 freza #ifdef PPC_4XX_NOCACHE 1504 1.42 freza lo |= TLB_I; 1505 1.42 freza #endif 1506 1.42 freza 1507 1.107 rin __asm volatile ( 1508 1.108 rin "tlbwe %[lo],%[i],1;" /* write TLBLO */ 1509 1.108 rin "tlbwe %[hi],%[i],0;" /* write TLBHI */ 1510 1.99 rin "isync;" 1511 1.108 rin : : [i] "r" (tlb_nreserved), [lo] "r" (lo), [hi] "r" (hi)); 1512 1.42 freza 1513 1.42 freza tlb_nreserved++; 1514 1.42 freza } 1515 1.1 simonb 1516 1.1 simonb /* 1517 1.1 simonb * We should pass the ctx in from trap code. 1518 1.1 simonb */ 1519 1.1 simonb int 1520 1.1 simonb pmap_tlbmiss(vaddr_t va, int ctx) 1521 1.1 simonb { 1522 1.1 simonb volatile u_int *pte; 1523 1.1 simonb u_long tte; 1524 1.1 simonb 1525 1.1 simonb tlbmiss_ev.ev_count++; 1526 1.1 simonb 1527 1.1 simonb /* 1528 1.44 freza * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings. 1529 1.44 freza * Physical RAM is expected to live in this range, care must be taken 1530 1.44 freza * to not clobber 0 upto ${physmem} with device mappings in machdep 1531 1.44 freza * code. 1532 1.1 simonb */ 1533 1.63 uebayasi if (ctx != KERNEL_PID || 1534 1.63 uebayasi (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) { 1535 1.36 scw pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va); 1536 1.1 simonb if (pte == NULL) { 1537 1.99 rin /* 1538 1.99 rin * Map unmanaged addresses directly for 1539 1.99 rin * kernel access 1540 1.99 rin */ 1541 1.1 simonb return 1; 1542 1.1 simonb } 1543 1.1 simonb tte = *pte; 1544 1.99 rin if (tte == 0) 1545 1.1 simonb return 1; 1546 1.1 simonb } else { 1547 1.16 wiz /* Create a 16MB writable mapping. */ 1548 1.99 rin tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR; 1549 1.8 thorpej #ifdef PPC_4XX_NOCACHE 1550 1.99 rin tte |= TTE_I; 1551 1.1 simonb #endif 1552 1.1 simonb } 1553 1.1 simonb ppc4xx_tlb_enter(ctx, va, tte); 1554 1.1 simonb 1555 1.1 simonb return 0; 1556 1.1 simonb } 1557 1.1 simonb 1558 1.1 simonb /* 1559 1.1 simonb * Flush all the entries matching a context from the TLB. 1560 1.1 simonb */ 1561 1.104 rin static void 1562 1.1 simonb ctx_flush(int cnum) 1563 1.1 simonb { 1564 1.1 simonb int i; 1565 1.1 simonb 1566 1.1 simonb /* We gotta steal this context */ 1567 1.42 freza for (i = tlb_nreserved; i < NTLB; i++) { 1568 1.1 simonb if (tlb_info[i].ti_ctx == cnum) { 1569 1.100 rin /* Can't steal ctx if it has locked/reserved entry. */ 1570 1.100 rin KASSERTMSG(!TLB_LOCKED(i) && i >= tlb_nreserved, 1571 1.100 rin "locked/reserved entry %d for ctx %d", 1572 1.100 rin i, cnum); 1573 1.93 rin /* 1574 1.93 rin * Invalidate particular TLB entry regardless of 1575 1.93 rin * locked status 1576 1.93 rin */ 1577 1.93 rin tlb_invalidate_entry(i); 1578 1.1 simonb } 1579 1.1 simonb } 1580 1.1 simonb } 1581 1.1 simonb 1582 1.1 simonb /* 1583 1.1 simonb * Allocate a context. If necessary, steal one from someone else. 1584 1.1 simonb * 1585 1.1 simonb * The new context is flushed from the TLB before returning. 