pmap.c revision 1.103 1 1.103 rin /* $NetBSD: pmap.c,v 1.103 2021/09/05 12:28:44 rin Exp $ */
2 1.1 simonb
3 1.1 simonb /*
4 1.1 simonb * Copyright 2001 Wasabi Systems, Inc.
5 1.1 simonb * All rights reserved.
6 1.1 simonb *
7 1.1 simonb * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 1.1 simonb *
9 1.1 simonb * Redistribution and use in source and binary forms, with or without
10 1.1 simonb * modification, are permitted provided that the following conditions
11 1.1 simonb * are met:
12 1.1 simonb * 1. Redistributions of source code must retain the above copyright
13 1.1 simonb * notice, this list of conditions and the following disclaimer.
14 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 simonb * notice, this list of conditions and the following disclaimer in the
16 1.1 simonb * documentation and/or other materials provided with the distribution.
17 1.1 simonb * 3. All advertising materials mentioning features or use of this software
18 1.1 simonb * must display the following acknowledgement:
19 1.1 simonb * This product includes software developed for the NetBSD Project by
20 1.1 simonb * Wasabi Systems, Inc.
21 1.1 simonb * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.1 simonb * or promote products derived from this software without specific prior
23 1.1 simonb * written permission.
24 1.1 simonb *
25 1.1 simonb * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.1 simonb * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 simonb * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 simonb * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.1 simonb * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 simonb * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 simonb * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 simonb * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 simonb * POSSIBILITY OF SUCH DAMAGE.
36 1.1 simonb */
37 1.1 simonb
38 1.1 simonb /*
39 1.1 simonb * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 1.1 simonb * Copyright (C) 1995, 1996 TooLs GmbH.
41 1.1 simonb * All rights reserved.
42 1.1 simonb *
43 1.1 simonb * Redistribution and use in source and binary forms, with or without
44 1.1 simonb * modification, are permitted provided that the following conditions
45 1.1 simonb * are met:
46 1.1 simonb * 1. Redistributions of source code must retain the above copyright
47 1.1 simonb * notice, this list of conditions and the following disclaimer.
48 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 simonb * notice, this list of conditions and the following disclaimer in the
50 1.1 simonb * documentation and/or other materials provided with the distribution.
51 1.1 simonb * 3. All advertising materials mentioning features or use of this software
52 1.1 simonb * must display the following acknowledgement:
53 1.1 simonb * This product includes software developed by TooLs GmbH.
54 1.1 simonb * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 1.1 simonb * derived from this software without specific prior written permission.
56 1.1 simonb *
57 1.1 simonb * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 1.1 simonb * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 1.1 simonb * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 1.1 simonb * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 1.1 simonb * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 1.1 simonb * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 1.1 simonb * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 1.1 simonb * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 1.1 simonb * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 1.1 simonb * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 1.1 simonb */
68 1.23 lukem
69 1.23 lukem #include <sys/cdefs.h>
70 1.103 rin __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.103 2021/09/05 12:28:44 rin Exp $");
71 1.90 rin
72 1.90 rin #ifdef _KERNEL_OPT
73 1.90 rin #include "opt_ddb.h"
74 1.93 rin #include "opt_pmap.h"
75 1.90 rin #endif
76 1.1 simonb
77 1.1 simonb #include <sys/param.h>
78 1.68 matt #include <sys/cpu.h>
79 1.68 matt #include <sys/device.h>
80 1.72 para #include <sys/kmem.h>
81 1.68 matt #include <sys/pool.h>
82 1.1 simonb #include <sys/proc.h>
83 1.1 simonb #include <sys/queue.h>
84 1.1 simonb #include <sys/systm.h>
85 1.1 simonb
86 1.1 simonb #include <uvm/uvm.h>
87 1.1 simonb
88 1.1 simonb #include <machine/powerpc.h>
89 1.1 simonb
90 1.68 matt #include <powerpc/pcb.h>
91 1.68 matt
92 1.1 simonb #include <powerpc/spr.h>
93 1.62 matt #include <powerpc/ibm4xx/spr.h>
94 1.67 matt
95 1.67 matt #include <powerpc/ibm4xx/cpu.h>
96 1.96 rin #include <powerpc/ibm4xx/tlb.h>
97 1.1 simonb
98 1.1 simonb /*
99 1.1 simonb * kernmap is an array of PTEs large enough to map in
100 1.1 simonb * 4GB. At 16KB/page it is 256K entries or 2MB.
101 1.1 simonb */
102 1.99 rin #define KERNMAP_SIZE ((0xffffffffU / PAGE_SIZE) + 1)
103 1.47 christos void *kernmap;
104 1.1 simonb
105 1.1 simonb #define MINCTX 2
106 1.1 simonb #define NUMCTX 256
107 1.42 freza
108 1.1 simonb volatile struct pmap *ctxbusy[NUMCTX];
109 1.1 simonb
110 1.1 simonb #define TLBF_USED 0x1
111 1.1 simonb #define TLBF_REF 0x2
112 1.1 simonb #define TLBF_LOCKED 0x4
113 1.1 simonb #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
114 1.42 freza
115 1.1 simonb typedef struct tlb_info_s {
116 1.1 simonb char ti_flags;
117 1.1 simonb char ti_ctx; /* TLB_PID assiciated with the entry */
118 1.1 simonb u_int ti_va;
119 1.1 simonb } tlb_info_t;
120 1.1 simonb
121 1.1 simonb volatile tlb_info_t tlb_info[NTLB];
122 1.1 simonb /* We'll use a modified FIFO replacement policy cause it's cheap */
123 1.42 freza volatile int tlbnext;
124 1.42 freza
125 1.42 freza static int tlb_nreserved = 0;
126 1.42 freza static int pmap_bootstrap_done = 0;
127 1.1 simonb
128 1.14 thorpej /* Event counters */
129 1.14 thorpej struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
130 1.99 rin NULL, "cpu", "tlbmiss");
131 1.14 thorpej struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
132 1.99 rin NULL, "cpu", "tlbflush");
133 1.14 thorpej struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
134 1.99 rin NULL, "cpu", "tlbenter");
135 1.66 matt EVCNT_ATTACH_STATIC(tlbmiss_ev);
136 1.66 matt EVCNT_ATTACH_STATIC(tlbflush_ev);
137 1.66 matt EVCNT_ATTACH_STATIC(tlbenter_ev);
138 1.1 simonb
139 1.1 simonb struct pmap kernel_pmap_;
140 1.52 pooka struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
141 1.1 simonb
142 1.1 simonb static int npgs;
143 1.1 simonb static u_int nextavail;
144 1.1 simonb #ifndef MSGBUFADDR
145 1.1 simonb extern paddr_t msgbuf_paddr;
146 1.1 simonb #endif
147 1.1 simonb
148 1.1 simonb static struct mem_region *mem, *avail;
149 1.1 simonb
150 1.1 simonb /*
151 1.1 simonb * This is a cache of referenced/modified bits.
152 1.1 simonb * Bits herein are shifted by ATTRSHFT.
153 1.1 simonb */
154 1.1 simonb static char *pmap_attrib;
155 1.1 simonb
156 1.1 simonb #define PV_WIRED 0x1
157 1.1 simonb #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
158 1.30 chs #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED)
159 1.30 chs #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED)
160 1.91 rin #define PV_VA(pv) ((pv)->pv_va & ~PV_WIRED)
161 1.91 rin #define PV_CMPVA(va,pv) (!(PV_VA(pv) ^ (va)))
162 1.1 simonb
163 1.1 simonb struct pv_entry {
164 1.1 simonb struct pv_entry *pv_next; /* Linked list of mappings */
165 1.68 matt struct pmap *pv_pm;
166 1.1 simonb vaddr_t pv_va; /* virtual address of mapping */
167 1.1 simonb };
168 1.1 simonb
169 1.42 freza /* Each index corresponds to TLB_SIZE_* value. */
170 1.42 freza static size_t tlbsize[] = {
171 1.42 freza 1024, /* TLB_SIZE_1K */
172 1.42 freza 4096, /* TLB_SIZE_4K */
173 1.42 freza 16384, /* TLB_SIZE_16K */
174 1.42 freza 65536, /* TLB_SIZE_64K */
175 1.42 freza 262144, /* TLB_SIZE_256K */
176 1.42 freza 1048576, /* TLB_SIZE_1M */
177 1.42 freza 4194304, /* TLB_SIZE_4M */
178 1.42 freza 16777216, /* TLB_SIZE_16M */
179 1.42 freza };
180 1.42 freza
181 1.1 simonb struct pv_entry *pv_table;
182 1.1 simonb static struct pool pv_pool;
183 1.1 simonb
184 1.1 simonb static int pmap_initialized;
185 1.1 simonb
186 1.1 simonb static int ctx_flush(int);
187 1.1 simonb
188 1.68 matt struct pv_entry *pa_to_pv(paddr_t);
189 1.1 simonb static inline char *pa_to_attr(paddr_t);
190 1.1 simonb
191 1.1 simonb static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
192 1.1 simonb static inline int pte_enter(struct pmap *, vaddr_t, u_int);
193 1.1 simonb
194 1.49 hannken static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
195 1.1 simonb static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
196 1.1 simonb
197 1.93 rin static inline void tlb_invalidate_entry(int);
198 1.93 rin
199 1.42 freza static int ppc4xx_tlb_size_mask(size_t, int *, int *);
200 1.42 freza
201 1.1 simonb
202 1.68 matt struct pv_entry *
203 1.1 simonb pa_to_pv(paddr_t pa)
204 1.1 simonb {
205 1.75 cherry uvm_physseg_t bank;
206 1.75 cherry psize_t pg;
207 1.1 simonb
208 1.74 cherry bank = uvm_physseg_find(atop(pa), &pg);
209 1.76 cherry if (bank == UVM_PHYSSEG_TYPE_INVALID)
210 1.1 simonb return NULL;
211 1.75 cherry return &uvm_physseg_get_pmseg(bank)->pvent[pg];
212 1.1 simonb }
213 1.1 simonb
214 1.1 simonb static inline char *
215 1.1 simonb pa_to_attr(paddr_t pa)
216 1.1 simonb {
217 1.75 cherry uvm_physseg_t bank;
218 1.75 cherry psize_t pg;
219 1.1 simonb
220 1.74 cherry bank = uvm_physseg_find(atop(pa), &pg);
221 1.76 cherry if (bank == UVM_PHYSSEG_TYPE_INVALID)
222 1.1 simonb return NULL;
223 1.75 cherry return &uvm_physseg_get_pmseg(bank)->attrs[pg];
224 1.1 simonb }
225 1.1 simonb
226 1.1 simonb /*
227 1.1 simonb * Insert PTE into page table.
