pmap.c revision 1.41 1 1.41 simonb /* $NetBSD: pmap.c,v 1.41 2006/07/12 06:22:17 simonb Exp $ */
2 1.1 simonb
3 1.1 simonb /*
4 1.1 simonb * Copyright 2001 Wasabi Systems, Inc.
5 1.1 simonb * All rights reserved.
6 1.1 simonb *
7 1.1 simonb * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 1.1 simonb *
9 1.1 simonb * Redistribution and use in source and binary forms, with or without
10 1.1 simonb * modification, are permitted provided that the following conditions
11 1.1 simonb * are met:
12 1.1 simonb * 1. Redistributions of source code must retain the above copyright
13 1.1 simonb * notice, this list of conditions and the following disclaimer.
14 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 simonb * notice, this list of conditions and the following disclaimer in the
16 1.1 simonb * documentation and/or other materials provided with the distribution.
17 1.1 simonb * 3. All advertising materials mentioning features or use of this software
18 1.1 simonb * must display the following acknowledgement:
19 1.1 simonb * This product includes software developed for the NetBSD Project by
20 1.1 simonb * Wasabi Systems, Inc.
21 1.1 simonb * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.1 simonb * or promote products derived from this software without specific prior
23 1.1 simonb * written permission.
24 1.1 simonb *
25 1.1 simonb * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.1 simonb * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 simonb * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 simonb * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.1 simonb * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 simonb * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 simonb * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 simonb * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 simonb * POSSIBILITY OF SUCH DAMAGE.
36 1.1 simonb */
37 1.1 simonb
38 1.1 simonb /*
39 1.1 simonb * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 1.1 simonb * Copyright (C) 1995, 1996 TooLs GmbH.
41 1.1 simonb * All rights reserved.
42 1.1 simonb *
43 1.1 simonb * Redistribution and use in source and binary forms, with or without
44 1.1 simonb * modification, are permitted provided that the following conditions
45 1.1 simonb * are met:
46 1.1 simonb * 1. Redistributions of source code must retain the above copyright
47 1.1 simonb * notice, this list of conditions and the following disclaimer.
48 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 simonb * notice, this list of conditions and the following disclaimer in the
50 1.1 simonb * documentation and/or other materials provided with the distribution.
51 1.1 simonb * 3. All advertising materials mentioning features or use of this software
52 1.1 simonb * must display the following acknowledgement:
53 1.1 simonb * This product includes software developed by TooLs GmbH.
54 1.1 simonb * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 1.1 simonb * derived from this software without specific prior written permission.
56 1.1 simonb *
57 1.1 simonb * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 1.1 simonb * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 1.1 simonb * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 1.1 simonb * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 1.1 simonb * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 1.1 simonb * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 1.1 simonb * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 1.1 simonb * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 1.1 simonb * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 1.1 simonb * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 1.1 simonb */
68 1.23 lukem
69 1.23 lukem #include <sys/cdefs.h>
70 1.41 simonb __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.41 2006/07/12 06:22:17 simonb Exp $");
71 1.1 simonb
72 1.1 simonb #include <sys/param.h>
73 1.1 simonb #include <sys/malloc.h>
74 1.1 simonb #include <sys/proc.h>
75 1.1 simonb #include <sys/user.h>
76 1.1 simonb #include <sys/queue.h>
77 1.1 simonb #include <sys/systm.h>
78 1.1 simonb #include <sys/pool.h>
79 1.1 simonb #include <sys/device.h>
80 1.1 simonb
81 1.1 simonb #include <uvm/uvm.h>
82 1.1 simonb
83 1.10 eeh #include <machine/cpu.h>
84 1.1 simonb #include <machine/pcb.h>
85 1.1 simonb #include <machine/powerpc.h>
86 1.1 simonb
87 1.1 simonb #include <powerpc/spr.h>
88 1.10 eeh #include <machine/tlb.h>
89 1.1 simonb
90 1.1 simonb /*
91 1.1 simonb * kernmap is an array of PTEs large enough to map in
92 1.1 simonb * 4GB. At 16KB/page it is 256K entries or 2MB.
93 1.1 simonb */
94 1.19 thorpej #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1)
95 1.1 simonb caddr_t kernmap;
96 1.1 simonb
97 1.1 simonb #define MINCTX 2
98 1.1 simonb #define NUMCTX 256
99 1.1 simonb volatile struct pmap *ctxbusy[NUMCTX];
100 1.1 simonb
101 1.1 simonb #define TLBF_USED 0x1
102 1.1 simonb #define TLBF_REF 0x2
103 1.1 simonb #define TLBF_LOCKED 0x4
104 1.1 simonb #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
105 1.1 simonb typedef struct tlb_info_s {
106 1.1 simonb char ti_flags;
107 1.1 simonb char ti_ctx; /* TLB_PID assiciated with the entry */
108 1.1 simonb u_int ti_va;
109 1.1 simonb } tlb_info_t;
110 1.1 simonb
111 1.1 simonb volatile tlb_info_t tlb_info[NTLB];
112 1.1 simonb /* We'll use a modified FIFO replacement policy cause it's cheap */
113 1.1 simonb volatile int tlbnext = TLB_NRESERVED;
114 1.1 simonb
115 1.14 thorpej /* Event counters */
116 1.14 thorpej struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
117 1.1 simonb NULL, "cpu", "tlbmiss");
118 1.14 thorpej struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
119 1.1 simonb NULL, "cpu", "tlbhit");
120 1.14 thorpej struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
121 1.1 simonb NULL, "cpu", "tlbflush");
122 1.14 thorpej struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
123 1.1 simonb NULL, "cpu", "tlbenter");
124 1.1 simonb
125 1.1 simonb struct pmap kernel_pmap_;
126 1.1 simonb
127 1.1 simonb int physmem;
128 1.1 simonb static int npgs;
129 1.1 simonb static u_int nextavail;
130 1.1 simonb #ifndef MSGBUFADDR
131 1.1 simonb extern paddr_t msgbuf_paddr;
132 1.1 simonb #endif
133 1.1 simonb
134 1.1 simonb static struct mem_region *mem, *avail;
135 1.1 simonb
136 1.1 simonb /*
137 1.1 simonb * This is a cache of referenced/modified bits.
138 1.1 simonb * Bits herein are shifted by ATTRSHFT.
139 1.1 simonb */
140 1.1 simonb static char *pmap_attrib;
141 1.1 simonb
142 1.1 simonb #define PV_WIRED 0x1
143 1.1 simonb #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
144 1.30 chs #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED)
145 1.30 chs #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED)
146 1.30 chs #define PV_CMPVA(va,pv) (!(((pv)->pv_va ^ (va)) & (~PV_WIRED)))
147 1.1 simonb
148 1.1 simonb struct pv_entry {
149 1.1 simonb struct pv_entry *pv_next; /* Linked list of mappings */
150 1.1 simonb vaddr_t pv_va; /* virtual address of mapping */
151 1.1 simonb struct pmap *pv_pm;
152 1.1 simonb };
153 1.1 simonb
154 1.1 simonb struct pv_entry *pv_table;
155 1.1 simonb static struct pool pv_pool;
156 1.1 simonb
157 1.1 simonb static int pmap_initialized;
158 1.1 simonb
159 1.1 simonb static int ctx_flush(int);
160 1.1 simonb
161 1.1 simonb inline struct pv_entry *pa_to_pv(paddr_t);
162 1.1 simonb static inline char *pa_to_attr(paddr_t);
163 1.1 simonb
164 1.1 simonb static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
165 1.1 simonb static inline int pte_enter(struct pmap *, vaddr_t, u_int);
166 1.1 simonb
167 1.30 chs static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, boolean_t);
168 1.1 simonb static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
169 1.1 simonb
170 1.1 simonb
171 1.1 simonb inline struct pv_entry *
172 1.1 simonb pa_to_pv(paddr_t pa)
173 1.1 simonb {
174 1.1 simonb int bank, pg;
175 1.1 simonb
176 1.1 simonb bank = vm_physseg_find(atop(pa), &pg);
177 1.1 simonb if (bank == -1)
178 1.1 simonb return NULL;
179 1.1 simonb return &vm_physmem[bank].pmseg.pvent[pg];
180 1.1 simonb }
181 1.1 simonb
182 1.1 simonb static inline char *
183 1.1 simonb pa_to_attr(paddr_t pa)
184 1.1 simonb {
185 1.1 simonb int bank, pg;
186 1.1 simonb
187 1.1 simonb bank = vm_physseg_find(atop(pa), &pg);
188 1.1 simonb if (bank == -1)
189 1.1 simonb return NULL;
190 1.1 simonb return &vm_physmem[bank].pmseg.attrs[pg];
191 1.1 simonb }
192 1.1 simonb
193 1.1 simonb /*
194 1.1 simonb * Insert PTE into page table.
195 1.1 simonb */
196 1.1 simonb int
197 1.1 simonb pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
198 1.1 simonb {
199 1.1 simonb int seg = STIDX(va);
200 1.1 simonb int ptn = PTIDX(va);
201 1.22 scw u_int oldpte;
202 1.1 simonb
203 1.1 simonb if (!pm->pm_ptbl[seg]) {
204 1.1 simonb /* Don't allocate a page to clear a non-existent mapping. */
205 1.30 chs if (!pte)
206 1.30 chs return (0);
207 1.1 simonb /* Allocate a page XXXX this will sleep! */
208 1.19 thorpej pm->pm_ptbl[seg] =
209 1.34 yamt (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
210 1.34 yamt UVM_KMF_WIRED | UVM_KMF_ZERO);
211 1.1 simonb }
212 1.22 scw oldpte = pm->pm_ptbl[seg][ptn];
213 1.1 simonb pm->pm_ptbl[seg][ptn] = pte;
214 1.1 simonb
215 1.1 simonb /* Flush entry. */
216 1.1 simonb ppc4xx_tlb_flush(va, pm->pm_ctx);
217 1.22 scw if (oldpte != pte) {
218 1.22 scw if (pte == 0)
219 1.22 scw pm->pm_stats.resident_count--;
220 1.22 scw else
221 1.22 scw pm->pm_stats.resident_count++;
222 1.22 scw }
223 1.1 simonb return (1);
224 1.1 simonb }
225 1.1 simonb
226 1.1 simonb /*
227 1.1 simonb * Get a pointer to a PTE in a page table.
