pmap.c revision 1.5.4.3 1 1.5.4.3 nathanw /* $NetBSD: pmap.c,v 1.5.4.3 2002/01/08 00:27:09 nathanw Exp $ */
2 1.5.4.2 briggs
3 1.5.4.2 briggs /*
4 1.5.4.2 briggs * Copyright 2001 Wasabi Systems, Inc.
5 1.5.4.2 briggs * All rights reserved.
6 1.5.4.2 briggs *
7 1.5.4.2 briggs * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 1.5.4.2 briggs *
9 1.5.4.2 briggs * Redistribution and use in source and binary forms, with or without
10 1.5.4.2 briggs * modification, are permitted provided that the following conditions
11 1.5.4.2 briggs * are met:
12 1.5.4.2 briggs * 1. Redistributions of source code must retain the above copyright
13 1.5.4.2 briggs * notice, this list of conditions and the following disclaimer.
14 1.5.4.2 briggs * 2. Redistributions in binary form must reproduce the above copyright
15 1.5.4.2 briggs * notice, this list of conditions and the following disclaimer in the
16 1.5.4.2 briggs * documentation and/or other materials provided with the distribution.
17 1.5.4.2 briggs * 3. All advertising materials mentioning features or use of this software
18 1.5.4.2 briggs * must display the following acknowledgement:
19 1.5.4.2 briggs * This product includes software developed for the NetBSD Project by
20 1.5.4.2 briggs * Wasabi Systems, Inc.
21 1.5.4.2 briggs * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.5.4.2 briggs * or promote products derived from this software without specific prior
23 1.5.4.2 briggs * written permission.
24 1.5.4.2 briggs *
25 1.5.4.2 briggs * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.5.4.2 briggs * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.5.4.2 briggs * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.5.4.2 briggs * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.5.4.2 briggs * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.5.4.2 briggs * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.5.4.2 briggs * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.5.4.2 briggs * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.5.4.2 briggs * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.5.4.2 briggs * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.5.4.2 briggs * POSSIBILITY OF SUCH DAMAGE.
36 1.5.4.2 briggs */
37 1.5.4.2 briggs
38 1.5.4.2 briggs /*
39 1.5.4.2 briggs * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 1.5.4.2 briggs * Copyright (C) 1995, 1996 TooLs GmbH.
41 1.5.4.2 briggs * All rights reserved.
42 1.5.4.2 briggs *
43 1.5.4.2 briggs * Redistribution and use in source and binary forms, with or without
44 1.5.4.2 briggs * modification, are permitted provided that the following conditions
45 1.5.4.2 briggs * are met:
46 1.5.4.2 briggs * 1. Redistributions of source code must retain the above copyright
47 1.5.4.2 briggs * notice, this list of conditions and the following disclaimer.
48 1.5.4.2 briggs * 2. Redistributions in binary form must reproduce the above copyright
49 1.5.4.2 briggs * notice, this list of conditions and the following disclaimer in the
50 1.5.4.2 briggs * documentation and/or other materials provided with the distribution.
51 1.5.4.2 briggs * 3. All advertising materials mentioning features or use of this software
52 1.5.4.2 briggs * must display the following acknowledgement:
53 1.5.4.2 briggs * This product includes software developed by TooLs GmbH.
54 1.5.4.2 briggs * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 1.5.4.2 briggs * derived from this software without specific prior written permission.
56 1.5.4.2 briggs *
57 1.5.4.2 briggs * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 1.5.4.2 briggs * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 1.5.4.2 briggs * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 1.5.4.2 briggs * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 1.5.4.2 briggs * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 1.5.4.2 briggs * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 1.5.4.2 briggs * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 1.5.4.2 briggs * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 1.5.4.2 briggs * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 1.5.4.2 briggs * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 1.5.4.2 briggs */
68 1.5.4.2 briggs
69 1.5.4.3 nathanw #undef PPC_4XX_NOCACHE
70 1.5.4.2 briggs
71 1.5.4.2 briggs #include <sys/param.h>
72 1.5.4.2 briggs #include <sys/malloc.h>
73 1.5.4.2 briggs #include <sys/proc.h>
74 1.5.4.2 briggs #include <sys/user.h>
75 1.5.4.2 briggs #include <sys/queue.h>
76 1.5.4.2 briggs #include <sys/systm.h>
77 1.5.4.2 briggs #include <sys/pool.h>
78 1.5.4.2 briggs #include <sys/device.h>
79 1.5.4.2 briggs #include <sys/lwp.h>
80 1.5.4.2 briggs
81 1.5.4.2 briggs #include <uvm/uvm.h>
82 1.5.4.2 briggs
83 1.5.4.2 briggs #include <machine/pcb.h>
84 1.5.4.2 briggs #include <machine/powerpc.h>
85 1.5.4.2 briggs
86 1.5.4.2 briggs #include <powerpc/spr.h>
87 1.5.4.2 briggs #include <powerpc/ibm4xx/tlb.h>
88 1.5.4.2 briggs
89 1.5.4.2 briggs
90 1.5.4.2 briggs #define CACHE_LINE 32
91 1.5.4.2 briggs
92 1.5.4.2 briggs /*
93 1.5.4.2 briggs * kernmap is an array of PTEs large enough to map in
94 1.5.4.2 briggs * 4GB. At 16KB/page it is 256K entries or 2MB.
95 1.5.4.2 briggs */
96 1.5.4.2 briggs #define KERNMAP_SIZE ((0xffffffffU/NBPG)+1)
97 1.5.4.2 briggs caddr_t kernmap;
98 1.5.4.2 briggs
99 1.5.4.2 briggs #define MINCTX 2
100 1.5.4.2 briggs #define NUMCTX 256
101 1.5.4.2 briggs volatile struct pmap *ctxbusy[NUMCTX];
102 1.5.4.2 briggs
103 1.5.4.2 briggs #define TLBF_USED 0x1
104 1.5.4.2 briggs #define TLBF_REF 0x2
105 1.5.4.2 briggs #define TLBF_LOCKED 0x4
106 1.5.4.2 briggs #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
107 1.5.4.2 briggs typedef struct tlb_info_s {
108 1.5.4.2 briggs char ti_flags;
109 1.5.4.2 briggs char ti_ctx; /* TLB_PID assiciated with the entry */
110 1.5.4.2 briggs u_int ti_va;
111 1.5.4.2 briggs } tlb_info_t;
112 1.5.4.2 briggs
113 1.5.4.2 briggs volatile tlb_info_t tlb_info[NTLB];
114 1.5.4.2 briggs /* We'll use a modified FIFO replacement policy cause it's cheap */
115 1.5.4.2 briggs volatile int tlbnext = TLB_NRESERVED;
116 1.5.4.2 briggs
117 1.5.4.2 briggs u_long dtlb_miss_count = 0;
118 1.5.4.2 briggs u_long itlb_miss_count = 0;
119 1.5.4.2 briggs u_long ktlb_miss_count = 0;
120 1.5.4.2 briggs u_long utlb_miss_count = 0;
121 1.5.4.2 briggs
122 1.5.4.2 briggs /* Event counters -- XXX type `INTR' so we can see them with vmstat -i */
123 1.5.4.2 briggs struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_INTR,
124 1.5.4.2 briggs NULL, "cpu", "tlbmiss");
125 1.5.4.2 briggs struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_INTR,
126 1.5.4.2 briggs NULL, "cpu", "tlbhit");
127 1.5.4.2 briggs struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_INTR,
128 1.5.4.2 briggs NULL, "cpu", "tlbflush");
129 1.5.4.2 briggs struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_INTR,
130 1.5.4.2 briggs NULL, "cpu", "tlbenter");
131 1.5.4.2 briggs
132 1.5.4.2 briggs struct pmap kernel_pmap_;
133 1.5.4.2 briggs
134 1.5.4.2 briggs int physmem;
135 1.5.4.2 briggs static int npgs;
136 1.5.4.2 briggs static u_int nextavail;
137 1.5.4.2 briggs #ifndef MSGBUFADDR
138 1.5.4.2 briggs extern paddr_t msgbuf_paddr;
139 1.5.4.2 briggs #endif
140 1.5.4.2 briggs
141 1.5.4.2 briggs static struct mem_region *mem, *avail;
142 1.5.4.2 briggs
143 1.5.4.2 briggs /*
144 1.5.4.2 briggs * This is a cache of referenced/modified bits.