228 1.1 simonb */
229 1.97 rin static inline int
230 1.1 simonb pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
231 1.1 simonb {
232 1.99 rin int seg = STIDX(va), ptn = PTIDX(va);
233 1.22 scw u_int oldpte;
234 1.1 simonb
235 1.1 simonb if (!pm->pm_ptbl[seg]) {
236 1.1 simonb /* Don't allocate a page to clear a non-existent mapping. */
237 1.30 chs if (!pte)
238 1.98 rin return 1;
239 1.98 rin
240 1.98 rin vaddr_t km = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
241 1.98 rin UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
242 1.98 rin
243 1.98 rin if (__predict_false(km == 0))
244 1.97 rin return 0;
245 1.98 rin
246 1.98 rin pm->pm_ptbl[seg] = (u_int *)km;
247 1.1 simonb }
248 1.22 scw oldpte = pm->pm_ptbl[seg][ptn];
249 1.1 simonb pm->pm_ptbl[seg][ptn] = pte;
250 1.1 simonb
251 1.1 simonb /* Flush entry. */
252 1.1 simonb ppc4xx_tlb_flush(va, pm->pm_ctx);
253 1.22 scw if (oldpte != pte) {
254 1.22 scw if (pte == 0)
255 1.22 scw pm->pm_stats.resident_count--;
256 1.22 scw else
257 1.22 scw pm->pm_stats.resident_count++;
258 1.22 scw }
259 1.97 rin return 1;
260 1.1 simonb }
261 1.1 simonb
262 1.1 simonb /*
263 1.1 simonb * Get a pointer to a PTE in a page table.
264 1.1 simonb */
265 1.1 simonb volatile u_int *
266 1.1 simonb pte_find(struct pmap *pm, vaddr_t va)
267 1.1 simonb {
268 1.99 rin int seg = STIDX(va), ptn = PTIDX(va);
269 1.1 simonb
270 1.1 simonb if (pm->pm_ptbl[seg])
271 1.97 rin return &pm->pm_ptbl[seg][ptn];
272 1.1 simonb
273 1.97 rin return NULL;
274 1.1 simonb }
275 1.1 simonb
276 1.1 simonb /*
277 1.1 simonb * This is called during initppc, before the system is really initialized.
278 1.1 simonb */
279 1.1 simonb void
280 1.1 simonb pmap_bootstrap(u_int kernelstart, u_int kernelend)
281 1.1 simonb {
282 1.1 simonb struct mem_region *mp, *mp1;
283 1.1 simonb int cnt, i;
284 1.1 simonb u_int s, e, sz;
285 1.1 simonb
286 1.42 freza tlbnext = tlb_nreserved;
287 1.42 freza
288 1.1 simonb /*
289 1.1 simonb * Allocate the kernel page table at the end of
290 1.1 simonb * kernel space so it's in the locked TTE.
291 1.1 simonb */
292 1.47 christos kernmap = (void *)kernelend;
293 1.1 simonb
294 1.1 simonb /*
295 1.1 simonb * Initialize kernel page table.
296 1.1 simonb */
297 1.99 rin for (i = 0; i < STSZ; i++)
298 1.97 rin pmap_kernel()->pm_ptbl[i] = NULL;
299 1.1 simonb ctxbusy[0] = ctxbusy[1] = pmap_kernel();
300 1.1 simonb
301 1.1 simonb /*
302 1.1 simonb * Announce page-size to the VM-system
303 1.1 simonb */
304 1.1 simonb uvmexp.pagesize = NBPG;
305 1.73 cherry uvm_md_init();
306 1.1 simonb
307 1.1 simonb /*
308 1.1 simonb * Get memory.
309 1.1 simonb */
310 1.1 simonb mem_regions(&mem, &avail);
311 1.1 simonb for (mp = mem; mp->size; mp++) {
312 1.1 simonb physmem += btoc(mp->size);
313 1.99 rin printf("+%lx,", mp->size);
314 1.1 simonb }
315 1.1 simonb printf("\n");
316 1.1 simonb ppc4xx_tlb_init();
317 1.1 simonb /*
318 1.1 simonb * Count the number of available entries.
319 1.1 simonb */
320 1.1 simonb for (cnt = 0, mp = avail; mp->size; mp++)
321 1.1 simonb cnt++;
322 1.1 simonb
323 1.1 simonb /*
324 1.1 simonb * Page align all regions.
325 1.1 simonb * Non-page aligned memory isn't very interesting to us.
326 1.1 simonb * Also, sort the entries for ascending addresses.
327 1.1 simonb */
328 1.1 simonb kernelstart &= ~PGOFSET;
329 1.1 simonb kernelend = (kernelend + PGOFSET) & ~PGOFSET;
330 1.1 simonb for (mp = avail; mp->size; mp++) {
331 1.1 simonb s = mp->start;
332 1.1 simonb e = mp->start + mp->size;
333 1.99 rin printf("%08x-%08x -> ", s, e);
334 1.1 simonb /*
335 1.1 simonb * Check whether this region holds all of the kernel.
336 1.1 simonb */
337 1.1 simonb if (s < kernelstart && e > kernelend) {
338 1.1 simonb avail[cnt].start = kernelend;
339 1.1 simonb avail[cnt++].size = e - kernelend;
340 1.1 simonb e = kernelstart;
341 1.1 simonb }
342 1.1 simonb /*
343 1.1 simonb * Look whether this regions starts within the kernel.
344 1.1 simonb */
345 1.1 simonb if (s >= kernelstart && s < kernelend) {
346 1.1 simonb if (e <= kernelend)
347 1.1 simonb goto empty;
348 1.1 simonb s = kernelend;
349 1.1 simonb }
350 1.1 simonb /*
351 1.1 simonb * Now look whether this region ends within the kernel.
352 1.1 simonb */
353 1.1 simonb if (e > kernelstart && e <= kernelend) {
354 1.1 simonb if (s >= kernelstart)
355 1.1 simonb goto empty;
356 1.1 simonb e = kernelstart;
357 1.1 simonb }
358 1.1 simonb /*
359 1.1 simonb * Now page align the start and size of the region.
360 1.1 simonb */
361 1.1 simonb s = round_page(s);
362 1.1 simonb e = trunc_page(e);
363 1.1 simonb if (e < s)
364 1.1 simonb e = s;
365 1.1 simonb sz = e - s;
366 1.99 rin printf("%08x-%08x = %x\n", s, e, sz);
367 1.1 simonb /*
368 1.1 simonb * Check whether some memory is left here.
369 1.1 simonb */
370 1.1 simonb if (sz == 0) {
371 1.99 rin empty:
372 1.3 wiz memmove(mp, mp + 1,
373 1.99 rin (cnt - (mp - avail)) * sizeof(*mp));
374 1.1 simonb cnt--;
375 1.1 simonb mp--;
376 1.1 simonb continue;
377 1.1 simonb }
378 1.1 simonb /*
379 1.1 simonb * Do an insertion sort.
380 1.1 simonb */
381 1.1 simonb npgs += btoc(sz);
382 1.1 simonb for (mp1 = avail; mp1 < mp; mp1++)
383 1.1 simonb if (s < mp1->start)
384 1.1 simonb break;
385 1.1 simonb if (mp1 < mp) {
386 1.3 wiz memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
387 1.1 simonb mp1->start = s;
388 1.1 simonb mp1->size = sz;
389 1.1 simonb } else {
390 1.1 simonb mp->start = s;
391 1.1 simonb mp->size = sz;
392 1.1 simonb }
393 1.1 simonb }
394 1.1 simonb
395 1.1 simonb /*
396 1.1 simonb * We cannot do pmap_steal_memory here,
397 1.1 simonb * since we don't run with translation enabled yet.
398 1.1 simonb */
399 1.1 simonb #ifndef MSGBUFADDR
400 1.1 simonb /*
401 1.1 simonb * allow for msgbuf
402 1.1 simonb */
403 1.1 simonb sz = round_page(MSGBUFSIZE);
404 1.1 simonb mp = NULL;
405 1.1 simonb for (mp1 = avail; mp1->size; mp1++)
406 1.1 simonb if (mp1->size >= sz)
407 1.1 simonb mp = mp1;
408 1.1 simonb if (mp == NULL)
409 1.1 simonb panic("not enough memory?");
410 1.1 simonb
411 1.1 simonb npgs -= btoc(sz);
412 1.1 simonb msgbuf_paddr = mp->start + mp->size - sz;
413 1.1 simonb mp->size -= sz;
414 1.1 simonb if (mp->size <= 0)
415 1.99 rin memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof(*mp));
416 1.1 simonb #endif
417 1.1 simonb
418 1.1 simonb for (mp = avail; mp->size; mp++)
419 1.1 simonb uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
420 1.99 rin atop(mp->start), atop(mp->start + mp->size),
421 1.99 rin VM_FREELIST_DEFAULT);
422 1.1 simonb
423 1.1 simonb /*
424 1.1 simonb * Initialize kernel pmap and hardware.
425 1.1 simonb */
426 1.1 simonb /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
427 1.1 simonb pmap_kernel()->pm_ctx = KERNEL_PID;
428 1.1 simonb nextavail = avail->start;
429 1.1 simonb
430 1.42 freza pmap_bootstrap_done = 1;
431 1.1 simonb }
432 1.1 simonb
433 1.1 simonb /*
434 1.1 simonb * Restrict given range to physical memory
435 1.1 simonb *
436 1.1 simonb * (Used by /dev/mem)
437 1.1 simonb */
438 1.1 simonb void
439 1.1 simonb pmap_real_memory(paddr_t *start, psize_t *size)
440 1.1 simonb {
441 1.1 simonb struct mem_region *mp;
442 1.1 simonb
443 1.1 simonb for (mp = mem; mp->size; mp++) {
444 1.1 simonb if (*start + *size > mp->start &&
445 1.1 simonb *start < mp->start + mp->size) {
446 1.1 simonb if (*start < mp->start) {
447 1.1 simonb *size -= mp->start - *start;
448 1.1 simonb *start = mp->start;
449 1.1 simonb }
450 1.1 simonb if (*start + *size > mp->start + mp->size)
451 1.1 simonb *size = mp->start + mp->size - *start;
452 1.1 simonb return;
453 1.1 simonb }
454 1.1 simonb }
455 1.1 simonb *size = 0;
456 1.1 simonb }
457 1.1 simonb
458 1.1 simonb /*
459 1.1 simonb * Initialize anything else for pmap handling.
460 1.1 simonb * Called during vm_init().