1586 1.1 simonb */ 1587 1.1 simonb int 1588 1.1 simonb ctx_alloc(struct pmap *pm) 1589 1.1 simonb { 1590 1.1 simonb static int next = MINCTX; 1591 1.99 rin int cnum, s; 1592 1.1 simonb 1593 1.100 rin KASSERT(pm != pmap_kernel()); 1594 1.99 rin 1595 1.1 simonb s = splvm(); 1596 1.1 simonb 1597 1.1 simonb /* Find a likely context. */ 1598 1.1 simonb cnum = next; 1599 1.1 simonb do { 1600 1.99 rin if (++cnum >= NUMCTX) 1601 1.1 simonb cnum = MINCTX; 1602 1.1 simonb } while (ctxbusy[cnum] != NULL && cnum != next); 1603 1.1 simonb 1604 1.1 simonb /* Now clean it out */ 1605 1.1 simonb if (cnum < MINCTX) 1606 1.1 simonb cnum = MINCTX; /* Never steal ctx 0 or 1 */ 1607 1.104 rin ctx_flush(cnum); 1608 1.1 simonb 1609 1.1 simonb if (ctxbusy[cnum]) { 1610 1.1 simonb #ifdef DEBUG 1611 1.1 simonb /* We should identify this pmap and clear it */ 1612 1.1 simonb printf("Warning: stealing context %d\n", cnum); 1613 1.1 simonb #endif 1614 1.1 simonb ctxbusy[cnum]->pm_ctx = 0; 1615 1.1 simonb } 1616 1.1 simonb ctxbusy[cnum] = pm; 1617 1.1 simonb next = cnum; 1618 1.99 rin 1619 1.1 simonb splx(s); 1620 1.99 rin 1621 1.1 simonb pm->pm_ctx = cnum; 1622 1.1 simonb 1623 1.1 simonb return cnum; 1624 1.1 simonb } 1625 1.1 simonb 1626 1.1 simonb /* 1627 1.1 simonb * Give away a context. 1628 1.1 simonb */ 1629 1.1 simonb void 1630 1.1 simonb ctx_free(struct pmap *pm) 1631 1.1 simonb { 1632 1.1 simonb int oldctx; 1633 1.1 simonb 1634 1.1 simonb oldctx = pm->pm_ctx; 1635 1.1 simonb 1636 1.1 simonb if (oldctx == 0) 1637 1.1 simonb panic("ctx_free: freeing kernel context"); 1638 1.99 rin 1639 1.100 rin KASSERTMSG(ctxbusy[oldctx] == pm, 1640 1.100 rin "ctxbusy[%d] = %p, pm->pm_ctx = %p", 1641 1.100 rin oldctx, ctxbusy[oldctx], pm); 1642 1.99 rin 1643 1.1 simonb /* We should verify it has not been stolen and reallocated... */ 1644 1.1 simonb ctxbusy[oldctx] = NULL; 1645 1.1 simonb ctx_flush(oldctx); 1646 1.1 simonb } 1647 1.5 eeh 1648 1.1 simonb #ifdef DEBUG 1649 1.1 simonb /* 1650 1.1 simonb * Test ref/modify handling. 1651 1.1 simonb */ 1652 1.53 dsl void pmap_testout(void); 1653 1.1 simonb void 1654 1.54 cegger pmap_testout(void) 1655 1.1 simonb { 1656 1.99 rin struct vm_page *pg; 1657 1.1 simonb vaddr_t va; 1658 1.99 rin paddr_t pa; 1659 1.1 simonb volatile int *loc; 1660 1.99 rin int ref, mod, val = 0; 1661 1.1 simonb 1662 1.1 simonb /* Allocate a page */ 1663 1.34 yamt va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0, 1664 1.34 yamt UVM_KMF_WIRED | UVM_KMF_ZERO); 1665 1.99 rin loc = (int *)va; 1666 1.1 simonb 1667 1.1 simonb pmap_extract(pmap_kernel(), va, &pa); 1668 1.1 simonb pg = PHYS_TO_VM_PAGE(pa); 1669 1.1 simonb pmap_unwire(pmap_kernel(), va); 1670 1.1 simonb 1671 1.34 yamt pmap_kremove(va, PAGE_SIZE); 1672 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1673 1.4 chris pmap_update(pmap_kernel()); 1674 1.1 simonb 1675 1.1 simonb /* Now clear reference and modify */ 1676 1.1 simonb ref = pmap_clear_reference(pg); 1677 1.1 simonb mod = pmap_clear_modify(pg); 1678 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1679 1.99 rin (void *)(u_long)va, (long)pa, ref, mod); 1680 1.1 simonb 1681 1.1 simonb /* Check it's properly cleared */ 1682 1.1 simonb ref = pmap_is_referenced(pg); 1683 1.1 simonb mod = pmap_is_modified(pg); 1684 1.99 rin printf("Checking cleared page: ref %d, mod %d\n", ref, mod); 1685 1.1 simonb 1686 1.1 simonb /* Reference page */ 1687 1.1 simonb val = *loc; 1688 1.1 simonb 1689 1.1 simonb ref = pmap_is_referenced(pg); 1690 1.1 simonb mod = pmap_is_modified(pg); 1691 1.99 rin printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val); 1692 1.1 simonb 1693 1.1 simonb /* Now clear reference and modify */ 1694 1.1 simonb ref = pmap_clear_reference(pg); 1695 1.1 simonb mod = pmap_clear_modify(pg); 1696 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1697 1.99 rin (void *)(u_long)va, (long)pa, ref, mod); 1698 1.12 simonb 1699 1.1 simonb /* Modify page */ 1700 1.1 simonb *loc = 1; 1701 1.1 simonb 1702 1.1 simonb ref = pmap_is_referenced(pg); 1703 1.1 simonb mod = pmap_is_modified(pg); 1704 1.99 rin printf("Modified page: ref %d, mod %d\n", ref, mod); 1705 1.1 simonb 1706 1.1 simonb /* Now clear reference and modify */ 1707 1.1 simonb ref = pmap_clear_reference(pg); 1708 1.1 simonb mod = pmap_clear_modify(pg); 1709 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1710 1.99 rin (void *)(u_long)va, (long)pa, ref, mod); 1711 1.1 simonb 1712 1.1 simonb /* Check it's properly cleared */ 1713 1.1 simonb ref = pmap_is_referenced(pg); 1714 1.1 simonb mod = pmap_is_modified(pg); 1715 1.99 rin printf("Checking cleared page: ref %d, mod %d\n", ref, mod); 1716 1.1 simonb 1717 1.1 simonb /* Modify page */ 1718 1.1 simonb *loc = 1; 1719 1.1 simonb 1720 1.1 simonb ref = pmap_is_referenced(pg); 1721 1.1 simonb mod = pmap_is_modified(pg); 1722 1.99 rin printf("Modified page: ref %d, mod %d\n", ref, mod); 1723 1.1 simonb 1724 1.1 simonb /* Check pmap_protect() */ 1725 1.101 rin pmap_protect(pmap_kernel(), va, va + PAGE_SIZE, VM_PROT_READ); 1726 1.4 chris pmap_update(pmap_kernel()); 1727 1.1 simonb ref = pmap_is_referenced(pg); 1728 1.1 simonb mod = pmap_is_modified(pg); 1729 1.99 rin printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n", ref, mod); 1730 1.1 simonb 1731 1.1 simonb /* Now clear reference and modify */ 1732 1.1 simonb ref = pmap_clear_reference(pg); 1733 1.1 simonb mod = pmap_clear_modify(pg); 1734 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1735 1.99 rin (void *)(u_long)va, (long)pa, ref, mod); 1736 1.1 simonb 1737 1.1 simonb /* Reference page */ 1738 1.1 simonb val = *loc; 1739 1.1 simonb 1740 1.1 simonb ref = pmap_is_referenced(pg); 1741 1.1 simonb mod = pmap_is_modified(pg); 1742 1.99 rin printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val); 1743 1.1 simonb 1744 1.1 simonb /* Now clear reference and modify */ 1745 1.1 simonb ref = pmap_clear_reference(pg); 1746 1.1 simonb mod = pmap_clear_modify(pg); 1747 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1748 1.99 rin (void *)(u_long)va, (long)pa, ref, mod); 1749 1.12 simonb 1750 