145 1.5.4.2 briggs * Bits herein are shifted by ATTRSHFT.
146 1.5.4.2 briggs */
147 1.5.4.2 briggs static char *pmap_attrib;
148 1.5.4.2 briggs
149 1.5.4.2 briggs #define PV_WIRED 0x1
150 1.5.4.2 briggs #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
151 1.5.4.2 briggs #define PV_CMPVA(va,pv) (!(((pv)->pv_va^(va))&(~PV_WIRED)))
152 1.5.4.2 briggs
153 1.5.4.2 briggs struct pv_entry {
154 1.5.4.2 briggs struct pv_entry *pv_next; /* Linked list of mappings */
155 1.5.4.2 briggs vaddr_t pv_va; /* virtual address of mapping */
156 1.5.4.2 briggs struct pmap *pv_pm;
157 1.5.4.2 briggs };
158 1.5.4.2 briggs
159 1.5.4.2 briggs struct pv_entry *pv_table;
160 1.5.4.2 briggs static struct pool pv_pool;
161 1.5.4.2 briggs
162 1.5.4.2 briggs static int pmap_initialized;
163 1.5.4.2 briggs
164 1.5.4.2 briggs static int ctx_flush(int);
165 1.5.4.2 briggs
166 1.5.4.2 briggs static inline void dcache_flush_page(vaddr_t);
167 1.5.4.2 briggs static inline void icache_flush_page(vaddr_t);
168 1.5.4.2 briggs static inline void dcache_flush(vaddr_t, vsize_t);
169 1.5.4.2 briggs static inline void icache_flush(vaddr_t, vsize_t);
170 1.5.4.2 briggs
171 1.5.4.2 briggs inline struct pv_entry *pa_to_pv(paddr_t);
172 1.5.4.2 briggs static inline char *pa_to_attr(paddr_t);
173 1.5.4.2 briggs
174 1.5.4.2 briggs static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
175 1.5.4.2 briggs static inline int pte_enter(struct pmap *, vaddr_t, u_int);
176 1.5.4.2 briggs
177 1.5.4.2 briggs static void pmap_pinit(pmap_t);
178 1.5.4.2 briggs static void pmap_release(pmap_t);
179 1.5.4.2 briggs static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t);
180 1.5.4.2 briggs static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
181 1.5.4.2 briggs
182 1.5.4.2 briggs /*
183 1.5.4.2 briggs * These small routines may have to be replaced,
184 1.5.4.2 briggs * if/when we support processors other that the 604.
185 1.5.4.2 briggs */
186 1.5.4.2 briggs
187 1.5.4.2 briggs static inline void
188 1.5.4.2 briggs dcache_flush_page(vaddr_t va)
189 1.5.4.2 briggs {
190 1.5.4.2 briggs int i;
191 1.5.4.2 briggs
192 1.5.4.2 briggs for (i = 0; i < NBPG; i += CACHE_LINE)
193 1.5.4.2 briggs asm volatile("dcbf %0,%1" : : "r" (va), "r" (i));
194 1.5.4.2 briggs asm volatile("sync;isync" : : );
195 1.5.4.2 briggs }
196 1.5.4.2 briggs
197 1.5.4.2 briggs static inline void
198 1.5.4.2 briggs icache_flush_page(vaddr_t va)
199 1.5.4.2 briggs {
200 1.5.4.2 briggs int i;
201 1.5.4.2 briggs
202 1.5.4.2 briggs for (i = 0; i < NBPG; i += CACHE_LINE)
203 1.5.4.2 briggs asm volatile("icbi %0,%1" : : "r" (va), "r" (i));
204 1.5.4.2 briggs asm volatile("sync;isync" : : );
205 1.5.4.2 briggs }
206 1.5.4.2 briggs
207 1.5.4.2 briggs static inline void
208 1.5.4.2 briggs dcache_flush(vaddr_t va, vsize_t len)
209 1.5.4.2 briggs {
210 1.5.4.2 briggs int i;
211 1.5.4.2 briggs
212 1.5.4.2 briggs if (len == 0)
213 1.5.4.2 briggs return;
214 1.5.4.2 briggs
215 1.5.4.2 briggs /* Make sure we flush all cache lines */
216 1.5.4.2 briggs len += va & (CACHE_LINE-1);
217 1.5.4.2 briggs for (i = 0; i < len; i += CACHE_LINE)
218 1.5.4.2 briggs asm volatile("dcbf %0,%1" : : "r" (va), "r" (i));
219 1.5.4.2 briggs asm volatile("sync;isync" : : );
220 1.5.4.2 briggs }
221 1.5.4.2 briggs
222 1.5.4.2 briggs static inline void
223 1.5.4.2 briggs icache_flush(vaddr_t va, vsize_t len)
224 1.5.4.2 briggs {
225 1.5.4.2 briggs int i;
226 1.5.4.2 briggs
227 1.5.4.2 briggs if (len == 0)
228 1.5.4.2 briggs return;
229 1.5.4.2 briggs
230 1.5.4.2 briggs /* Make sure we flush all cache lines */
231 1.5.4.2 briggs len += va & (CACHE_LINE-1);
232 1.5.4.2 briggs for (i = 0; i < len; i += CACHE_LINE)
233 1.5.4.2 briggs asm volatile("icbi %0,%1" : : "r" (va), "r" (i));
234 1.5.4.2 briggs asm volatile("sync;isync" : : );
235 1.5.4.2 briggs }
236 1.5.4.2 briggs
237 1.5.4.2 briggs inline struct pv_entry *
238 1.5.4.2 briggs pa_to_pv(paddr_t pa)
239 1.5.4.2 briggs {
240 1.5.4.2 briggs int bank, pg;
241 1.5.4.2 briggs
242 1.5.4.2 briggs bank = vm_physseg_find(atop(pa), &pg);
243 1.5.4.2 briggs if (bank == -1)
244 1.5.4.2 briggs return NULL;
245 1.5.4.2 briggs return &vm_physmem[bank].pmseg.pvent[pg];
246 1.5.4.2 briggs }
247 1.5.4.2 briggs
248 1.5.4.2 briggs static inline char *
249 1.5.4.2 briggs pa_to_attr(paddr_t pa)
250 1.5.4.2 briggs {
251 1.5.4.2 briggs int bank, pg;
252 1.5.4.2 briggs
253 1.5.4.2 briggs bank = vm_physseg_find(atop(pa), &pg);
254 1.5.4.2 briggs if (bank == -1)
255 1.5.4.2 briggs return NULL;
256 1.5.4.2 briggs return &vm_physmem[bank].pmseg.attrs[pg];
257 1.5.4.2 briggs }
258 1.5.4.2 briggs
259 1.5.4.2 briggs /*
260 1.5.4.2 briggs * Insert PTE into page table.
261 1.5.4.2 briggs */
262 1.5.4.2 briggs int
263 1.5.4.2 briggs pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
264 1.5.4.2 briggs {
265 1.5.4.2 briggs int seg = STIDX(va);
266 1.5.4.2 briggs int ptn = PTIDX(va);
267 1.5.4.2 briggs paddr_t pa;
268 1.5.4.2 briggs
269 1.5.4.2 briggs if (!pm->pm_ptbl[seg]) {
270 1.5.4.2 briggs /* Don't allocate a page to clear a non-existent mapping. */
271 1.5.4.2 briggs if (!pte) return (1);
272 1.5.4.2 briggs /* Allocate a page XXXX this will sleep! */
273 1.5.4.2 briggs pa = 0;
274 1.5.4.2 briggs pm->pm_ptbl[seg] = (uint *)uvm_km_alloc1(kernel_map, NBPG, 1);
275 1.5.4.2 briggs }
276 1.5.4.2 briggs pm->pm_ptbl[seg][ptn] = pte;
277 1.5.4.2 briggs
278 1.5.4.2 briggs /* Flush entry. */
279 1.5.4.2 briggs ppc4xx_tlb_flush(va, pm->pm_ctx);
280 1.5.4.2 briggs return (1);
281 1.5.4.2 briggs }
282 1.5.4.2 briggs
283 1.5.4.2 briggs /*
284 1.5.4.2 briggs * Get a pointer to a PTE in a page table.