228 1.1 simonb */
229 1.1 simonb volatile u_int *
230 1.1 simonb pte_find(struct pmap *pm, vaddr_t va)
231 1.1 simonb {
232 1.1 simonb int seg = STIDX(va);
233 1.1 simonb int ptn = PTIDX(va);
234 1.1 simonb
235 1.1 simonb if (pm->pm_ptbl[seg])
236 1.1 simonb return (&pm->pm_ptbl[seg][ptn]);
237 1.1 simonb
238 1.1 simonb return (NULL);
239 1.1 simonb }
240 1.1 simonb
241 1.1 simonb /*
242 1.1 simonb * This is called during initppc, before the system is really initialized.
243 1.1 simonb */
244 1.1 simonb void
245 1.1 simonb pmap_bootstrap(u_int kernelstart, u_int kernelend)
246 1.1 simonb {
247 1.1 simonb struct mem_region *mp, *mp1;
248 1.1 simonb int cnt, i;
249 1.1 simonb u_int s, e, sz;
250 1.1 simonb
251 1.1 simonb /*
252 1.1 simonb * Allocate the kernel page table at the end of
253 1.1 simonb * kernel space so it's in the locked TTE.
254 1.1 simonb */
255 1.1 simonb kernmap = (caddr_t)kernelend;
256 1.1 simonb
257 1.1 simonb /*
258 1.1 simonb * Initialize kernel page table.
259 1.1 simonb */
260 1.1 simonb for (i = 0; i < STSZ; i++) {
261 1.10 eeh pmap_kernel()->pm_ptbl[i] = 0;
262 1.1 simonb }
263 1.1 simonb ctxbusy[0] = ctxbusy[1] = pmap_kernel();
264 1.1 simonb
265 1.1 simonb /*
266 1.1 simonb * Announce page-size to the VM-system
267 1.1 simonb */
268 1.1 simonb uvmexp.pagesize = NBPG;
269 1.1 simonb uvm_setpagesize();
270 1.1 simonb
271 1.1 simonb /*
272 1.1 simonb * Get memory.
273 1.1 simonb */
274 1.1 simonb mem_regions(&mem, &avail);
275 1.1 simonb for (mp = mem; mp->size; mp++) {
276 1.1 simonb physmem += btoc(mp->size);
277 1.1 simonb printf("+%lx,",mp->size);
278 1.1 simonb }
279 1.1 simonb printf("\n");
280 1.1 simonb ppc4xx_tlb_init();
281 1.1 simonb /*
282 1.1 simonb * Count the number of available entries.
283 1.1 simonb */
284 1.1 simonb for (cnt = 0, mp = avail; mp->size; mp++)
285 1.1 simonb cnt++;
286 1.1 simonb
287 1.1 simonb /*
288 1.1 simonb * Page align all regions.
289 1.1 simonb * Non-page aligned memory isn't very interesting to us.
290 1.1 simonb * Also, sort the entries for ascending addresses.
291 1.1 simonb */
292 1.1 simonb kernelstart &= ~PGOFSET;
293 1.1 simonb kernelend = (kernelend + PGOFSET) & ~PGOFSET;
294 1.1 simonb for (mp = avail; mp->size; mp++) {
295 1.1 simonb s = mp->start;
296 1.1 simonb e = mp->start + mp->size;
297 1.1 simonb printf("%08x-%08x -> ",s,e);
298 1.1 simonb /*
299 1.1 simonb * Check whether this region holds all of the kernel.
300 1.1 simonb */
301 1.1 simonb if (s < kernelstart && e > kernelend) {
302 1.1 simonb avail[cnt].start = kernelend;
303 1.1 simonb avail[cnt++].size = e - kernelend;
304 1.1 simonb e = kernelstart;
305 1.1 simonb }
306 1.1 simonb /*
307 1.1 simonb * Look whether this regions starts within the kernel.
308 1.1 simonb */
309 1.1 simonb if (s >= kernelstart && s < kernelend) {
310 1.1 simonb if (e <= kernelend)
311 1.1 simonb goto empty;
312 1.1 simonb s = kernelend;
313 1.1 simonb }
314 1.1 simonb /*
315 1.1 simonb * Now look whether this region ends within the kernel.
316 1.1 simonb */
317 1.1 simonb if (e > kernelstart && e <= kernelend) {
318 1.1 simonb if (s >= kernelstart)
319 1.1 simonb goto empty;
320 1.1 simonb e = kernelstart;
321 1.1 simonb }
322 1.1 simonb /*
323 1.1 simonb * Now page align the start and size of the region.
324 1.1 simonb */
325 1.1 simonb s = round_page(s);
326 1.1 simonb e = trunc_page(e);
327 1.1 simonb if (e < s)
328 1.1 simonb e = s;
329 1.1 simonb sz = e - s;
330 1.1 simonb printf("%08x-%08x = %x\n",s,e,sz);
331 1.1 simonb /*
332 1.1 simonb * Check whether some memory is left here.
333 1.1 simonb */
334 1.1 simonb if (sz == 0) {
335 1.1 simonb empty:
336 1.3 wiz memmove(mp, mp + 1,
337 1.3 wiz (cnt - (mp - avail)) * sizeof *mp);
338 1.1 simonb cnt--;
339 1.1 simonb mp--;
340 1.1 simonb continue;
341 1.1 simonb }
342 1.1 simonb /*
343 1.1 simonb * Do an insertion sort.
344 1.1 simonb */
345 1.1 simonb npgs += btoc(sz);
346 1.1 simonb for (mp1 = avail; mp1 < mp; mp1++)
347 1.1 simonb if (s < mp1->start)
348 1.1 simonb break;
349 1.1 simonb if (mp1 < mp) {
350 1.3 wiz memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
351 1.1 simonb mp1->start = s;
352 1.1 simonb mp1->size = sz;
353 1.1 simonb } else {
354 1.1 simonb mp->start = s;
355 1.1 simonb mp->size = sz;
356 1.1 simonb }
357 1.1 simonb }
358 1.1 simonb
359 1.1 simonb /*
360 1.1 simonb * We cannot do pmap_steal_memory here,
361 1.1 simonb * since we don't run with translation enabled yet.
362 1.1 simonb */
363 1.1 simonb #ifndef MSGBUFADDR
364 1.1 simonb /*
365 1.1 simonb * allow for msgbuf
366 1.1 simonb */
367 1.1 simonb sz = round_page(MSGBUFSIZE);
368 1.1 simonb mp = NULL;
369 1.1 simonb for (mp1 = avail; mp1->size; mp1++)
370 1.1 simonb if (mp1->size >= sz)
371 1.1 simonb mp = mp1;
372 1.1 simonb if (mp == NULL)
373 1.1 simonb panic("not enough memory?");
374 1.1 simonb
375 1.1 simonb npgs -= btoc(sz);
376 1.1 simonb msgbuf_paddr = mp->start + mp->size - sz;
377 1.1 simonb mp->size -= sz;
378 1.1 simonb if (mp->size <= 0)
379 1.3 wiz memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
380 1.1 simonb #endif
381 1.1 simonb
382 1.1 simonb for (mp = avail; mp->size; mp++)
383 1.1 simonb uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
384 1.1 simonb atop(mp->start), atop(mp->start + mp->size),
385 1.1 simonb VM_FREELIST_DEFAULT);
386 1.1 simonb
387 1.1 simonb /*
388 1.1 simonb * Initialize kernel pmap and hardware.
389 1.1 simonb */
390 1.1 simonb /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
391 1.1 simonb pmap_kernel()->pm_ctx = KERNEL_PID;
392 1.1 simonb nextavail = avail->start;
393 1.1 simonb
394 1.1 simonb
395 1.29 simonb evcnt_attach_static(&tlbmiss_ev);
396 1.1 simonb evcnt_attach_static(&tlbhit_ev);
397 1.1 simonb evcnt_attach_static(&tlbflush_ev);
398 1.1 simonb evcnt_attach_static(&tlbenter_ev);
399 1.1 simonb }
400 1.1 simonb
401 1.1 simonb /*
402 1.1 simonb * Restrict given range to physical memory
403 1.1 simonb *
404 1.1 simonb * (Used by /dev/mem)
405 1.1 simonb */
406 1.1 simonb void
407 1.1 simonb pmap_real_memory(paddr_t *start, psize_t *size)
408 1.1 simonb {
409 1.1 simonb struct mem_region *mp;
410 1.1 simonb
411 1.1 simonb for (mp = mem; mp->size; mp++) {
412 1.1 simonb if (*start + *size > mp->start &&
413 1.1 simonb *start < mp->start + mp->size) {
414 1.1 simonb if (*start < mp->start) {
415 1.1 simonb *size -= mp->start - *start;
416 1.1 simonb *start = mp->start;
417 1.1 simonb }
418 1.1 simonb if (*start + *size > mp->start + mp->size)
419 1.1 simonb *size = mp->start + mp->size - *start;
420 1.1 simonb return;
421 1.1 simonb }
422 1.1 simonb }
423 1.1 simonb *size = 0;
424 1.1 simonb }
425 1.1 simonb
426 1.1 simonb /*
427 1.1 simonb * Initialize anything else for pmap handling.
428 1.1 simonb * Called during vm_init().
