Home | History | Annotate | Line # | Download | only in ibm4xx
pmap.c revision 1.103
      1  1.103       rin /*	$NetBSD: pmap.c,v 1.103 2021/09/05 12:28:44 rin Exp $	*/
      2    1.1    simonb 
      3    1.1    simonb /*
      4    1.1    simonb  * Copyright 2001 Wasabi Systems, Inc.
      5    1.1    simonb  * All rights reserved.
      6    1.1    simonb  *
      7    1.1    simonb  * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
      8    1.1    simonb  *
      9    1.1    simonb  * Redistribution and use in source and binary forms, with or without
     10    1.1    simonb  * modification, are permitted provided that the following conditions
     11    1.1    simonb  * are met:
     12    1.1    simonb  * 1. Redistributions of source code must retain the above copyright
     13    1.1    simonb  *    notice, this list of conditions and the following disclaimer.
     14    1.1    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     15    1.1    simonb  *    notice, this list of conditions and the following disclaimer in the
     16    1.1    simonb  *    documentation and/or other materials provided with the distribution.
     17    1.1    simonb  * 3. All advertising materials mentioning features or use of this software
     18    1.1    simonb  *    must display the following acknowledgement:
     19    1.1    simonb  *      This product includes software developed for the NetBSD Project by
     20    1.1    simonb  *      Wasabi Systems, Inc.
     21    1.1    simonb  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22    1.1    simonb  *    or promote products derived from this software without specific prior
     23    1.1    simonb  *    written permission.
     24    1.1    simonb  *
     25    1.1    simonb  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26    1.1    simonb  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27    1.1    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28    1.1    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29    1.1    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30    1.1    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31    1.1    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32    1.1    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33    1.1    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34    1.1    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35    1.1    simonb  * POSSIBILITY OF SUCH DAMAGE.
     36    1.1    simonb  */
     37    1.1    simonb 
     38    1.1    simonb /*
     39    1.1    simonb  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40    1.1    simonb  * Copyright (C) 1995, 1996 TooLs GmbH.
     41    1.1    simonb  * All rights reserved.
     42    1.1    simonb  *
     43    1.1    simonb  * Redistribution and use in source and binary forms, with or without
     44    1.1    simonb  * modification, are permitted provided that the following conditions
     45    1.1    simonb  * are met:
     46    1.1    simonb  * 1. Redistributions of source code must retain the above copyright
     47    1.1    simonb  *    notice, this list of conditions and the following disclaimer.
     48    1.1    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     49    1.1    simonb  *    notice, this list of conditions and the following disclaimer in the
     50    1.1    simonb  *    documentation and/or other materials provided with the distribution.
     51    1.1    simonb  * 3. All advertising materials mentioning features or use of this software
     52    1.1    simonb  *    must display the following acknowledgement:
     53    1.1    simonb  *	This product includes software developed by TooLs GmbH.
     54    1.1    simonb  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55    1.1    simonb  *    derived from this software without specific prior written permission.
     56    1.1    simonb  *
     57    1.1    simonb  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58    1.1    simonb  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59    1.1    simonb  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60    1.1    simonb  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61    1.1    simonb  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62    1.1    simonb  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63    1.1    simonb  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64    1.1    simonb  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65    1.1    simonb  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66    1.1    simonb  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67    1.1    simonb  */
     68   1.23     lukem 
     69   1.23     lukem #include <sys/cdefs.h>
     70  1.103       rin __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.103 2021/09/05 12:28:44 rin Exp $");
     71   1.90       rin 
     72   1.90       rin #ifdef _KERNEL_OPT
     73   1.90       rin #include "opt_ddb.h"
     74   1.93       rin #include "opt_pmap.h"
     75   1.90       rin #endif
     76    1.1    simonb 
     77    1.1    simonb #include <sys/param.h>
     78   1.68      matt #include <sys/cpu.h>
     79   1.68      matt #include <sys/device.h>
     80   1.72      para #include <sys/kmem.h>
     81   1.68      matt #include <sys/pool.h>
     82    1.1    simonb #include <sys/proc.h>
     83    1.1    simonb #include <sys/queue.h>
     84    1.1    simonb #include <sys/systm.h>
     85    1.1    simonb 
     86    1.1    simonb #include <uvm/uvm.h>
     87    1.1    simonb 
     88    1.1    simonb #include <machine/powerpc.h>
     89    1.1    simonb 
     90   1.68      matt #include <powerpc/pcb.h>
     91   1.68      matt 
     92    1.1    simonb #include <powerpc/spr.h>
     93   1.62      matt #include <powerpc/ibm4xx/spr.h>
     94   1.67      matt 
     95   1.67      matt #include <powerpc/ibm4xx/cpu.h>
     96   1.96       rin #include <powerpc/ibm4xx/tlb.h>
     97    1.1    simonb 
     98    1.1    simonb /*
     99    1.1    simonb  * kernmap is an array of PTEs large enough to map in
    100    1.1    simonb  * 4GB.  At 16KB/page it is 256K entries or 2MB.
    101    1.1    simonb  */
    102   1.99       rin #define KERNMAP_SIZE	((0xffffffffU / PAGE_SIZE) + 1)
    103   1.47  christos void *kernmap;
    104    1.1    simonb 
    105    1.1    simonb #define MINCTX		2
    106    1.1    simonb #define NUMCTX		256
    107   1.42     freza 
    108    1.1    simonb volatile struct pmap *ctxbusy[NUMCTX];
    109    1.1    simonb 
    110    1.1    simonb #define TLBF_USED	0x1
    111    1.1    simonb #define	TLBF_REF	0x2
    112    1.1    simonb #define	TLBF_LOCKED	0x4
    113    1.1    simonb #define	TLB_LOCKED(i)	(tlb_info[(i)].ti_flags & TLBF_LOCKED)
    114   1.42     freza 
    115    1.1    simonb typedef struct tlb_info_s {
    116    1.1    simonb 	char	ti_flags;
    117    1.1    simonb 	char	ti_ctx;		/* TLB_PID assiciated with the entry */
    118    1.1    simonb 	u_int	ti_va;
    119    1.1    simonb } tlb_info_t;
    120    1.1    simonb 
    121    1.1    simonb volatile tlb_info_t tlb_info[NTLB];
    122    1.1    simonb /* We'll use a modified FIFO replacement policy cause it's cheap */
    123   1.42     freza volatile int tlbnext;
    124   1.42     freza 
    125   1.42     freza static int tlb_nreserved = 0;
    126   1.42     freza static int pmap_bootstrap_done = 0;
    127    1.1    simonb 
    128   1.14   thorpej /* Event counters */
    129   1.14   thorpej struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    130   1.99       rin     NULL, "cpu", "tlbmiss");
    131   1.14   thorpej struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    132   1.99       rin     NULL, "cpu", "tlbflush");
    133   1.14   thorpej struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    134   1.99       rin     NULL, "cpu", "tlbenter");
    135   1.66      matt EVCNT_ATTACH_STATIC(tlbmiss_ev);
    136   1.66      matt EVCNT_ATTACH_STATIC(tlbflush_ev);
    137   1.66      matt EVCNT_ATTACH_STATIC(tlbenter_ev);
    138    1.1    simonb 
    139    1.1    simonb struct pmap kernel_pmap_;
    140   1.52     pooka struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
    141    1.1    simonb 
    142    1.1    simonb static int npgs;
    143    1.1    simonb static u_int nextavail;
    144    1.1    simonb #ifndef MSGBUFADDR
    145    1.1    simonb extern paddr_t msgbuf_paddr;
    146    1.1    simonb #endif
    147    1.1    simonb 
    148    1.1    simonb static struct mem_region *mem, *avail;
    149    1.1    simonb 
    150    1.1    simonb /*
    151    1.1    simonb  * This is a cache of referenced/modified bits.
    152    1.1    simonb  * Bits herein are shifted by ATTRSHFT.
    153    1.1    simonb  */
    154    1.1    simonb static char *pmap_attrib;
    155    1.1    simonb 
    156    1.1    simonb #define PV_WIRED	0x1
    157    1.1    simonb #define PV_WIRE(pv)	((pv)->pv_va |= PV_WIRED)
    158   1.30       chs #define PV_UNWIRE(pv)	((pv)->pv_va &= ~PV_WIRED)
    159   1.30       chs #define PV_ISWIRED(pv)	((pv)->pv_va & PV_WIRED)
    160   1.91       rin #define PV_VA(pv)	((pv)->pv_va & ~PV_WIRED)
    161   1.91       rin #define PV_CMPVA(va,pv)	(!(PV_VA(pv) ^ (va)))
    162    1.1    simonb 
    163    1.1    simonb struct pv_entry {
    164    1.1    simonb 	struct pv_entry *pv_next;	/* Linked list of mappings */
    165   1.68      matt 	struct pmap *pv_pm;
    166    1.1    simonb 	vaddr_t pv_va;			/* virtual address of mapping */
    167    1.1    simonb };
    168    1.1    simonb 
    169   1.42     freza /* Each index corresponds to TLB_SIZE_* value. */
    170   1.42     freza static size_t tlbsize[] = {
    171   1.42     freza 	1024, 		/* TLB_SIZE_1K */
    172   1.42     freza 	4096, 		/* TLB_SIZE_4K */
    173   1.42     freza 	16384, 		/* TLB_SIZE_16K */
    174   1.42     freza 	65536, 		/* TLB_SIZE_64K */
    175   1.42     freza 	262144, 	/* TLB_SIZE_256K */
    176   1.42     freza 	1048576, 	/* TLB_SIZE_1M */
    177   1.42     freza 	4194304, 	/* TLB_SIZE_4M */
    178   1.42     freza 	16777216, 	/* TLB_SIZE_16M */
    179   1.42     freza };
    180   1.42     freza 
    181    1.1    simonb struct pv_entry *pv_table;
    182    1.1    simonb static struct pool pv_pool;
    183    1.1    simonb 
    184    1.1    simonb static int pmap_initialized;
    185    1.1    simonb 
    186    1.1    simonb static int ctx_flush(int);
    187    1.1    simonb 
    188   1.68      matt struct pv_entry *pa_to_pv(paddr_t);
    189    1.1    simonb static inline char *pa_to_attr(paddr_t);
    190    1.1    simonb 
    191    1.1    simonb static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
    192    1.1    simonb static inline int pte_enter(struct pmap *, vaddr_t, u_int);
    193    1.1    simonb 
    194   1.49   hannken static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
    195    1.1    simonb static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
    196    1.1    simonb 
    197   1.93       rin static inline void tlb_invalidate_entry(int);
    198   1.93       rin 
    199   1.42     freza static int ppc4xx_tlb_size_mask(size_t, int *, int *);
    200   1.42     freza 
    201    1.1    simonb 
    202   1.68      matt struct pv_entry *
    203    1.1    simonb pa_to_pv(paddr_t pa)
    204    1.1    simonb {
    205   1.75    cherry 	uvm_physseg_t bank;
    206   1.75    cherry 	psize_t pg;
    207    1.1    simonb 
    208   1.74    cherry 	bank = uvm_physseg_find(atop(pa), &pg);
    209   1.76    cherry 	if (bank == UVM_PHYSSEG_TYPE_INVALID)
    210    1.1    simonb 		return NULL;
    211   1.75    cherry 	return &uvm_physseg_get_pmseg(bank)->pvent[pg];
    212    1.1    simonb }
    213    1.1    simonb 
    214    1.1    simonb static inline char *
    215    1.1    simonb pa_to_attr(paddr_t pa)
    216    1.1    simonb {
    217   1.75    cherry 	uvm_physseg_t bank;
    218   1.75    cherry 	psize_t pg;
    219    1.1    simonb 
    220   1.74    cherry 	bank = uvm_physseg_find(atop(pa), &pg);
    221   1.76    cherry 	if (bank == UVM_PHYSSEG_TYPE_INVALID)
    222    1.1    simonb 		return NULL;
    223   1.75    cherry 	return &uvm_physseg_get_pmseg(bank)->attrs[pg];
    224    1.1    simonb }
    225    1.1    simonb 
    226    1.1    simonb /*
    227    1.1    simonb  * Insert PTE into page table.