285 1.5.4.2 briggs */
286 1.5.4.2 briggs volatile u_int *
287 1.5.4.2 briggs pte_find(struct pmap *pm, vaddr_t va)
288 1.5.4.2 briggs {
289 1.5.4.2 briggs int seg = STIDX(va);
290 1.5.4.2 briggs int ptn = PTIDX(va);
291 1.5.4.2 briggs
292 1.5.4.2 briggs if (pm->pm_ptbl[seg])
293 1.5.4.2 briggs return (&pm->pm_ptbl[seg][ptn]);
294 1.5.4.2 briggs
295 1.5.4.2 briggs return (NULL);
296 1.5.4.2 briggs }
297 1.5.4.2 briggs
298 1.5.4.2 briggs /*
299 1.5.4.2 briggs * This is called during initppc, before the system is really initialized.
300 1.5.4.2 briggs */
301 1.5.4.2 briggs void
302 1.5.4.2 briggs pmap_bootstrap(u_int kernelstart, u_int kernelend)
303 1.5.4.2 briggs {
304 1.5.4.2 briggs struct mem_region *mp, *mp1;
305 1.5.4.2 briggs int cnt, i;
306 1.5.4.2 briggs u_int s, e, sz;
307 1.5.4.2 briggs
308 1.5.4.2 briggs /*
309 1.5.4.2 briggs * Allocate the kernel page table at the end of
310 1.5.4.2 briggs * kernel space so it's in the locked TTE.
311 1.5.4.2 briggs */
312 1.5.4.2 briggs kernmap = (caddr_t)kernelend;
313 1.5.4.2 briggs // kernelend += KERNMAP_SIZE*sizeof(struct pte);
314 1.5.4.2 briggs
315 1.5.4.2 briggs /*
316 1.5.4.2 briggs * Initialize kernel page table.
317 1.5.4.2 briggs */
318 1.5.4.2 briggs // memset(kernmap, 0, KERNMAP_SIZE*sizeof(struct pte));
319 1.5.4.2 briggs for (i = 0; i < STSZ; i++) {
320 1.5.4.2 briggs pmap_kernel()->pm_ptbl[i] = 0; // (u_int *)(kernmap + i*NBPG);
321 1.5.4.2 briggs }
322 1.5.4.2 briggs ctxbusy[0] = ctxbusy[1] = pmap_kernel();
323 1.5.4.2 briggs
324 1.5.4.2 briggs /*
325 1.5.4.2 briggs * Announce page-size to the VM-system
326 1.5.4.2 briggs */
327 1.5.4.2 briggs uvmexp.pagesize = NBPG;
328 1.5.4.2 briggs uvm_setpagesize();
329 1.5.4.2 briggs
330 1.5.4.2 briggs /*
331 1.5.4.2 briggs * Get memory.
332 1.5.4.2 briggs */
333 1.5.4.2 briggs mem_regions(&mem, &avail);
334 1.5.4.2 briggs for (mp = mem; mp->size; mp++) {
335 1.5.4.2 briggs physmem += btoc(mp->size);
336 1.5.4.2 briggs printf("+%lx,",mp->size);
337 1.5.4.2 briggs }
338 1.5.4.2 briggs printf("\n");
339 1.5.4.2 briggs ppc4xx_tlb_init();
340 1.5.4.2 briggs /*
341 1.5.4.2 briggs * Count the number of available entries.
342 1.5.4.2 briggs */
343 1.5.4.2 briggs for (cnt = 0, mp = avail; mp->size; mp++)
344 1.5.4.2 briggs cnt++;
345 1.5.4.2 briggs
346 1.5.4.2 briggs /*
347 1.5.4.2 briggs * Page align all regions.
348 1.5.4.2 briggs * Non-page aligned memory isn't very interesting to us.
349 1.5.4.2 briggs * Also, sort the entries for ascending addresses.
350 1.5.4.2 briggs */
351 1.5.4.2 briggs kernelstart &= ~PGOFSET;
352 1.5.4.2 briggs kernelend = (kernelend + PGOFSET) & ~PGOFSET;
353 1.5.4.2 briggs for (mp = avail; mp->size; mp++) {
354 1.5.4.2 briggs s = mp->start;
355 1.5.4.2 briggs e = mp->start + mp->size;
356 1.5.4.2 briggs printf("%08x-%08x -> ",s,e);
357 1.5.4.2 briggs /*
358 1.5.4.2 briggs * Check whether this region holds all of the kernel.
359 1.5.4.2 briggs */
360 1.5.4.2 briggs if (s < kernelstart && e > kernelend) {
361 1.5.4.2 briggs avail[cnt].start = kernelend;
362 1.5.4.2 briggs avail[cnt++].size = e - kernelend;
363 1.5.4.2 briggs e = kernelstart;
364 1.5.4.2 briggs }
365 1.5.4.2 briggs /*
366 1.5.4.2 briggs * Look whether this regions starts within the kernel.
367 1.5.4.2 briggs */
368 1.5.4.2 briggs if (s >= kernelstart && s < kernelend) {
369 1.5.4.2 briggs if (e <= kernelend)
370 1.5.4.2 briggs goto empty;
371 1.5.4.2 briggs s = kernelend;
372 1.5.4.2 briggs }
373 1.5.4.2 briggs /*
374 1.5.4.2 briggs * Now look whether this region ends within the kernel.
375 1.5.4.2 briggs */
376 1.5.4.2 briggs if (e > kernelstart && e <= kernelend) {
377 1.5.4.2 briggs if (s >= kernelstart)
378 1.5.4.2 briggs goto empty;
379 1.5.4.2 briggs e = kernelstart;
380 1.5.4.2 briggs }
381 1.5.4.2 briggs /*
382 1.5.4.2 briggs * Now page align the start and size of the region.
383 1.5.4.2 briggs */
384 1.5.4.2 briggs s = round_page(s);
385 1.5.4.2 briggs e = trunc_page(e);
386 1.5.4.2 briggs if (e < s)
387 1.5.4.2 briggs e = s;
388 1.5.4.2 briggs sz = e - s;
389 1.5.4.2 briggs printf("%08x-%08x = %x\n",s,e,sz);
390 1.5.4.2 briggs /*
391 1.5.4.2 briggs * Check whether some memory is left here.
392 1.5.4.2 briggs */
393 1.5.4.2 briggs if (sz == 0) {
394 1.5.4.2 briggs empty:
395 1.5.4.2 briggs memmove(mp, mp + 1,
396 1.5.4.2 briggs (cnt - (mp - avail)) * sizeof *mp);
397 1.5.4.2 briggs cnt--;
398 1.5.4.2 briggs mp--;
399 1.5.4.2 briggs continue;
400 1.5.4.2 briggs }
401 1.5.4.2 briggs /*
402 1.5.4.2 briggs * Do an insertion sort.
403 1.5.4.2 briggs */
404 1.5.4.2 briggs npgs += btoc(sz);
405 1.5.4.2 briggs for (mp1 = avail; mp1 < mp; mp1++)
406 1.5.4.2 briggs if (s < mp1->start)
407 1.5.4.2 briggs break;
408 1.5.4.2 briggs if (mp1 < mp) {
409 1.5.4.2 briggs memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
410 1.5.4.2 briggs mp1->start = s;
411 1.5.4.2 briggs mp1->size = sz;
412 1.5.4.2 briggs } else {
413 1.5.4.2 briggs mp->start = s;
414 1.5.4.2 briggs mp->size = sz;
415 1.5.4.2 briggs }
416 1.5.4.2 briggs }
417 1.5.4.2 briggs
418 1.5.4.2 briggs /*
419 1.5.4.2 briggs * We cannot do pmap_steal_memory here,
420 1.5.4.2 briggs * since we don't run with translation enabled yet.