429 1.1 simonb */
430 1.1 simonb void
431 1.1 simonb pmap_init(void)
432 1.1 simonb {
433 1.1 simonb struct pv_entry *pv;
434 1.1 simonb vsize_t sz;
435 1.1 simonb vaddr_t addr;
436 1.1 simonb int i, s;
437 1.1 simonb int bank;
438 1.1 simonb char *attr;
439 1.1 simonb
440 1.1 simonb sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
441 1.1 simonb sz = round_page(sz);
442 1.34 yamt addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
443 1.1 simonb s = splvm();
444 1.1 simonb pv = pv_table = (struct pv_entry *)addr;
445 1.1 simonb for (i = npgs; --i >= 0;)
446 1.1 simonb pv++->pv_pm = NULL;
447 1.1 simonb pmap_attrib = (char *)pv;
448 1.2 wiz memset(pv, 0, npgs);
449 1.1 simonb
450 1.1 simonb pv = pv_table;
451 1.1 simonb attr = pmap_attrib;
452 1.1 simonb for (bank = 0; bank < vm_nphysseg; bank++) {
453 1.1 simonb sz = vm_physmem[bank].end - vm_physmem[bank].start;
454 1.1 simonb vm_physmem[bank].pmseg.pvent = pv;
455 1.1 simonb vm_physmem[bank].pmseg.attrs = attr;
456 1.1 simonb pv += sz;
457 1.1 simonb attr += sz;
458 1.1 simonb }
459 1.1 simonb
460 1.1 simonb pmap_initialized = 1;
461 1.1 simonb splx(s);
462 1.1 simonb
463 1.1 simonb /* Setup a pool for additional pvlist structures */
464 1.9 thorpej pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL);
465 1.21 thorpej }
466 1.21 thorpej
467 1.21 thorpej /*
468 1.21 thorpej * How much virtual space is available to the kernel?
469 1.21 thorpej */
470 1.21 thorpej void
471 1.21 thorpej pmap_virtual_space(vaddr_t *start, vaddr_t *end)
472 1.21 thorpej {
473 1.21 thorpej
474 1.21 thorpej #if 0
475 1.21 thorpej /*
476 1.21 thorpej * Reserve one segment for kernel virtual memory
477 1.21 thorpej */
478 1.21 thorpej *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
479 1.21 thorpej *end = *start + SEGMENT_LENGTH;
480 1.21 thorpej #else
481 1.21 thorpej *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
482 1.21 thorpej *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
483 1.21 thorpej #endif
484 1.1 simonb }
485 1.1 simonb
486 1.5 eeh #ifdef PMAP_GROWKERNEL
487 1.5 eeh /*
488 1.5 eeh * Preallocate kernel page tables to a specified VA.
489 1.5 eeh * This simply loops through the first TTE for each
490 1.12 simonb * page table from the beginning of the kernel pmap,
491 1.5 eeh * reads the entry, and if the result is
492 1.5 eeh * zero (either invalid entry or no page table) it stores
493 1.5 eeh * a zero there, populating page tables in the process.
494 1.5 eeh * This is not the most efficient technique but i don't
495 1.5 eeh * expect it to be called that often.
496 1.5 eeh */
497 1.5 eeh extern struct vm_page *vm_page_alloc1 __P((void));
498 1.5 eeh extern void vm_page_free1 __P((struct vm_page *));
499 1.5 eeh
500 1.5 eeh vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
501 1.5 eeh
502 1.12 simonb vaddr_t
503 1.30 chs pmap_growkernel(vaddr_t maxkvaddr)
504 1.5 eeh {
505 1.5 eeh int s;
506 1.5 eeh int seg;
507 1.5 eeh paddr_t pg;
508 1.5 eeh struct pmap *pm = pmap_kernel();
509 1.12 simonb
510 1.5 eeh s = splvm();
511 1.5 eeh
512 1.5 eeh /* Align with the start of a page table */
513 1.5 eeh for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
514 1.5 eeh kbreak += PTMAP) {
515 1.5 eeh seg = STIDX(kbreak);
516 1.5 eeh
517 1.30 chs if (pte_find(pm, kbreak))
518 1.30 chs continue;
519 1.12 simonb
520 1.5 eeh if (uvm.page_init_done) {
521 1.5 eeh pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
522 1.5 eeh } else {
523 1.5 eeh if (!uvm_page_physget(&pg))
524 1.5 eeh panic("pmap_growkernel: no memory");
525 1.5 eeh }
526 1.32 simonb if (!pg)
527 1.32 simonb panic("pmap_growkernel: no pages");
528 1.5 eeh pmap_zero_page((paddr_t)pg);
529 1.5 eeh
530 1.5 eeh /* XXX This is based on all phymem being addressable */
531 1.5 eeh pm->pm_ptbl[seg] = (u_int *)pg;
532 1.5 eeh }
533 1.5 eeh splx(s);
534 1.5 eeh return (kbreak);
535 1.5 eeh }
536 1.5 eeh
537 1.5 eeh /*
538 1.5 eeh * vm_page_alloc1:
539 1.5 eeh *
540 1.5 eeh * Allocate and return a memory cell with no associated object.
541 1.5 eeh */
542 1.5 eeh struct vm_page *
543 1.30 chs vm_page_alloc1(void)
544 1.5 eeh {
545 1.30 chs struct vm_page *pg;
546 1.30 chs
547 1.30 chs pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
548 1.5 eeh if (pg) {
549 1.5 eeh pg->wire_count = 1; /* no mappings yet */
550 1.5 eeh pg->flags &= ~PG_BUSY; /* never busy */
551 1.5 eeh }
552 1.5 eeh return pg;
553 1.5 eeh }
554 1.5 eeh
555 1.5 eeh /*
556 1.5 eeh * vm_page_free1:
557 1.5 eeh *
558 1.5 eeh * Returns the given page to the free list,
559 1.5 eeh * disassociating it with any VM object.
560 1.5 eeh *
561 1.5 eeh * Object and page must be locked prior to entry.
562 1.5 eeh */
563 1.5 eeh void
564 1.36 scw vm_page_free1(struct vm_page *pg)
565 1.5 eeh {
566 1.10 eeh #ifdef DIAGNOSTIC
567 1.36 scw if (pg->flags != (PG_CLEAN|PG_FAKE)) {
568 1.36 scw printf("Freeing invalid page %p\n", pg);
569 1.36 scw printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg));
570 1.10 eeh #ifdef DDB
571 1.5 eeh Debugger();
572 1.10 eeh #endif
573 1.5 eeh return;
574 1.5 eeh }
575 1.10 eeh #endif
576 1.36 scw pg->flags |= PG_BUSY;
577 1.36 scw pg->wire_count = 0;
578 1.36 scw uvm_pagefree(pg);
579 1.5 eeh }
580 1.5 eeh #endif
581 1.5 eeh
582 1.1 simonb /*
583 1.1 simonb * Create and return a physical map.
584 1.1 simonb */
585 1.1 simonb struct pmap *
586 1.1 simonb pmap_create(void)
587 1.1 simonb {
588 1.1 simonb struct pmap *pm;
589 1.1 simonb
590 1.30 chs pm = malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
591 1.30 chs memset(pm, 0, sizeof *pm);
592 1.30 chs pm->pm_refs = 1;
593 1.1 simonb return pm;
594 1.1 simonb }
595 1.1 simonb
596 1.1 simonb /*
597 1.1 simonb * Add a reference to the given pmap.
598 1.1 simonb */
599 1.1 simonb void
600 1.1 simonb pmap_reference(struct pmap *pm)
601 1.1 simonb {
602 1.1 simonb
603 1.1 simonb pm->pm_refs++;
604 1.1 simonb }
605 1.1 simonb
606 1.1 simonb /*
607 1.1 simonb * Retire the given pmap from service.
608 1.1 simonb * Should only be called if the map contains no valid mappings.
609 1.1 simonb */
610 1.1 simonb void
611 1.1 simonb pmap_destroy(struct pmap *pm)
612 1.1 simonb {
613 1.30 chs int i;
614 1.1 simonb
615 1.30 chs if (--pm->pm_refs > 0) {
616 1.30 chs return;
617 1.1 simonb }
618 1.30 chs KASSERT(pm->pm_stats.resident_count == 0);
619 1.30 chs KASSERT(pm->pm_stats.wired_count == 0);
620 1.1 simonb for (i = 0; i < STSZ; i++)
621 1.1 simonb if (pm->pm_ptbl[i]) {
622 1.19 thorpej uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
623 1.34 yamt PAGE_SIZE, UVM_KMF_WIRED);
624 1.1 simonb pm->pm_ptbl[i] = NULL;
625 1.1 simonb }
626 1.30 chs if (pm->pm_ctx)
627 1.30 chs ctx_free(pm);
628 1.30 chs free(pm, M_VMPMAP);
629 1.1 simonb }
630 1.1 simonb
631 1.1 simonb /*
632 1.1 simonb * Copy the range specified by src_addr/len
633 1.1 simonb * from the source map to the range dst_addr/len
634 1.1 simonb * in the destination map.
635 1.1 simonb *
636 1.1 simonb * This routine is only advisory and need not do anything.
637 1.1 simonb */
638 1.1 simonb void
639 1.1 simonb pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
640 1.1 simonb vsize_t len, vaddr_t src_addr)
641 1.1 simonb {
642 1.1 simonb }
643 1.1 simonb
644 1.1 simonb /*
645 1.1 simonb * Require that all active physical maps contain no
646 1.1 simonb * incorrect entries NOW.
647 1.1 simonb */
648 1.1 simonb void
649 1.4 chris pmap_update(struct pmap *pmap)
650 1.1 simonb {
651 1.1 simonb }
652 1.1 simonb
653 1.1 simonb /*
654 1.1 simonb * Garbage collects the physical map system for
655 1.1 simonb * pages which are no longer used.
656 1.1 simonb * Success need not be guaranteed -- that is, there
657 1.1 simonb * may well be pages which are not referenced, but
658 1.1 simonb * others may be collected.
659 1.1 simonb * Called by the pageout daemon when pages are scarce.
660 1.1 simonb */
661 1.1 simonb void
662 1.1 simonb pmap_collect(struct pmap *pm)
663 1.1 simonb {
664 1.1 simonb }
665 1.1 simonb
666 1.1 simonb /*
667 1.1 simonb * Fill the given physical page with zeroes.
668 1.1 simonb */
669 1.1 simonb void
670 1.1 simonb pmap_zero_page(paddr_t pa)
671 1.1 simonb {
672 1.1 simonb
673 1.8 thorpej #ifdef PPC_4XX_NOCACHE
674 1.19 thorpej memset((caddr_t)pa, 0, PAGE_SIZE);
675 1.1 simonb #else
676 1.1 simonb int i;
677 1.1 simonb
678 1.19 thorpej for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
679 1.38 perry __asm volatile ("dcbz 0,%0" :: "r"(pa));
680 1.1 simonb pa += CACHELINESIZE;
681 1.1 simonb }
682 1.1 simonb #endif
683 1.1 simonb }
684 1.1 simonb
685 1.1 simonb /*
686 1.1 simonb * Copy the given physical source page to its destination.