    228    1.1    simonb  */
    229   1.97       rin static inline int
    230    1.1    simonb pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
    231    1.1    simonb {
    232   1.99       rin 	int seg = STIDX(va), ptn = PTIDX(va);
    233   1.22       scw 	u_int oldpte;
    234    1.1    simonb 
    235    1.1    simonb 	if (!pm->pm_ptbl[seg]) {
    236    1.1    simonb 		/* Don't allocate a page to clear a non-existent mapping. */
    237   1.30       chs 		if (!pte)
    238   1.98       rin 			return 1;
    239   1.98       rin 
    240   1.98       rin 		vaddr_t km = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    241   1.98       rin 		    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
    242   1.98       rin 
    243   1.98       rin 		if (__predict_false(km == 0))
    244   1.97       rin 			return 0;
    245   1.98       rin 
    246   1.98       rin 		pm->pm_ptbl[seg] = (u_int *)km;
    247    1.1    simonb 	}
    248   1.22       scw 	oldpte = pm->pm_ptbl[seg][ptn];
    249    1.1    simonb 	pm->pm_ptbl[seg][ptn] = pte;
    250    1.1    simonb 
    251    1.1    simonb 	/* Flush entry. */
    252    1.1    simonb 	ppc4xx_tlb_flush(va, pm->pm_ctx);
    253   1.22       scw 	if (oldpte != pte) {
    254   1.22       scw 		if (pte == 0)
    255   1.22       scw 			pm->pm_stats.resident_count--;
    256   1.22       scw 		else
    257   1.22       scw 			pm->pm_stats.resident_count++;
    258   1.22       scw 	}
    259   1.97       rin 	return 1;
    260    1.1    simonb }
    261    1.1    simonb 
    262    1.1    simonb /*
    263    1.1    simonb  * Get a pointer to a PTE in a page table.
    264    1.1    simonb  */
    265    1.1    simonb volatile u_int *
    266    1.1    simonb pte_find(struct pmap *pm, vaddr_t va)
    267    1.1    simonb {
    268   1.99       rin 	int seg = STIDX(va), ptn = PTIDX(va);
    269    1.1    simonb 
    270    1.1    simonb 	if (pm->pm_ptbl[seg])
    271   1.97       rin 		return &pm->pm_ptbl[seg][ptn];
    272    1.1    simonb 
    273   1.97       rin 	return NULL;
    274    1.1    simonb }
    275    1.1    simonb 
    276    1.1    simonb /*
    277    1.1    simonb  * This is called during initppc, before the system is really initialized.
    278    1.1    simonb  */
    279    1.1    simonb void
    280    1.1    simonb pmap_bootstrap(u_int kernelstart, u_int kernelend)
    281    1.1    simonb {
    282    1.1    simonb 	struct mem_region *mp, *mp1;
    283    1.1    simonb 	int cnt, i;
    284    1.1    simonb 	u_int s, e, sz;
    285    1.1    simonb 
    286   1.42     freza 	tlbnext = tlb_nreserved;
    287   1.42     freza 
    288    1.1    simonb 	/*
    289    1.1    simonb 	 * Allocate the kernel page table at the end of
    290    1.1    simonb 	 * kernel space so it's in the locked TTE.
    291    1.1    simonb 	 */
    292   1.47  christos 	kernmap = (void *)kernelend;
    293    1.1    simonb 
    294    1.1    simonb 	/*
    295    1.1    simonb 	 * Initialize kernel page table.
    296    1.1    simonb 	 */
    297   1.99       rin 	for (i = 0; i < STSZ; i++)
    298   1.97       rin 		pmap_kernel()->pm_ptbl[i] = NULL;
    299    1.1    simonb 	ctxbusy[0] = ctxbusy[1] = pmap_kernel();
    300    1.1    simonb 
    301    1.1    simonb 	/*
    302    1.1    simonb 	 * Announce page-size to the VM-system
    303    1.1    simonb 	 */
    304    1.1    simonb 	uvmexp.pagesize = NBPG;
    305   1.73    cherry 	uvm_md_init();
    306    1.1    simonb 
    307    1.1    simonb 	/*
    308    1.1    simonb 	 * Get memory.
    309    1.1    simonb 	 */
    310    1.1    simonb 	mem_regions(&mem, &avail);
    311    1.1    simonb 	for (mp = mem; mp->size; mp++) {
    312    1.1    simonb 		physmem += btoc(mp->size);
    313   1.99       rin 		printf("+%lx,", mp->size);
    314    1.1    simonb 	}
    315    1.1    simonb 	printf("\n");
    316    1.1    simonb 	ppc4xx_tlb_init();
    317    1.1    simonb 	/*
    318    1.1    simonb 	 * Count the number of available entries.
    319    1.1    simonb 	 */
    320    1.1    simonb 	for (cnt = 0, mp = avail; mp->size; mp++)
    321    1.1    simonb 		cnt++;
    322    1.1    simonb 
    323    1.1    simonb 	/*
    324    1.1    simonb 	 * Page align all regions.
    325    1.1    simonb 	 * Non-page aligned memory isn't very interesting to us.
    326    1.1    simonb 	 * Also, sort the entries for ascending addresses.
    327    1.1    simonb 	 */
    328    1.1    simonb 	kernelstart &= ~PGOFSET;
    329    1.1    simonb 	kernelend = (kernelend + PGOFSET) & ~PGOFSET;
    330    1.1    simonb 	for (mp = avail; mp->size; mp++) {
    331    1.1    simonb 		s = mp->start;
    332    1.1    simonb 		e = mp->start + mp->size;
    333   1.99       rin 		printf("%08x-%08x -> ", s, e);
    334    1.1    simonb 		/*
    335    1.1    simonb 		 * Check whether this region holds all of the kernel.
    336    1.1    simonb 		 */
    337    1.1    simonb 		if (s < kernelstart && e > kernelend) {
    338    1.1    simonb 			avail[cnt].start = kernelend;
    339    1.1    simonb 			avail[cnt++].size = e - kernelend;
    340    1.1    simonb 			e = kernelstart;
    341    1.1    simonb 		}
    342    1.1    simonb 		/*
    343    1.1    simonb 		 * Look whether this regions starts within the kernel.
    344    1.1    simonb 		 */
    345    1.1    simonb 		if (s >= kernelstart && s < kernelend) {
    346    1.1    simonb 			if (e <= kernelend)
    347    1.1    simonb 				goto empty;
    348    1.1    simonb 			s = kernelend;
    349    1.1    simonb 		}
    350    1.1    simonb 		/*
    351    1.1    simonb 		 * Now look whether this region ends within the kernel.
    352    1.1    simonb 		 */
    353    1.1    simonb 		if (e > kernelstart && e <= kernelend) {
    354    1.1    simonb 			if (s >= kernelstart)
    355    1.1    simonb 				goto empty;
    356    1.1    simonb 			e = kernelstart;
    357    1.1    simonb 		}
    358    1.1    simonb 		/*
    359    1.1    simonb 		 * Now page align the start and size of the region.
    360    1.1    simonb 		 */
    361    1.1    simonb 		s = round_page(s);
    362    1.1    simonb 		e = trunc_page(e);
    363    1.1    simonb 		if (e < s)
    364    1.1    simonb 			e = s;
    365    1.1    simonb 		sz = e - s;
    366   1.99       rin 		printf("%08x-%08x = %x\n", s, e, sz);
    367    1.1    simonb 		/*
    368    1.1    simonb 		 * Check whether some memory is left here.
    369    1.1    simonb 		 */
    370    1.1    simonb 		if (sz == 0) {
    371   1.99       rin  empty:
    372    1.3       wiz 			memmove(mp, mp + 1,
    373   1.99       rin 			    (cnt - (mp - avail)) * sizeof(*mp));
    374    1.1    simonb 			cnt--;
    375    1.1    simonb 			mp--;
    376    1.1    simonb 			continue;
    377    1.1    simonb 		}
    378    1.1    simonb 		/*
    379    1.1    simonb 		 * Do an insertion sort.
    380    1.1    simonb 		 */
    381    1.1    simonb 		npgs += btoc(sz);
    382    1.1    simonb 		for (mp1 = avail; mp1 < mp; mp1++)
    383    1.1    simonb 			if (s < mp1->start)
    384    1.1    simonb 				break;
    385    1.1    simonb 		if (mp1 < mp) {
    386    1.3       wiz 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
    387    1.1    simonb 			mp1->start = s;
    388    1.1    simonb 			mp1->size = sz;
    389    1.1    simonb 		} else {
    390    1.1    simonb 			mp->start = s;
    391    1.1    simonb 			mp->size = sz;
    392    1.1    simonb 		}
    393    1.1    simonb 	}
    394    1.1    simonb 
    395    1.1    simonb 	/*
    396    1.1    simonb 	 * We cannot do pmap_steal_memory here,
    397    1.1    simonb 	 * since we don't run with translation enabled yet.
    398    1.1    simonb 	 */
    399    1.1    simonb #ifndef MSGBUFADDR
    400    1.1    simonb 	/*
    401    1.1    simonb 	 * allow for msgbuf
    402    1.1    simonb 	 */
    403    1.1    simonb 	sz = round_page(MSGBUFSIZE);
    404    1.1    simonb 	mp = NULL;
    405    1.1    simonb 	for (mp1 = avail; mp1->size; mp1++)
    406    1.1    simonb 		if (mp1->size >= sz)
    407    1.1    simonb 			mp = mp1;
    408    1.1    simonb 	if (mp == NULL)
    409    1.1    simonb 		panic("not enough memory?");
    410    1.1    simonb 
    411    1.1    simonb 	npgs -= btoc(sz);
    412    1.1    simonb 	msgbuf_paddr = mp->start + mp->size - sz;
    413    1.1    simonb 	mp->size -= sz;
    414    1.1    simonb 	if (mp->size <= 0)
    415   1.99       rin 		memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof(*mp));
    416    1.1    simonb #endif
    417    1.1    simonb 
    418    1.1    simonb 	for (mp = avail; mp->size; mp++)
    419    1.1    simonb 		uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
    420   1.99       rin 		    atop(mp->start), atop(mp->start + mp->size),
    421   1.99       rin 		    VM_FREELIST_DEFAULT);
    422    1.1    simonb 
    423    1.1    simonb 	/*
    424    1.1    simonb 	 * Initialize kernel pmap and hardware.
    425    1.1    simonb 	 */
    426    1.1    simonb 	/* Setup TLB pid allocator so it knows we alreadu using PID 1 */
    427    1.1    simonb 	pmap_kernel()->pm_ctx = KERNEL_PID;
    428    1.1    simonb 	nextavail = avail->start;
    429    1.1    simonb 
    430   1.42     freza 	pmap_bootstrap_done = 1;
    431    1.1    simonb }
    432    1.1    simonb 
    433    1.1    simonb /*
    434    1.1    simonb  * Restrict given range to physical memory
    435    1.1    simonb  *
    436    1.1    simonb  * (Used by /dev/mem)
    437    1.1    simonb  */
    438    1.1    simonb void
    439    1.1    simonb pmap_real_memory(paddr_t *start, psize_t *size)
    440    1.1    simonb {
    441    1.1    simonb 	struct mem_region *mp;
    442    1.1    simonb 
    443    1.1    simonb 	for (mp = mem; mp->size; mp++) {
    444    1.1    simonb 		if (*start + *size > mp->start &&
    445    1.1    simonb 		    *start < mp->start + mp->size) {
    446    1.1    simonb 			if (*start < mp->start) {
    447    1.1    simonb 				*size -= mp->start - *start;
    448    1.1    simonb 				*start = mp->start;
    449    1.1    simonb 			}
    450    1.1    simonb 			if (*start + *size > mp->start + mp->size)
    451    1.1    simonb 				*size = mp->start + mp->size - *start;
    452    1.1    simonb 			return;
    453    1.1    simonb 		}
    454    1.1    simonb 	}
    455    1.1    simonb 	*size = 0;
    456    1.1    simonb }
    457    1.1    simonb 
    458    1.1    simonb /*
    459    1.1    simonb  * Initialize anything else for pmap handling.
    460    1.1    simonb  * Called during vm_init().