461 1.1 simonb */
462 1.1 simonb void
463 1.1 simonb pmap_init(void)
464 1.1 simonb {
465 1.1 simonb struct pv_entry *pv;
466 1.1 simonb vsize_t sz;
467 1.1 simonb vaddr_t addr;
468 1.99 rin int bank, i, s;
469 1.1 simonb char *attr;
470 1.1 simonb
471 1.1 simonb sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
472 1.1 simonb sz = round_page(sz);
473 1.34 yamt addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
474 1.99 rin
475 1.1 simonb s = splvm();
476 1.99 rin
477 1.1 simonb pv = pv_table = (struct pv_entry *)addr;
478 1.1 simonb for (i = npgs; --i >= 0;)
479 1.1 simonb pv++->pv_pm = NULL;
480 1.1 simonb pmap_attrib = (char *)pv;
481 1.2 wiz memset(pv, 0, npgs);
482 1.1 simonb
483 1.1 simonb pv = pv_table;
484 1.1 simonb attr = pmap_attrib;
485 1.99 rin for (bank = uvm_physseg_get_first(); uvm_physseg_valid_p(bank);
486 1.75 cherry bank = uvm_physseg_get_next(bank)) {
487 1.75 cherry sz = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
488 1.75 cherry uvm_physseg_get_pmseg(bank)->pvent = pv;
489 1.75 cherry uvm_physseg_get_pmseg(bank)->attrs = attr;
490 1.1 simonb pv += sz;
491 1.1 simonb attr += sz;
492 1.1 simonb }
493 1.1 simonb
494 1.1 simonb pmap_initialized = 1;
495 1.99 rin
496 1.1 simonb splx(s);
497 1.1 simonb
498 1.1 simonb /* Setup a pool for additional pvlist structures */
499 1.99 rin pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry",
500 1.99 rin NULL, IPL_VM);
501 1.21 thorpej }
502 1.21 thorpej
503 1.21 thorpej /*
504 1.21 thorpej * How much virtual space is available to the kernel?
505 1.21 thorpej */
506 1.21 thorpej void
507 1.21 thorpej pmap_virtual_space(vaddr_t *start, vaddr_t *end)
508 1.21 thorpej {
509 1.21 thorpej
510 1.21 thorpej *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
511 1.21 thorpej *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
512 1.1 simonb }
513 1.1 simonb
514 1.5 eeh #ifdef PMAP_GROWKERNEL
515 1.5 eeh /*
516 1.5 eeh * Preallocate kernel page tables to a specified VA.
517 1.5 eeh * This simply loops through the first TTE for each
518 1.12 simonb * page table from the beginning of the kernel pmap,
519 1.5 eeh * reads the entry, and if the result is
520 1.5 eeh * zero (either invalid entry or no page table) it stores
521 1.5 eeh * a zero there, populating page tables in the process.
522 1.5 eeh * This is not the most efficient technique but i don't
523 1.5 eeh * expect it to be called that often.
524 1.5 eeh */
525 1.53 dsl extern struct vm_page *vm_page_alloc1(void);
526 1.53 dsl extern void vm_page_free1(struct vm_page *);
527 1.5 eeh
528 1.5 eeh vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
529 1.5 eeh
530 1.12 simonb vaddr_t
531 1.30 chs pmap_growkernel(vaddr_t maxkvaddr)
532 1.5 eeh {
533 1.99 rin struct pmap *pm = pmap_kernel();
534 1.5 eeh paddr_t pg;
535 1.99 rin int seg, s;
536 1.12 simonb
537 1.5 eeh s = splvm();
538 1.5 eeh
539 1.5 eeh /* Align with the start of a page table */
540 1.99 rin for (kbreak &= ~(PTMAP - 1); kbreak < maxkvaddr; kbreak += PTMAP) {
541 1.5 eeh seg = STIDX(kbreak);
542 1.5 eeh
543 1.30 chs if (pte_find(pm, kbreak))
544 1.30 chs continue;
545 1.12 simonb
546 1.99 rin if (uvm.page_init_done)
547 1.5 eeh pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
548 1.99 rin else if (!uvm_page_physget(&pg))
549 1.99 rin panic("pmap_growkernel: no memory");
550 1.32 simonb if (!pg)
551 1.32 simonb panic("pmap_growkernel: no pages");
552 1.5 eeh pmap_zero_page((paddr_t)pg);
553 1.5 eeh
554 1.5 eeh /* XXX This is based on all phymem being addressable */
555 1.5 eeh pm->pm_ptbl[seg] = (u_int *)pg;
556 1.5 eeh }
557 1.99 rin
558 1.5 eeh splx(s);
559 1.99 rin
560 1.97 rin return kbreak;
561 1.5 eeh }
562 1.5 eeh
563 1.5 eeh /*
564 1.5 eeh * vm_page_alloc1:
565 1.5 eeh *
566 1.5 eeh * Allocate and return a memory cell with no associated object.
567 1.5 eeh */
568 1.5 eeh struct vm_page *
569 1.30 chs vm_page_alloc1(void)
570 1.5 eeh {
571 1.30 chs struct vm_page *pg;
572 1.30 chs
573 1.30 chs pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
574 1.5 eeh if (pg) {
575 1.5 eeh pg->wire_count = 1; /* no mappings yet */
576 1.5 eeh pg->flags &= ~PG_BUSY; /* never busy */
577 1.5 eeh }
578 1.5 eeh return pg;
579 1.5 eeh }
580 1.5 eeh
581 1.5 eeh /*
582 1.5 eeh * vm_page_free1:
583 1.5 eeh *
584 1.5 eeh * Returns the given page to the free list,
585 1.5 eeh * disassociating it with any VM object.
586 1.5 eeh *
587 1.5 eeh * Object and page must be locked prior to entry.
588 1.5 eeh */
589 1.5 eeh void
590 1.36 scw vm_page_free1(struct vm_page *pg)
591 1.5 eeh {
592 1.99 rin
593 1.100 rin KASSERTMSG(pg->flags == (PG_CLEAN | PG_FAKE),
594 1.100 rin "invalid page pg = %p, pa = %" PRIxPADDR,
595 1.100 rin pg, VM_PAGE_TO_PHYS(pg));
596 1.100 rin
597 1.36 scw pg->flags |= PG_BUSY;
598 1.36 scw pg->wire_count = 0;
599 1.36 scw uvm_pagefree(pg);
600 1.5 eeh }
601 1.5 eeh #endif
602 1.5 eeh
603 1.1 simonb /*
604 1.1 simonb * Create and return a physical map.
605 1.1 simonb */
606 1.1 simonb struct pmap *
607 1.1 simonb pmap_create(void)
608 1.1 simonb {
609 1.1 simonb struct pmap *pm;
610 1.1 simonb
611 1.72 para pm = kmem_alloc(sizeof(*pm), KM_SLEEP);
612 1.99 rin memset(pm, 0, sizeof(*pm));
613 1.30 chs pm->pm_refs = 1;
614 1.1 simonb return pm;
615 1.1 simonb }
616 1.1 simonb
617 1.1 simonb /*
618 1.1 simonb * Add a reference to the given pmap.
619 1.1 simonb */
620 1.1 simonb void
621 1.1 simonb pmap_reference(struct pmap *pm)
622 1.1 simonb {
623 1.1 simonb
624 1.1 simonb pm->pm_refs++;
625 1.1 simonb }
626 1.1 simonb
627 1.1 simonb /*
628 1.1 simonb * Retire the given pmap from service.
629 1.1 simonb * Should only be called if the map contains no valid mappings.
630 1.1 simonb */
631 1.1 simonb void
632 1.1 simonb pmap_destroy(struct pmap *pm)
633 1.1 simonb {
634 1.30 chs int i;
635 1.1 simonb
636 1.99 rin if (--pm->pm_refs > 0)
637 1.30 chs return;
638 1.30 chs KASSERT(pm->pm_stats.resident_count == 0);
639 1.30 chs KASSERT(pm->pm_stats.wired_count == 0);
640 1.1 simonb for (i = 0; i < STSZ; i++)
641 1.1 simonb if (pm->pm_ptbl[i]) {
642 1.19 thorpej uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
643 1.34 yamt PAGE_SIZE, UVM_KMF_WIRED);
644 1.1 simonb pm->pm_ptbl[i] = NULL;
645 1.1 simonb }
646 1.30 chs if (pm->pm_ctx)
647 1.30 chs ctx_free(pm);
648 1.72 para kmem_free(pm, sizeof(*pm));
649 1.1 simonb }
650 1.1 simonb
651 1.1 simonb /*
652 1.1 simonb * Copy the range specified by src_addr/len
653 1.1 simonb * from the source map to the range dst_addr/len
654 1.1 simonb * in the destination map.
655 1.1 simonb *
656 1.1 simonb * This routine is only advisory and need not do anything.
657 1.1 simonb */
658 1.1 simonb void
659 1.1 simonb pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
660 1.1 simonb vsize_t len, vaddr_t src_addr)
661 1.1 simonb {
662 1.1 simonb }
663 1.1 simonb
664 1.1 simonb /*
665 1.1 simonb * Require that all active physical maps contain no
666 1.1 simonb * incorrect entries NOW.
667 1.1 simonb */
668 1.1 simonb void
669 1.4 chris pmap_update(struct pmap *pmap)
670 1.1 simonb {
671 1.1 simonb }
672 1.1 simonb
673 1.1 simonb /*
674 1.1 simonb * Fill the given physical page with zeroes.
675 1.1 simonb */
676 1.1 simonb void
677 1.1 simonb pmap_zero_page(paddr_t pa)
678 1.1 simonb {
679 1.99 rin int i;
680 1.1 simonb
681 1.8 thorpej #ifdef PPC_4XX_NOCACHE
682 1.47 christos memset((void *)pa, 0, PAGE_SIZE);
683 1.1 simonb #else
684 1.1 simonb
685 1.19 thorpej for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
686 1.99 rin __asm volatile ("dcbz 0,%0" : : "r"(pa));
687 1.1 simonb pa += CACHELINESIZE;
688 1.1 simonb }
689 1.1 simonb #endif
690 1.1 simonb }
691 1.1 simonb
692 1.1 simonb /*
693 1.1 simonb * Copy the given physical source page to its destination.
694 1.1 simonb */
695 1.1 simonb void
696 1.1 simonb pmap_copy_page(paddr_t src, paddr_t dst)
697 1.1 simonb {
698 1.1 simonb
699 1.47 christos memcpy((void *)dst, (void *)src, PAGE_SIZE);
700 1.69 matt dcache_wbinv_page(dst);
701 1.1 simonb }
702 1.1 simonb
703 1.1 simonb /*
704 1.49 hannken * This returns != 0 on success.
705 1.1 simonb */
706 1.1 simonb static inline int
707 1.49 hannken pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
708 1.1 simonb {
709 1.102 rin struct pv_entry *pv, *npv;
710 1.1 simonb int s;
711 1.1 simonb
712 1.103 rin KASSERT(pmap_initialized);
713 1.1 simonb
714 1.1 simonb s = splvm();
715 1.99 rin
716 1.1 simonb pv = pa_to_pv(pa);
717 1.1 simonb if (!pv->pv_pm) {
718 1.1 simonb /*
719 1.1 simonb * No entries yet, use header as the first entry.
720 1.1 simonb */
721 1.1 simonb pv->pv_va = va;
722 1.1 simonb pv->pv_pm = pm;
723 1.1 simonb pv->pv_next = NULL;
724 1.1 simonb } else {
725 1.1 simonb /*
726 1.1 simonb * There is at least one other VA mapping this page.
727 1.1 simonb * Place this entry after the header.