687 1.1 simonb */
688 1.1 simonb void
689 1.1 simonb pmap_copy_page(paddr_t src, paddr_t dst)
690 1.1 simonb {
691 1.1 simonb
692 1.19 thorpej memcpy((caddr_t)dst, (caddr_t)src, PAGE_SIZE);
693 1.1 simonb dcache_flush_page(dst);
694 1.1 simonb }
695 1.1 simonb
696 1.1 simonb /*
697 1.1 simonb * This returns whether this is the first mapping of a page.
698 1.1 simonb */
699 1.1 simonb static inline int
700 1.30 chs pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, boolean_t wired)
701 1.1 simonb {
702 1.1 simonb struct pv_entry *pv, *npv = NULL;
703 1.1 simonb int s;
704 1.1 simonb
705 1.1 simonb if (!pmap_initialized)
706 1.1 simonb return 0;
707 1.1 simonb
708 1.1 simonb s = splvm();
709 1.1 simonb pv = pa_to_pv(pa);
710 1.1 simonb if (!pv->pv_pm) {
711 1.1 simonb /*
712 1.1 simonb * No entries yet, use header as the first entry.
713 1.1 simonb */
714 1.1 simonb pv->pv_va = va;
715 1.1 simonb pv->pv_pm = pm;
716 1.1 simonb pv->pv_next = NULL;
717 1.1 simonb } else {
718 1.1 simonb /*
719 1.1 simonb * There is at least one other VA mapping this page.
720 1.1 simonb * Place this entry after the header.
721 1.1 simonb */
722 1.1 simonb npv = pool_get(&pv_pool, PR_WAITOK);
723 1.1 simonb npv->pv_va = va;
724 1.1 simonb npv->pv_pm = pm;
725 1.1 simonb npv->pv_next = pv->pv_next;
726 1.1 simonb pv->pv_next = npv;
727 1.33 chs pv = npv;
728 1.1 simonb }
729 1.30 chs if (wired) {
730 1.30 chs PV_WIRE(pv);
731 1.33 chs pm->pm_stats.wired_count++;
732 1.30 chs }
733 1.1 simonb splx(s);
734 1.1 simonb return (1);
735 1.1 simonb }
736 1.1 simonb
737 1.1 simonb static void
738 1.1 simonb pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
739 1.1 simonb {
740 1.1 simonb struct pv_entry *pv, *npv;
741 1.1 simonb
742 1.1 simonb /*
743 1.1 simonb * Remove from the PV table.
744 1.1 simonb */
745 1.1 simonb pv = pa_to_pv(pa);
746 1.30 chs if (!pv)
747 1.30 chs return;
748 1.1 simonb
749 1.1 simonb /*
750 1.1 simonb * If it is the first entry on the list, it is actually
751 1.1 simonb * in the header and we must copy the following entry up
752 1.1 simonb * to the header. Otherwise we must search the list for
753 1.1 simonb * the entry. In either case we free the now unused entry.
754 1.1 simonb */
755 1.1 simonb if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
756 1.30 chs if (PV_ISWIRED(pv)) {
757 1.30 chs pm->pm_stats.wired_count--;
758 1.30 chs }
759 1.1 simonb if ((npv = pv->pv_next)) {
760 1.1 simonb *pv = *npv;
761 1.1 simonb pool_put(&pv_pool, npv);
762 1.1 simonb } else
763 1.1 simonb pv->pv_pm = NULL;
764 1.1 simonb } else {
765 1.1 simonb for (; (npv = pv->pv_next) != NULL; pv = npv)
766 1.1 simonb if (pm == npv->pv_pm && PV_CMPVA(va, npv))
767 1.1 simonb break;
768 1.1 simonb if (npv) {
769 1.1 simonb pv->pv_next = npv->pv_next;
770 1.30 chs if (PV_ISWIRED(npv)) {
771 1.30 chs pm->pm_stats.wired_count--;
772 1.30 chs }
773 1.1 simonb pool_put(&pv_pool, npv);
774 1.1 simonb }
775 1.1 simonb }
776 1.1 simonb }
777 1.1 simonb
778 1.1 simonb /*
779 1.1 simonb * Insert physical page at pa into the given pmap at virtual address va.
780 1.1 simonb */
781 1.1 simonb int
782 1.1 simonb pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
783 1.1 simonb {
784 1.1 simonb int s;
785 1.1 simonb u_int tte;
786 1.1 simonb int managed;
787 1.1 simonb
788 1.1 simonb /*
789 1.1 simonb * Have to remove any existing mapping first.
790 1.1 simonb */
791 1.19 thorpej pmap_remove(pm, va, va + PAGE_SIZE);
792 1.1 simonb
793 1.30 chs if (flags & PMAP_WIRED)
794 1.30 chs flags |= prot;
795 1.1 simonb
796 1.1 simonb managed = 0;
797 1.1 simonb if (vm_physseg_find(atop(pa), NULL) != -1)
798 1.1 simonb managed = 1;
799 1.1 simonb
800 1.1 simonb /*
801 1.1 simonb * Generate TTE.
802 1.1 simonb */
803 1.26 chs tte = TTE_PA(pa);
804 1.1 simonb /* XXXX -- need to support multiple page sizes. */
805 1.1 simonb tte |= TTE_SZ_16K;
806 1.1 simonb #ifdef DIAGNOSTIC
807 1.1 simonb if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
808 1.1 simonb (PME_NOCACHE | PME_WRITETHROUG))
809 1.13 provos panic("pmap_enter: uncached & writethrough");
810 1.1 simonb #endif
811 1.1 simonb if (flags & PME_NOCACHE)
812 1.1 simonb /* Must be I/O mapping */
813 1.1 simonb tte |= TTE_I | TTE_G;
814 1.8 thorpej #ifdef PPC_4XX_NOCACHE
815 1.1 simonb tte |= TTE_I;
816 1.1 simonb #else
817 1.1 simonb else if (flags & PME_WRITETHROUG)
818 1.1 simonb /* Uncached and writethrough are not compatible */
819 1.1 simonb tte |= TTE_W;
820 1.1 simonb #endif
821 1.1 simonb if (pm == pmap_kernel())
822 1.1 simonb tte |= TTE_ZONE(ZONE_PRIV);
823 1.1 simonb else
824 1.1 simonb tte |= TTE_ZONE(ZONE_USER);
825 1.1 simonb
826 1.1 simonb if (flags & VM_PROT_WRITE)
827 1.1 simonb tte |= TTE_WR;
828 1.1 simonb
829 1.26 chs if (flags & VM_PROT_EXECUTE)
830 1.26 chs tte |= TTE_EX;
831 1.26 chs
832 1.1 simonb /*
833 1.1 simonb * Now record mapping for later back-translation.
834 1.1 simonb */
835 1.1 simonb if (pmap_initialized && managed) {
836 1.1 simonb char *attr;
837 1.1 simonb
838 1.30 chs if (!pmap_enter_pv(pm, va, pa, flags & PMAP_WIRED)) {
839 1.1 simonb /* Could not enter pv on a managed page */
840 1.1 simonb return 1;
841 1.1 simonb }
842 1.1 simonb
843 1.1 simonb /* Now set attributes. */
844 1.1 simonb attr = pa_to_attr(pa);
845 1.1 simonb #ifdef DIAGNOSTIC
846 1.1 simonb if (!attr)
847 1.13 provos panic("managed but no attr");
848 1.1 simonb #endif
849 1.1 simonb if (flags & VM_PROT_ALL)
850 1.30 chs *attr |= PMAP_ATTR_REF;
851 1.1 simonb if (flags & VM_PROT_WRITE)
852 1.30 chs *attr |= PMAP_ATTR_CHG;
853 1.1 simonb }
854 1.1 simonb
855 1.1 simonb s = splvm();
856 1.1 simonb
857 1.1 simonb /* Insert page into page table. */
858 1.1 simonb pte_enter(pm, va, tte);
859 1.1 simonb
860 1.1 simonb /* If this is a real fault, enter it in the tlb */
861 1.1 simonb if (tte && ((flags & PMAP_WIRED) == 0)) {
862 1.1 simonb ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
863 1.1 simonb }
864 1.1 simonb splx(s);
865 1.6 simonb
866 1.6 simonb /* Flush the real memory from the instruction cache. */
867 1.6 simonb if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
868 1.6 simonb __syncicache((void *)pa, PAGE_SIZE);
869 1.6 simonb
870 1.1 simonb return 0;
871 1.1 simonb }
872 1.1 simonb
873 1.1 simonb void
874 1.1 simonb pmap_unwire(struct pmap *pm, vaddr_t va)
875 1.1 simonb {
876 1.33 chs struct pv_entry *pv;
877 1.1 simonb paddr_t pa;
878 1.30 chs int s;
879 1.1 simonb
880 1.1 simonb if (!pmap_extract(pm, va, &pa)) {
881 1.1 simonb return;
882 1.1 simonb }
883 1.1 simonb
884 1.1 simonb pv = pa_to_pv(pa);
885 1.30 chs if (!pv)
886 1.30 chs return;
887 1.1 simonb
888 1.30 chs s = splvm();
889 1.33 chs while (pv != NULL) {
890 1.33 chs if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
891 1.33 chs if (PV_ISWIRED(pv)) {
892 1.33 chs PV_UNWIRE(pv);
893 1.30 chs pm->pm_stats.wired_count--;
894 1.30 chs }
895 1.1 simonb break;
896 1.1 simonb }
897 1.33 chs pv = pv->pv_next;
898 1.1 simonb }
899 1.1 simonb splx(s);
900 1.1 simonb }
901 1.1 simonb
902 1.1 simonb void
903 1.1 simonb pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
904 1.1 simonb {
905 1.1 simonb int s;
906 1.1 simonb u_int tte;
907 1.1 simonb struct pmap *pm = pmap_kernel();
908 1.1 simonb
909 1.1 simonb /*
910 1.1 simonb * Have to remove any existing mapping first.