421 1.5.4.2 briggs */
422 1.5.4.2 briggs #ifndef MSGBUFADDR
423 1.5.4.2 briggs /*
424 1.5.4.2 briggs * allow for msgbuf
425 1.5.4.2 briggs */
426 1.5.4.2 briggs sz = round_page(MSGBUFSIZE);
427 1.5.4.2 briggs mp = NULL;
428 1.5.4.2 briggs for (mp1 = avail; mp1->size; mp1++)
429 1.5.4.2 briggs if (mp1->size >= sz)
430 1.5.4.2 briggs mp = mp1;
431 1.5.4.2 briggs if (mp == NULL)
432 1.5.4.2 briggs panic("not enough memory?");
433 1.5.4.2 briggs
434 1.5.4.2 briggs npgs -= btoc(sz);
435 1.5.4.2 briggs msgbuf_paddr = mp->start + mp->size - sz;
436 1.5.4.2 briggs mp->size -= sz;
437 1.5.4.2 briggs if (mp->size <= 0)
438 1.5.4.2 briggs memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
439 1.5.4.2 briggs #endif
440 1.5.4.2 briggs
441 1.5.4.2 briggs printf("Loading pages\n");
442 1.5.4.2 briggs for (mp = avail; mp->size; mp++)
443 1.5.4.2 briggs uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
444 1.5.4.2 briggs atop(mp->start), atop(mp->start + mp->size),
445 1.5.4.2 briggs VM_FREELIST_DEFAULT);
446 1.5.4.2 briggs
447 1.5.4.2 briggs /*
448 1.5.4.2 briggs * Initialize kernel pmap and hardware.
449 1.5.4.2 briggs */
450 1.5.4.2 briggs /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
451 1.5.4.2 briggs pmap_kernel()->pm_ctx = KERNEL_PID;
452 1.5.4.2 briggs nextavail = avail->start;
453 1.5.4.2 briggs
454 1.5.4.2 briggs
455 1.5.4.2 briggs evcnt_attach_static(&tlbhit_ev);
456 1.5.4.2 briggs evcnt_attach_static(&tlbmiss_ev);
457 1.5.4.2 briggs evcnt_attach_static(&tlbflush_ev);
458 1.5.4.2 briggs evcnt_attach_static(&tlbenter_ev);
459 1.5.4.2 briggs printf("Done\n");
460 1.5.4.2 briggs }
461 1.5.4.2 briggs
462 1.5.4.2 briggs /*
463 1.5.4.2 briggs * Restrict given range to physical memory
464 1.5.4.2 briggs *
465 1.5.4.2 briggs * (Used by /dev/mem)
466 1.5.4.2 briggs */
467 1.5.4.2 briggs void
468 1.5.4.2 briggs pmap_real_memory(paddr_t *start, psize_t *size)
469 1.5.4.2 briggs {
470 1.5.4.2 briggs struct mem_region *mp;
471 1.5.4.2 briggs
472 1.5.4.2 briggs for (mp = mem; mp->size; mp++) {
473 1.5.4.2 briggs if (*start + *size > mp->start &&
474 1.5.4.2 briggs *start < mp->start + mp->size) {
475 1.5.4.2 briggs if (*start < mp->start) {
476 1.5.4.2 briggs *size -= mp->start - *start;
477 1.5.4.2 briggs *start = mp->start;
478 1.5.4.2 briggs }
479 1.5.4.2 briggs if (*start + *size > mp->start + mp->size)
480 1.5.4.2 briggs *size = mp->start + mp->size - *start;
481 1.5.4.2 briggs return;
482 1.5.4.2 briggs }
483 1.5.4.2 briggs }
484 1.5.4.2 briggs *size = 0;
485 1.5.4.2 briggs }
486 1.5.4.2 briggs
487 1.5.4.2 briggs /*
488 1.5.4.2 briggs * Initialize anything else for pmap handling.
489 1.5.4.2 briggs * Called during vm_init().
490 1.5.4.2 briggs */
491 1.5.4.2 briggs void
492 1.5.4.2 briggs pmap_init(void)
493 1.5.4.2 briggs {
494 1.5.4.2 briggs struct pv_entry *pv;
495 1.5.4.2 briggs vsize_t sz;
496 1.5.4.2 briggs vaddr_t addr;
497 1.5.4.2 briggs int i, s;
498 1.5.4.2 briggs int bank;
499 1.5.4.2 briggs char *attr;
500 1.5.4.2 briggs
501 1.5.4.2 briggs sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
502 1.5.4.2 briggs sz = round_page(sz);
503 1.5.4.2 briggs addr = uvm_km_zalloc(kernel_map, sz);
504 1.5.4.2 briggs s = splvm();
505 1.5.4.2 briggs pv = pv_table = (struct pv_entry *)addr;
506 1.5.4.2 briggs for (i = npgs; --i >= 0;)
507 1.5.4.2 briggs pv++->pv_pm = NULL;
508 1.5.4.2 briggs pmap_attrib = (char *)pv;
509 1.5.4.2 briggs memset(pv, 0, npgs);
510 1.5.4.2 briggs
511 1.5.4.2 briggs pv = pv_table;
512 1.5.4.2 briggs attr = pmap_attrib;
513 1.5.4.2 briggs for (bank = 0; bank < vm_nphysseg; bank++) {
514 1.5.4.2 briggs sz = vm_physmem[bank].end - vm_physmem[bank].start;
515 1.5.4.2 briggs vm_physmem[bank].pmseg.pvent = pv;
516 1.5.4.2 briggs vm_physmem[bank].pmseg.attrs = attr;
517 1.5.4.2 briggs pv += sz;
518 1.5.4.2 briggs attr += sz;
519 1.5.4.2 briggs }
520 1.5.4.2 briggs
521 1.5.4.2 briggs pmap_initialized = 1;
522 1.5.4.2 briggs splx(s);
523 1.5.4.2 briggs
524 1.5.4.2 briggs /* Setup a pool for additional pvlist structures */
525 1.5.4.2 briggs pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", 0,
526 1.5.4.2 briggs NULL, NULL, 0);
527 1.5.4.2 briggs }
528 1.5.4.2 briggs
529 1.5.4.2 briggs /*
530 1.5.4.2 briggs * How much virtual space is available to the kernel?
531 1.5.4.2 briggs */
532 1.5.4.2 briggs void
533 1.5.4.2 briggs pmap_virtual_space(vaddr_t *start, vaddr_t *end)
534 1.5.4.2 briggs {
535 1.5.4.2 briggs
536 1.5.4.2 briggs #if 0
537 1.5.4.2 briggs /*
538 1.5.4.2 briggs * Reserve one segment for kernel virtual memory
539 1.5.4.2 briggs */
540 1.5.4.2 briggs *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
541 1.5.4.2 briggs *end = *start + SEGMENT_LENGTH;
542 1.5.4.2 briggs #else
543 1.5.4.2 briggs *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
544 1.5.4.2 briggs *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
545 1.5.4.2 briggs #endif
546 1.5.4.2 briggs }
547 1.5.4.2 briggs
548 1.5.4.2 briggs #ifdef PMAP_GROWKERNEL
549 1.5.4.2 briggs /*
550 1.5.4.2 briggs * Preallocate kernel page tables to a specified VA.
551 1.5.4.2 briggs * This simply loops through the first TTE for each
552 1.5.4.2 briggs * page table from the beginning of the kernel pmap,
553 1.5.4.2 briggs * reads the entry, and if the result is
554 1.5.4.2 briggs * zero (either invalid entry or no page table) it stores
555 1.5.4.2 briggs * a zero there, populating page tables in the process.
556 1.5.4.2 briggs * This is not the most efficient technique but i don't
557 1.5.4.2 briggs * expect it to be called that often.