728 1.1 simonb */
729 1.49 hannken npv = pool_get(&pv_pool, PR_NOWAIT);
730 1.49 hannken if (npv == NULL) {
731 1.49 hannken if ((flags & PMAP_CANFAIL) == 0)
732 1.49 hannken panic("pmap_enter_pv: failed");
733 1.49 hannken splx(s);
734 1.49 hannken return 0;
735 1.49 hannken }
736 1.1 simonb npv->pv_va = va;
737 1.1 simonb npv->pv_pm = pm;
738 1.1 simonb npv->pv_next = pv->pv_next;
739 1.1 simonb pv->pv_next = npv;
740 1.33 chs pv = npv;
741 1.1 simonb }
742 1.49 hannken if (flags & PMAP_WIRED) {
743 1.30 chs PV_WIRE(pv);
744 1.33 chs pm->pm_stats.wired_count++;
745 1.30 chs }
746 1.99 rin
747 1.1 simonb splx(s);
748 1.99 rin
749 1.97 rin return 1;
750 1.1 simonb }
751 1.1 simonb
752 1.1 simonb static void
753 1.1 simonb pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
754 1.1 simonb {
755 1.1 simonb struct pv_entry *pv, *npv;
756 1.1 simonb
757 1.1 simonb /*
758 1.1 simonb * Remove from the PV table.
759 1.1 simonb */
760 1.1 simonb pv = pa_to_pv(pa);
761 1.30 chs if (!pv)
762 1.30 chs return;
763 1.1 simonb
764 1.1 simonb /*
765 1.1 simonb * If it is the first entry on the list, it is actually
766 1.1 simonb * in the header and we must copy the following entry up
767 1.1 simonb * to the header. Otherwise we must search the list for
768 1.1 simonb * the entry. In either case we free the now unused entry.
769 1.1 simonb */
770 1.1 simonb if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
771 1.99 rin if (PV_ISWIRED(pv))
772 1.30 chs pm->pm_stats.wired_count--;
773 1.1 simonb if ((npv = pv->pv_next)) {
774 1.1 simonb *pv = *npv;
775 1.1 simonb pool_put(&pv_pool, npv);
776 1.1 simonb } else
777 1.1 simonb pv->pv_pm = NULL;
778 1.1 simonb } else {
779 1.1 simonb for (; (npv = pv->pv_next) != NULL; pv = npv)
780 1.1 simonb if (pm == npv->pv_pm && PV_CMPVA(va, npv))
781 1.1 simonb break;
782 1.1 simonb if (npv) {
783 1.1 simonb pv->pv_next = npv->pv_next;
784 1.30 chs if (PV_ISWIRED(npv)) {
785 1.30 chs pm->pm_stats.wired_count--;
786 1.30 chs }
787 1.1 simonb pool_put(&pv_pool, npv);
788 1.1 simonb }
789 1.1 simonb }
790 1.1 simonb }
791 1.1 simonb
792 1.1 simonb /*
793 1.1 simonb * Insert physical page at pa into the given pmap at virtual address va.
794 1.1 simonb */
795 1.1 simonb int
796 1.55 he pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
797 1.1 simonb {
798 1.1 simonb u_int tte;
799 1.57 thorpej bool managed;
800 1.99 rin int s;
801 1.1 simonb
802 1.1 simonb /*
803 1.1 simonb * Have to remove any existing mapping first.
804 1.1 simonb */
805 1.19 thorpej pmap_remove(pm, va, va + PAGE_SIZE);
806 1.1 simonb
807 1.30 chs if (flags & PMAP_WIRED)
808 1.30 chs flags |= prot;
809 1.1 simonb
810 1.57 thorpej managed = uvm_pageismanaged(pa);
811 1.1 simonb
812 1.1 simonb /*
813 1.1 simonb * Generate TTE.
814 1.1 simonb */
815 1.26 chs tte = TTE_PA(pa);
816 1.1 simonb /* XXXX -- need to support multiple page sizes. */
817 1.1 simonb tte |= TTE_SZ_16K;
818 1.99 rin
819 1.100 rin KASSERT((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) !=
820 1.100 rin (PMAP_NOCACHE | PME_WRITETHROUG));
821 1.99 rin
822 1.99 rin if (flags & PMAP_NOCACHE) {
823 1.1 simonb /* Must be I/O mapping */
824 1.1 simonb tte |= TTE_I | TTE_G;
825 1.99 rin }
826 1.8 thorpej #ifdef PPC_4XX_NOCACHE
827 1.1 simonb tte |= TTE_I;
828 1.1 simonb #else
829 1.99 rin else if (flags & PME_WRITETHROUG) {
830 1.1 simonb /* Uncached and writethrough are not compatible */
831 1.1 simonb tte |= TTE_W;
832 1.99 rin }
833 1.1 simonb #endif
834 1.99 rin
835 1.1 simonb if (pm == pmap_kernel())
836 1.1 simonb tte |= TTE_ZONE(ZONE_PRIV);
837 1.1 simonb else
838 1.1 simonb tte |= TTE_ZONE(ZONE_USER);
839 1.1 simonb
840 1.1 simonb if (flags & VM_PROT_WRITE)
841 1.1 simonb tte |= TTE_WR;
842 1.1 simonb
843 1.26 chs if (flags & VM_PROT_EXECUTE)
844 1.26 chs tte |= TTE_EX;
845 1.26 chs
846 1.1 simonb /*
847 1.1 simonb * Now record mapping for later back-translation.
848 1.1 simonb */
849 1.1 simonb if (pmap_initialized && managed) {
850 1.1 simonb char *attr;
851 1.1 simonb
852 1.49 hannken if (!pmap_enter_pv(pm, va, pa, flags)) {
853 1.1 simonb /* Could not enter pv on a managed page */
854 1.98 rin return ENOMEM;
855 1.1 simonb }
856 1.1 simonb
857 1.1 simonb /* Now set attributes. */
858 1.1 simonb attr = pa_to_attr(pa);
859 1.100 rin KASSERT(attr);
860 1.1 simonb if (flags & VM_PROT_ALL)
861 1.30 chs *attr |= PMAP_ATTR_REF;
862 1.1 simonb if (flags & VM_PROT_WRITE)
863 1.30 chs *attr |= PMAP_ATTR_CHG;
864 1.1 simonb }
865 1.1 simonb
866 1.1 simonb s = splvm();
867 1.1 simonb
868 1.1 simonb /* Insert page into page table. */
869 1.98 rin if (__predict_false(!pte_enter(pm, va, tte))) {
870 1.98 rin if (__predict_false((flags & PMAP_CANFAIL) == 0))
871 1.98 rin panic("%s: pte_enter", __func__);
872 1.98 rin splx(s);
873 1.98 rin return ENOMEM;
874 1.98 rin }
875 1.1 simonb
876 1.1 simonb /* If this is a real fault, enter it in the tlb */
877 1.1 simonb if (tte && ((flags & PMAP_WIRED) == 0)) {
878 1.71 kiyohara int s2 = splhigh();
879 1.1 simonb ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
880 1.71 kiyohara splx(s2);
881 1.1 simonb }
882 1.99 rin
883 1.1 simonb splx(s);
884 1.6 simonb
885 1.6 simonb /* Flush the real memory from the instruction cache. */
886 1.6 simonb if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
887 1.6 simonb __syncicache((void *)pa, PAGE_SIZE);
888 1.6 simonb
889 1.1 simonb return 0;
890 1.1 simonb }
891 1.1 simonb
892 1.1 simonb void
893 1.1 simonb pmap_unwire(struct pmap *pm, vaddr_t va)
894 1.1 simonb {
895 1.33 chs struct pv_entry *pv;
896 1.1 simonb paddr_t pa;
897 1.30 chs int s;
898 1.1 simonb
899 1.99 rin if (!pmap_extract(pm, va, &pa))
900 1.1 simonb return;
901 1.1 simonb
902 1.1 simonb pv = pa_to_pv(pa);
903 1.30 chs if (!pv)
904 1.30 chs return;
905 1.1 simonb
906 1.30 chs s = splvm();
907 1.99 rin
908 1.33 chs while (pv != NULL) {
909 1.33 chs if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
910 1.33 chs if (PV_ISWIRED(pv)) {
911 1.33 chs PV_UNWIRE(pv);
912 1.30 chs pm->pm_stats.wired_count--;
913 1.30 chs }
914 1.1 simonb break;
915 1.1 simonb }
916 1.33 chs pv = pv->pv_next;
917 1.1 simonb }
918 1.99 rin
919 1.1 simonb splx(s);
920 1.1 simonb }
921 1.1 simonb
922 1.1 simonb void
923 1.59 cegger pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
924 1.1 simonb {
925 1.99 rin struct pmap *pm = pmap_kernel();
926 1.99 rin u_int tte;
927 1.1 simonb int s;
928 1.1 simonb
929 1.1 simonb /*
930 1.1 simonb * Generate TTE.
931 1.1 simonb *
932 1.1 simonb * XXXX
933 1.1 simonb *
934 1.1 simonb * Since the kernel does not handle execution privileges properly,
935 1.1 simonb * we will handle read and execute permissions together.
936 1.1 simonb */
937 1.1 simonb tte = 0;
938 1.1 simonb if (prot & VM_PROT_ALL) {
939 1.1 simonb tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
940 1.1 simonb /* XXXX -- need to support multiple page sizes. */
941 1.1 simonb tte |= TTE_SZ_16K;
942 1.99 rin
943 1.100 rin KASSERT((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) !=
944 1.100 rin (PMAP_NOCACHE | PME_WRITETHROUG));
945 1.99 rin
946 1.70 matt if (flags & PMAP_NOCACHE)
947 1.1 simonb /* Must be I/O mapping */
948 1.1 simonb tte |= TTE_I | TTE_G;
949 1.8 thorpej #ifdef PPC_4XX_NOCACHE
950 1.1 simonb tte |= TTE_I;
951 1.1 simonb #else
952 1.99 rin else if (prot & PME_WRITETHROUG) {
953 1.1 simonb /* Uncached and writethrough are not compatible */
954 1.1 simonb tte |= TTE_W;
955 1.99 rin }
956 1.1 simonb #endif
957 1.1 simonb if (prot & VM_PROT_WRITE)
958 1.1 simonb tte |= TTE_WR;
959 1.1 simonb }
960 1.1 simonb
961 1.1 simonb s = splvm();
962 1.1 simonb
963 1.1 simonb /* Insert page into page table. */
964 1.98 rin if (__predict_false(!pte_enter(pm, va, tte)))
965 1.98 rin panic("%s: pte_enter", __func__);
966 1.99 rin
967 1.1 simonb splx(s);
968 1.1 simonb }
969 1.1 simonb
970 1.1 simonb void
971 1.1 simonb pmap_kremove(vaddr_t va, vsize_t len)
972 1.1 simonb {
973 1.1 simonb
974 1.1 simonb while (len > 0) {
975 1.98 rin (void)pte_enter(pmap_kernel(), va, 0); /* never fail */
976 1.1 simonb va += PAGE_SIZE;
977 1.1 simonb len -= PAGE_SIZE;
978 1.1 simonb }
979 1.1 simonb }
980 1.1 simonb
981 1.1 simonb /*
982 1.1 simonb * Remove the given range of mapping entries.