911 1.1 simonb */
912 1.1 simonb
913 1.1 simonb /*
914 1.1 simonb * Generate TTE.
915 1.1 simonb *
916 1.1 simonb * XXXX
917 1.1 simonb *
918 1.1 simonb * Since the kernel does not handle execution privileges properly,
919 1.1 simonb * we will handle read and execute permissions together.
920 1.1 simonb */
921 1.1 simonb tte = 0;
922 1.1 simonb if (prot & VM_PROT_ALL) {
923 1.1 simonb
924 1.1 simonb tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
925 1.1 simonb /* XXXX -- need to support multiple page sizes. */
926 1.1 simonb tte |= TTE_SZ_16K;
927 1.1 simonb #ifdef DIAGNOSTIC
928 1.1 simonb if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
929 1.1 simonb (PME_NOCACHE | PME_WRITETHROUG))
930 1.13 provos panic("pmap_kenter_pa: uncached & writethrough");
931 1.1 simonb #endif
932 1.1 simonb if (prot & PME_NOCACHE)
933 1.1 simonb /* Must be I/O mapping */
934 1.1 simonb tte |= TTE_I | TTE_G;
935 1.8 thorpej #ifdef PPC_4XX_NOCACHE
936 1.1 simonb tte |= TTE_I;
937 1.1 simonb #else
938 1.1 simonb else if (prot & PME_WRITETHROUG)
939 1.1 simonb /* Uncached and writethrough are not compatible */
940 1.1 simonb tte |= TTE_W;
941 1.1 simonb #endif
942 1.1 simonb if (prot & VM_PROT_WRITE)
943 1.1 simonb tte |= TTE_WR;
944 1.1 simonb }
945 1.1 simonb
946 1.1 simonb s = splvm();
947 1.1 simonb
948 1.1 simonb /* Insert page into page table. */
949 1.1 simonb pte_enter(pm, va, tte);
950 1.1 simonb splx(s);
951 1.1 simonb }
952 1.1 simonb
953 1.1 simonb void
954 1.1 simonb pmap_kremove(vaddr_t va, vsize_t len)
955 1.1 simonb {
956 1.1 simonb
957 1.1 simonb while (len > 0) {
958 1.1 simonb pte_enter(pmap_kernel(), va, 0);
959 1.1 simonb va += PAGE_SIZE;
960 1.1 simonb len -= PAGE_SIZE;
961 1.1 simonb }
962 1.1 simonb }
963 1.1 simonb
964 1.1 simonb /*
965 1.1 simonb * Remove the given range of mapping entries.
966 1.1 simonb */
967 1.1 simonb void
968 1.1 simonb pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
969 1.1 simonb {
970 1.1 simonb int s;
971 1.1 simonb paddr_t pa;
972 1.1 simonb volatile u_int *ptp;
973 1.1 simonb
974 1.1 simonb s = splvm();
975 1.1 simonb while (va < endva) {
976 1.1 simonb
977 1.1 simonb if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
978 1.1 simonb pa = TTE_PA(pa);
979 1.1 simonb pmap_remove_pv(pm, va, pa);
980 1.1 simonb *ptp = 0;
981 1.1 simonb ppc4xx_tlb_flush(va, pm->pm_ctx);
982 1.1 simonb pm->pm_stats.resident_count--;
983 1.1 simonb }
984 1.19 thorpej va += PAGE_SIZE;
985 1.1 simonb }
986 1.1 simonb
987 1.1 simonb splx(s);
988 1.1 simonb }
989 1.1 simonb
990 1.1 simonb /*
991 1.1 simonb * Get the physical page address for the given pmap/virtual address.
992 1.1 simonb */
993 1.1 simonb boolean_t
994 1.1 simonb pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
995 1.1 simonb {
996 1.1 simonb int seg = STIDX(va);
997 1.1 simonb int ptn = PTIDX(va);
998 1.1 simonb u_int pa = 0;
999 1.30 chs int s;
1000 1.1 simonb
1001 1.30 chs s = splvm();
1002 1.1 simonb if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
1003 1.1 simonb *pap = TTE_PA(pa) | (va & PGOFSET);
1004 1.1 simonb }
1005 1.1 simonb splx(s);
1006 1.1 simonb return (pa != 0);
1007 1.1 simonb }
1008 1.1 simonb
1009 1.1 simonb /*
1010 1.1 simonb * Lower the protection on the specified range of this pmap.
1011 1.1 simonb *
1012 1.1 simonb * There are only two cases: either the protection is going to 0,
1013 1.1 simonb * or it is going to read-only.
1014 1.1 simonb */
1015 1.1 simonb void
1016 1.1 simonb pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1017 1.1 simonb {
1018 1.1 simonb volatile u_int *ptp;
1019 1.26 chs int s, bic;
1020 1.1 simonb
1021 1.26 chs if ((prot & VM_PROT_READ) == 0) {
1022 1.26 chs pmap_remove(pm, sva, eva);
1023 1.26 chs return;
1024 1.26 chs }
1025 1.26 chs bic = 0;
1026 1.26 chs if ((prot & VM_PROT_WRITE) == 0) {
1027 1.26 chs bic |= TTE_WR;
1028 1.26 chs }
1029 1.26 chs if ((prot & VM_PROT_EXECUTE) == 0) {
1030 1.26 chs bic |= TTE_EX;
1031 1.26 chs }
1032 1.26 chs if (bic == 0) {
1033 1.26 chs return;
1034 1.26 chs }
1035 1.26 chs s = splvm();
1036 1.26 chs while (sva < eva) {
1037 1.26 chs if ((ptp = pte_find(pm, sva)) != NULL) {
1038 1.26 chs *ptp &= ~bic;
1039 1.26 chs ppc4xx_tlb_flush(sva, pm->pm_ctx);
1040 1.1 simonb }
1041 1.26 chs sva += PAGE_SIZE;
1042 1.1 simonb }
1043 1.26 chs splx(s);
1044 1.1 simonb }
1045 1.1 simonb
1046 1.1 simonb boolean_t
1047 1.30 chs pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
1048 1.1 simonb {
1049 1.30 chs paddr_t pa;
1050 1.1 simonb char *attr;
1051 1.30 chs int s, rv;
1052 1.1 simonb
1053 1.1 simonb /*
1054 1.1 simonb * First modify bits in cache.
1055 1.1 simonb */
1056 1.30 chs pa = VM_PAGE_TO_PHYS(pg);
1057 1.1 simonb attr = pa_to_attr(pa);
1058 1.1 simonb if (attr == NULL)
1059 1.1 simonb return FALSE;
1060 1.1 simonb
1061 1.30 chs s = splvm();
1062 1.1 simonb rv = ((*attr & mask) != 0);
1063 1.11 eeh if (clear) {
1064 1.1 simonb *attr &= ~mask;
1065 1.30 chs pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
1066 1.11 eeh }
1067 1.1 simonb splx(s);
1068 1.1 simonb return rv;
1069 1.1 simonb }
1070 1.1 simonb
1071 1.1 simonb
1072 1.1 simonb /*
1073 1.1 simonb * Lower the protection on the specified physical page.
1074 1.1 simonb *
1075 1.1 simonb * There are only two cases: either the protection is going to 0,
1076 1.1 simonb * or it is going to read-only.
1077 1.1 simonb */
1078 1.1 simonb void
1079 1.1 simonb pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1080 1.1 simonb {
1081 1.1 simonb paddr_t pa = VM_PAGE_TO_PHYS(pg);
1082 1.1 simonb vaddr_t va;
1083 1.1 simonb struct pv_entry *pvh, *pv, *npv;
1084 1.1 simonb struct pmap *pm;
1085 1.1 simonb
1086 1.1 simonb pvh = pa_to_pv(pa);
1087 1.1 simonb if (pvh == NULL)
1088 1.1 simonb return;
1089 1.1 simonb
1090 1.1 simonb /* Handle extra pvs which may be deleted in the operation */
1091 1.1 simonb for (pv = pvh->pv_next; pv; pv = npv) {
1092 1.1 simonb npv = pv->pv_next;
1093 1.1 simonb
1094 1.1 simonb pm = pv->pv_pm;
1095 1.1 simonb va = pv->pv_va;
1096 1.26 chs pmap_protect(pm, va, va + PAGE_SIZE, prot);
1097 1.1 simonb }
1098 1.1 simonb /* Now check the head pv */
1099 1.1 simonb if (pvh->pv_pm) {
1100 1.1 simonb pv = pvh;
1101 1.1 simonb pm = pv->pv_pm;
1102 1.1 simonb va = pv->pv_va;
1103 1.26 chs pmap_protect(pm, va, va + PAGE_SIZE, prot);
1104 1.1 simonb }
1105 1.1 simonb }
1106 1.1 simonb
1107 1.1 simonb /*
1108 1.1 simonb * Activate the address space for the specified process. If the process
1109 1.1 simonb * is the current process, load the new MMU context.
1110 1.1 simonb */
1111 1.1 simonb void
1112 1.17 thorpej pmap_activate(struct lwp *l)
1113 1.1 simonb {
1114 1.1 simonb #if 0
1115 1.17 thorpej struct pcb *pcb = &l->l_proc->p_addr->u_pcb;
1116 1.17 thorpej pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1117 1.1 simonb
1118 1.1 simonb /*
1119 1.1 simonb * XXX Normally performed in cpu_fork().
1120 1.1 simonb */
1121 1.17 thorpej printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1122 1.25 matt pcb->pcb_pm = pmap;
1123 1.1 simonb #endif
1124 1.1 simonb }
1125 1.1 simonb
1126 1.1 simonb /*
1127 1.1 simonb * Deactivate the specified process's address space.
1128 1.1 simonb */
1129 1.1 simonb void
1130 1.17 thorpej pmap_deactivate(struct lwp *l)
1131 1.1 simonb {
1132 1.1 simonb }
1133 1.1 simonb
1134 1.1 simonb /*
1135 1.1 simonb * Synchronize caches corresponding to [addr, addr+len) in p.