    461    1.1    simonb  */
    462    1.1    simonb void
    463    1.1    simonb pmap_init(void)
    464    1.1    simonb {
    465    1.1    simonb 	struct pv_entry *pv;
    466    1.1    simonb 	vsize_t sz;
    467    1.1    simonb 	vaddr_t addr;
    468   1.99       rin 	int bank, i, s;
    469    1.1    simonb 	char *attr;
    470    1.1    simonb 
    471    1.1    simonb 	sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
    472    1.1    simonb 	sz = round_page(sz);
    473   1.34      yamt 	addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
    474   1.99       rin 
    475    1.1    simonb 	s = splvm();
    476   1.99       rin 
    477    1.1    simonb 	pv = pv_table = (struct pv_entry *)addr;
    478    1.1    simonb 	for (i = npgs; --i >= 0;)
    479    1.1    simonb 		pv++->pv_pm = NULL;
    480    1.1    simonb 	pmap_attrib = (char *)pv;
    481    1.2       wiz 	memset(pv, 0, npgs);
    482    1.1    simonb 
    483    1.1    simonb 	pv = pv_table;
    484    1.1    simonb 	attr = pmap_attrib;
    485   1.99       rin 	for (bank = uvm_physseg_get_first(); uvm_physseg_valid_p(bank);
    486   1.75    cherry 	     bank = uvm_physseg_get_next(bank)) {
    487   1.75    cherry 		sz = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
    488   1.75    cherry 		uvm_physseg_get_pmseg(bank)->pvent = pv;
    489   1.75    cherry 		uvm_physseg_get_pmseg(bank)->attrs = attr;
    490    1.1    simonb 		pv += sz;
    491    1.1    simonb 		attr += sz;
    492    1.1    simonb 	}
    493    1.1    simonb 
    494    1.1    simonb 	pmap_initialized = 1;
    495   1.99       rin 
    496    1.1    simonb 	splx(s);
    497    1.1    simonb 
    498    1.1    simonb 	/* Setup a pool for additional pvlist structures */
    499   1.99       rin 	pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry",
    500   1.99       rin 	    NULL, IPL_VM);
    501   1.21   thorpej }
    502   1.21   thorpej 
    503   1.21   thorpej /*
    504   1.21   thorpej  * How much virtual space is available to the kernel?
    505   1.21   thorpej  */
    506   1.21   thorpej void
    507   1.21   thorpej pmap_virtual_space(vaddr_t *start, vaddr_t *end)
    508   1.21   thorpej {
    509   1.21   thorpej 
    510   1.21   thorpej 	*start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
    511   1.21   thorpej 	*end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
    512    1.1    simonb }
    513    1.1    simonb 
    514    1.5       eeh #ifdef PMAP_GROWKERNEL
    515    1.5       eeh /*
    516    1.5       eeh  * Preallocate kernel page tables to a specified VA.
    517    1.5       eeh  * This simply loops through the first TTE for each
    518   1.12    simonb  * page table from the beginning of the kernel pmap,
    519    1.5       eeh  * reads the entry, and if the result is
    520    1.5       eeh  * zero (either invalid entry or no page table) it stores
    521    1.5       eeh  * a zero there, populating page tables in the process.
    522    1.5       eeh  * This is not the most efficient technique but i don't
    523    1.5       eeh  * expect it to be called that often.
    524    1.5       eeh  */
    525   1.53       dsl extern struct vm_page *vm_page_alloc1(void);
    526   1.53       dsl extern void vm_page_free1(struct vm_page *);
    527    1.5       eeh 
    528    1.5       eeh vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
    529    1.5       eeh 
    530   1.12    simonb vaddr_t
    531   1.30       chs pmap_growkernel(vaddr_t maxkvaddr)
    532    1.5       eeh {
    533   1.99       rin 	struct pmap *pm = pmap_kernel();
    534    1.5       eeh 	paddr_t pg;
    535   1.99       rin 	int seg, s;
    536   1.12    simonb 
    537    1.5       eeh 	s = splvm();
    538    1.5       eeh 
    539    1.5       eeh 	/* Align with the start of a page table */
    540   1.99       rin 	for (kbreak &= ~(PTMAP - 1); kbreak < maxkvaddr; kbreak += PTMAP) {
    541    1.5       eeh 		seg = STIDX(kbreak);
    542    1.5       eeh 
    543   1.30       chs 		if (pte_find(pm, kbreak))
    544   1.30       chs 			continue;
    545   1.12    simonb 
    546   1.99       rin 		if (uvm.page_init_done)
    547    1.5       eeh 			pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
    548   1.99       rin 		else if (!uvm_page_physget(&pg))
    549   1.99       rin 			panic("pmap_growkernel: no memory");
    550   1.32    simonb 		if (!pg)
    551   1.32    simonb 			panic("pmap_growkernel: no pages");
    552    1.5       eeh 		pmap_zero_page((paddr_t)pg);
    553    1.5       eeh 
    554    1.5       eeh 		/* XXX This is based on all phymem being addressable */
    555    1.5       eeh 		pm->pm_ptbl[seg] = (u_int *)pg;
    556    1.5       eeh 	}
    557   1.99       rin 
    558    1.5       eeh 	splx(s);
    559   1.99       rin 
    560   1.97       rin 	return kbreak;
    561    1.5       eeh }
    562    1.5       eeh 
    563    1.5       eeh /*
    564    1.5       eeh  *	vm_page_alloc1:
    565    1.5       eeh  *
    566    1.5       eeh  *	Allocate and return a memory cell with no associated object.
    567    1.5       eeh  */
    568    1.5       eeh struct vm_page *
    569   1.30       chs vm_page_alloc1(void)
    570    1.5       eeh {
    571   1.30       chs 	struct vm_page *pg;
    572   1.30       chs 
    573   1.30       chs 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    574    1.5       eeh 	if (pg) {
    575    1.5       eeh 		pg->wire_count = 1;	/* no mappings yet */
    576    1.5       eeh 		pg->flags &= ~PG_BUSY;	/* never busy */
    577    1.5       eeh 	}
    578    1.5       eeh 	return pg;
    579    1.5       eeh }
    580    1.5       eeh 
    581    1.5       eeh /*
    582    1.5       eeh  *	vm_page_free1:
    583    1.5       eeh  *
    584    1.5       eeh  *	Returns the given page to the free list,
    585    1.5       eeh  *	disassociating it with any VM object.
    586    1.5       eeh  *
    587    1.5       eeh  *	Object and page must be locked prior to entry.
    588    1.5       eeh  */
    589    1.5       eeh void
    590   1.36       scw vm_page_free1(struct vm_page *pg)
    591    1.5       eeh {
    592   1.99       rin 
    593  1.100       rin 	KASSERTMSG(pg->flags == (PG_CLEAN | PG_FAKE),
    594  1.100       rin 	    "invalid page pg = %p, pa = %" PRIxPADDR,
    595  1.100       rin 	    pg, VM_PAGE_TO_PHYS(pg));
    596  1.100       rin 
    597   1.36       scw 	pg->flags |= PG_BUSY;
    598   1.36       scw 	pg->wire_count = 0;
    599   1.36       scw 	uvm_pagefree(pg);
    600    1.5       eeh }
    601    1.5       eeh #endif
    602    1.5       eeh 
    603    1.1    simonb /*
    604    1.1    simonb  * Create and return a physical map.
    605    1.1    simonb  */
    606    1.1    simonb struct pmap *
    607    1.1    simonb pmap_create(void)
    608    1.1    simonb {
    609    1.1    simonb 	struct pmap *pm;
    610    1.1    simonb 
    611   1.72      para 	pm = kmem_alloc(sizeof(*pm), KM_SLEEP);
    612   1.99       rin 	memset(pm, 0, sizeof(*pm));
    613   1.30       chs 	pm->pm_refs = 1;
    614    1.1    simonb 	return pm;
    615    1.1    simonb }
    616    1.1    simonb 
    617    1.1    simonb /*
    618    1.1    simonb  * Add a reference to the given pmap.
    619    1.1    simonb  */
    620    1.1    simonb void
    621    1.1    simonb pmap_reference(struct pmap *pm)
    622    1.1    simonb {
    623    1.1    simonb 
    624    1.1    simonb 	pm->pm_refs++;
    625    1.1    simonb }
    626    1.1    simonb 
    627    1.1    simonb /*
    628    1.1    simonb  * Retire the given pmap from service.
    629    1.1    simonb  * Should only be called if the map contains no valid mappings.
    630    1.1    simonb  */
    631    1.1    simonb void
    632    1.1    simonb pmap_destroy(struct pmap *pm)
    633    1.1    simonb {
    634   1.30       chs 	int i;
    635    1.1    simonb 
    636   1.99       rin 	if (--pm->pm_refs > 0)
    637   1.30       chs 		return;
    638   1.30       chs 	KASSERT(pm->pm_stats.resident_count == 0);
    639   1.30       chs 	KASSERT(pm->pm_stats.wired_count == 0);
    640    1.1    simonb 	for (i = 0; i < STSZ; i++)
    641    1.1    simonb 		if (pm->pm_ptbl[i]) {
    642   1.19   thorpej 			uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
    643   1.34      yamt 			    PAGE_SIZE, UVM_KMF_WIRED);
    644    1.1    simonb 			pm->pm_ptbl[i] = NULL;
    645    1.1    simonb 		}
    646   1.30       chs 	if (pm->pm_ctx)
    647   1.30       chs 		ctx_free(pm);
    648   1.72      para 	kmem_free(pm, sizeof(*pm));
    649    1.1    simonb }
    650    1.1    simonb 
    651    1.1    simonb /*
    652    1.1    simonb  * Copy the range specified by src_addr/len
    653    1.1    simonb  * from the source map to the range dst_addr/len
    654    1.1    simonb  * in the destination map.
    655    1.1    simonb  *
    656    1.1    simonb  * This routine is only advisory and need not do anything.
    657    1.1    simonb  */
    658    1.1    simonb void
    659    1.1    simonb pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
    660    1.1    simonb 	  vsize_t len, vaddr_t src_addr)
    661    1.1    simonb {
    662    1.1    simonb }
    663    1.1    simonb 
    664    1.1    simonb /*
    665    1.1    simonb  * Require that all active physical maps contain no
    666    1.1    simonb  * incorrect entries NOW.
    667    1.1    simonb  */
    668    1.1    simonb void
    669    1.4     chris pmap_update(struct pmap *pmap)
    670    1.1    simonb {
    671    1.1    simonb }
    672    1.1    simonb 
    673    1.1    simonb /*
    674    1.1    simonb  * Fill the given physical page with zeroes.
    675    1.1    simonb  */
    676    1.1    simonb void
    677    1.1    simonb pmap_zero_page(paddr_t pa)
    678    1.1    simonb {
    679   1.99       rin 	int i;
    680    1.1    simonb 
    681    1.8   thorpej #ifdef PPC_4XX_NOCACHE
    682   1.47  christos 	memset((void *)pa, 0, PAGE_SIZE);
    683    1.1    simonb #else
    684    1.1    simonb 
    685   1.19   thorpej 	for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
    686   1.99       rin 		__asm volatile ("dcbz 0,%0" : : "r"(pa));
    687    1.1    simonb 		pa += CACHELINESIZE;
    688    1.1    simonb 	}
    689    1.1    simonb #endif
    690    1.1    simonb }
    691    1.1    simonb 
    692    1.1    simonb /*
    693    1.1    simonb  * Copy the given physical source page to its destination.
    694    1.1    simonb  */
    695    1.1    simonb void
    696    1.1    simonb pmap_copy_page(paddr_t src, paddr_t dst)
    697    1.1    simonb {
    698    1.1    simonb 
    699   1.47  christos 	memcpy((void *)dst, (void *)src, PAGE_SIZE);
    700   1.69      matt 	dcache_wbinv_page(dst);
    701    1.1    simonb }
    702    1.1    simonb 
    703    1.1    simonb /*
    704   1.49   hannken  * This returns != 0 on success.
    705    1.1    simonb  */
    706    1.1    simonb static inline int
    707   1.49   hannken pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
    708    1.1    simonb {
    709  1.102       rin 	struct pv_entry *pv, *npv;
    710    1.1    simonb 	int s;
    711    1.1    simonb 
    712  1.103       rin 	KASSERT(pmap_initialized);
    713    1.1    simonb 
    714    1.1    simonb 	s = splvm();
    715   1.99       rin 
    716    1.1    simonb 	pv = pa_to_pv(pa);
    717    1.1    simonb 	if (!pv->pv_pm) {
    718    1.1    simonb 		/*
    719    1.1    simonb 		 * No entries yet, use header as the first entry.