983 1.1 simonb */
984 1.1 simonb void
985 1.1 simonb pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
986 1.1 simonb {
987 1.1 simonb paddr_t pa;
988 1.1 simonb volatile u_int *ptp;
989 1.99 rin int s;
990 1.1 simonb
991 1.1 simonb s = splvm();
992 1.99 rin
993 1.1 simonb while (va < endva) {
994 1.1 simonb if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
995 1.1 simonb pa = TTE_PA(pa);
996 1.1 simonb pmap_remove_pv(pm, va, pa);
997 1.1 simonb *ptp = 0;
998 1.1 simonb ppc4xx_tlb_flush(va, pm->pm_ctx);
999 1.1 simonb pm->pm_stats.resident_count--;
1000 1.1 simonb }
1001 1.19 thorpej va += PAGE_SIZE;
1002 1.1 simonb }
1003 1.1 simonb
1004 1.1 simonb splx(s);
1005 1.1 simonb }
1006 1.1 simonb
1007 1.1 simonb /*
1008 1.1 simonb * Get the physical page address for the given pmap/virtual address.
1009 1.1 simonb */
1010 1.45 thorpej bool
1011 1.1 simonb pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1012 1.1 simonb {
1013 1.99 rin int seg = STIDX(va), ptn = PTIDX(va);
1014 1.1 simonb u_int pa = 0;
1015 1.30 chs int s;
1016 1.1 simonb
1017 1.30 chs s = splvm();
1018 1.99 rin
1019 1.99 rin if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn]) && pap)
1020 1.1 simonb *pap = TTE_PA(pa) | (va & PGOFSET);
1021 1.99 rin
1022 1.1 simonb splx(s);
1023 1.99 rin
1024 1.97 rin return pa != 0;
1025 1.1 simonb }
1026 1.1 simonb
1027 1.1 simonb /*
1028 1.1 simonb * Lower the protection on the specified range of this pmap.
1029 1.1 simonb *
1030 1.1 simonb * There are only two cases: either the protection is going to 0,
1031 1.1 simonb * or it is going to read-only.
1032 1.1 simonb */
1033 1.1 simonb void
1034 1.1 simonb pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1035 1.1 simonb {
1036 1.1 simonb volatile u_int *ptp;
1037 1.26 chs int s, bic;
1038 1.1 simonb
1039 1.26 chs if ((prot & VM_PROT_READ) == 0) {
1040 1.26 chs pmap_remove(pm, sva, eva);
1041 1.26 chs return;
1042 1.26 chs }
1043 1.26 chs bic = 0;
1044 1.99 rin if ((prot & VM_PROT_WRITE) == 0)
1045 1.26 chs bic |= TTE_WR;
1046 1.99 rin if ((prot & VM_PROT_EXECUTE) == 0)
1047 1.26 chs bic |= TTE_EX;
1048 1.99 rin if (bic == 0)
1049 1.26 chs return;
1050 1.99 rin
1051 1.26 chs s = splvm();
1052 1.99 rin
1053 1.26 chs while (sva < eva) {
1054 1.26 chs if ((ptp = pte_find(pm, sva)) != NULL) {
1055 1.26 chs *ptp &= ~bic;
1056 1.26 chs ppc4xx_tlb_flush(sva, pm->pm_ctx);
1057 1.1 simonb }
1058 1.26 chs sva += PAGE_SIZE;
1059 1.1 simonb }
1060 1.99 rin
1061 1.26 chs splx(s);
1062 1.1 simonb }
1063 1.1 simonb
1064 1.45 thorpej bool
1065 1.30 chs pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
1066 1.1 simonb {
1067 1.30 chs paddr_t pa;
1068 1.1 simonb char *attr;
1069 1.30 chs int s, rv;
1070 1.1 simonb
1071 1.1 simonb /*
1072 1.1 simonb * First modify bits in cache.
1073 1.1 simonb */
1074 1.30 chs pa = VM_PAGE_TO_PHYS(pg);
1075 1.1 simonb attr = pa_to_attr(pa);
1076 1.1 simonb if (attr == NULL)
1077 1.46 thorpej return false;
1078 1.1 simonb
1079 1.30 chs s = splvm();
1080 1.99 rin
1081 1.99 rin rv = (*attr & mask) != 0;
1082 1.11 eeh if (clear) {
1083 1.1 simonb *attr &= ~mask;
1084 1.99 rin pmap_page_protect(pg,
1085 1.99 rin mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
1086 1.11 eeh }
1087 1.99 rin
1088 1.1 simonb splx(s);
1089 1.99 rin
1090 1.1 simonb return rv;
1091 1.1 simonb }
1092 1.1 simonb
1093 1.1 simonb
1094 1.1 simonb /*
1095 1.1 simonb * Lower the protection on the specified physical page.
1096 1.1 simonb *
1097 1.1 simonb * There are only two cases: either the protection is going to 0,
1098 1.1 simonb * or it is going to read-only.
1099 1.1 simonb */
1100 1.1 simonb void
1101 1.1 simonb pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1102 1.1 simonb {
1103 1.99 rin struct pv_entry *pvh, *pv, *npv;
1104 1.99 rin struct pmap *pm;
1105 1.1 simonb paddr_t pa = VM_PAGE_TO_PHYS(pg);
1106 1.1 simonb vaddr_t va;
1107 1.1 simonb
1108 1.1 simonb pvh = pa_to_pv(pa);
1109 1.1 simonb if (pvh == NULL)
1110 1.1 simonb return;
1111 1.1 simonb
1112 1.1 simonb /* Handle extra pvs which may be deleted in the operation */
1113 1.1 simonb for (pv = pvh->pv_next; pv; pv = npv) {
1114 1.1 simonb npv = pv->pv_next;
1115 1.1 simonb
1116 1.1 simonb pm = pv->pv_pm;
1117 1.91 rin va = PV_VA(pv);
1118 1.26 chs pmap_protect(pm, va, va + PAGE_SIZE, prot);
1119 1.1 simonb }
1120 1.99 rin
1121 1.1 simonb /* Now check the head pv */
1122 1.1 simonb if (pvh->pv_pm) {
1123 1.1 simonb pv = pvh;
1124 1.1 simonb pm = pv->pv_pm;
1125 1.91 rin va = PV_VA(pv);
1126 1.26 chs pmap_protect(pm, va, va + PAGE_SIZE, prot);
1127 1.1 simonb }
1128 1.1 simonb }
1129 1.1 simonb
1130 1.1 simonb /*
1131 1.1 simonb * Activate the address space for the specified process. If the process
1132 1.1 simonb * is the current process, load the new MMU context.
1133 1.1 simonb */
1134 1.1 simonb void
1135 1.17 thorpej pmap_activate(struct lwp *l)
1136 1.1 simonb {
1137 1.1 simonb #if 0
1138 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
1139 1.17 thorpej pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1140 1.1 simonb
1141 1.1 simonb /*
1142 1.61 skrll * XXX Normally performed in cpu_lwp_fork().
1143 1.1 simonb */
1144 1.17 thorpej printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1145 1.25 matt pcb->pcb_pm = pmap;
1146 1.1 simonb #endif
1147 1.1 simonb }
1148 1.1 simonb
1149 1.1 simonb /*
1150 1.1 simonb * Deactivate the specified process's address space.
1151 1.1 simonb */
1152 1.1 simonb void
1153 1.17 thorpej pmap_deactivate(struct lwp *l)
1154 1.1 simonb {
1155 1.1 simonb }
1156 1.1 simonb
1157 1.1 simonb /*
1158 1.1 simonb * Synchronize caches corresponding to [addr, addr+len) in p.
1159 1.1 simonb */
1160 1.1 simonb void
1161 1.1 simonb pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1162 1.1 simonb {
1163 1.95 rin struct pmap *pm = p->p_vmspace->vm_map.pmap;
1164 1.18 hannken
1165 1.94 rin if (__predict_true(p == curproc)) {
1166 1.94 rin int msr, ctx, opid;
1167 1.1 simonb
1168 1.94 rin /*
1169 1.94 rin * Take it easy! TLB miss handler takes care of us.
1170 1.94 rin */
1171 1.94 rin
1172 1.94 rin /*
1173 1.94 rin * Need to turn off IMMU and switch to user context.
1174 1.94 rin * (icbi uses DMMU).
1175 1.94 rin */
1176 1.94 rin
1177 1.94 rin if (!(ctx = pm->pm_ctx)) {
1178 1.94 rin /* No context -- assign it one */
1179 1.94 rin ctx_alloc(pm);
1180 1.94 rin ctx = pm->pm_ctx;
1181 1.94 rin }
1182 1.94 rin
1183 1.99 rin __asm volatile (
1184 1.99 rin "mfmsr %0;"
1185 1.99 rin "li %1,0x20;" /* Turn off IMMU */
1186 1.99 rin "andc %1,%0,%1;"
1187 1.99 rin "ori %1,%1,0x10;" /* Turn on DMMU for sure */
1188 1.99 rin "mtmsr %1;"
1189 1.94 rin "isync;"
1190 1.99 rin "mfpid %1;"
1191 1.99 rin "mtpid %2;"
1192 1.94 rin "isync;"
1193 1.94 rin "1:"
1194 1.99 rin "dcbst 0,%3;"
1195 1.99 rin "icbi 0,%3;"
1196 1.99 rin "add %3,%3,%5;"
1197 1.99 rin "sub. %4,%4,%5;"
1198 1.99 rin "bge 1b;"
1199 1.94 rin "sync;"
1200 1.99 rin "mtpid %1;"
1201 1.99 rin "mtmsr %0;"
1202 1.94 rin "isync;"
1203 1.99 rin : "=&r"(msr), "=&r"(opid)
1204 1.99 rin : "r"(ctx), "r"(va), "r"(len), "r"(CACHELINESIZE));
1205 1.94 rin } else {
1206 1.94 rin paddr_t pa;
1207 1.94 rin vaddr_t tva, eva;
1208 1.94 rin int tlen;
1209 1.94 rin
1210 1.94 rin /*
1211 1.94 rin * For p != curproc, we cannot rely upon TLB miss handler in
1212 1.94 rin * user context. Therefore, extract pa and operate againt it.
1213 1.94 rin *
1214 1.94 rin * Note that va below VM_MIN_KERNEL_ADDRESS is reserved for
1215 1.94 rin * direct mapping.