558 1.5.4.2 briggs */
559 1.5.4.2 briggs extern struct vm_page *vm_page_alloc1 __P((void));
560 1.5.4.2 briggs extern void vm_page_free1 __P((struct vm_page *));
561 1.5.4.2 briggs
562 1.5.4.2 briggs vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
563 1.5.4.2 briggs
564 1.5.4.2 briggs vaddr_t
565 1.5.4.2 briggs pmap_growkernel(maxkvaddr)
566 1.5.4.2 briggs vaddr_t maxkvaddr;
567 1.5.4.2 briggs {
568 1.5.4.2 briggs int s;
569 1.5.4.2 briggs int seg;
570 1.5.4.2 briggs paddr_t pg;
571 1.5.4.2 briggs struct pmap *pm = pmap_kernel();
572 1.5.4.2 briggs
573 1.5.4.2 briggs s = splvm();
574 1.5.4.2 briggs
575 1.5.4.2 briggs /* Align with the start of a page table */
576 1.5.4.2 briggs for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
577 1.5.4.2 briggs kbreak += PTMAP) {
578 1.5.4.2 briggs seg = STIDX(kbreak);
579 1.5.4.2 briggs
580 1.5.4.2 briggs if (pte_find(pm, kbreak)) continue;
581 1.5.4.2 briggs
582 1.5.4.2 briggs if (uvm.page_init_done) {
583 1.5.4.2 briggs pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
584 1.5.4.2 briggs } else {
585 1.5.4.2 briggs if (!uvm_page_physget(&pg))
586 1.5.4.2 briggs panic("pmap_growkernel: no memory");
587 1.5.4.2 briggs }
588 1.5.4.2 briggs if (!pg) panic("pmap_growkernel: no pages");
589 1.5.4.2 briggs pmap_zero_page((paddr_t)pg);
590 1.5.4.2 briggs
591 1.5.4.2 briggs /* XXX This is based on all phymem being addressable */
592 1.5.4.2 briggs pm->pm_ptbl[seg] = (u_int *)pg;
593 1.5.4.2 briggs }
594 1.5.4.2 briggs splx(s);
595 1.5.4.2 briggs return (kbreak);
596 1.5.4.2 briggs }
597 1.5.4.2 briggs
598 1.5.4.2 briggs /*
599 1.5.4.2 briggs * vm_page_alloc1:
600 1.5.4.2 briggs *
601 1.5.4.2 briggs * Allocate and return a memory cell with no associated object.
602 1.5.4.2 briggs */
603 1.5.4.2 briggs struct vm_page *
604 1.5.4.2 briggs vm_page_alloc1()
605 1.5.4.2 briggs {
606 1.5.4.2 briggs struct vm_page *pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
607 1.5.4.2 briggs if (pg) {
608 1.5.4.2 briggs pg->wire_count = 1; /* no mappings yet */
609 1.5.4.2 briggs pg->flags &= ~PG_BUSY; /* never busy */
610 1.5.4.2 briggs }
611 1.5.4.2 briggs return pg;
612 1.5.4.2 briggs }
613 1.5.4.2 briggs
614 1.5.4.2 briggs /*
615 1.5.4.2 briggs * vm_page_free1:
616 1.5.4.2 briggs *
617 1.5.4.2 briggs * Returns the given page to the free list,
618 1.5.4.2 briggs * disassociating it with any VM object.
619 1.5.4.2 briggs *
620 1.5.4.2 briggs * Object and page must be locked prior to entry.
621 1.5.4.2 briggs */
622 1.5.4.2 briggs void
623 1.5.4.2 briggs vm_page_free1(mem)
624 1.5.4.2 briggs struct vm_page *mem;
625 1.5.4.2 briggs {
626 1.5.4.2 briggs if (mem->flags != (PG_CLEAN|PG_FAKE)) {
627 1.5.4.2 briggs printf("Freeing invalid page %p\n", mem);
628 1.5.4.2 briggs printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(mem));
629 1.5.4.2 briggs Debugger();
630 1.5.4.2 briggs return;
631 1.5.4.2 briggs }
632 1.5.4.2 briggs mem->flags |= PG_BUSY;
633 1.5.4.2 briggs mem->wire_count = 0;
634 1.5.4.2 briggs uvm_pagefree(mem);
635 1.5.4.2 briggs }
636 1.5.4.2 briggs #endif
637 1.5.4.2 briggs
638 1.5.4.2 briggs /*
639 1.5.4.2 briggs * Create and return a physical map.
640 1.5.4.2 briggs */
641 1.5.4.2 briggs struct pmap *
642 1.5.4.2 briggs pmap_create(void)
643 1.5.4.2 briggs {
644 1.5.4.2 briggs struct pmap *pm;
645 1.5.4.2 briggs
646 1.5.4.2 briggs pm = (struct pmap *)malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
647 1.5.4.2 briggs memset((caddr_t)pm, 0, sizeof *pm);
648 1.5.4.2 briggs pmap_pinit(pm);
649 1.5.4.2 briggs return pm;
650 1.5.4.2 briggs }
651 1.5.4.2 briggs
652 1.5.4.2 briggs /*
653 1.5.4.2 briggs * Initialize a preallocated and zeroed pmap structure.
654 1.5.4.2 briggs */
655 1.5.4.2 briggs void
656 1.5.4.2 briggs pmap_pinit(struct pmap *pm)
657 1.5.4.2 briggs {
658 1.5.4.2 briggs int i;
659 1.5.4.2 briggs
660 1.5.4.2 briggs /*
661 1.5.4.2 briggs * Allocate some segment registers for this pmap.
662 1.5.4.2 briggs */
663 1.5.4.2 briggs pm->pm_refs = 1;
664 1.5.4.2 briggs for (i = 0; i < STSZ; i++)
665 1.5.4.2 briggs pm->pm_ptbl[i] = NULL;
666 1.5.4.2 briggs }
667 1.5.4.2 briggs
668 1.5.4.2 briggs /*
669 1.5.4.2 briggs * Add a reference to the given pmap.
670 1.5.4.2 briggs */
671 1.5.4.2 briggs void
672 1.5.4.2 briggs pmap_reference(struct pmap *pm)
673 1.5.4.2 briggs {
674 1.5.4.2 briggs
675 1.5.4.2 briggs pm->pm_refs++;
676 1.5.4.2 briggs }
677 1.5.4.2 briggs
678 1.5.4.2 briggs /*
679 1.5.4.2 briggs * Retire the given pmap from service.
680 1.5.4.2 briggs * Should only be called if the map contains no valid mappings.
681 1.5.4.2 briggs */
682 1.5.4.2 briggs void
683 1.5.4.2 briggs pmap_destroy(struct pmap *pm)
684 1.5.4.2 briggs {
685 1.5.4.2 briggs
686 1.5.4.2 briggs if (--pm->pm_refs == 0) {
687 1.5.4.2 briggs pmap_release(pm);
688 1.5.4.2 briggs free((caddr_t)pm, M_VMPMAP);
689 1.5.4.2 briggs }
690 1.5.4.2 briggs }
691 1.5.4.2 briggs
692 1.5.4.2 briggs /*
693 1.5.4.2 briggs * Release any resources held by the given physical map.
694 1.5.4.2 briggs * Called when a pmap initialized by pmap_pinit is being released.
695 1.5.4.2 briggs */
696 1.5.4.2 briggs static void
697 1.5.4.2 briggs pmap_release(struct pmap *pm)
698 1.5.4.2 briggs {
699 1.5.4.2 briggs int i;
700 1.5.4.2 briggs
701 1.5.4.2 briggs for (i = 0; i < STSZ; i++)
702 1.5.4.2 briggs if (pm->pm_ptbl[i]) {
703 1.5.4.2 briggs uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i], NBPG);
704 1.5.4.2 briggs pm->pm_ptbl[i] = NULL;
705 1.5.4.2 briggs }
706 1.5.4.2 briggs if (pm->pm_ctx) ctx_free(pm);
707 1.5.4.2 briggs }
708 1.5.4.2 briggs
709 1.5.4.2 briggs /*
710 1.5.4.2 briggs * Copy the range specified by src_addr/len
711 1.5.4.2 briggs * from the source map to the range dst_addr/len
712 1.5.4.2 briggs * in the destination map.
713 1.5.4.2 briggs *
714 1.5.4.2 briggs * This routine is only advisory and need not do anything.