    720    1.1    simonb 		 */
    721    1.1    simonb 		pv->pv_va = va;
    722    1.1    simonb 		pv->pv_pm = pm;
    723    1.1    simonb 		pv->pv_next = NULL;
    724    1.1    simonb 	} else {
    725    1.1    simonb 		/*
    726    1.1    simonb 		 * There is at least one other VA mapping this page.
    727    1.1    simonb 		 * Place this entry after the header.
    728    1.1    simonb 		 */
    729   1.49   hannken 		npv = pool_get(&pv_pool, PR_NOWAIT);
    730   1.49   hannken 		if (npv == NULL) {
    731   1.49   hannken 			if ((flags & PMAP_CANFAIL) == 0)
    732   1.49   hannken 				panic("pmap_enter_pv: failed");
    733   1.49   hannken 			splx(s);
    734   1.49   hannken 			return 0;
    735   1.49   hannken 		}
    736    1.1    simonb 		npv->pv_va = va;
    737    1.1    simonb 		npv->pv_pm = pm;
    738    1.1    simonb 		npv->pv_next = pv->pv_next;
    739    1.1    simonb 		pv->pv_next = npv;
    740   1.33       chs 		pv = npv;
    741    1.1    simonb 	}
    742   1.49   hannken 	if (flags & PMAP_WIRED) {
    743   1.30       chs 		PV_WIRE(pv);
    744   1.33       chs 		pm->pm_stats.wired_count++;
    745   1.30       chs 	}
    746   1.99       rin 
    747    1.1    simonb 	splx(s);
    748   1.99       rin 
    749   1.97       rin 	return 1;
    750    1.1    simonb }
    751    1.1    simonb 
    752    1.1    simonb static void
    753    1.1    simonb pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
    754    1.1    simonb {
    755    1.1    simonb 	struct pv_entry *pv, *npv;
    756    1.1    simonb 
    757    1.1    simonb 	/*
    758    1.1    simonb 	 * Remove from the PV table.
    759    1.1    simonb 	 */
    760    1.1    simonb 	pv = pa_to_pv(pa);
    761   1.30       chs 	if (!pv)
    762   1.30       chs 		return;
    763    1.1    simonb 
    764    1.1    simonb 	/*
    765    1.1    simonb 	 * If it is the first entry on the list, it is actually
    766    1.1    simonb 	 * in the header and we must copy the following entry up
    767    1.1    simonb 	 * to the header.  Otherwise we must search the list for
    768    1.1    simonb 	 * the entry.  In either case we free the now unused entry.
    769    1.1    simonb 	 */
    770    1.1    simonb 	if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    771   1.99       rin 		if (PV_ISWIRED(pv))
    772   1.30       chs 			pm->pm_stats.wired_count--;
    773    1.1    simonb 		if ((npv = pv->pv_next)) {
    774    1.1    simonb 			*pv = *npv;
    775    1.1    simonb 			pool_put(&pv_pool, npv);
    776    1.1    simonb 		} else
    777    1.1    simonb 			pv->pv_pm = NULL;
    778    1.1    simonb 	} else {
    779    1.1    simonb 		for (; (npv = pv->pv_next) != NULL; pv = npv)
    780    1.1    simonb 			if (pm == npv->pv_pm && PV_CMPVA(va, npv))
    781    1.1    simonb 				break;
    782    1.1    simonb 		if (npv) {
    783    1.1    simonb 			pv->pv_next = npv->pv_next;
    784   1.30       chs 			if (PV_ISWIRED(npv)) {
    785   1.30       chs 				pm->pm_stats.wired_count--;
    786   1.30       chs 			}
    787    1.1    simonb 			pool_put(&pv_pool, npv);
    788    1.1    simonb 		}
    789    1.1    simonb 	}
    790    1.1    simonb }
    791    1.1    simonb 
    792    1.1    simonb /*
    793    1.1    simonb  * Insert physical page at pa into the given pmap at virtual address va.
    794    1.1    simonb  */
    795    1.1    simonb int
    796   1.55        he pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
    797    1.1    simonb {
    798    1.1    simonb 	u_int tte;
    799   1.57   thorpej 	bool managed;
    800   1.99       rin 	int s;
    801    1.1    simonb 
    802    1.1    simonb 	/*
    803    1.1    simonb 	 * Have to remove any existing mapping first.
    804    1.1    simonb 	 */
    805   1.19   thorpej 	pmap_remove(pm, va, va + PAGE_SIZE);
    806    1.1    simonb 
    807   1.30       chs 	if (flags & PMAP_WIRED)
    808   1.30       chs 		flags |= prot;
    809    1.1    simonb 
    810   1.57   thorpej 	managed = uvm_pageismanaged(pa);
    811    1.1    simonb 
    812    1.1    simonb 	/*
    813    1.1    simonb 	 * Generate TTE.
    814    1.1    simonb 	 */
    815   1.26       chs 	tte = TTE_PA(pa);
    816    1.1    simonb 	/* XXXX -- need to support multiple page sizes. */
    817    1.1    simonb 	tte |= TTE_SZ_16K;
    818   1.99       rin 
    819  1.100       rin 	KASSERT((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) !=
    820  1.100       rin 	    (PMAP_NOCACHE | PME_WRITETHROUG));
    821   1.99       rin 
    822   1.99       rin 	if (flags & PMAP_NOCACHE) {
    823    1.1    simonb 		/* Must be I/O mapping */
    824    1.1    simonb 		tte |= TTE_I | TTE_G;
    825   1.99       rin 	}
    826    1.8   thorpej #ifdef PPC_4XX_NOCACHE
    827    1.1    simonb 	tte |= TTE_I;
    828    1.1    simonb #else
    829   1.99       rin 	else if (flags & PME_WRITETHROUG) {
    830    1.1    simonb 		/* Uncached and writethrough are not compatible */
    831    1.1    simonb 		tte |= TTE_W;
    832   1.99       rin 	}
    833    1.1    simonb #endif
    834   1.99       rin 
    835    1.1    simonb 	if (pm == pmap_kernel())
    836    1.1    simonb 		tte |= TTE_ZONE(ZONE_PRIV);
    837    1.1    simonb 	else
    838    1.1    simonb 		tte |= TTE_ZONE(ZONE_USER);
    839    1.1    simonb 
    840    1.1    simonb 	if (flags & VM_PROT_WRITE)
    841    1.1    simonb 		tte |= TTE_WR;
    842    1.1    simonb 
    843   1.26       chs 	if (flags & VM_PROT_EXECUTE)
    844   1.26       chs 		tte |= TTE_EX;
    845   1.26       chs 
    846    1.1    simonb 	/*
    847    1.1    simonb 	 * Now record mapping for later back-translation.
    848    1.1    simonb 	 */
    849    1.1    simonb 	if (pmap_initialized && managed) {
    850    1.1    simonb 		char *attr;
    851    1.1    simonb 
    852   1.49   hannken 		if (!pmap_enter_pv(pm, va, pa, flags)) {
    853    1.1    simonb 			/* Could not enter pv on a managed page */
    854   1.98       rin 			return ENOMEM;
    855    1.1    simonb 		}
    856    1.1    simonb 
    857    1.1    simonb 		/* Now set attributes. */
    858    1.1    simonb 		attr = pa_to_attr(pa);
    859  1.100       rin 		KASSERT(attr);
    860    1.1    simonb 		if (flags & VM_PROT_ALL)
    861   1.30       chs 			*attr |= PMAP_ATTR_REF;
    862    1.1    simonb 		if (flags & VM_PROT_WRITE)
    863   1.30       chs 			*attr |= PMAP_ATTR_CHG;
    864    1.1    simonb 	}
    865    1.1    simonb 
    866    1.1    simonb 	s = splvm();
    867    1.1    simonb 
    868    1.1    simonb 	/* Insert page into page table. */
    869   1.98       rin 	if (__predict_false(!pte_enter(pm, va, tte))) {
    870   1.98       rin 		if (__predict_false((flags & PMAP_CANFAIL) == 0))
    871   1.98       rin 			panic("%s: pte_enter", __func__);
    872   1.98       rin 		splx(s);
    873   1.98       rin 		return ENOMEM;
    874   1.98       rin 	}
    875    1.1    simonb 
    876    1.1    simonb 	/* If this is a real fault, enter it in the tlb */
    877    1.1    simonb 	if (tte && ((flags & PMAP_WIRED) == 0)) {
    878   1.71  kiyohara 		int s2 = splhigh();
    879    1.1    simonb 		ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
    880   1.71  kiyohara 		splx(s2);
    881    1.1    simonb 	}
    882   1.99       rin 
    883    1.1    simonb 	splx(s);
    884    1.6    simonb 
    885    1.6    simonb 	/* Flush the real memory from the instruction cache. */
    886    1.6    simonb 	if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
    887    1.6    simonb 		__syncicache((void *)pa, PAGE_SIZE);
    888    1.6    simonb 
    889    1.1    simonb 	return 0;
    890    1.1    simonb }
    891    1.1    simonb 
    892    1.1    simonb void
    893    1.1    simonb pmap_unwire(struct pmap *pm, vaddr_t va)
    894    1.1    simonb {
    895   1.33       chs 	struct pv_entry *pv;
    896    1.1    simonb 	paddr_t pa;
    897   1.30       chs 	int s;
    898    1.1    simonb 
    899   1.99       rin 	if (!pmap_extract(pm, va, &pa))
    900    1.1    simonb 		return;
    901    1.1    simonb 
    902    1.1    simonb 	pv = pa_to_pv(pa);
    903   1.30       chs 	if (!pv)
    904   1.30       chs 		return;
    905    1.1    simonb 
    906   1.30       chs 	s = splvm();
    907   1.99       rin 
    908   1.33       chs 	while (pv != NULL) {
    909   1.33       chs 		if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    910   1.33       chs 			if (PV_ISWIRED(pv)) {
    911   1.33       chs 				PV_UNWIRE(pv);
    912   1.30       chs 				pm->pm_stats.wired_count--;
    913   1.30       chs 			}
    914    1.1    simonb 			break;
    915    1.1    simonb 		}
    916   1.33       chs 		pv = pv->pv_next;
    917    1.1    simonb 	}
    918   1.99       rin 
    919    1.1    simonb 	splx(s);
    920    1.1    simonb }
    921    1.1    simonb 
    922    1.1    simonb void
    923   1.59    cegger pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
    924    1.1    simonb {
    925   1.99       rin 	struct pmap *pm = pmap_kernel();
    926   1.99       rin 	u_int tte;
    927    1.1    simonb 	int s;
    928    1.1    simonb 
    929    1.1    simonb 	/*
    930    1.1    simonb 	 * Generate TTE.
    931    1.1    simonb 	 *
    932    1.1    simonb 	 * XXXX
    933    1.1    simonb 	 *
    934    1.1    simonb 	 * Since the kernel does not handle execution privileges properly,
    935    1.1    simonb 	 * we will handle read and execute permissions together.
    936    1.1    simonb 	 */
    937    1.1    simonb 	tte = 0;
    938    1.1    simonb 	if (prot & VM_PROT_ALL) {
    939    1.1    simonb 		tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
    940    1.1    simonb 		/* XXXX -- need to support multiple page sizes. */
    941    1.1    simonb 		tte |= TTE_SZ_16K;
    942   1.99       rin 
    943  1.100       rin 		KASSERT((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) !=
    944  1.100       rin 		    (PMAP_NOCACHE | PME_WRITETHROUG));
    945   1.99       rin 
    946   1.70      matt 		if (flags & PMAP_NOCACHE)
    947    1.1    simonb 			/* Must be I/O mapping */
    948    1.1    simonb 			tte |= TTE_I | TTE_G;
    949    1.8   thorpej #ifdef PPC_4XX_NOCACHE
    950    1.1    simonb 		tte |= TTE_I;
    951    1.1    simonb #else
    952   1.99       rin 		else if (prot & PME_WRITETHROUG) {
    953    1.1    simonb 			/* Uncached and writethrough are not compatible */
    954    1.1    simonb 			tte |= TTE_W;
    955   1.99       rin 		}
    956    1.1    simonb #endif
    957    1.1    simonb 		if (prot & VM_PROT_WRITE)
    958    1.1    simonb 			tte |= TTE_WR;
    959    1.1    simonb 	}
    960    1.1    simonb 
    961    1.1    simonb 	s = splvm();
    962    1.1    simonb 
    963    1.1    simonb 	/* Insert page into page table. */
    964   1.98       rin 	if (__predict_false(!pte_enter(pm, va, tte)))
    965   1.98       rin 		panic("%s: pte_enter", __func__);
    966   1.99       rin 
    967    1.1    simonb 	splx(s);
    968    1.1    simonb }
    969    1.1    simonb 
    970    1.1    simonb void
    971    1.1    simonb pmap_kremove(vaddr_t va, vsize_t len)
    972    1.1    simonb {
    973    1.1    simonb 
    974    1.1    simonb 	while (len > 0) {
    975   1.98       rin 		(void)pte_enter(pmap_kernel(), va, 0);	/* never fail */
    976    1.1    simonb 		va += PAGE_SIZE;
    977    1.1    simonb 		len -= PAGE_SIZE;
    978    1.1    simonb 	}
    979    1.1    simonb }
    980    1.1    simonb 
    981    1.1    simonb /*
    982    1.1    simonb  * Remove the given range of mapping entries.