1136 1.1 simonb */
1137 1.1 simonb void
1138 1.1 simonb pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1139 1.1 simonb {
1140 1.1 simonb struct pmap *pm = p->p_vmspace->vm_map.pmap;
1141 1.18 hannken int msr, ctx, opid, step;
1142 1.18 hannken
1143 1.18 hannken step = CACHELINESIZE;
1144 1.1 simonb
1145 1.1 simonb /*
1146 1.1 simonb * Need to turn off IMMU and switch to user context.
1147 1.1 simonb * (icbi uses DMMU).
1148 1.1 simonb */
1149 1.1 simonb if (!(ctx = pm->pm_ctx)) {
1150 1.1 simonb /* No context -- assign it one */
1151 1.1 simonb ctx_alloc(pm);
1152 1.1 simonb ctx = pm->pm_ctx;
1153 1.1 simonb }
1154 1.38 perry __asm volatile("mfmsr %0;"
1155 1.27 simonb "li %1, %7;"
1156 1.1 simonb "andc %1,%0,%1;"
1157 1.1 simonb "mtmsr %1;"
1158 1.1 simonb "sync;isync;"
1159 1.1 simonb "mfpid %1;"
1160 1.1 simonb "mtpid %2;"
1161 1.1 simonb "sync; isync;"
1162 1.12 simonb "1:"
1163 1.1 simonb "dcbf 0,%3;"
1164 1.1 simonb "icbi 0,%3;"
1165 1.18 hannken "add %3,%3,%5;"
1166 1.18 hannken "addc. %4,%4,%6;"
1167 1.1 simonb "bge 1b;"
1168 1.1 simonb "mtpid %1;"
1169 1.1 simonb "mtmsr %0;"
1170 1.1 simonb "sync; isync"
1171 1.1 simonb : "=&r" (msr), "=&r" (opid)
1172 1.27 simonb : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
1173 1.27 simonb "K" (PSL_IR | PSL_DR));
1174 1.1 simonb }
1175 1.1 simonb
1176 1.1 simonb
1177 1.1 simonb /* This has to be done in real mode !!! */
1178 1.1 simonb void
1179 1.1 simonb ppc4xx_tlb_flush(vaddr_t va, int pid)
1180 1.1 simonb {
1181 1.1 simonb u_long i, found;
1182 1.1 simonb u_long msr;
1183 1.1 simonb
1184 1.1 simonb /* If there's no context then it can't be mapped. */
1185 1.26 chs if (!pid)
1186 1.26 chs return;
1187 1.1 simonb
1188 1.39 perry __asm("mfpid %1;" /* Save PID */
1189 1.1 simonb "mfmsr %2;" /* Save MSR */
1190 1.1 simonb "li %0,0;" /* Now clear MSR */
1191 1.1 simonb "mtmsr %0;"
1192 1.1 simonb "mtpid %4;" /* Set PID */
1193 1.1 simonb "sync;"
1194 1.1 simonb "tlbsx. %0,0,%3;" /* Search TLB */
1195 1.1 simonb "sync;"
1196 1.1 simonb "mtpid %1;" /* Restore PID */
1197 1.1 simonb "mtmsr %2;" /* Restore MSR */
1198 1.1 simonb "sync;isync;"
1199 1.1 simonb "li %1,1;"
1200 1.1 simonb "beq 1f;"
1201 1.1 simonb "li %1,0;"
1202 1.1 simonb "1:"
1203 1.1 simonb : "=&r" (i), "=&r" (found), "=&r" (msr)
1204 1.1 simonb : "r" (va), "r" (pid));
1205 1.1 simonb if (found && !TLB_LOCKED(i)) {
1206 1.1 simonb
1207 1.1 simonb /* Now flush translation */
1208 1.39 perry __asm volatile(
1209 1.1 simonb "tlbwe %0,%1,0;"
1210 1.1 simonb "sync;isync;"
1211 1.1 simonb : : "r" (0), "r" (i));
1212 1.1 simonb
1213 1.1 simonb tlb_info[i].ti_ctx = 0;
1214 1.1 simonb tlb_info[i].ti_flags = 0;
1215 1.1 simonb tlbnext = i;
1216 1.1 simonb /* Successful flushes */
1217 1.1 simonb tlbflush_ev.ev_count++;
1218 1.1 simonb }
1219 1.1 simonb }
1220 1.1 simonb
1221 1.1 simonb void
1222 1.1 simonb ppc4xx_tlb_flush_all(void)
1223 1.1 simonb {
1224 1.1 simonb u_long i;
1225 1.1 simonb
1226 1.1 simonb for (i = 0; i < NTLB; i++)
1227 1.1 simonb if (!TLB_LOCKED(i)) {
1228 1.39 perry __asm volatile(
1229 1.1 simonb "tlbwe %0,%1,0;"
1230 1.1 simonb "sync;isync;"
1231 1.1 simonb : : "r" (0), "r" (i));
1232 1.1 simonb tlb_info[i].ti_ctx = 0;
1233 1.1 simonb tlb_info[i].ti_flags = 0;
1234 1.1 simonb }
1235 1.1 simonb
1236 1.39 perry __asm volatile("sync;isync");
1237 1.1 simonb }
1238 1.1 simonb
1239 1.1 simonb /* Find a TLB entry to evict. */
1240 1.1 simonb static int
1241 1.1 simonb ppc4xx_tlb_find_victim(void)
1242 1.1 simonb {
1243 1.1 simonb int flags;
1244 1.1 simonb
1245 1.1 simonb for (;;) {
1246 1.1 simonb if (++tlbnext >= NTLB)
1247 1.1 simonb tlbnext = TLB_NRESERVED;
1248 1.1 simonb flags = tlb_info[tlbnext].ti_flags;
1249 1.12 simonb if (!(flags & TLBF_USED) ||
1250 1.1 simonb (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1251 1.1 simonb u_long va, stack = (u_long)&va;
1252 1.1 simonb
1253 1.1 simonb if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1254 1.1 simonb (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1255 1.1 simonb (flags & TLBF_USED)) {
1256 1.1 simonb /* Kernel stack page */
1257 1.1 simonb flags |= TLBF_USED;
1258 1.1 simonb tlb_info[tlbnext].ti_flags = flags;
1259 1.1 simonb } else {
1260 1.1 simonb /* Found it! */
1261 1.1 simonb return (tlbnext);
1262 1.1 simonb }
1263 1.1 simonb } else {
1264 1.1 simonb tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1265 1.1 simonb }
1266 1.1 simonb }
1267 1.1 simonb }
1268 1.1 simonb
1269 1.1 simonb void
1270 1.1 simonb ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1271 1.1 simonb {
1272 1.1 simonb u_long th, tl, idx;
1273 1.1 simonb tlbpid_t pid;
1274 1.1 simonb u_short msr;
1275 1.10 eeh paddr_t pa;
1276 1.10 eeh int s, sz;
1277 1.10 eeh
1278 1.1 simonb tlbenter_ev.ev_count++;
1279 1.1 simonb
1280 1.10 eeh sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1281 1.10 eeh pa = (pte & TTE_RPN_MASK(sz));
1282 1.10 eeh th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1283 1.10 eeh tl = (pte & ~TLB_RPN_MASK) | pa;
1284 1.10 eeh tl |= ppc4xx_tlbflags(va, pa);
1285 1.1 simonb
1286 1.1 simonb s = splhigh();
1287 1.1 simonb idx = ppc4xx_tlb_find_victim();
1288 1.1 simonb
1289 1.1 simonb #ifdef DIAGNOSTIC
1290 1.1 simonb if ((idx < TLB_NRESERVED) || (idx >= NTLB)) {
1291 1.31 simonb panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
1292 1.1 simonb }
1293 1.1 simonb #endif
1294 1.12 simonb
1295 1.1 simonb tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1296 1.1 simonb tlb_info[idx].ti_ctx = ctx;
1297 1.1 simonb tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1298 1.1 simonb
1299 1.39 perry __asm volatile(
1300 1.1 simonb "mfmsr %0;" /* Save MSR */
1301 1.1 simonb "li %1,0;"
1302 1.1 simonb "tlbwe %1,%3,0;" /* Invalidate old entry. */
1303 1.1 simonb "mtmsr %1;" /* Clear MSR */
1304 1.1 simonb "mfpid %1;" /* Save old PID */
1305 1.1 simonb "mtpid %2;" /* Load translation ctx */
1306 1.1 simonb "sync; isync;"
1307 1.1 simonb #ifdef DEBUG
1308 1.1 simonb "andi. %3,%3,63;"
1309 1.1 simonb "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */
1310 1.1 simonb #endif
1311 1.1 simonb "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1312 1.1 simonb "sync; isync;"
1313 1.1 simonb "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1314 1.1 simonb "sync; isync;"
1315 1.1 simonb : "=&r" (msr), "=&r" (pid)
1316 1.1 simonb : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1317 1.1 simonb splx(s);
1318 1.1 simonb }
1319 1.1 simonb
1320 1.1 simonb void
1321 1.1 simonb ppc4xx_tlb_init(void)
1322 1.1 simonb {
1323 1.1 simonb int i;
1324 1.1 simonb
1325 1.1 simonb /* Mark reserved TLB entries */
1326 1.1 simonb for (i = 0; i < TLB_NRESERVED; i++) {
1327 1.1 simonb tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1328 1.1 simonb tlb_info[i].ti_ctx = KERNEL_PID;
1329 1.1 simonb }
1330 1.1 simonb
1331 1.1 simonb /* Setup security zones */
1332 1.1 simonb /* Z0 - accessible by kernel only if TLB entry permissions allow
1333 1.1 simonb * Z1,Z2 - access is controlled by TLB entry permissions
1334 1.1 simonb * Z3 - full access regardless of TLB entry permissions
1335 1.1 simonb */
1336 1.1 simonb
1337 1.39 perry __asm volatile(
1338 1.1 simonb "mtspr %0,%1;"
1339 1.1 simonb "sync;"
1340 1.1 simonb :: "K"(SPR_ZPR), "r" (0x1b000000));
1341 1.1 simonb }
1342 1.1 simonb
1343 1.1 simonb
1344 1.1 simonb /*
1345 1.1 simonb * We should pass the ctx in from trap code.