715 1.5.4.2 briggs */
716 1.5.4.2 briggs void
717 1.5.4.2 briggs pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
718 1.5.4.2 briggs vsize_t len, vaddr_t src_addr)
719 1.5.4.2 briggs {
720 1.5.4.2 briggs }
721 1.5.4.2 briggs
722 1.5.4.2 briggs /*
723 1.5.4.2 briggs * Require that all active physical maps contain no
724 1.5.4.2 briggs * incorrect entries NOW.
725 1.5.4.2 briggs */
726 1.5.4.2 briggs void
727 1.5.4.2 briggs pmap_update(struct pmap *pmap)
728 1.5.4.2 briggs {
729 1.5.4.2 briggs }
730 1.5.4.2 briggs
731 1.5.4.2 briggs /*
732 1.5.4.2 briggs * Garbage collects the physical map system for
733 1.5.4.2 briggs * pages which are no longer used.
734 1.5.4.2 briggs * Success need not be guaranteed -- that is, there
735 1.5.4.2 briggs * may well be pages which are not referenced, but
736 1.5.4.2 briggs * others may be collected.
737 1.5.4.2 briggs * Called by the pageout daemon when pages are scarce.
738 1.5.4.2 briggs */
739 1.5.4.2 briggs void
740 1.5.4.2 briggs pmap_collect(struct pmap *pm)
741 1.5.4.2 briggs {
742 1.5.4.2 briggs }
743 1.5.4.2 briggs
744 1.5.4.2 briggs /*
745 1.5.4.2 briggs * Fill the given physical page with zeroes.
746 1.5.4.2 briggs */
747 1.5.4.2 briggs void
748 1.5.4.2 briggs pmap_zero_page(paddr_t pa)
749 1.5.4.2 briggs {
750 1.5.4.2 briggs
751 1.5.4.3 nathanw #ifdef PPC_4XX_NOCACHE
752 1.5.4.2 briggs memset((caddr_t)pa, 0, NBPG);
753 1.5.4.2 briggs #else
754 1.5.4.2 briggs int i;
755 1.5.4.2 briggs
756 1.5.4.2 briggs for (i = NBPG/CACHELINESIZE; i > 0; i--) {
757 1.5.4.2 briggs __asm __volatile ("dcbz 0,%0" :: "r"(pa));
758 1.5.4.2 briggs pa += CACHELINESIZE;
759 1.5.4.2 briggs }
760 1.5.4.2 briggs #endif
761 1.5.4.2 briggs }
762 1.5.4.2 briggs
763 1.5.4.2 briggs /*
764 1.5.4.2 briggs * Copy the given physical source page to its destination.
765 1.5.4.2 briggs */
766 1.5.4.2 briggs void
767 1.5.4.2 briggs pmap_copy_page(paddr_t src, paddr_t dst)
768 1.5.4.2 briggs {
769 1.5.4.2 briggs
770 1.5.4.2 briggs memcpy((caddr_t)dst, (caddr_t)src, NBPG);
771 1.5.4.2 briggs dcache_flush_page(dst);
772 1.5.4.2 briggs }
773 1.5.4.2 briggs
774 1.5.4.2 briggs /*
775 1.5.4.2 briggs * This returns whether this is the first mapping of a page.
776 1.5.4.2 briggs */
777 1.5.4.2 briggs static inline int
778 1.5.4.2 briggs pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
779 1.5.4.2 briggs {
780 1.5.4.2 briggs struct pv_entry *pv, *npv = NULL;
781 1.5.4.2 briggs int s;
782 1.5.4.2 briggs
783 1.5.4.2 briggs if (!pmap_initialized)
784 1.5.4.2 briggs return 0;
785 1.5.4.2 briggs
786 1.5.4.2 briggs s = splvm();
787 1.5.4.2 briggs
788 1.5.4.2 briggs pv = pa_to_pv(pa);
789 1.5.4.2 briggs if (!pv->pv_pm) {
790 1.5.4.2 briggs /*
791 1.5.4.2 briggs * No entries yet, use header as the first entry.
792 1.5.4.2 briggs */
793 1.5.4.2 briggs pv->pv_va = va;
794 1.5.4.2 briggs pv->pv_pm = pm;
795 1.5.4.2 briggs pv->pv_next = NULL;
796 1.5.4.2 briggs } else {
797 1.5.4.2 briggs /*
798 1.5.4.2 briggs * There is at least one other VA mapping this page.
799 1.5.4.2 briggs * Place this entry after the header.
800 1.5.4.2 briggs */
801 1.5.4.2 briggs npv = pool_get(&pv_pool, PR_WAITOK);
802 1.5.4.2 briggs if (!npv) return (0);
803 1.5.4.2 briggs npv->pv_va = va;
804 1.5.4.2 briggs npv->pv_pm = pm;
805 1.5.4.2 briggs npv->pv_next = pv->pv_next;
806 1.5.4.2 briggs pv->pv_next = npv;
807 1.5.4.2 briggs }
808 1.5.4.2 briggs splx(s);
809 1.5.4.2 briggs return (1);
810 1.5.4.2 briggs }
811 1.5.4.2 briggs
812 1.5.4.2 briggs static void
813 1.5.4.2 briggs pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
814 1.5.4.2 briggs {
815 1.5.4.2 briggs struct pv_entry *pv, *npv;
816 1.5.4.2 briggs
817 1.5.4.2 briggs /*
818 1.5.4.2 briggs * Remove from the PV table.
819 1.5.4.2 briggs */
820 1.5.4.2 briggs pv = pa_to_pv(pa);
821 1.5.4.2 briggs if (!pv) return;
822 1.5.4.2 briggs
823 1.5.4.2 briggs /*
824 1.5.4.2 briggs * If it is the first entry on the list, it is actually
825 1.5.4.2 briggs * in the header and we must copy the following entry up
826 1.5.4.2 briggs * to the header. Otherwise we must search the list for
827 1.5.4.2 briggs * the entry. In either case we free the now unused entry.
828 1.5.4.2 briggs */
829 1.5.4.2 briggs if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
830 1.5.4.2 briggs if ((npv = pv->pv_next)) {
831 1.5.4.2 briggs *pv = *npv;
832 1.5.4.2 briggs pool_put(&pv_pool, npv);
833 1.5.4.2 briggs } else
834 1.5.4.2 briggs pv->pv_pm = NULL;
835 1.5.4.2 briggs } else {
836 1.5.4.2 briggs for (; (npv = pv->pv_next) != NULL; pv = npv)
837 1.5.4.2 briggs if (pm == npv->pv_pm && PV_CMPVA(va, npv))
838 1.5.4.2 briggs break;
839 1.5.4.2 briggs if (npv) {
840 1.5.4.2 briggs pv->pv_next = npv->pv_next;
841 1.5.4.2 briggs pool_put(&pv_pool, npv);
842 1.5.4.2 briggs }
843 1.5.4.2 briggs }
844 1.5.4.2 briggs }
845 1.5.4.2 briggs
846 1.5.4.2 briggs /*
847 1.5.4.2 briggs * Insert physical page at pa into the given pmap at virtual address va.
848 1.5.4.2 briggs */
849 1.5.4.2 briggs int
850 1.5.4.2 briggs pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
851 1.5.4.2 briggs {
852 1.5.4.2 briggs int s;
853 1.5.4.2 briggs u_int tte;
854 1.5.4.2 briggs int managed;
855 1.5.4.2 briggs
856 1.5.4.2 briggs /*
857 1.5.4.2 briggs * Have to remove any existing mapping first.
858 1.5.4.2 briggs */
859 1.5.4.2 briggs pmap_remove(pm, va, va + NBPG);
860 1.5.4.2 briggs
861 1.5.4.2 briggs if (flags & PMAP_WIRED) flags |= prot;
862 1.5.4.2 briggs
863 1.5.4.2 briggs /* If it has no protections don't bother w/the rest */
864 1.5.4.2 briggs if (!(flags & VM_PROT_ALL))
865 1.5.4.2 briggs return (0);
866 1.5.4.2 briggs
867 1.5.4.2 briggs managed = 0;
868 1.5.4.2 briggs if (vm_physseg_find(atop(pa), NULL) != -1)
869 1.5.4.2 briggs managed = 1;
870 1.5.4.2 briggs
871 1.5.4.2 briggs /*
872 1.5.4.2 briggs * Generate TTE.