    983    1.1    simonb  */
    984    1.1    simonb void
    985    1.1    simonb pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
    986    1.1    simonb {
    987    1.1    simonb 	paddr_t pa;
    988    1.1    simonb 	volatile u_int *ptp;
    989   1.99       rin 	int s;
    990    1.1    simonb 
    991    1.1    simonb 	s = splvm();
    992   1.99       rin 
    993    1.1    simonb 	while (va < endva) {
    994    1.1    simonb 		if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
    995    1.1    simonb 			pa = TTE_PA(pa);
    996    1.1    simonb 			pmap_remove_pv(pm, va, pa);
    997    1.1    simonb 			*ptp = 0;
    998    1.1    simonb 			ppc4xx_tlb_flush(va, pm->pm_ctx);
    999    1.1    simonb 			pm->pm_stats.resident_count--;
   1000    1.1    simonb 		}
   1001   1.19   thorpej 		va += PAGE_SIZE;
   1002    1.1    simonb 	}
   1003    1.1    simonb 
   1004    1.1    simonb 	splx(s);
   1005    1.1    simonb }
   1006    1.1    simonb 
   1007    1.1    simonb /*
   1008    1.1    simonb  * Get the physical page address for the given pmap/virtual address.
   1009    1.1    simonb  */
   1010   1.45   thorpej bool
   1011    1.1    simonb pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
   1012    1.1    simonb {
   1013   1.99       rin 	int seg = STIDX(va), ptn = PTIDX(va);
   1014    1.1    simonb 	u_int pa = 0;
   1015   1.30       chs 	int s;
   1016    1.1    simonb 
   1017   1.30       chs 	s = splvm();
   1018   1.99       rin 
   1019   1.99       rin 	if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn]) && pap)
   1020    1.1    simonb 		*pap = TTE_PA(pa) | (va & PGOFSET);
   1021   1.99       rin 
   1022    1.1    simonb 	splx(s);
   1023   1.99       rin 
   1024   1.97       rin 	return pa != 0;
   1025    1.1    simonb }
   1026    1.1    simonb 
   1027    1.1    simonb /*
   1028    1.1    simonb  * Lower the protection on the specified range of this pmap.
   1029    1.1    simonb  *
   1030    1.1    simonb  * There are only two cases: either the protection is going to 0,
   1031    1.1    simonb  * or it is going to read-only.
   1032    1.1    simonb  */
   1033    1.1    simonb void
   1034    1.1    simonb pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   1035    1.1    simonb {
   1036    1.1    simonb 	volatile u_int *ptp;
   1037   1.26       chs 	int s, bic;
   1038    1.1    simonb 
   1039   1.26       chs 	if ((prot & VM_PROT_READ) == 0) {
   1040   1.26       chs 		pmap_remove(pm, sva, eva);
   1041   1.26       chs 		return;
   1042   1.26       chs 	}
   1043   1.26       chs 	bic = 0;
   1044   1.99       rin 	if ((prot & VM_PROT_WRITE) == 0)
   1045   1.26       chs 		bic |= TTE_WR;
   1046   1.99       rin 	if ((prot & VM_PROT_EXECUTE) == 0)
   1047   1.26       chs 		bic |= TTE_EX;
   1048   1.99       rin 	if (bic == 0)
   1049   1.26       chs 		return;
   1050   1.99       rin 
   1051   1.26       chs 	s = splvm();
   1052   1.99       rin 
   1053   1.26       chs 	while (sva < eva) {
   1054   1.26       chs 		if ((ptp = pte_find(pm, sva)) != NULL) {
   1055   1.26       chs 			*ptp &= ~bic;
   1056   1.26       chs 			ppc4xx_tlb_flush(sva, pm->pm_ctx);
   1057    1.1    simonb 		}
   1058   1.26       chs 		sva += PAGE_SIZE;
   1059    1.1    simonb 	}
   1060   1.99       rin 
   1061   1.26       chs 	splx(s);
   1062    1.1    simonb }
   1063    1.1    simonb 
   1064   1.45   thorpej bool
   1065   1.30       chs pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
   1066    1.1    simonb {
   1067   1.30       chs 	paddr_t pa;
   1068    1.1    simonb 	char *attr;
   1069   1.30       chs 	int s, rv;
   1070    1.1    simonb 
   1071    1.1    simonb 	/*
   1072    1.1    simonb 	 * First modify bits in cache.
   1073    1.1    simonb 	 */
   1074   1.30       chs 	pa = VM_PAGE_TO_PHYS(pg);
   1075    1.1    simonb 	attr = pa_to_attr(pa);
   1076    1.1    simonb 	if (attr == NULL)
   1077   1.46   thorpej 		return false;
   1078    1.1    simonb 
   1079   1.30       chs 	s = splvm();
   1080   1.99       rin 
   1081   1.99       rin 	rv = (*attr & mask) != 0;
   1082   1.11       eeh 	if (clear) {
   1083    1.1    simonb 		*attr &= ~mask;
   1084   1.99       rin 		pmap_page_protect(pg,
   1085   1.99       rin 		    mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
   1086   1.11       eeh 	}
   1087   1.99       rin 
   1088    1.1    simonb 	splx(s);
   1089   1.99       rin 
   1090    1.1    simonb 	return rv;
   1091    1.1    simonb }
   1092    1.1    simonb 
   1093    1.1    simonb 
   1094    1.1    simonb /*
   1095    1.1    simonb  * Lower the protection on the specified physical page.
   1096    1.1    simonb  *
   1097    1.1    simonb  * There are only two cases: either the protection is going to 0,
   1098    1.1    simonb  * or it is going to read-only.
   1099    1.1    simonb  */
   1100    1.1    simonb void
   1101    1.1    simonb pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   1102    1.1    simonb {
   1103   1.99       rin 	struct pv_entry *pvh, *pv, *npv;
   1104   1.99       rin 	struct pmap *pm;
   1105    1.1    simonb 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   1106    1.1    simonb 	vaddr_t va;
   1107    1.1    simonb 
   1108    1.1    simonb 	pvh = pa_to_pv(pa);
   1109    1.1    simonb 	if (pvh == NULL)
   1110    1.1    simonb 		return;
   1111    1.1    simonb 
   1112    1.1    simonb 	/* Handle extra pvs which may be deleted in the operation */
   1113    1.1    simonb 	for (pv = pvh->pv_next; pv; pv = npv) {
   1114    1.1    simonb 		npv = pv->pv_next;
   1115    1.1    simonb 
   1116    1.1    simonb 		pm = pv->pv_pm;
   1117   1.91       rin 		va = PV_VA(pv);
   1118   1.26       chs 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
   1119    1.1    simonb 	}
   1120   1.99       rin 
   1121    1.1    simonb 	/* Now check the head pv */
   1122    1.1    simonb 	if (pvh->pv_pm) {
   1123    1.1    simonb 		pv = pvh;
   1124    1.1    simonb 		pm = pv->pv_pm;
   1125   1.91       rin 		va = PV_VA(pv);
   1126   1.26       chs 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
   1127    1.1    simonb 	}
   1128    1.1    simonb }
   1129    1.1    simonb 
   1130    1.1    simonb /*
   1131    1.1    simonb  * Activate the address space for the specified process.  If the process
   1132    1.1    simonb  * is the current process, load the new MMU context.
   1133    1.1    simonb  */
   1134    1.1    simonb void
   1135   1.17   thorpej pmap_activate(struct lwp *l)
   1136    1.1    simonb {
   1137    1.1    simonb #if 0
   1138   1.65     rmind 	struct pcb *pcb = lwp_getpcb(l);
   1139   1.17   thorpej 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   1140    1.1    simonb 
   1141    1.1    simonb 	/*
   1142   1.61     skrll 	 * XXX Normally performed in cpu_lwp_fork().
   1143    1.1    simonb 	 */
   1144   1.17   thorpej 	printf("pmap_activate(%p), pmap=%p\n",l,pmap);
   1145   1.25      matt 	pcb->pcb_pm = pmap;
   1146    1.1    simonb #endif
   1147    1.1    simonb }
   1148    1.1    simonb 
   1149    1.1    simonb /*
   1150    1.1    simonb  * Deactivate the specified process's address space.
   1151    1.1    simonb  */
   1152    1.1    simonb void
   1153   1.17   thorpej pmap_deactivate(struct lwp *l)
   1154    1.1    simonb {
   1155    1.1    simonb }
   1156    1.1    simonb 
   1157    1.1    simonb /*
   1158    1.1    simonb  * Synchronize caches corresponding to [addr, addr+len) in p.
   1159    1.1    simonb  */
   1160    1.1    simonb void
   1161    1.1    simonb pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   1162    1.1    simonb {
   1163   1.95       rin 	struct pmap *pm = p->p_vmspace->vm_map.pmap;
   1164   1.18   hannken 
   1165   1.94       rin 	if (__predict_true(p == curproc)) {
   1166   1.94       rin 		int msr, ctx, opid;
   1167    1.1    simonb 
   1168   1.94       rin 		/*
   1169   1.94       rin 		 * Take it easy! TLB miss handler takes care of us.
   1170   1.94       rin 		 */
   1171   1.94       rin 
   1172   1.94       rin 		/*
   1173   1.94       rin 	 	 * Need to turn off IMMU and switch to user context.
   1174   1.94       rin 		 * (icbi uses DMMU).
   1175   1.94       rin 		 */
   1176   1.94       rin 
   1177   1.94       rin 		if (!(ctx = pm->pm_ctx)) {
   1178   1.94       rin 			/* No context -- assign it one */
   1179   1.94       rin 			ctx_alloc(pm);
   1180   1.94       rin 			ctx = pm->pm_ctx;
   1181   1.94       rin 		}
   1182   1.94       rin 
   1183   1.99       rin 		__asm volatile (
   1184   1.99       rin 			"mfmsr	%0;"
   1185   1.99       rin 			"li	%1,0x20;"	/* Turn off IMMU */
   1186   1.99       rin 			"andc	%1,%0,%1;"
   1187   1.99       rin 			"ori	%1,%1,0x10;"	/* Turn on DMMU for sure */
   1188   1.99       rin 			"mtmsr	%1;"
   1189   1.94       rin 			"isync;"
   1190   1.99       rin 			"mfpid	%1;"
   1191   1.99       rin 			"mtpid	%2;"
   1192   1.94       rin 			"isync;"
   1193   1.94       rin 		"1:"
   1194   1.99       rin 			"dcbst	0,%3;"
   1195   1.99       rin 			"icbi	0,%3;"
   1196   1.99       rin 			"add	%3,%3,%5;"
   1197   1.99       rin 			"sub.	%4,%4,%5;"
   1198   1.99       rin 			"bge	1b;"
   1199   1.94       rin 			"sync;"
   1200   1.99       rin 			"mtpid	%1;"
   1201   1.99       rin 			"mtmsr	%0;"
   1202   1.94       rin 			"isync;"
   1203   1.99       rin 			: "=&r"(msr), "=&r"(opid)
   1204   1.99       rin 			: "r"(ctx), "r"(va), "r"(len), "r"(CACHELINESIZE));
   1205   1.94       rin 	} else {
   1206   1.94       rin 		paddr_t pa;
   1207   1.94       rin 		vaddr_t tva, eva;
   1208   1.94       rin 		int tlen;
   1209   1.94       rin 
   1210   1.94       rin 		/*
   1211   1.94       rin 		 * For p != curproc, we cannot rely upon TLB miss handler in
   1212   1.94       rin 		 * user context. Therefore, extract pa and operate againt it.