1216 1.94 rin */
1217 1.94 rin
1218 1.94 rin for (tva = va; len > 0; tva = eva, len -= tlen) {
1219 1.94 rin eva = uimin(tva + len, trunc_page(tva + PAGE_SIZE));
1220 1.94 rin tlen = eva - tva;
1221 1.94 rin if (!pmap_extract(pm, tva, &pa)) {
1222 1.94 rin /* XXX should be already unmapped */
1223 1.94 rin continue;
1224 1.94 rin }
1225 1.94 rin __syncicache((void *)pa, tlen);
1226 1.94 rin }
1227 1.1 simonb }
1228 1.1 simonb }
1229 1.1 simonb
1230 1.93 rin static inline void
1231 1.93 rin tlb_invalidate_entry(int i)
1232 1.93 rin {
1233 1.93 rin #ifdef PMAP_TLBDEBUG
1234 1.93 rin /*
1235 1.93 rin * Clear only TLBHI[V] bit so that we can track invalidated entry.
1236 1.93 rin */
1237 1.93 rin register_t msr, pid, hi;
1238 1.93 rin
1239 1.93 rin KASSERT(mfspr(SPR_PID) == KERNEL_PID);
1240 1.93 rin
1241 1.99 rin __asm volatile (
1242 1.93 rin "mfmsr %0;"
1243 1.93 rin "li %1,0;"
1244 1.93 rin "mtmsr %1;"
1245 1.93 rin "mfpid %1;"
1246 1.93 rin "tlbre %2,%3,0;"
1247 1.93 rin "andc %2,%2,%4;"
1248 1.93 rin "tlbwe %2,%3,0;"
1249 1.93 rin "mtpid %1;"
1250 1.93 rin "mtmsr %0;"
1251 1.93 rin "isync;"
1252 1.99 rin : "=&r"(msr), "=&r"(pid), "=&r"(hi)
1253 1.99 rin : "r"(i), "r"(TLB_VALID));
1254 1.93 rin #else
1255 1.93 rin /*
1256 1.93 rin * Just clear entire TLBHI register.
1257 1.93 rin */
1258 1.99 rin __asm volatile (
1259 1.93 rin "tlbwe %0,%1,0;"
1260 1.93 rin "isync;"
1261 1.99 rin : : "r"(0), "r"(i));
1262 1.93 rin #endif
1263 1.93 rin
1264 1.93 rin tlb_info[i].ti_ctx = 0;
1265 1.93 rin tlb_info[i].ti_flags = 0;
1266 1.93 rin }
1267 1.1 simonb
1268 1.1 simonb /* This has to be done in real mode !!! */
1269 1.1 simonb void
1270 1.1 simonb ppc4xx_tlb_flush(vaddr_t va, int pid)
1271 1.1 simonb {
1272 1.99 rin u_long msr, i, found;
1273 1.1 simonb
1274 1.1 simonb /* If there's no context then it can't be mapped. */
1275 1.26 chs if (!pid)
1276 1.26 chs return;
1277 1.1 simonb
1278 1.99 rin __asm volatile (
1279 1.99 rin "mfpid %1;" /* Save PID */
1280 1.99 rin "mfmsr %2;" /* Save MSR */
1281 1.99 rin "li %0,0;" /* Now clear MSR */
1282 1.99 rin "mtmsr %0;"
1283 1.88 rin "isync;"
1284 1.99 rin "mtpid %4;" /* Set PID */
1285 1.88 rin "isync;"
1286 1.99 rin "tlbsx. %0,0,%3;" /* Search TLB */
1287 1.88 rin "isync;"
1288 1.99 rin "mtpid %1;" /* Restore PID */
1289 1.99 rin "mtmsr %2;" /* Restore MSR */
1290 1.88 rin "isync;"
1291 1.99 rin "li %1,1;"
1292 1.99 rin "beq 1f;"
1293 1.99 rin "li %1,0;"
1294 1.99 rin "1:"
1295 1.99 rin : "=&r"(i), "=&r"(found), "=&r"(msr)
1296 1.99 rin : "r"(va), "r"(pid));
1297 1.99 rin
1298 1.1 simonb if (found && !TLB_LOCKED(i)) {
1299 1.1 simonb /* Now flush translation */
1300 1.93 rin tlb_invalidate_entry(i);
1301 1.1 simonb tlbnext = i;
1302 1.1 simonb /* Successful flushes */
1303 1.1 simonb tlbflush_ev.ev_count++;
1304 1.1 simonb }
1305 1.1 simonb }
1306 1.1 simonb
1307 1.1 simonb void
1308 1.1 simonb ppc4xx_tlb_flush_all(void)
1309 1.1 simonb {
1310 1.1 simonb u_long i;
1311 1.1 simonb
1312 1.1 simonb for (i = 0; i < NTLB; i++)
1313 1.93 rin if (!TLB_LOCKED(i))
1314 1.93 rin tlb_invalidate_entry(i);
1315 1.1 simonb
1316 1.99 rin __asm volatile ("isync");
1317 1.1 simonb }
1318 1.1 simonb
1319 1.1 simonb /* Find a TLB entry to evict. */
1320 1.1 simonb static int
1321 1.1 simonb ppc4xx_tlb_find_victim(void)
1322 1.1 simonb {
1323 1.1 simonb int flags;
1324 1.1 simonb
1325 1.1 simonb for (;;) {
1326 1.1 simonb if (++tlbnext >= NTLB)
1327 1.42 freza tlbnext = tlb_nreserved;
1328 1.1 simonb flags = tlb_info[tlbnext].ti_flags;
1329 1.12 simonb if (!(flags & TLBF_USED) ||
1330 1.99 rin (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1331 1.1 simonb u_long va, stack = (u_long)&va;
1332 1.1 simonb
1333 1.99 rin if (!((tlb_info[tlbnext].ti_va ^ stack) &
1334 1.99 rin (~PGOFSET)) &&
1335 1.1 simonb (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1336 1.99 rin (flags & TLBF_USED)) {
1337 1.1 simonb /* Kernel stack page */
1338 1.80 rin flags |= TLBF_REF;
1339 1.1 simonb tlb_info[tlbnext].ti_flags = flags;
1340 1.1 simonb } else {
1341 1.1 simonb /* Found it! */
1342 1.97 rin return tlbnext;
1343 1.1 simonb }
1344 1.99 rin } else
1345 1.1 simonb tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1346 1.1 simonb }
1347 1.1 simonb }
1348 1.1 simonb
1349 1.1 simonb void
1350 1.1 simonb ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1351 1.1 simonb {
1352 1.1 simonb u_long th, tl, idx;
1353 1.10 eeh paddr_t pa;
1354 1.99 rin int msr, pid, sz;
1355 1.10 eeh
1356 1.1 simonb tlbenter_ev.ev_count++;
1357 1.1 simonb
1358 1.10 eeh sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1359 1.10 eeh pa = (pte & TTE_RPN_MASK(sz));
1360 1.10 eeh th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1361 1.10 eeh tl = (pte & ~TLB_RPN_MASK) | pa;
1362 1.10 eeh tl |= ppc4xx_tlbflags(va, pa);
1363 1.1 simonb
1364 1.1 simonb idx = ppc4xx_tlb_find_victim();
1365 1.1 simonb
1366 1.100 rin KASSERTMSG(idx >= tlb_nreserved && idx < NTLB,
1367 1.100 rin "invalid entry %ld", idx);
1368 1.12 simonb
1369 1.1 simonb tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1370 1.1 simonb tlb_info[idx].ti_ctx = ctx;
1371 1.1 simonb tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1372 1.1 simonb
1373 1.99 rin __asm volatile (
1374 1.99 rin "mfmsr %0;" /* Save MSR */
1375 1.99 rin "li %1,0;"
1376 1.99 rin "mtmsr %1;" /* Clear MSR */
1377 1.88 rin "isync;"
1378 1.99 rin "tlbwe %1,%3,0;" /* Invalidate old entry. */
1379 1.99 rin "mfpid %1;" /* Save old PID */
1380 1.99 rin "mtpid %2;" /* Load translation ctx */
1381 1.88 rin "isync;"
1382 1.99 rin "tlbwe %4,%3,1;" /* Set TLB */
1383 1.99 rin "tlbwe %5,%3,0;"
1384 1.88 rin "isync;"
1385 1.99 rin "mtpid %1;" /* Restore PID */
1386 1.99 rin "mtmsr %0;" /* and MSR */
1387 1.88 rin "isync;"
1388 1.99 rin : "=&r"(msr), "=&r"(pid)
1389 1.99 rin : "r"(ctx), "r"(idx), "r"(tl), "r"(th));
1390 1.1 simonb }
1391 1.1 simonb
1392 1.1 simonb void
1393 1.1 simonb ppc4xx_tlb_init(void)
1394 1.1 simonb {
1395 1.1 simonb int i;
1396 1.1 simonb
1397 1.1 simonb /* Mark reserved TLB entries */
1398 1.42 freza for (i = 0; i < tlb_nreserved; i++) {
1399 1.1 simonb tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1400 1.1 simonb tlb_info[i].ti_ctx = KERNEL_PID;
1401 1.1 simonb }
1402 1.1 simonb
1403 1.1 simonb /* Setup security zones */
1404 1.1 simonb /* Z0 - accessible by kernel only if TLB entry permissions allow
1405 1.1 simonb * Z1,Z2 - access is controlled by TLB entry permissions
1406 1.1 simonb * Z3 - full access regardless of TLB entry permissions
1407 1.1 simonb */
1408 1.1 simonb
1409 1.99 rin __asm volatile (
1410 1.99 rin "mtspr %0,%1;"
1411 1.88 rin "isync;"
1412 1.99 rin : : "K"(SPR_ZPR), "r"(0x1b000000));
1413 1.1 simonb }
1414 1.1 simonb
1415 1.42 freza /*
1416 1.42 freza * ppc4xx_tlb_size_mask:
1417 1.42 freza *
1418 1.42 freza * Roundup size to supported page size, return TLBHI mask and real size.
1419 1.42 freza */
1420 1.42 freza static int
1421 1.42 freza ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
1422 1.42 freza {
1423 1.99 rin int i;
1424 1.42 freza
1425 1.42 freza for (i = 0; i < __arraycount(tlbsize); i++)
1426 1.42 freza if (size <= tlbsize[i]) {
1427 1.42 freza *mask = (i << TLB_SIZE_SHFT);
1428 1.42 freza *rsiz = tlbsize[i];
1429 1.97 rin return 0;
1430 1.42 freza }
1431 1.97 rin return EINVAL;
1432 1.42 freza }
1433 1.42 freza
1434 1.42 freza /*
1435 1.42 freza * ppc4xx_tlb_mapiodev:
1436 1.42 freza *
1437 1.42 freza * Lookup virtual address of mapping previously entered via
1438 1.42 freza * ppc4xx_tlb_reserve. Search TLB directly so that we don't
1439 1.42 freza * need to waste extra storage for reserved mappings. Note
1440 1.42 freza * that reading TLBHI also sets PID, but all reserved mappings
1441 1.42 freza * use KERNEL_PID, so the side effect is nil.