1.1 simonb /* Modify page */ 1751 1.1 simonb #if 0 1752 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1753 1.4 chris pmap_update(pmap_kernel()); 1754 1.1 simonb #endif 1755 1.1 simonb *loc = 1; 1756 1.1 simonb 1757 1.1 simonb ref = pmap_is_referenced(pg); 1758 1.1 simonb mod = pmap_is_modified(pg); 1759 1.99 rin printf("Modified page: ref %d, mod %d\n", ref, mod); 1760 1.1 simonb 1761 1.1 simonb /* Check pmap_protect() */ 1762 1.101 rin pmap_protect(pmap_kernel(), va, va + PAGE_SIZE, VM_PROT_NONE); 1763 1.4 chris pmap_update(pmap_kernel()); 1764 1.1 simonb ref = pmap_is_referenced(pg); 1765 1.1 simonb mod = pmap_is_modified(pg); 1766 1.99 rin printf("pmap_protect(): ref %d, mod %d\n", ref, mod); 1767 1.1 simonb 1768 1.1 simonb /* Now clear reference and modify */ 1769 1.1 simonb ref = pmap_clear_reference(pg); 1770 1.1 simonb mod = pmap_clear_modify(pg); 1771 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1772 1.99 rin (void *)(u_long)va, (long)pa, ref, mod); 1773 1.1 simonb 1774 1.1 simonb /* Reference page */ 1775 1.1 simonb val = *loc; 1776 1.1 simonb 1777 1.1 simonb ref = pmap_is_referenced(pg); 1778 1.1 simonb mod = pmap_is_modified(pg); 1779 1.99 rin printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val); 1780 1.1 simonb 1781 1.1 simonb /* Now clear reference and modify */ 1782 1.1 simonb ref = pmap_clear_reference(pg); 1783 1.1 simonb mod = pmap_clear_modify(pg); 1784 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1785 1.99 rin (void *)(u_long)va, (long)pa, ref, mod); 1786 1.12 simonb 1787 1.1 simonb /* Modify page */ 1788 1.1 simonb #if 0 1789 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1790 1.4 chris pmap_update(pmap_kernel()); 1791 1.1 simonb #endif 1792 1.1 simonb *loc = 1; 1793 1.1 simonb 1794 1.1 simonb ref = pmap_is_referenced(pg); 1795 1.1 simonb mod = pmap_is_modified(pg); 1796 1.99 rin printf("Modified page: ref %d, mod %d\n", ref, mod); 1797 1.1 simonb 1798 1.1 simonb /* Check pmap_pag_protect() */ 1799 1.1 simonb pmap_page_protect(pg, VM_PROT_READ); 1800 1.1 simonb ref = pmap_is_referenced(pg); 1801 1.1 simonb mod = pmap_is_modified(pg); 1802 1.99 rin printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n", ref, mod); 1803 1.1 simonb 1804 1.1 simonb /* Now clear reference and modify */ 1805 1.1 simonb ref = pmap_clear_reference(pg); 1806 1.1 simonb mod = pmap_clear_modify(pg); 1807 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1808 1.99 rin (void *)(u_long)va, (long)pa, ref, mod); 1809 1.1 simonb 1810 1.1 simonb /* Reference page */ 1811 1.1 simonb val = *loc; 1812 1.1 simonb 1813 1.1 simonb ref = pmap_is_referenced(pg); 1814 1.1 simonb mod = pmap_is_modified(pg); 1815 1.99 rin printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val); 1816 1.1 simonb 1817 1.1 simonb /* Now clear reference and modify */ 1818 1.1 simonb ref = pmap_clear_reference(pg); 1819 1.1 simonb mod = pmap_clear_modify(pg); 1820 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1821 1.99 rin (void *)(u_long)va, (long)pa, ref, mod); 1822 1.12 simonb 1823 1.1 simonb /* Modify page */ 1824 1.1 simonb #if 0 1825 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1826 1.4 chris pmap_update(pmap_kernel()); 1827 1.1 simonb #endif 1828 1.1 simonb *loc = 1; 1829 1.1 simonb 1830 1.1 simonb ref = pmap_is_referenced(pg); 1831 1.1 simonb mod = pmap_is_modified(pg); 1832 1.99 rin printf("Modified page: ref %d, mod %d\n", ref, mod); 1833 1.1 simonb 1834 1.1 simonb /* Check pmap_pag_protect() */ 1835 1.1 simonb pmap_page_protect(pg, VM_PROT_NONE); 1836 1.1 simonb ref = pmap_is_referenced(pg); 1837 1.1 simonb mod = pmap_is_modified(pg); 1838 1.99 rin printf("pmap_page_protect(): ref %d, mod %d\n", ref, mod); 1839 1.1 simonb 1840 1.1 simonb /* Now clear reference and modify */ 1841 1.1 simonb ref = pmap_clear_reference(pg); 1842 1.1 simonb mod = pmap_clear_modify(pg); 1843 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1844 1.99 rin (void *)(u_long)va, (long)pa, ref, mod); 1845 1.1 simonb 1846 1.1 simonb 1847 1.1 simonb /* Reference page */ 1848 1.1 simonb val = *loc; 1849 1.1 simonb 1850 1.1 simonb ref = pmap_is_referenced(pg); 1851 1.1 simonb mod = pmap_is_modified(pg); 1852 1.99 rin printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val); 1853 1.1 simonb 1854 1.1 simonb /* Now clear reference and modify */ 1855 1.1 simonb ref = pmap_clear_reference(pg); 1856 1.1 simonb mod = pmap_clear_modify(pg); 1857 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1858 1.99 rin (void *)(u_long)va, (long)pa, ref, mod); 1859 1.12 simonb 1860 1.1 simonb /* Modify page */ 1861 1.1 simonb #if 0 1862 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0); 1863 1.4 chris pmap_update(pmap_kernel()); 1864 1.1 simonb #endif 1865 1.1 simonb *loc = 1; 1866 1.1 simonb 1867 1.1 simonb ref = pmap_is_referenced(pg); 1868 1.1 simonb mod = pmap_is_modified(pg); 1869 1.99 rin printf("Modified page: ref %d, mod %d\n", ref, mod); 1870 1.1 simonb 1871 1.1 simonb /* Unmap page */ 1872 1.101 rin pmap_remove(pmap_kernel(), va, va + PAGE_SIZE); 1873 1.4 chris pmap_update(pmap_kernel()); 1874 1.1 simonb ref = pmap_is_referenced(pg); 1875 1.1 simonb mod = pmap_is_modified(pg); 1876 1.1 simonb printf("Unmapped page: ref %d, mod %d\n", ref, mod); 1877 1.1 simonb 1878 1.1 simonb /* Now clear reference and modify */ 1879 1.1 simonb ref = pmap_clear_reference(pg); 1880 1.1 simonb mod = pmap_clear_modify(pg); 1881 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n", 1882 1.99 rin (void *)(u_long)va, (long)pa, ref, mod); 1883 1.1 simonb 1884 1.1 simonb /* Check it's properly cleared */ 1885 1.1 simonb ref = pmap_is_referenced(pg); 1886 1.1 simonb mod = pmap_is_modified(pg); 1887 1.99 rin printf("Checking cleared page: ref %d, mod %d\n", ref, mod); 1888 1.1 simonb 1889 1.34 yamt pmap_remove(pmap_kernel(), va, va + PAGE_SIZE); 1890 1.59 cegger pmap_kenter_pa(va, pa, VM_PROT_ALL, 0); 1891 1.34 yamt uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED); 1892 1.1 simonb } 1893 1.1 simonb #endif 1894