   1213   1.94       rin 		 *
   1214   1.94       rin 		 * Note that va below VM_MIN_KERNEL_ADDRESS is reserved for
   1215   1.94       rin 		 * direct mapping.
   1216   1.94       rin 		 */
   1217   1.94       rin 
   1218   1.94       rin 		for (tva = va; len > 0; tva = eva, len -= tlen) {
   1219   1.94       rin 			eva = uimin(tva + len, trunc_page(tva + PAGE_SIZE));
   1220   1.94       rin 			tlen = eva - tva;
   1221   1.94       rin 			if (!pmap_extract(pm, tva, &pa)) {
   1222   1.94       rin 				/* XXX should be already unmapped */
   1223   1.94       rin 				continue;
   1224   1.94       rin 			}
   1225   1.94       rin 			__syncicache((void *)pa, tlen);
   1226   1.94       rin 		}
   1227    1.1    simonb 	}
   1228    1.1    simonb }
   1229    1.1    simonb 
   1230   1.93       rin static inline void
   1231   1.93       rin tlb_invalidate_entry(int i)
   1232   1.93       rin {
   1233   1.93       rin #ifdef PMAP_TLBDEBUG
   1234   1.93       rin 	/*
   1235   1.93       rin 	 * Clear only TLBHI[V] bit so that we can track invalidated entry.
   1236   1.93       rin 	 */
   1237   1.93       rin 	register_t msr, pid, hi;
   1238   1.93       rin 
   1239   1.93       rin 	KASSERT(mfspr(SPR_PID) == KERNEL_PID);
   1240   1.93       rin 
   1241   1.99       rin 	__asm volatile (
   1242   1.93       rin 		"mfmsr	%0;"
   1243   1.93       rin 		"li	%1,0;"
   1244   1.93       rin 		"mtmsr	%1;"
   1245   1.93       rin 		"mfpid	%1;"
   1246   1.93       rin 		"tlbre	%2,%3,0;"
   1247   1.93       rin 		"andc	%2,%2,%4;"
   1248   1.93       rin 		"tlbwe	%2,%3,0;"
   1249   1.93       rin 		"mtpid	%1;"
   1250   1.93       rin 		"mtmsr	%0;"
   1251   1.93       rin 		"isync;"
   1252   1.99       rin 		: "=&r"(msr), "=&r"(pid), "=&r"(hi)
   1253   1.99       rin 		: "r"(i), "r"(TLB_VALID));
   1254   1.93       rin #else
   1255   1.93       rin 	/*
   1256   1.93       rin 	 * Just clear entire TLBHI register.
   1257   1.93       rin 	 */
   1258   1.99       rin 	__asm volatile (
   1259   1.93       rin 		"tlbwe %0,%1,0;"
   1260   1.93       rin 		"isync;"
   1261   1.99       rin 		: : "r"(0), "r"(i));
   1262   1.93       rin #endif
   1263   1.93       rin 
   1264   1.93       rin 	tlb_info[i].ti_ctx = 0;
   1265   1.93       rin 	tlb_info[i].ti_flags = 0;
   1266   1.93       rin }
   1267    1.1    simonb 
   1268    1.1    simonb /* This has to be done in real mode !!! */
   1269    1.1    simonb void
   1270    1.1    simonb ppc4xx_tlb_flush(vaddr_t va, int pid)
   1271    1.1    simonb {
   1272   1.99       rin 	u_long msr, i, found;
   1273    1.1    simonb 
   1274    1.1    simonb 	/* If there's no context then it can't be mapped. */
   1275   1.26       chs 	if (!pid)
   1276   1.26       chs 		return;
   1277    1.1    simonb 
   1278   1.99       rin 	__asm volatile (
   1279   1.99       rin 		"mfpid	%1;"		/* Save PID */
   1280   1.99       rin 		"mfmsr	%2;"		/* Save MSR */
   1281   1.99       rin 		"li	%0,0;"		/* Now clear MSR */
   1282   1.99       rin 		"mtmsr	%0;"
   1283   1.88       rin 		"isync;"
   1284   1.99       rin 		"mtpid	%4;"		/* Set PID */
   1285   1.88       rin 		"isync;"
   1286   1.99       rin 		"tlbsx.	%0,0,%3;"	/* Search TLB */
   1287   1.88       rin 		"isync;"
   1288   1.99       rin 		"mtpid	%1;"		/* Restore PID */
   1289   1.99       rin 		"mtmsr	%2;"		/* Restore MSR */
   1290   1.88       rin 		"isync;"
   1291   1.99       rin 		"li	%1,1;"
   1292   1.99       rin 		"beq	1f;"
   1293   1.99       rin 		"li	%1,0;"
   1294   1.99       rin 	"1:"
   1295   1.99       rin 		: "=&r"(i), "=&r"(found), "=&r"(msr)
   1296   1.99       rin 		: "r"(va), "r"(pid));
   1297   1.99       rin 
   1298    1.1    simonb 	if (found && !TLB_LOCKED(i)) {
   1299    1.1    simonb 		/* Now flush translation */
   1300   1.93       rin 		tlb_invalidate_entry(i);
   1301    1.1    simonb 		tlbnext = i;
   1302    1.1    simonb 		/* Successful flushes */
   1303    1.1    simonb 		tlbflush_ev.ev_count++;
   1304    1.1    simonb 	}
   1305    1.1    simonb }
   1306    1.1    simonb 
   1307    1.1    simonb void
   1308    1.1    simonb ppc4xx_tlb_flush_all(void)
   1309    1.1    simonb {
   1310    1.1    simonb 	u_long i;
   1311    1.1    simonb 
   1312    1.1    simonb 	for (i = 0; i < NTLB; i++)
   1313   1.93       rin 		if (!TLB_LOCKED(i))
   1314   1.93       rin 			tlb_invalidate_entry(i);
   1315    1.1    simonb 
   1316   1.99       rin 	__asm volatile ("isync");
   1317    1.1    simonb }
   1318    1.1    simonb 
   1319    1.1    simonb /* Find a TLB entry to evict. */
   1320    1.1    simonb static int
   1321    1.1    simonb ppc4xx_tlb_find_victim(void)
   1322    1.1    simonb {
   1323    1.1    simonb 	int flags;
   1324    1.1    simonb 
   1325    1.1    simonb 	for (;;) {
   1326    1.1    simonb 		if (++tlbnext >= NTLB)
   1327   1.42     freza 			tlbnext = tlb_nreserved;
   1328    1.1    simonb 		flags = tlb_info[tlbnext].ti_flags;
   1329   1.12    simonb 		if (!(flags & TLBF_USED) ||
   1330   1.99       rin 		    (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
   1331    1.1    simonb 			u_long va, stack = (u_long)&va;
   1332    1.1    simonb 
   1333   1.99       rin 			if (!((tlb_info[tlbnext].ti_va ^ stack) &
   1334   1.99       rin 				(~PGOFSET)) &&
   1335    1.1    simonb 			    (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
   1336   1.99       rin 			    (flags & TLBF_USED)) {
   1337    1.1    simonb 				/* Kernel stack page */
   1338   1.80       rin 				flags |= TLBF_REF;
   1339    1.1    simonb 				tlb_info[tlbnext].ti_flags = flags;
   1340    1.1    simonb 			} else {
   1341    1.1    simonb 				/* Found it! */
   1342   1.97       rin 				return tlbnext;
   1343    1.1    simonb 			}
   1344   1.99       rin 		} else
   1345    1.1    simonb 			tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
   1346    1.1    simonb 	}
   1347    1.1    simonb }
   1348    1.1    simonb 
   1349    1.1    simonb void
   1350    1.1    simonb ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
   1351    1.1    simonb {
   1352    1.1    simonb 	u_long th, tl, idx;
   1353   1.10       eeh 	paddr_t pa;
   1354   1.99       rin 	int msr, pid, sz;
   1355   1.10       eeh 
   1356    1.1    simonb 	tlbenter_ev.ev_count++;
   1357    1.1    simonb 
   1358   1.10       eeh 	sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
   1359   1.10       eeh 	pa = (pte & TTE_RPN_MASK(sz));
   1360   1.10       eeh 	th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
   1361   1.10       eeh 	tl = (pte & ~TLB_RPN_MASK) | pa;
   1362   1.10       eeh 	tl |= ppc4xx_tlbflags(va, pa);
   1363    1.1    simonb 
   1364    1.1    simonb 	idx = ppc4xx_tlb_find_victim();
   1365    1.1    simonb 
   1366  1.100       rin 	KASSERTMSG(idx >= tlb_nreserved && idx < NTLB,
   1367  1.100       rin 	    "invalid entry %ld", idx);
   1368   1.12    simonb 
   1369    1.1    simonb 	tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
   1370    1.1    simonb 	tlb_info[idx].ti_ctx = ctx;
   1371    1.1    simonb 	tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
   1372    1.1    simonb 
   1373   1.99       rin 	__asm volatile (
   1374   1.99       rin 		"mfmsr	%0;"			/* Save MSR */
   1375   1.99       rin 		"li	%1,0;"
   1376   1.99       rin 		"mtmsr	%1;"			/* Clear MSR */
   1377   1.88       rin 		"isync;"
   1378   1.99       rin 		"tlbwe	%1,%3,0;"		/* Invalidate old entry. */
   1379   1.99       rin 		"mfpid	%1;"			/* Save old PID */
   1380   1.99       rin 		"mtpid	%2;"			/* Load translation ctx */
   1381   1.88       rin 		"isync;"
   1382   1.99       rin 		"tlbwe	%4,%3,1;"		/* Set TLB */
   1383   1.99       rin 		"tlbwe	%5,%3,0;"
   1384   1.88       rin 		"isync;"
   1385   1.99       rin 		"mtpid	%1;"			/* Restore PID */
   1386   1.99       rin 		"mtmsr	%0;"			/* and MSR */
   1387   1.88       rin 		"isync;"
   1388   1.99       rin 		: "=&r"(msr), "=&r"(pid)
   1389   1.99       rin 		: "r"(ctx), "r"(idx), "r"(tl), "r"(th));
   1390    1.1    simonb }
   1391    1.1    simonb 
   1392    1.1    simonb void
   1393    1.1    simonb ppc4xx_tlb_init(void)
   1394    1.1    simonb {
   1395    1.1    simonb 	int i;
   1396    1.1    simonb 
   1397    1.1    simonb 	/* Mark reserved TLB entries */
   1398   1.42     freza 	for (i = 0; i < tlb_nreserved; i++) {
   1399    1.1    simonb 		tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
   1400    1.1    simonb 		tlb_info[i].ti_ctx = KERNEL_PID;
   1401    1.1    simonb 	}
   1402    1.1    simonb 
   1403    1.1    simonb 	/* Setup security zones */
   1404    1.1    simonb 	/* Z0 - accessible by kernel only if TLB entry permissions allow
   1405    1.1    simonb 	 * Z1,Z2 - access is controlled by TLB entry permissions
   1406    1.1    simonb 	 * Z3 - full access regardless of TLB entry permissions
   1407    1.1    simonb 	 */
   1408    1.1    simonb 
   1409   1.99       rin 	__asm volatile (
   1410   1.99       rin 		"mtspr	%0,%1;"
   1411   1.88       rin 		"isync;"
   1412   1.99       rin 		: : "K"(SPR_ZPR), "r"(0x1b000000));
   1413    1.1    simonb }
   1414    1.1    simonb 
   1415   1.42     freza /*
   1416   1.42     freza  * ppc4xx_tlb_size_mask:
   1417   1.42     freza  *
   1418   1.42     freza  * 	Roundup size to supported page size, return TLBHI mask and real size.
   1419   1.42     freza  */
   1420   1.42     freza static int
   1421   1.42     freza ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
   1422   1.42     freza {
   1423   1.99       rin 	int i;
   1424   1.42     freza 
   1425   1.42     freza 	for (i = 0; i < __arraycount(tlbsize); i++)
   1426   1.42     freza 		if (size <= tlbsize[i]) {
   1427   1.42     freza 			*mask = (i << TLB_SIZE_SHFT);
   1428   1.42     freza 			*rsiz = tlbsize[i];
   1429   1.97       rin 			return 0;
   1430   1.42     freza 		}
   1431   1.97       rin 	return EINVAL;
   1432   1.42     freza }
   1433   1.42     freza 
   1434   1.42     freza /*
   1435   1.42     freza  * ppc4xx_tlb_mapiodev:
   1436   1.42     freza  *
   1437   1.42     freza  * 	Lookup virtual address of mapping previously entered via
   1438   1.42     freza  * 	ppc4xx_tlb_reserve. Search TLB directly so that we don't
   1439   1.42     freza  * 	need to waste extra storage for reserved mappings. Note
   1440   1.42     freza  * 	that reading TLBHI also sets PID, but all reserved mappings
   1441   1.42     freza  * 	use KERNEL_PID, so the side effect is nil.