1442 1.42 freza */
1443 1.42 freza void *
1444 1.42 freza ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
1445 1.42 freza {
1446 1.99 rin paddr_t pa;
1447 1.99 rin vaddr_t va;
1448 1.99 rin u_int lo, hi, sz;
1449 1.99 rin int i;
1450 1.42 freza
1451 1.42 freza /* tlb_nreserved is only allowed to grow, so this is safe. */
1452 1.42 freza for (i = 0; i < tlb_nreserved; i++) {
1453 1.42 freza __asm volatile (
1454 1.99 rin "tlbre %0,%2,1;" /* TLBLO */
1455 1.99 rin "tlbre %1,%2,0;" /* TLBHI */
1456 1.99 rin : "=&r"(lo), "=&r"(hi)
1457 1.99 rin : "r"(i));
1458 1.42 freza
1459 1.42 freza KASSERT(hi & TLB_VALID);
1460 1.42 freza KASSERT(mfspr(SPR_PID) == KERNEL_PID);
1461 1.42 freza
1462 1.42 freza pa = (lo & TLB_RPN_MASK);
1463 1.42 freza if (base < pa)
1464 1.42 freza continue;
1465 1.42 freza
1466 1.42 freza sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
1467 1.99 rin if (base + len > pa + sz)
1468 1.42 freza continue;
1469 1.42 freza
1470 1.42 freza va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); /* sz = 2^n */
1471 1.97 rin return (void *)va;
1472 1.42 freza }
1473 1.42 freza
1474 1.97 rin return NULL;
1475 1.42 freza }
1476 1.42 freza
1477 1.42 freza /*
1478 1.42 freza * ppc4xx_tlb_reserve:
1479 1.42 freza *
1480 1.42 freza * Map physical range to kernel virtual chunk via reserved TLB entry.
1481 1.42 freza */
1482 1.42 freza void
1483 1.42 freza ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
1484 1.42 freza {
1485 1.99 rin u_int lo, hi;
1486 1.99 rin int szmask, rsize;
1487 1.42 freza
1488 1.42 freza /* Called before pmap_bootstrap(), va outside kernel space. */
1489 1.42 freza KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
1490 1.99 rin KASSERT(!pmap_bootstrap_done);
1491 1.42 freza KASSERT(tlb_nreserved < NTLB);
1492 1.42 freza
1493 1.42 freza /* Resolve size. */
1494 1.42 freza if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
1495 1.42 freza panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
1496 1.42 freza size, tlb_nreserved);
1497 1.42 freza
1498 1.42 freza /* Real size will be power of two >= 1024, so this is OK. */
1499 1.42 freza pa &= ~(rsize - 1); /* RPN */
1500 1.42 freza va &= ~(rsize - 1); /* EPN */
1501 1.42 freza
1502 1.42 freza lo = pa | TLB_WR | flags;
1503 1.43 kiyohara hi = va | TLB_VALID | szmask;
1504 1.42 freza
1505 1.42 freza #ifdef PPC_4XX_NOCACHE
1506 1.42 freza lo |= TLB_I;
1507 1.42 freza #endif
1508 1.42 freza
1509 1.42 freza __asm volatile(
1510 1.99 rin "tlbwe %1,%0,1;" /* write TLBLO */
1511 1.99 rin "tlbwe %2,%0,0;" /* write TLBHI */
1512 1.99 rin "isync;"
1513 1.99 rin : : "r"(tlb_nreserved), "r"(lo), "r"(hi));
1514 1.42 freza
1515 1.42 freza tlb_nreserved++;
1516 1.42 freza }
1517 1.1 simonb
1518 1.1 simonb /*
1519 1.1 simonb * We should pass the ctx in from trap code.
1520 1.1 simonb */
1521 1.1 simonb int
1522 1.1 simonb pmap_tlbmiss(vaddr_t va, int ctx)
1523 1.1 simonb {
1524 1.1 simonb volatile u_int *pte;
1525 1.1 simonb u_long tte;
1526 1.1 simonb
1527 1.1 simonb tlbmiss_ev.ev_count++;
1528 1.1 simonb
1529 1.1 simonb /*
1530 1.44 freza * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
1531 1.44 freza * Physical RAM is expected to live in this range, care must be taken
1532 1.44 freza * to not clobber 0 upto ${physmem} with device mappings in machdep
1533 1.44 freza * code.
1534 1.1 simonb */
1535 1.63 uebayasi if (ctx != KERNEL_PID ||
1536 1.63 uebayasi (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) {
1537 1.36 scw pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
1538 1.1 simonb if (pte == NULL) {
1539 1.99 rin /*
1540 1.99 rin * Map unmanaged addresses directly for
1541 1.99 rin * kernel access
1542 1.99 rin */
1543 1.1 simonb return 1;
1544 1.1 simonb }
1545 1.1 simonb tte = *pte;
1546 1.99 rin if (tte == 0)
1547 1.1 simonb return 1;
1548 1.1 simonb } else {
1549 1.16 wiz /* Create a 16MB writable mapping. */
1550 1.99 rin tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1551 1.8 thorpej #ifdef PPC_4XX_NOCACHE
1552 1.99 rin tte |= TTE_I;
1553 1.1 simonb #endif
1554 1.1 simonb }
1555 1.1 simonb ppc4xx_tlb_enter(ctx, va, tte);
1556 1.1 simonb
1557 1.1 simonb return 0;
1558 1.1 simonb }
1559 1.1 simonb
1560 1.1 simonb /*
1561 1.1 simonb * Flush all the entries matching a context from the TLB.
1562 1.1 simonb */
1563 1.1 simonb static int
1564 1.1 simonb ctx_flush(int cnum)
1565 1.1 simonb {
1566 1.1 simonb int i;
1567 1.1 simonb
1568 1.1 simonb /* We gotta steal this context */
1569 1.42 freza for (i = tlb_nreserved; i < NTLB; i++) {
1570 1.1 simonb if (tlb_info[i].ti_ctx == cnum) {
1571 1.100 rin /* Can't steal ctx if it has locked/reserved entry. */
1572 1.100 rin KASSERTMSG(!TLB_LOCKED(i) && i >= tlb_nreserved,
1573 1.100 rin "locked/reserved entry %d for ctx %d",
1574 1.100 rin i, cnum);
1575 1.93 rin /*
1576 1.93 rin * Invalidate particular TLB entry regardless of
1577 1.93 rin * locked status
1578 1.93 rin */
1579 1.93 rin tlb_invalidate_entry(i);
1580 1.1 simonb }
1581 1.1 simonb }
1582 1.97 rin return 0;
1583 1.1 simonb }
1584 1.1 simonb
1585 1.1 simonb /*
1586 1.1 simonb * Allocate a context. If necessary, steal one from someone else.
1587 1.1 simonb *
1588 1.1 simonb * The new context is flushed from the TLB before returning.
1589 1.1 simonb */
1590 1.1 simonb int
1591 1.1 simonb ctx_alloc(struct pmap *pm)
1592 1.1 simonb {
1593 1.1 simonb static int next = MINCTX;
1594 1.99 rin int cnum, s;
1595 1.1 simonb
1596 1.100 rin KASSERT(pm != pmap_kernel());
1597 1.99 rin
1598 1.1 simonb s = splvm();
1599 1.1 simonb
1600 1.1 simonb /* Find a likely context. */
1601 1.1 simonb cnum = next;
1602 1.1 simonb do {
1603 1.99 rin if (++cnum >= NUMCTX)
1604 1.1 simonb cnum = MINCTX;
1605 1.1 simonb } while (ctxbusy[cnum] != NULL && cnum != next);
1606 1.1 simonb
1607 1.1 simonb /* Now clean it out */
1608 1.1 simonb oops:
1609 1.1 simonb if (cnum < MINCTX)
1610 1.1 simonb cnum = MINCTX; /* Never steal ctx 0 or 1 */
1611 1.1 simonb if (ctx_flush(cnum)) {
1612 1.1 simonb /* oops -- something's wired. */
1613 1.99 rin if (++cnum >= NUMCTX)
1614 1.1 simonb cnum = MINCTX;
1615 1.1 simonb goto oops;
1616 1.1 simonb }
1617 1.1 simonb
1618 1.1 simonb if (ctxbusy[cnum]) {
1619 1.1 simonb #ifdef DEBUG
1620 1.1 simonb /* We should identify this pmap and clear it */
1621 1.1 simonb printf("Warning: stealing context %d\n", cnum);
1622 1.1 simonb #endif
1623 1.1 simonb ctxbusy[cnum]->pm_ctx = 0;
1624 1.1 simonb }
1625 1.1 simonb ctxbusy[cnum] = pm;
1626 1.1 simonb next = cnum;
1627 1.99 rin
1628 1.1 simonb splx(s);
1629 1.99 rin
1630 1.1 simonb pm->pm_ctx = cnum;
1631 1.1 simonb
1632 1.1 simonb return cnum;
1633 1.1 simonb }
1634 1.1 simonb
1635 1.1 simonb /*
1636 1.1 simonb * Give away a context.
1637 1.1 simonb */
1638 1.1 simonb void
1639 1.1 simonb ctx_free(struct pmap *pm)
1640 1.1 simonb {
1641 1.1 simonb int oldctx;
1642 1.1 simonb
1643 1.1 simonb oldctx = pm->pm_ctx;
1644 1.1 simonb
1645 1.1 simonb if (oldctx == 0)
1646 1.1 simonb panic("ctx_free: freeing kernel context");
1647 1.99 rin
1648 1.100 rin KASSERTMSG(ctxbusy[oldctx] == pm,
1649 1.100 rin "ctxbusy[%d] = %p, pm->pm_ctx = %p",
1650 1.100 rin oldctx, ctxbusy[oldctx], pm);
1651 1.99 rin
1652 1.1 simonb /* We should verify it has not been stolen and reallocated... */
1653 1.1 simonb ctxbusy[oldctx] = NULL;
1654 1.1 simonb ctx_flush(oldctx);
1655 1.1 simonb }
1656 1.5 eeh
1657 1.1 simonb #ifdef DEBUG
1658 1.1 simonb /*
1659 1.1 simonb * Test ref/modify handling.