873 1.5.4.2 briggs *
874 1.5.4.2 briggs * XXXX
875 1.5.4.2 briggs *
876 1.5.4.2 briggs * Since the kernel does not handle execution privileges properly,
877 1.5.4.2 briggs * we will handle read and execute permissions together.
878 1.5.4.2 briggs */
879 1.5.4.2 briggs tte = TTE_PA(pa) | TTE_EX;
880 1.5.4.2 briggs /* XXXX -- need to support multiple page sizes. */
881 1.5.4.2 briggs tte |= TTE_SZ_16K;
882 1.5.4.2 briggs #ifdef DIAGNOSTIC
883 1.5.4.2 briggs if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
884 1.5.4.2 briggs (PME_NOCACHE | PME_WRITETHROUG))
885 1.5.4.2 briggs panic("pmap_enter: uncached & writethrough\n");
886 1.5.4.2 briggs #endif
887 1.5.4.2 briggs if (flags & PME_NOCACHE)
888 1.5.4.2 briggs /* Must be I/O mapping */
889 1.5.4.2 briggs tte |= TTE_I | TTE_G;
890 1.5.4.3 nathanw #ifdef PPC_4XX_NOCACHE
891 1.5.4.2 briggs tte |= TTE_I;
892 1.5.4.2 briggs #else
893 1.5.4.2 briggs else if (flags & PME_WRITETHROUG)
894 1.5.4.2 briggs /* Uncached and writethrough are not compatible */
895 1.5.4.2 briggs tte |= TTE_W;
896 1.5.4.2 briggs #endif
897 1.5.4.2 briggs if (pm == pmap_kernel())
898 1.5.4.2 briggs tte |= TTE_ZONE(ZONE_PRIV);
899 1.5.4.2 briggs else
900 1.5.4.2 briggs tte |= TTE_ZONE(ZONE_USER);
901 1.5.4.2 briggs
902 1.5.4.2 briggs if (flags & VM_PROT_WRITE)
903 1.5.4.2 briggs tte |= TTE_WR;
904 1.5.4.2 briggs
905 1.5.4.2 briggs /*
906 1.5.4.2 briggs * Now record mapping for later back-translation.
907 1.5.4.2 briggs */
908 1.5.4.2 briggs if (pmap_initialized && managed) {
909 1.5.4.2 briggs char *attr;
910 1.5.4.2 briggs
911 1.5.4.2 briggs if (!pmap_enter_pv(pm, va, pa)) {
912 1.5.4.2 briggs /* Could not enter pv on a managed page */
913 1.5.4.2 briggs return 1;
914 1.5.4.2 briggs }
915 1.5.4.2 briggs
916 1.5.4.2 briggs /* Now set attributes. */
917 1.5.4.2 briggs attr = pa_to_attr(pa);
918 1.5.4.2 briggs #ifdef DIAGNOSTIC
919 1.5.4.2 briggs if (!attr)
920 1.5.4.2 briggs panic("managed but no attr\n");
921 1.5.4.2 briggs #endif
922 1.5.4.2 briggs if (flags & VM_PROT_ALL)
923 1.5.4.2 briggs *attr |= PTE_HI_REF;
924 1.5.4.2 briggs if (flags & VM_PROT_WRITE)
925 1.5.4.2 briggs *attr |= PTE_HI_CHG;
926 1.5.4.2 briggs }
927 1.5.4.2 briggs
928 1.5.4.2 briggs s = splvm();
929 1.5.4.2 briggs pm->pm_stats.resident_count++;
930 1.5.4.2 briggs
931 1.5.4.2 briggs /* Insert page into page table. */
932 1.5.4.2 briggs pte_enter(pm, va, tte);
933 1.5.4.2 briggs
934 1.5.4.2 briggs /* If this is a real fault, enter it in the tlb */
935 1.5.4.2 briggs if (tte && ((flags & PMAP_WIRED) == 0)) {
936 1.5.4.2 briggs ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
937 1.5.4.2 briggs }
938 1.5.4.2 briggs splx(s);
939 1.5.4.2 briggs return 0;
940 1.5.4.2 briggs }
941 1.5.4.2 briggs
942 1.5.4.2 briggs void
943 1.5.4.2 briggs pmap_unwire(struct pmap *pm, vaddr_t va)
944 1.5.4.2 briggs {
945 1.5.4.2 briggs struct pv_entry *pv, *npv;
946 1.5.4.2 briggs paddr_t pa;
947 1.5.4.2 briggs int s = splvm();
948 1.5.4.2 briggs
949 1.5.4.2 briggs if (pm == NULL) {
950 1.5.4.2 briggs return;
951 1.5.4.2 briggs }
952 1.5.4.2 briggs
953 1.5.4.2 briggs if (!pmap_extract(pm, va, &pa)) {
954 1.5.4.2 briggs return;
955 1.5.4.2 briggs }
956 1.5.4.2 briggs
957 1.5.4.2 briggs va |= PV_WIRED;
958 1.5.4.2 briggs
959 1.5.4.2 briggs pv = pa_to_pv(pa);
960 1.5.4.2 briggs if (!pv) return;
961 1.5.4.2 briggs
962 1.5.4.2 briggs /*
963 1.5.4.2 briggs * If it is the first entry on the list, it is actually
964 1.5.4.2 briggs * in the header and we must copy the following entry up
965 1.5.4.2 briggs * to the header. Otherwise we must search the list for
966 1.5.4.2 briggs * the entry. In either case we free the now unused entry.
967 1.5.4.2 briggs */
968 1.5.4.2 briggs for (npv = pv; (npv = pv->pv_next) != NULL; pv = npv) {
969 1.5.4.2 briggs if (pm == npv->pv_pm && PV_CMPVA(va, npv)) {
970 1.5.4.2 briggs npv->pv_va &= ~PV_WIRED;
971 1.5.4.2 briggs break;
972 1.5.4.2 briggs }
973 1.5.4.2 briggs }
974 1.5.4.2 briggs splx(s);
975 1.5.4.2 briggs }
976 1.5.4.2 briggs
977 1.5.4.2 briggs void
978 1.5.4.2 briggs pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
979 1.5.4.2 briggs {
980 1.5.4.2 briggs int s;
981 1.5.4.2 briggs u_int tte;
982 1.5.4.2 briggs struct pmap *pm = pmap_kernel();
983 1.5.4.2 briggs
984 1.5.4.2 briggs /*
985 1.5.4.2 briggs * Have to remove any existing mapping first.
986 1.5.4.2 briggs */
987 1.5.4.2 briggs
988 1.5.4.2 briggs /*
989 1.5.4.2 briggs * Generate TTE.
990 1.5.4.2 briggs *
991 1.5.4.2 briggs * XXXX
992 1.5.4.2 briggs *
993 1.5.4.2 briggs * Since the kernel does not handle execution privileges properly,
994 1.5.4.2 briggs * we will handle read and execute permissions together.