   1442   1.42     freza  */
   1443   1.42     freza void *
   1444   1.42     freza ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
   1445   1.42     freza {
   1446   1.99       rin 	paddr_t pa;
   1447   1.99       rin 	vaddr_t va;
   1448   1.99       rin 	u_int lo, hi, sz;
   1449   1.99       rin 	int i;
   1450   1.42     freza 
   1451   1.42     freza 	/* tlb_nreserved is only allowed to grow, so this is safe. */
   1452   1.42     freza 	for (i = 0; i < tlb_nreserved; i++) {
   1453   1.42     freza 		__asm volatile (
   1454   1.99       rin 		    "tlbre	%0,%2,1;" 	/* TLBLO */
   1455   1.99       rin 		    "tlbre	%1,%2,0;" 	/* TLBHI */
   1456   1.99       rin 		    : "=&r"(lo), "=&r"(hi)
   1457   1.99       rin 		    : "r"(i));
   1458   1.42     freza 
   1459   1.42     freza 		KASSERT(hi & TLB_VALID);
   1460   1.42     freza 		KASSERT(mfspr(SPR_PID) == KERNEL_PID);
   1461   1.42     freza 
   1462   1.42     freza 		pa = (lo & TLB_RPN_MASK);
   1463   1.42     freza 		if (base < pa)
   1464   1.42     freza 			continue;
   1465   1.42     freza 
   1466   1.42     freza 		sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
   1467   1.99       rin 		if (base + len > pa + sz)
   1468   1.42     freza 			continue;
   1469   1.42     freza 
   1470   1.42     freza 		va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); 	/* sz = 2^n */
   1471   1.97       rin 		return (void *)va;
   1472   1.42     freza 	}
   1473   1.42     freza 
   1474   1.97       rin 	return NULL;
   1475   1.42     freza }
   1476   1.42     freza 
   1477   1.42     freza /*
   1478   1.42     freza  * ppc4xx_tlb_reserve:
   1479   1.42     freza  *
   1480   1.42     freza  * 	Map physical range to kernel virtual chunk via reserved TLB entry.
   1481   1.42     freza  */
   1482   1.42     freza void
   1483   1.42     freza ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
   1484   1.42     freza {
   1485   1.99       rin 	u_int lo, hi;
   1486   1.99       rin 	int szmask, rsize;
   1487   1.42     freza 
   1488   1.42     freza 	/* Called before pmap_bootstrap(), va outside kernel space. */
   1489   1.42     freza 	KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
   1490   1.99       rin 	KASSERT(!pmap_bootstrap_done);
   1491   1.42     freza 	KASSERT(tlb_nreserved < NTLB);
   1492   1.42     freza 
   1493   1.42     freza 	/* Resolve size. */
   1494   1.42     freza 	if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
   1495   1.42     freza 		panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
   1496   1.42     freza 		    size, tlb_nreserved);
   1497   1.42     freza 
   1498   1.42     freza 	/* Real size will be power of two >= 1024, so this is OK. */
   1499   1.42     freza 	pa &= ~(rsize - 1); 	/* RPN */
   1500   1.42     freza 	va &= ~(rsize - 1); 	/* EPN */
   1501   1.42     freza 
   1502   1.42     freza 	lo = pa | TLB_WR | flags;
   1503   1.43  kiyohara 	hi = va | TLB_VALID | szmask;
   1504   1.42     freza 
   1505   1.42     freza #ifdef PPC_4XX_NOCACHE
   1506   1.42     freza 	lo |= TLB_I;
   1507   1.42     freza #endif
   1508   1.42     freza 
   1509   1.42     freza 	__asm volatile(
   1510   1.99       rin 		"tlbwe	%1,%0,1;"	/* write TLBLO */
   1511   1.99       rin 		"tlbwe	%2,%0,0;"	/* write TLBHI */
   1512   1.99       rin 		"isync;"
   1513   1.99       rin 		: : "r"(tlb_nreserved), "r"(lo), "r"(hi));
   1514   1.42     freza 
   1515   1.42     freza 	tlb_nreserved++;
   1516   1.42     freza }
   1517    1.1    simonb 
   1518    1.1    simonb /*
   1519    1.1    simonb  * We should pass the ctx in from trap code.
   1520    1.1    simonb  */
   1521    1.1    simonb int
   1522    1.1    simonb pmap_tlbmiss(vaddr_t va, int ctx)
   1523    1.1    simonb {
   1524    1.1    simonb 	volatile u_int *pte;
   1525    1.1    simonb 	u_long tte;
   1526    1.1    simonb 
   1527    1.1    simonb 	tlbmiss_ev.ev_count++;
   1528    1.1    simonb 
   1529    1.1    simonb 	/*
   1530   1.44     freza 	 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
   1531   1.44     freza 	 * Physical RAM is expected to live in this range, care must be taken
   1532   1.44     freza 	 * to not clobber 0 upto ${physmem} with device mappings in machdep
   1533   1.44     freza 	 * code.
   1534    1.1    simonb 	 */
   1535   1.63  uebayasi 	if (ctx != KERNEL_PID ||
   1536   1.63  uebayasi 	    (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) {
   1537   1.36       scw 		pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
   1538    1.1    simonb 		if (pte == NULL) {
   1539   1.99       rin 			/*
   1540   1.99       rin 			 * Map unmanaged addresses directly for
   1541   1.99       rin 			 * kernel access
   1542   1.99       rin 			 */
   1543    1.1    simonb 			return 1;
   1544    1.1    simonb 		}
   1545    1.1    simonb 		tte = *pte;
   1546   1.99       rin 		if (tte == 0)
   1547    1.1    simonb 			return 1;
   1548    1.1    simonb 	} else {
   1549   1.16       wiz 		/* Create a 16MB writable mapping. */
   1550   1.99       rin 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
   1551    1.8   thorpej #ifdef PPC_4XX_NOCACHE
   1552   1.99       rin 		tte |= TTE_I;
   1553    1.1    simonb #endif
   1554    1.1    simonb 	}
   1555    1.1    simonb 	ppc4xx_tlb_enter(ctx, va, tte);
   1556    1.1    simonb 
   1557    1.1    simonb 	return 0;
   1558    1.1    simonb }
   1559    1.1    simonb 
   1560    1.1    simonb /*
   1561    1.1    simonb  * Flush all the entries matching a context from the TLB.
   1562    1.1    simonb  */
   1563    1.1    simonb static int
   1564    1.1    simonb ctx_flush(int cnum)
   1565    1.1    simonb {
   1566    1.1    simonb 	int i;
   1567    1.1    simonb 
   1568    1.1    simonb 	/* We gotta steal this context */
   1569   1.42     freza 	for (i = tlb_nreserved; i < NTLB; i++) {
   1570    1.1    simonb 		if (tlb_info[i].ti_ctx == cnum) {
   1571  1.100       rin 			/* Can't steal ctx if it has locked/reserved entry. */
   1572  1.100       rin 			KASSERTMSG(!TLB_LOCKED(i) && i >= tlb_nreserved,
   1573  1.100       rin 			    "locked/reserved entry %d for ctx %d",
   1574  1.100       rin 			    i, cnum);
   1575   1.93       rin 			/*
   1576   1.93       rin 			 * Invalidate particular TLB entry regardless of
   1577   1.93       rin 			 * locked status
   1578   1.93       rin 			 */
   1579   1.93       rin 			tlb_invalidate_entry(i);
   1580    1.1    simonb 		}
   1581    1.1    simonb 	}
   1582   1.97       rin 	return 0;
   1583    1.1    simonb }
   1584    1.1    simonb 
   1585    1.1    simonb /*
   1586    1.1    simonb  * Allocate a context.  If necessary, steal one from someone else.
   1587    1.1    simonb  *
   1588    1.1    simonb  * The new context is flushed from the TLB before returning.
   1589    1.1    simonb  */
   1590    1.1    simonb int
   1591    1.1    simonb ctx_alloc(struct pmap *pm)
   1592    1.1    simonb {
   1593    1.1    simonb 	static int next = MINCTX;
   1594   1.99       rin 	int cnum, s;
   1595    1.1    simonb 
   1596  1.100       rin 	KASSERT(pm != pmap_kernel());
   1597   1.99       rin 
   1598    1.1    simonb 	s = splvm();
   1599    1.1    simonb 
   1600    1.1    simonb 	/* Find a likely context. */
   1601    1.1    simonb 	cnum = next;
   1602    1.1    simonb 	do {
   1603   1.99       rin 		if (++cnum >= NUMCTX)
   1604    1.1    simonb 			cnum = MINCTX;
   1605    1.1    simonb 	} while (ctxbusy[cnum] != NULL && cnum != next);
   1606    1.1    simonb 
   1607    1.1    simonb 	/* Now clean it out */
   1608    1.1    simonb oops:
   1609    1.1    simonb 	if (cnum < MINCTX)
   1610    1.1    simonb 		cnum = MINCTX; /* Never steal ctx 0 or 1 */
   1611    1.1    simonb 	if (ctx_flush(cnum)) {
   1612    1.1    simonb 		/* oops -- something's wired. */
   1613   1.99       rin 		if (++cnum >= NUMCTX)
   1614    1.1    simonb 			cnum = MINCTX;
   1615    1.1    simonb 		goto oops;
   1616    1.1    simonb 	}
   1617    1.1    simonb 
   1618    1.1    simonb 	if (ctxbusy[cnum]) {
   1619    1.1    simonb #ifdef DEBUG
   1620    1.1    simonb 		/* We should identify this pmap and clear it */
   1621    1.1    simonb 		printf("Warning: stealing context %d\n", cnum);
   1622    1.1    simonb #endif
   1623    1.1    simonb 		ctxbusy[cnum]->pm_ctx = 0;
   1624    1.1    simonb 	}
   1625    1.1    simonb 	ctxbusy[cnum] = pm;
   1626    1.1    simonb 	next = cnum;
   1627   1.99       rin 
   1628    1.1    simonb 	splx(s);
   1629   1.99       rin 
   1630    1.1    simonb 	pm->pm_ctx = cnum;
   1631    1.1    simonb 
   1632    1.1    simonb 	return cnum;
   1633    1.1    simonb }
   1634    1.1    simonb 
   1635    1.1    simonb /*
   1636    1.1    simonb  * Give away a context.
   1637    1.1    simonb  */
   1638    1.1    simonb void
   1639    1.1    simonb ctx_free(struct pmap *pm)
   1640    1.1    simonb {
   1641    1.1    simonb 	int oldctx;
   1642    1.1    simonb 
   1643    1.1    simonb 	oldctx = pm->pm_ctx;
   1644    1.1    simonb 
   1645    1.1    simonb 	if (oldctx == 0)
   1646    1.1    simonb 		panic("ctx_free: freeing kernel context");
   1647   1.99       rin 
   1648  1.100       rin 	KASSERTMSG(ctxbusy[oldctx] == pm,
   1649  1.100       rin 	    "ctxbusy[%d] = %p, pm->pm_ctx = %p",
   1650  1.100       rin 	    oldctx, ctxbusy[oldctx], pm);
   1651   1.99       rin 
   1652    1.1    simonb 	/* We should verify it has not been stolen and reallocated... */
   1653    1.1    simonb 	ctxbusy[oldctx] = NULL;
   1654    1.1    simonb 	ctx_flush(oldctx);
   1655    1.1    simonb }
   1656    1.5       eeh 
   1657    1.1    simonb #ifdef DEBUG
   1658    1.1    simonb /*
   1659    1.1    simonb  * Test ref/modify handling.