1346 1.1 simonb */
1347 1.1 simonb int
1348 1.1 simonb pmap_tlbmiss(vaddr_t va, int ctx)
1349 1.1 simonb {
1350 1.1 simonb volatile u_int *pte;
1351 1.1 simonb u_long tte;
1352 1.1 simonb
1353 1.1 simonb tlbmiss_ev.ev_count++;
1354 1.1 simonb
1355 1.1 simonb /*
1356 1.1 simonb * XXXX We will reserve 0-0x80000000 for va==pa mappings.
1357 1.1 simonb */
1358 1.1 simonb if (ctx != KERNEL_PID || (va & 0x80000000)) {
1359 1.36 scw pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
1360 1.1 simonb if (pte == NULL) {
1361 1.1 simonb /* Map unmanaged addresses directly for kernel access */
1362 1.1 simonb return 1;
1363 1.1 simonb }
1364 1.1 simonb tte = *pte;
1365 1.1 simonb if (tte == 0) {
1366 1.1 simonb return 1;
1367 1.1 simonb }
1368 1.1 simonb } else {
1369 1.16 wiz /* Create a 16MB writable mapping. */
1370 1.8 thorpej #ifdef PPC_4XX_NOCACHE
1371 1.1 simonb tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I | TTE_WR;
1372 1.1 simonb #else
1373 1.1 simonb tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1374 1.1 simonb #endif
1375 1.1 simonb }
1376 1.1 simonb tlbhit_ev.ev_count++;
1377 1.1 simonb ppc4xx_tlb_enter(ctx, va, tte);
1378 1.1 simonb
1379 1.1 simonb return 0;
1380 1.1 simonb }
1381 1.1 simonb
1382 1.1 simonb /*
1383 1.1 simonb * Flush all the entries matching a context from the TLB.
1384 1.1 simonb */
1385 1.1 simonb static int
1386 1.1 simonb ctx_flush(int cnum)
1387 1.1 simonb {
1388 1.1 simonb int i;
1389 1.1 simonb
1390 1.1 simonb /* We gotta steal this context */
1391 1.1 simonb for (i = TLB_NRESERVED; i < NTLB; i++) {
1392 1.1 simonb if (tlb_info[i].ti_ctx == cnum) {
1393 1.1 simonb /* Can't steal ctx if it has a locked entry. */
1394 1.1 simonb if (TLB_LOCKED(i)) {
1395 1.1 simonb #ifdef DIAGNOSTIC
1396 1.1 simonb printf("ctx_flush: can't invalidate "
1397 1.1 simonb "locked mapping %d "
1398 1.1 simonb "for context %d\n", i, cnum);
1399 1.10 eeh #ifdef DDB
1400 1.1 simonb Debugger();
1401 1.1 simonb #endif
1402 1.10 eeh #endif
1403 1.1 simonb return (1);
1404 1.1 simonb }
1405 1.1 simonb #ifdef DIAGNOSTIC
1406 1.1 simonb if (i < TLB_NRESERVED)
1407 1.13 provos panic("TLB entry %d not locked", i);
1408 1.1 simonb #endif
1409 1.1 simonb /* Invalidate particular TLB entry regardless of locked status */
1410 1.39 perry __asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1411 1.1 simonb tlb_info[i].ti_flags = 0;
1412 1.1 simonb }
1413 1.1 simonb }
1414 1.1 simonb return (0);
1415 1.1 simonb }
1416 1.1 simonb
1417 1.1 simonb /*
1418 1.1 simonb * Allocate a context. If necessary, steal one from someone else.
1419 1.1 simonb *
1420 1.1 simonb * The new context is flushed from the TLB before returning.
1421 1.1 simonb */
1422 1.1 simonb int
1423 1.1 simonb ctx_alloc(struct pmap *pm)
1424 1.1 simonb {
1425 1.1 simonb int s, cnum;
1426 1.1 simonb static int next = MINCTX;
1427 1.1 simonb
1428 1.1 simonb if (pm == pmap_kernel()) {
1429 1.1 simonb #ifdef DIAGNOSTIC
1430 1.1 simonb printf("ctx_alloc: kernel pmap!\n");
1431 1.1 simonb #endif
1432 1.1 simonb return (0);
1433 1.1 simonb }
1434 1.1 simonb s = splvm();
1435 1.1 simonb
1436 1.1 simonb /* Find a likely context. */
1437 1.1 simonb cnum = next;
1438 1.1 simonb do {
1439 1.1 simonb if ((++cnum) > NUMCTX)
1440 1.1 simonb cnum = MINCTX;
1441 1.1 simonb } while (ctxbusy[cnum] != NULL && cnum != next);
1442 1.1 simonb
1443 1.1 simonb /* Now clean it out */
1444 1.1 simonb oops:
1445 1.1 simonb if (cnum < MINCTX)
1446 1.1 simonb cnum = MINCTX; /* Never steal ctx 0 or 1 */
1447 1.1 simonb if (ctx_flush(cnum)) {
1448 1.1 simonb /* oops -- something's wired. */
1449 1.1 simonb if ((++cnum) > NUMCTX)
1450 1.1 simonb cnum = MINCTX;
1451 1.1 simonb goto oops;
1452 1.1 simonb }
1453 1.1 simonb
1454 1.1 simonb if (ctxbusy[cnum]) {
1455 1.1 simonb #ifdef DEBUG
1456 1.1 simonb /* We should identify this pmap and clear it */
1457 1.1 simonb printf("Warning: stealing context %d\n", cnum);
1458 1.1 simonb #endif
1459 1.1 simonb ctxbusy[cnum]->pm_ctx = 0;
1460 1.1 simonb }
1461 1.1 simonb ctxbusy[cnum] = pm;
1462 1.1 simonb next = cnum;
1463 1.1 simonb splx(s);
1464 1.1 simonb pm->pm_ctx = cnum;
1465 1.1 simonb
1466 1.1 simonb return cnum;
1467 1.1 simonb }
1468 1.1 simonb
1469 1.1 simonb /*
1470 1.1 simonb * Give away a context.
1471 1.1 simonb */
1472 1.1 simonb void
1473 1.1 simonb ctx_free(struct pmap *pm)
1474 1.1 simonb {
1475 1.1 simonb int oldctx;
1476 1.1 simonb
1477 1.1 simonb oldctx = pm->pm_ctx;
1478 1.1 simonb
1479 1.1 simonb if (oldctx == 0)
1480 1.1 simonb panic("ctx_free: freeing kernel context");
1481 1.1 simonb #ifdef DIAGNOSTIC
1482 1.1 simonb if (ctxbusy[oldctx] == 0)
1483 1.1 simonb printf("ctx_free: freeing free context %d\n", oldctx);
1484 1.1 simonb if (ctxbusy[oldctx] != pm) {
1485 1.1 simonb printf("ctx_free: freeing someone esle's context\n "
1486 1.1 simonb "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1487 1.1 simonb oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1488 1.10 eeh #ifdef DDB
1489 1.1 simonb Debugger();
1490 1.10 eeh #endif
1491 1.1 simonb }
1492 1.1 simonb #endif
1493 1.1 simonb /* We should verify it has not been stolen and reallocated... */
1494 1.1 simonb ctxbusy[oldctx] = NULL;
1495 1.1 simonb ctx_flush(oldctx);
1496 1.1 simonb }
1497 1.5 eeh
1498 1.1 simonb
1499 1.1 simonb #ifdef DEBUG
1500 1.1 simonb /*
1501 1.1 simonb * Test ref/modify handling.