1660 1.1 simonb */
1661 1.53 dsl void pmap_testout(void);
1662 1.1 simonb void
1663 1.54 cegger pmap_testout(void)
1664 1.1 simonb {
1665 1.99 rin struct vm_page *pg;
1666 1.1 simonb vaddr_t va;
1667 1.99 rin paddr_t pa;
1668 1.1 simonb volatile int *loc;
1669 1.99 rin int ref, mod, val = 0;
1670 1.1 simonb
1671 1.1 simonb /* Allocate a page */
1672 1.34 yamt va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1673 1.34 yamt UVM_KMF_WIRED | UVM_KMF_ZERO);
1674 1.99 rin loc = (int *)va;
1675 1.1 simonb
1676 1.1 simonb pmap_extract(pmap_kernel(), va, &pa);
1677 1.1 simonb pg = PHYS_TO_VM_PAGE(pa);
1678 1.1 simonb pmap_unwire(pmap_kernel(), va);
1679 1.1 simonb
1680 1.34 yamt pmap_kremove(va, PAGE_SIZE);
1681 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1682 1.4 chris pmap_update(pmap_kernel());
1683 1.1 simonb
1684 1.1 simonb /* Now clear reference and modify */
1685 1.1 simonb ref = pmap_clear_reference(pg);
1686 1.1 simonb mod = pmap_clear_modify(pg);
1687 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1688 1.99 rin (void *)(u_long)va, (long)pa, ref, mod);
1689 1.1 simonb
1690 1.1 simonb /* Check it's properly cleared */
1691 1.1 simonb ref = pmap_is_referenced(pg);
1692 1.1 simonb mod = pmap_is_modified(pg);
1693 1.99 rin printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
1694 1.1 simonb
1695 1.1 simonb /* Reference page */
1696 1.1 simonb val = *loc;
1697 1.1 simonb
1698 1.1 simonb ref = pmap_is_referenced(pg);
1699 1.1 simonb mod = pmap_is_modified(pg);
1700 1.99 rin printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
1701 1.1 simonb
1702 1.1 simonb /* Now clear reference and modify */
1703 1.1 simonb ref = pmap_clear_reference(pg);
1704 1.1 simonb mod = pmap_clear_modify(pg);
1705 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1706 1.99 rin (void *)(u_long)va, (long)pa, ref, mod);
1707 1.12 simonb
1708 1.1 simonb /* Modify page */
1709 1.1 simonb *loc = 1;
1710 1.1 simonb
1711 1.1 simonb ref = pmap_is_referenced(pg);
1712 1.1 simonb mod = pmap_is_modified(pg);
1713 1.99 rin printf("Modified page: ref %d, mod %d\n", ref, mod);
1714 1.1 simonb
1715 1.1 simonb /* Now clear reference and modify */
1716 1.1 simonb ref = pmap_clear_reference(pg);
1717 1.1 simonb mod = pmap_clear_modify(pg);
1718 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1719 1.99 rin (void *)(u_long)va, (long)pa, ref, mod);
1720 1.1 simonb
1721 1.1 simonb /* Check it's properly cleared */
1722 1.1 simonb ref = pmap_is_referenced(pg);
1723 1.1 simonb mod = pmap_is_modified(pg);
1724 1.99 rin printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
1725 1.1 simonb
1726 1.1 simonb /* Modify page */
1727 1.1 simonb *loc = 1;
1728 1.1 simonb
1729 1.1 simonb ref = pmap_is_referenced(pg);
1730 1.1 simonb mod = pmap_is_modified(pg);
1731 1.99 rin printf("Modified page: ref %d, mod %d\n", ref, mod);
1732 1.1 simonb
1733 1.1 simonb /* Check pmap_protect() */
1734 1.101 rin pmap_protect(pmap_kernel(), va, va + PAGE_SIZE, VM_PROT_READ);
1735 1.4 chris pmap_update(pmap_kernel());
1736 1.1 simonb ref = pmap_is_referenced(pg);
1737 1.1 simonb mod = pmap_is_modified(pg);
1738 1.99 rin printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n", ref, mod);
1739 1.1 simonb
1740 1.1 simonb /* Now clear reference and modify */
1741 1.1 simonb ref = pmap_clear_reference(pg);
1742 1.1 simonb mod = pmap_clear_modify(pg);
1743 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1744 1.99 rin (void *)(u_long)va, (long)pa, ref, mod);
1745 1.1 simonb
1746 1.1 simonb /* Reference page */
1747 1.1 simonb val = *loc;
1748 1.1 simonb
1749 1.1 simonb ref = pmap_is_referenced(pg);
1750 1.1 simonb mod = pmap_is_modified(pg);
1751 1.99 rin printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
1752 1.1 simonb
1753 1.1 simonb /* Now clear reference and modify */
1754 1.1 simonb ref = pmap_clear_reference(pg);
1755 1.1 simonb mod = pmap_clear_modify(pg);
1756 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1757 1.99 rin (void *)(u_long)va, (long)pa, ref, mod);
1758 1.12 simonb
1759 1.1 simonb /* Modify page */
1760 1.1 simonb #if 0
1761 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1762 1.4 chris pmap_update(pmap_kernel());
1763 1.1 simonb #endif
1764 1.1 simonb *loc = 1;
1765 1.1 simonb
1766 1.1 simonb ref = pmap_is_referenced(pg);
1767 1.1 simonb mod = pmap_is_modified(pg);
1768 1.99 rin printf("Modified page: ref %d, mod %d\n", ref, mod);
1769 1.1 simonb
1770 1.1 simonb /* Check pmap_protect() */
1771 1.101 rin pmap_protect(pmap_kernel(), va, va + PAGE_SIZE, VM_PROT_NONE);
1772 1.4 chris pmap_update(pmap_kernel());
1773 1.1 simonb ref = pmap_is_referenced(pg);
1774 1.1 simonb mod = pmap_is_modified(pg);
1775 1.99 rin printf("pmap_protect(): ref %d, mod %d\n", ref, mod);
1776 1.1 simonb
1777 1.1 simonb /* Now clear reference and modify */
1778 1.1 simonb ref = pmap_clear_reference(pg);
1779 1.1 simonb mod = pmap_clear_modify(pg);
1780 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1781 1.99 rin (void *)(u_long)va, (long)pa, ref, mod);
1782 1.1 simonb
1783 1.1 simonb /* Reference page */
1784 1.1 simonb val = *loc;
1785 1.1 simonb
1786 1.1 simonb ref = pmap_is_referenced(pg);
1787 1.1 simonb mod = pmap_is_modified(pg);
1788 1.99 rin printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
1789 1.1 simonb
1790 1.1 simonb /* Now clear reference and modify */
1791 1.1 simonb ref = pmap_clear_reference(pg);
1792 1.1 simonb mod = pmap_clear_modify(pg);
1793 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1794 1.99 rin (void *)(u_long)va, (long)pa, ref, mod);
1795 1.12 simonb
1796 1.1 simonb /* Modify page */
1797 1.1 simonb #if 0
1798 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1799 1.4 chris pmap_update(pmap_kernel());
1800 1.1 simonb #endif
1801 1.1 simonb *loc = 1;
1802 1.1 simonb
1803 1.1 simonb ref = pmap_is_referenced(pg);
1804 1.1 simonb mod = pmap_is_modified(pg);
1805 1.99 rin printf("Modified page: ref %d, mod %d\n", ref, mod);
1806 1.1 simonb
1807 1.1 simonb /* Check pmap_pag_protect() */
1808 1.1 simonb pmap_page_protect(pg, VM_PROT_READ);
1809 1.1 simonb ref = pmap_is_referenced(pg);
1810 1.1 simonb mod = pmap_is_modified(pg);
1811 1.99 rin printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n", ref, mod);
1812 1.1 simonb
1813 1.1 simonb /* Now clear reference and modify */
1814 1.1 simonb ref = pmap_clear_reference(pg);
1815 1.1 simonb mod = pmap_clear_modify(pg);
1816 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1817 1.99 rin (void *)(u_long)va, (long)pa, ref, mod);
1818 1.1 simonb
1819 1.1 simonb /* Reference page */
1820 1.1 simonb val = *loc;
1821 1.1 simonb
1822 1.1 simonb ref = pmap_is_referenced(pg);
1823 1.1 simonb mod = pmap_is_modified(pg);
1824 1.99 rin printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
1825 1.1 simonb
1826 1.1 simonb /* Now clear reference and modify */
1827 1.1 simonb ref = pmap_clear_reference(pg);
1828 1.1 simonb mod = pmap_clear_modify(pg);
1829 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1830 1.99 rin (void *)(u_long)va, (long)pa, ref, mod);
1831 1.12 simonb
1832 1.1 simonb /* Modify page */
1833 1.1 simonb #if 0
1834 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1835 1.4 chris pmap_update(pmap_kernel());
1836 1.1 simonb #endif
1837 1.1 simonb *loc = 1;
1838 1.1 simonb
1839 1.1 simonb ref = pmap_is_referenced(pg);
1840 1.1 simonb mod = pmap_is_modified(pg);
1841 1.99 rin printf("Modified page: ref %d, mod %d\n", ref, mod);
1842 1.1 simonb
1843 1.1 simonb /* Check pmap_pag_protect() */
1844 1.1 simonb pmap_page_protect(pg, VM_PROT_NONE);
1845 1.1 simonb ref = pmap_is_referenced(pg);
1846 1.1 simonb mod = pmap_is_modified(pg);
1847 1.99 rin printf("pmap_page_protect(): ref %d, mod %d\n", ref, mod);
1848 1.1 simonb
1849 1.1 simonb /* Now clear reference and modify */
1850 1.1 simonb ref = pmap_clear_reference(pg);
1851 1.1 simonb mod = pmap_clear_modify(pg);
1852 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1853 1.99 rin (void *)(u_long)va, (long)pa, ref, mod);
1854 1.1 simonb
1855 1.1 simonb
1856 1.1 simonb /* Reference page */
1857 1.1 simonb val = *loc;
1858 1.1 simonb
1859 1.1 simonb ref = pmap_is_referenced(pg);
1860 1.1 simonb mod = pmap_is_modified(pg);
1861 1.99 rin printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
1862 1.1 simonb
1863 1.1 simonb /* Now clear reference and modify */
1864 1.1 simonb ref = pmap_clear_reference(pg);
1865 1.1 simonb mod = pmap_clear_modify(pg);
1866 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1867 1.99 rin (void *)(u_long)va, (long)pa, ref, mod);
1868 1.12 simonb
1869 1.1 simonb /* Modify page */
1870 1.1 simonb #if 0
1871 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1872 1.4 chris pmap_update(pmap_kernel());
1873 1.1 simonb #endif
1874 1.1 simonb *loc = 1;
1875 1.1 simonb
1876 1.1 simonb ref = pmap_is_referenced(pg);
1877 1.1 simonb mod = pmap_is_modified(pg);
1878 1.99 rin printf("Modified page: ref %d, mod %d\n", ref, mod);
1879 1.1 simonb
1880 1.1 simonb /* Unmap page */
1881 1.101 rin pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
1882 1.4 chris pmap_update(pmap_kernel());
1883 1.1 simonb ref = pmap_is_referenced(pg);
1884 1.1 simonb mod = pmap_is_modified(pg);
1885 1.1 simonb printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1886 1.1 simonb
1887 1.1 simonb /* Now clear reference and modify */
1888 1.1 simonb ref = pmap_clear_reference(pg);
1889 1.1 simonb mod = pmap_clear_modify(pg);
1890 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1891 1.99 rin (void *)(u_long)va, (long)pa, ref, mod);
1892 1.1 simonb
1893 1.1 simonb /* Check it's properly cleared */
1894 1.1 simonb ref = pmap_is_referenced(pg);
1895 1.1 simonb mod = pmap_is_modified(pg);
1896 1.99 rin printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
1897 1.1 simonb
1898 1.34 yamt pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
1899 1.59 cegger pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
1900 1.34 yamt uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
1901 1.1 simonb }
1902 1.1 simonb #endif
1903