   1660    1.1    simonb  */
   1661   1.53       dsl void pmap_testout(void);
   1662    1.1    simonb void
   1663   1.54    cegger pmap_testout(void)
   1664    1.1    simonb {
   1665   1.99       rin 	struct vm_page *pg;
   1666    1.1    simonb 	vaddr_t va;
   1667   1.99       rin 	paddr_t pa;
   1668    1.1    simonb 	volatile int *loc;
   1669   1.99       rin 	int ref, mod, val = 0;
   1670    1.1    simonb 
   1671    1.1    simonb 	/* Allocate a page */
   1672   1.34      yamt 	va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1673   1.34      yamt 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
   1674   1.99       rin 	loc = (int *)va;
   1675    1.1    simonb 
   1676    1.1    simonb 	pmap_extract(pmap_kernel(), va, &pa);
   1677    1.1    simonb 	pg = PHYS_TO_VM_PAGE(pa);
   1678    1.1    simonb 	pmap_unwire(pmap_kernel(), va);
   1679    1.1    simonb 
   1680   1.34      yamt 	pmap_kremove(va, PAGE_SIZE);
   1681    1.1    simonb 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1682    1.4     chris 	pmap_update(pmap_kernel());
   1683    1.1    simonb 
   1684    1.1    simonb 	/* Now clear reference and modify */
   1685    1.1    simonb 	ref = pmap_clear_reference(pg);
   1686    1.1    simonb 	mod = pmap_clear_modify(pg);
   1687    1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1688   1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1689    1.1    simonb 
   1690    1.1    simonb 	/* Check it's properly cleared */
   1691    1.1    simonb 	ref = pmap_is_referenced(pg);
   1692    1.1    simonb 	mod = pmap_is_modified(pg);
   1693   1.99       rin 	printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
   1694    1.1    simonb 
   1695    1.1    simonb 	/* Reference page */
   1696    1.1    simonb 	val = *loc;
   1697    1.1    simonb 
   1698    1.1    simonb 	ref = pmap_is_referenced(pg);
   1699    1.1    simonb 	mod = pmap_is_modified(pg);
   1700   1.99       rin 	printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
   1701    1.1    simonb 
   1702    1.1    simonb 	/* Now clear reference and modify */
   1703    1.1    simonb 	ref = pmap_clear_reference(pg);
   1704    1.1    simonb 	mod = pmap_clear_modify(pg);
   1705    1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1706   1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1707   1.12    simonb 
   1708    1.1    simonb 	/* Modify page */
   1709    1.1    simonb 	*loc = 1;
   1710    1.1    simonb 
   1711    1.1    simonb 	ref = pmap_is_referenced(pg);
   1712    1.1    simonb 	mod = pmap_is_modified(pg);
   1713   1.99       rin 	printf("Modified page: ref %d, mod %d\n", ref, mod);
   1714    1.1    simonb 
   1715    1.1    simonb 	/* Now clear reference and modify */
   1716    1.1    simonb 	ref = pmap_clear_reference(pg);
   1717    1.1    simonb 	mod = pmap_clear_modify(pg);
   1718    1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1719   1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1720    1.1    simonb 
   1721    1.1    simonb 	/* Check it's properly cleared */
   1722    1.1    simonb 	ref = pmap_is_referenced(pg);
   1723    1.1    simonb 	mod = pmap_is_modified(pg);
   1724   1.99       rin 	printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
   1725    1.1    simonb 
   1726    1.1    simonb 	/* Modify page */
   1727    1.1    simonb 	*loc = 1;
   1728    1.1    simonb 
   1729    1.1    simonb 	ref = pmap_is_referenced(pg);
   1730    1.1    simonb 	mod = pmap_is_modified(pg);
   1731   1.99       rin 	printf("Modified page: ref %d, mod %d\n", ref, mod);
   1732    1.1    simonb 
   1733    1.1    simonb 	/* Check pmap_protect() */
   1734  1.101       rin 	pmap_protect(pmap_kernel(), va, va + PAGE_SIZE, VM_PROT_READ);
   1735    1.4     chris 	pmap_update(pmap_kernel());
   1736    1.1    simonb 	ref = pmap_is_referenced(pg);
   1737    1.1    simonb 	mod = pmap_is_modified(pg);
   1738   1.99       rin 	printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n", ref, mod);
   1739    1.1    simonb 
   1740    1.1    simonb 	/* Now clear reference and modify */
   1741    1.1    simonb 	ref = pmap_clear_reference(pg);
   1742    1.1    simonb 	mod = pmap_clear_modify(pg);
   1743    1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1744   1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1745    1.1    simonb 
   1746    1.1    simonb 	/* Reference page */
   1747    1.1    simonb 	val = *loc;
   1748    1.1    simonb 
   1749    1.1    simonb 	ref = pmap_is_referenced(pg);
   1750    1.1    simonb 	mod = pmap_is_modified(pg);
   1751   1.99       rin 	printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
   1752    1.1    simonb 
   1753    1.1    simonb 	/* Now clear reference and modify */
   1754    1.1    simonb 	ref = pmap_clear_reference(pg);
   1755    1.1    simonb 	mod = pmap_clear_modify(pg);
   1756    1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1757   1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1758   1.12    simonb 
   1759    1.1    simonb 	/* Modify page */
   1760    1.1    simonb #if 0
   1761    1.1    simonb 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1762    1.4     chris 	pmap_update(pmap_kernel());
   1763    1.1    simonb #endif
   1764    1.1    simonb 	*loc = 1;
   1765    1.1    simonb 
   1766    1.1    simonb 	ref = pmap_is_referenced(pg);
   1767    1.1    simonb 	mod = pmap_is_modified(pg);
   1768   1.99       rin 	printf("Modified page: ref %d, mod %d\n", ref, mod);
   1769    1.1    simonb 
   1770    1.1    simonb 	/* Check pmap_protect() */
   1771  1.101       rin 	pmap_protect(pmap_kernel(), va, va + PAGE_SIZE, VM_PROT_NONE);
   1772    1.4     chris 	pmap_update(pmap_kernel());
   1773    1.1    simonb 	ref = pmap_is_referenced(pg);
   1774    1.1    simonb 	mod = pmap_is_modified(pg);
   1775   1.99       rin 	printf("pmap_protect(): ref %d, mod %d\n", ref, mod);
   1776    1.1    simonb 
   1777    1.1    simonb 	/* Now clear reference and modify */
   1778    1.1    simonb 	ref = pmap_clear_reference(pg);
   1779    1.1    simonb 	mod = pmap_clear_modify(pg);
   1780    1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1781   1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1782    1.1    simonb 
   1783    1.1    simonb 	/* Reference page */
   1784    1.1    simonb 	val = *loc;
   1785    1.1    simonb 
   1786    1.1    simonb 	ref = pmap_is_referenced(pg);
   1787    1.1    simonb 	mod = pmap_is_modified(pg);
   1788   1.99       rin 	printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
   1789    1.1    simonb 
   1790    1.1    simonb 	/* Now clear reference and modify */
   1791    1.1    simonb 	ref = pmap_clear_reference(pg);
   1792    1.1    simonb 	mod = pmap_clear_modify(pg);
   1793    1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1794   1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1795   1.12    simonb 
   1796    1.1    simonb 	/* Modify page */
   1797    1.1    simonb #if 0
   1798    1.1    simonb 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1799    1.4     chris 	pmap_update(pmap_kernel());
   1800    1.1    simonb #endif
   1801    1.1    simonb 	*loc = 1;
   1802    1.1    simonb 
   1803    1.1    simonb 	ref = pmap_is_referenced(pg);
   1804    1.1    simonb 	mod = pmap_is_modified(pg);
   1805   1.99       rin 	printf("Modified page: ref %d, mod %d\n", ref, mod);
   1806    1.1    simonb 
   1807    1.1    simonb 	/* Check pmap_pag_protect() */
   1808    1.1    simonb 	pmap_page_protect(pg, VM_PROT_READ);
   1809    1.1    simonb 	ref = pmap_is_referenced(pg);
   1810    1.1    simonb 	mod = pmap_is_modified(pg);
   1811   1.99       rin 	printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n", ref, mod);
   1812    1.1    simonb 
   1813    1.1    simonb 	/* Now clear reference and modify */
   1814    1.1    simonb 	ref = pmap_clear_reference(pg);
   1815    1.1    simonb 	mod = pmap_clear_modify(pg);
   1816    1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1817   1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1818    1.1    simonb 
   1819    1.1    simonb 	/* Reference page */
   1820    1.1    simonb 	val = *loc;
   1821    1.1    simonb 
   1822    1.1    simonb 	ref = pmap_is_referenced(pg);
   1823    1.1    simonb 	mod = pmap_is_modified(pg);
   1824   1.99       rin 	printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
   1825    1.1    simonb 
   1826    1.1    simonb 	/* Now clear reference and modify */
   1827    1.1    simonb 	ref = pmap_clear_reference(pg);
   1828    1.1    simonb 	mod = pmap_clear_modify(pg);
   1829    1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1830   1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1831   1.12    simonb 
   1832    1.1    simonb 	/* Modify page */
   1833    1.1    simonb #if 0
   1834    1.1    simonb 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1835    1.4     chris 	pmap_update(pmap_kernel());
   1836    1.1    simonb #endif
   1837    1.1    simonb 	*loc = 1;
   1838    1.1    simonb 
   1839    1.1    simonb 	ref = pmap_is_referenced(pg);
   1840    1.1    simonb 	mod = pmap_is_modified(pg);
   1841   1.99       rin 	printf("Modified page: ref %d, mod %d\n", ref, mod);
   1842    1.1    simonb 
   1843    1.1    simonb 	/* Check pmap_pag_protect() */
   1844    1.1    simonb 	pmap_page_protect(pg, VM_PROT_NONE);
   1845    1.1    simonb 	ref = pmap_is_referenced(pg);
   1846    1.1    simonb 	mod = pmap_is_modified(pg);
   1847   1.99       rin 	printf("pmap_page_protect(): ref %d, mod %d\n", ref, mod);
   1848    1.1    simonb 
   1849    1.1    simonb 	/* Now clear reference and modify */
   1850    1.1    simonb 	ref = pmap_clear_reference(pg);
   1851    1.1    simonb 	mod = pmap_clear_modify(pg);
   1852    1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1853   1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1854    1.1    simonb 
   1855    1.1    simonb 
   1856    1.1    simonb 	/* Reference page */
   1857    1.1    simonb 	val = *loc;
   1858    1.1    simonb 
   1859    1.1    simonb 	ref = pmap_is_referenced(pg);
   1860    1.1    simonb 	mod = pmap_is_modified(pg);
   1861   1.99       rin 	printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
   1862    1.1    simonb 
   1863    1.1    simonb 	/* Now clear reference and modify */
   1864    1.1    simonb 	ref = pmap_clear_reference(pg);
   1865    1.1    simonb 	mod = pmap_clear_modify(pg);
   1866    1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1867   1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1868   1.12    simonb 
   1869    1.1    simonb 	/* Modify page */
   1870    1.1    simonb #if 0
   1871    1.1    simonb 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1872    1.4     chris 	pmap_update(pmap_kernel());
   1873    1.1    simonb #endif
   1874    1.1    simonb 	*loc = 1;
   1875    1.1    simonb 
   1876    1.1    simonb 	ref = pmap_is_referenced(pg);
   1877    1.1    simonb 	mod = pmap_is_modified(pg);
   1878   1.99       rin 	printf("Modified page: ref %d, mod %d\n", ref, mod);
   1879    1.1    simonb 
   1880    1.1    simonb 	/* Unmap page */
   1881  1.101       rin 	pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
   1882    1.4     chris 	pmap_update(pmap_kernel());
   1883    1.1    simonb 	ref = pmap_is_referenced(pg);
   1884    1.1    simonb 	mod = pmap_is_modified(pg);
   1885    1.1    simonb 	printf("Unmapped page: ref %d, mod %d\n", ref, mod);
   1886    1.1    simonb 
   1887    1.1    simonb 	/* Now clear reference and modify */
   1888    1.1    simonb 	ref = pmap_clear_reference(pg);
   1889    1.1    simonb 	mod = pmap_clear_modify(pg);
   1890    1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1891   1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1892    1.1    simonb 
   1893    1.1    simonb 	/* Check it's properly cleared */
   1894    1.1    simonb 	ref = pmap_is_referenced(pg);
   1895    1.1    simonb 	mod = pmap_is_modified(pg);
   1896   1.99       rin 	printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
   1897    1.1    simonb 
   1898   1.34      yamt 	pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
   1899   1.59    cegger 	pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
   1900   1.34      yamt 	uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
   1901    1.1    simonb }
   1902    1.1    simonb #endif
   1903