1502 1.1 simonb */
1503 1.1 simonb void pmap_testout __P((void));
1504 1.1 simonb void
1505 1.1 simonb pmap_testout()
1506 1.1 simonb {
1507 1.1 simonb vaddr_t va;
1508 1.1 simonb volatile int *loc;
1509 1.1 simonb int val = 0;
1510 1.1 simonb paddr_t pa;
1511 1.1 simonb struct vm_page *pg;
1512 1.1 simonb int ref, mod;
1513 1.1 simonb
1514 1.1 simonb /* Allocate a page */
1515 1.34 yamt va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1516 1.34 yamt UVM_KMF_WIRED | UVM_KMF_ZERO);
1517 1.1 simonb loc = (int*)va;
1518 1.1 simonb
1519 1.1 simonb pmap_extract(pmap_kernel(), va, &pa);
1520 1.1 simonb pg = PHYS_TO_VM_PAGE(pa);
1521 1.1 simonb pmap_unwire(pmap_kernel(), va);
1522 1.1 simonb
1523 1.34 yamt pmap_kremove(va, PAGE_SIZE);
1524 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1525 1.4 chris pmap_update(pmap_kernel());
1526 1.1 simonb
1527 1.1 simonb /* Now clear reference and modify */
1528 1.1 simonb ref = pmap_clear_reference(pg);
1529 1.1 simonb mod = pmap_clear_modify(pg);
1530 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1531 1.1 simonb (void *)(u_long)va, (long)pa,
1532 1.1 simonb ref, mod);
1533 1.1 simonb
1534 1.1 simonb /* Check it's properly cleared */
1535 1.1 simonb ref = pmap_is_referenced(pg);
1536 1.1 simonb mod = pmap_is_modified(pg);
1537 1.1 simonb printf("Checking cleared page: ref %d, mod %d\n",
1538 1.1 simonb ref, mod);
1539 1.1 simonb
1540 1.1 simonb /* Reference page */
1541 1.1 simonb val = *loc;
1542 1.1 simonb
1543 1.1 simonb ref = pmap_is_referenced(pg);
1544 1.1 simonb mod = pmap_is_modified(pg);
1545 1.1 simonb printf("Referenced page: ref %d, mod %d val %x\n",
1546 1.1 simonb ref, mod, val);
1547 1.1 simonb
1548 1.1 simonb /* Now clear reference and modify */
1549 1.1 simonb ref = pmap_clear_reference(pg);
1550 1.1 simonb mod = pmap_clear_modify(pg);
1551 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1552 1.1 simonb (void *)(u_long)va, (long)pa,
1553 1.1 simonb ref, mod);
1554 1.12 simonb
1555 1.1 simonb /* Modify page */
1556 1.1 simonb *loc = 1;
1557 1.1 simonb
1558 1.1 simonb ref = pmap_is_referenced(pg);
1559 1.1 simonb mod = pmap_is_modified(pg);
1560 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1561 1.1 simonb ref, mod);
1562 1.1 simonb
1563 1.1 simonb /* Now clear reference and modify */
1564 1.1 simonb ref = pmap_clear_reference(pg);
1565 1.1 simonb mod = pmap_clear_modify(pg);
1566 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1567 1.1 simonb (void *)(u_long)va, (long)pa,
1568 1.1 simonb ref, mod);
1569 1.1 simonb
1570 1.1 simonb /* Check it's properly cleared */
1571 1.1 simonb ref = pmap_is_referenced(pg);
1572 1.1 simonb mod = pmap_is_modified(pg);
1573 1.1 simonb printf("Checking cleared page: ref %d, mod %d\n",
1574 1.1 simonb ref, mod);
1575 1.1 simonb
1576 1.1 simonb /* Modify page */
1577 1.1 simonb *loc = 1;
1578 1.1 simonb
1579 1.1 simonb ref = pmap_is_referenced(pg);
1580 1.1 simonb mod = pmap_is_modified(pg);
1581 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1582 1.1 simonb ref, mod);
1583 1.1 simonb
1584 1.1 simonb /* Check pmap_protect() */
1585 1.1 simonb pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1586 1.4 chris pmap_update(pmap_kernel());
1587 1.1 simonb ref = pmap_is_referenced(pg);
1588 1.1 simonb mod = pmap_is_modified(pg);
1589 1.1 simonb printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1590 1.1 simonb ref, mod);
1591 1.1 simonb
1592 1.1 simonb /* Now clear reference and modify */
1593 1.1 simonb ref = pmap_clear_reference(pg);
1594 1.1 simonb mod = pmap_clear_modify(pg);
1595 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1596 1.1 simonb (void *)(u_long)va, (long)pa,
1597 1.1 simonb ref, mod);
1598 1.1 simonb
1599 1.1 simonb /* Reference page */
1600 1.1 simonb val = *loc;
1601 1.1 simonb
1602 1.1 simonb ref = pmap_is_referenced(pg);
1603 1.1 simonb mod = pmap_is_modified(pg);
1604 1.1 simonb printf("Referenced page: ref %d, mod %d val %x\n",
1605 1.1 simonb ref, mod, val);
1606 1.1 simonb
1607 1.1 simonb /* Now clear reference and modify */
1608 1.1 simonb ref = pmap_clear_reference(pg);
1609 1.1 simonb mod = pmap_clear_modify(pg);
1610 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1611 1.1 simonb (void *)(u_long)va, (long)pa,
1612 1.1 simonb ref, mod);
1613 1.12 simonb
1614 1.1 simonb /* Modify page */
1615 1.1 simonb #if 0
1616 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1617 1.4 chris pmap_update(pmap_kernel());
1618 1.1 simonb #endif
1619 1.1 simonb *loc = 1;
1620 1.1 simonb
1621 1.1 simonb ref = pmap_is_referenced(pg);
1622 1.1 simonb mod = pmap_is_modified(pg);
1623 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1624 1.1 simonb ref, mod);
1625 1.1 simonb
1626 1.1 simonb /* Check pmap_protect() */
1627 1.1 simonb pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1628 1.4 chris pmap_update(pmap_kernel());
1629 1.1 simonb ref = pmap_is_referenced(pg);
1630 1.1 simonb mod = pmap_is_modified(pg);
1631 1.1 simonb printf("pmap_protect(): ref %d, mod %d\n",
1632 1.1 simonb ref, mod);
1633 1.1 simonb
1634 1.1 simonb /* Now clear reference and modify */
1635 1.1 simonb ref = pmap_clear_reference(pg);
1636 1.1 simonb mod = pmap_clear_modify(pg);
1637 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1638 1.1 simonb (void *)(u_long)va, (long)pa,
1639 1.1 simonb ref, mod);
1640 1.1 simonb
1641 1.1 simonb /* Reference page */
1642 1.1 simonb val = *loc;
1643 1.1 simonb
1644 1.1 simonb ref = pmap_is_referenced(pg);
1645 1.1 simonb mod = pmap_is_modified(pg);
1646 1.1 simonb printf("Referenced page: ref %d, mod %d val %x\n",
1647 1.1 simonb ref, mod, val);
1648 1.1 simonb
1649 1.1 simonb /* Now clear reference and modify */
1650 1.1 simonb ref = pmap_clear_reference(pg);
1651 1.1 simonb mod = pmap_clear_modify(pg);
1652 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1653 1.1 simonb (void *)(u_long)va, (long)pa,
1654 1.1 simonb ref, mod);
1655 1.12 simonb
1656 1.1 simonb /* Modify page */
1657 1.1 simonb #if 0
1658 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1659 1.4 chris pmap_update(pmap_kernel());
1660 1.1 simonb #endif
1661 1.1 simonb *loc = 1;
1662 1.1 simonb
1663 1.1 simonb ref = pmap_is_referenced(pg);
1664 1.1 simonb mod = pmap_is_modified(pg);
1665 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1666 1.1 simonb ref, mod);
1667 1.1 simonb
1668 1.1 simonb /* Check pmap_pag_protect() */
1669 1.1 simonb pmap_page_protect(pg, VM_PROT_READ);
1670 1.1 simonb ref = pmap_is_referenced(pg);
1671 1.1 simonb mod = pmap_is_modified(pg);
1672 1.1 simonb printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1673 1.1 simonb ref, mod);
1674 1.1 simonb
1675 1.1 simonb /* Now clear reference and modify */
1676 1.1 simonb ref = pmap_clear_reference(pg);
1677 1.1 simonb mod = pmap_clear_modify(pg);
1678 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1679 1.1 simonb (void *)(u_long)va, (long)pa,
1680 1.1 simonb ref, mod);
1681 1.1 simonb
1682 1.1 simonb /* Reference page */
1683 1.1 simonb val = *loc;
1684 1.1 simonb
1685 1.1 simonb ref = pmap_is_referenced(pg);
1686 1.1 simonb mod = pmap_is_modified(pg);
1687 1.1 simonb printf("Referenced page: ref %d, mod %d val %x\n",
1688 1.1 simonb ref, mod, val);
1689 1.1 simonb
1690 1.1 simonb /* Now clear reference and modify */
1691 1.1 simonb ref = pmap_clear_reference(pg);
1692 1.1 simonb mod = pmap_clear_modify(pg);
1693 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1694 1.1 simonb (void *)(u_long)va, (long)pa,
1695 1.1 simonb ref, mod);
1696 1.12 simonb
1697 1.1 simonb /* Modify page */
1698 1.1 simonb #if 0
1699 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1700 1.4 chris pmap_update(pmap_kernel());
1701 1.1 simonb #endif
1702 1.1 simonb *loc = 1;
1703 1.1 simonb
1704 1.1 simonb ref = pmap_is_referenced(pg);
1705 1.1 simonb mod = pmap_is_modified(pg);
1706 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1707 1.1 simonb ref, mod);
1708 1.1 simonb
1709 1.1 simonb /* Check pmap_pag_protect() */
1710 1.1 simonb pmap_page_protect(pg, VM_PROT_NONE);
1711 1.1 simonb ref = pmap_is_referenced(pg);
1712 1.1 simonb mod = pmap_is_modified(pg);
1713 1.1 simonb printf("pmap_page_protect(): ref %d, mod %d\n",
1714 1.1 simonb ref, mod);
1715 1.1 simonb
1716 1.1 simonb /* Now clear reference and modify */
1717 1.1 simonb ref = pmap_clear_reference(pg);
1718 1.1 simonb mod = pmap_clear_modify(pg);
1719 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1720 1.1 simonb (void *)(u_long)va, (long)pa,
1721 1.1 simonb ref, mod);
1722 1.1 simonb
1723 1.1 simonb
1724 1.1 simonb /* Reference page */
1725 1.1 simonb val = *loc;
1726 1.1 simonb
1727 1.1 simonb ref = pmap_is_referenced(pg);
1728 1.1 simonb mod = pmap_is_modified(pg);
1729 1.1 simonb printf("Referenced page: ref %d, mod %d val %x\n",
1730 1.1 simonb ref, mod, val);
1731 1.1 simonb
1732 1.1 simonb /* Now clear reference and modify */
1733 1.1 simonb ref = pmap_clear_reference(pg);
1734 1.1 simonb mod = pmap_clear_modify(pg);
1735 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1736 1.1 simonb (void *)(u_long)va, (long)pa,
1737 1.1 simonb ref, mod);
1738 1.12 simonb
1739 1.1 simonb /* Modify page */
1740 1.1 simonb #if 0
1741 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1742 1.4 chris pmap_update(pmap_kernel());
1743 1.1 simonb #endif
1744 1.1 simonb *loc = 1;
1745 1.1 simonb
1746 1.1 simonb ref = pmap_is_referenced(pg);
1747 1.1 simonb mod = pmap_is_modified(pg);
1748 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1749 1.1 simonb ref, mod);
1750 1.1 simonb
1751 1.1 simonb /* Unmap page */
1752 1.1 simonb pmap_remove(pmap_kernel(), va, va+1);
1753 1.4 chris pmap_update(pmap_kernel());
1754 1.1 simonb ref = pmap_is_referenced(pg);
1755 1.1 simonb mod = pmap_is_modified(pg);
1756 1.1 simonb printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1757 1.1 simonb
1758 1.1 simonb /* Now clear reference and modify */
1759 1.1 simonb ref = pmap_clear_reference(pg);
1760 1.1 simonb mod = pmap_clear_modify(pg);
1761 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1762 1.1 simonb (void *)(u_long)va, (long)pa, ref, mod);
1763 1.1 simonb
1764 1.1 simonb /* Check it's properly cleared */
1765 1.1 simonb ref = pmap_is_referenced(pg);
1766 1.1 simonb mod = pmap_is_modified(pg);
1767 1.1 simonb printf("Checking cleared page: ref %d, mod %d\n",
1768 1.1 simonb ref, mod);
1769 1.1 simonb
1770 1.34 yamt pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
1771 1.35 yamt pmap_kenter_pa(va, pa, VM_PROT_ALL);
1772 1.34 yamt uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
1773 1.1 simonb }
1774 1.1 simonb #endif
1775