995 1.5.4.2 briggs */
996 1.5.4.2 briggs tte = 0;
997 1.5.4.2 briggs if (prot & VM_PROT_ALL) {
998 1.5.4.2 briggs
999 1.5.4.2 briggs tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
1000 1.5.4.2 briggs /* XXXX -- need to support multiple page sizes. */
1001 1.5.4.2 briggs tte |= TTE_SZ_16K;
1002 1.5.4.2 briggs #ifdef DIAGNOSTIC
1003 1.5.4.2 briggs if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
1004 1.5.4.2 briggs (PME_NOCACHE | PME_WRITETHROUG))
1005 1.5.4.2 briggs panic("pmap_kenter_pa: uncached & writethrough\n");
1006 1.5.4.2 briggs #endif
1007 1.5.4.2 briggs if (prot & PME_NOCACHE)
1008 1.5.4.2 briggs /* Must be I/O mapping */
1009 1.5.4.2 briggs tte |= TTE_I | TTE_G;
1010 1.5.4.3 nathanw #ifdef PPC_4XX_NOCACHE
1011 1.5.4.2 briggs tte |= TTE_I;
1012 1.5.4.2 briggs #else
1013 1.5.4.2 briggs else if (prot & PME_WRITETHROUG)
1014 1.5.4.2 briggs /* Uncached and writethrough are not compatible */
1015 1.5.4.2 briggs tte |= TTE_W;
1016 1.5.4.2 briggs #endif
1017 1.5.4.2 briggs if (prot & VM_PROT_WRITE)
1018 1.5.4.2 briggs tte |= TTE_WR;
1019 1.5.4.2 briggs }
1020 1.5.4.2 briggs
1021 1.5.4.2 briggs s = splvm();
1022 1.5.4.2 briggs pm->pm_stats.resident_count++;
1023 1.5.4.2 briggs
1024 1.5.4.2 briggs /* Insert page into page table. */
1025 1.5.4.2 briggs pte_enter(pm, va, tte);
1026 1.5.4.2 briggs splx(s);
1027 1.5.4.2 briggs }
1028 1.5.4.2 briggs
1029 1.5.4.2 briggs void
1030 1.5.4.2 briggs pmap_kremove(vaddr_t va, vsize_t len)
1031 1.5.4.2 briggs {
1032 1.5.4.2 briggs
1033 1.5.4.2 briggs while (len > 0) {
1034 1.5.4.2 briggs pte_enter(pmap_kernel(), va, 0);
1035 1.5.4.2 briggs va += PAGE_SIZE;
1036 1.5.4.2 briggs len -= PAGE_SIZE;
1037 1.5.4.2 briggs }
1038 1.5.4.2 briggs }
1039 1.5.4.2 briggs
1040 1.5.4.2 briggs /*
1041 1.5.4.2 briggs * Remove the given range of mapping entries.
1042 1.5.4.2 briggs */
1043 1.5.4.2 briggs void
1044 1.5.4.2 briggs pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
1045 1.5.4.2 briggs {
1046 1.5.4.2 briggs int s;
1047 1.5.4.2 briggs paddr_t pa;
1048 1.5.4.2 briggs volatile u_int *ptp;
1049 1.5.4.2 briggs
1050 1.5.4.2 briggs s = splvm();
1051 1.5.4.2 briggs while (va < endva) {
1052 1.5.4.2 briggs
1053 1.5.4.2 briggs if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
1054 1.5.4.2 briggs pa = TTE_PA(pa);
1055 1.5.4.2 briggs pmap_remove_pv(pm, va, pa);
1056 1.5.4.2 briggs *ptp = 0;
1057 1.5.4.2 briggs ppc4xx_tlb_flush(va, pm->pm_ctx);
1058 1.5.4.2 briggs pm->pm_stats.resident_count--;
1059 1.5.4.2 briggs }
1060 1.5.4.2 briggs va += NBPG;
1061 1.5.4.2 briggs }
1062 1.5.4.2 briggs
1063 1.5.4.2 briggs splx(s);
1064 1.5.4.2 briggs }
1065 1.5.4.2 briggs
1066 1.5.4.2 briggs /*
1067 1.5.4.2 briggs * Get the physical page address for the given pmap/virtual address.
1068 1.5.4.2 briggs */
1069 1.5.4.2 briggs boolean_t
1070 1.5.4.2 briggs pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1071 1.5.4.2 briggs {
1072 1.5.4.2 briggs int seg = STIDX(va);
1073 1.5.4.2 briggs int ptn = PTIDX(va);
1074 1.5.4.2 briggs u_int pa = 0;
1075 1.5.4.2 briggs int s = splvm();
1076 1.5.4.2 briggs
1077 1.5.4.2 briggs if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
1078 1.5.4.2 briggs *pap = TTE_PA(pa) | (va & PGOFSET);
1079 1.5.4.2 briggs }
1080 1.5.4.2 briggs splx(s);
1081 1.5.4.2 briggs return (pa != 0);
1082 1.5.4.2 briggs }
1083 1.5.4.2 briggs
1084 1.5.4.2 briggs /*
1085 1.5.4.2 briggs * Lower the protection on the specified range of this pmap.
1086 1.5.4.2 briggs *
1087 1.5.4.2 briggs * There are only two cases: either the protection is going to 0,
1088 1.5.4.2 briggs * or it is going to read-only.
1089 1.5.4.2 briggs */
1090 1.5.4.2 briggs void
1091 1.5.4.2 briggs pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1092 1.5.4.2 briggs {
1093 1.5.4.2 briggs volatile u_int *ptp;
1094 1.5.4.2 briggs int s;
1095 1.5.4.2 briggs
1096 1.5.4.2 briggs if (prot & VM_PROT_READ) {
1097 1.5.4.2 briggs s = splvm();
1098 1.5.4.2 briggs while (sva < eva) {
1099 1.5.4.2 briggs if ((ptp = pte_find(pm, sva)) != NULL) {
1100 1.5.4.2 briggs *ptp &= ~TTE_WR;
1101 1.5.4.2 briggs ppc4xx_tlb_flush(sva, pm->pm_ctx);
1102 1.5.4.2 briggs }
1103 1.5.4.2 briggs sva += NBPG;
1104 1.5.4.2 briggs }
1105 1.5.4.2 briggs splx(s);
1106 1.5.4.2 briggs return;
1107 1.5.4.2 briggs }
1108 1.5.4.2 briggs pmap_remove(pm, sva, eva);
1109 1.5.4.2 briggs }
1110 1.5.4.2 briggs
1111 1.5.4.2 briggs boolean_t
1112 1.5.4.2 briggs check_attr(struct vm_page *pg, u_int mask, int clear)
1113 1.5.4.2 briggs {
1114 1.5.4.2 briggs paddr_t pa = VM_PAGE_TO_PHYS(pg);
1115 1.5.4.2 briggs int s;
1116 1.5.4.2 briggs char *attr;
1117 1.5.4.2 briggs int rv;
1118 1.5.4.2 briggs
1119 1.5.4.2 briggs /*
1120 1.5.4.2 briggs * First modify bits in cache.
1121 1.5.4.2 briggs */
1122 1.5.4.2 briggs s = splvm();
1123 1.5.4.2 briggs attr = pa_to_attr(pa);
1124 1.5.4.2 briggs if (attr == NULL)
1125 1.5.4.2 briggs return FALSE;
1126 1.5.4.2 briggs
1127 1.5.4.2 briggs rv = ((*attr & mask) != 0);
1128 1.5.4.2 briggs if (clear)
1129 1.5.4.2 briggs *attr &= ~mask;
1130 1.5.4.2 briggs
1131 1.5.4.2 briggs splx(s);
1132 1.5.4.2 briggs return rv;
1133 1.5.4.2 briggs }
1134 1.5.4.2 briggs
1135 1.5.4.2 briggs
1136 1.5.4.2 briggs /*
1137 1.5.4.2 briggs * Lower the protection on the specified physical page.
1138 1.5.4.2 briggs *
1139 1.5.4.2 briggs * There are only two cases: either the protection is going to 0,
1140 1.5.4.2 briggs * or it is going to read-only.
1141 1.5.4.2 briggs */
1142 1.5.4.2 briggs void
1143 1.5.4.2 briggs pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1144 1.5.4.2 briggs {
1145 1.5.4.2 briggs paddr_t pa = VM_PAGE_TO_PHYS(pg);
1146 1.5.4.2 briggs vaddr_t va;
1147 1.5.4.2 briggs struct pv_entry *pvh, *pv, *npv;
1148 1.5.4.2 briggs struct pmap *pm;
1149 1.5.4.2 briggs
1150 1.5.4.2 briggs pvh = pa_to_pv(pa);
1151 1.5.4.2 briggs if (pvh == NULL)
1152 1.5.4.2 briggs return;
1153 1.5.4.2 briggs
1154 1.5.4.2 briggs /* Handle extra pvs which may be deleted in the operation */
1155 1.5.4.2 briggs for (pv = pvh->pv_next; pv; pv = npv) {
1156 1.5.4.2 briggs npv = pv->pv_next;
1157 1.5.4.2 briggs
1158 1.5.4.2 briggs pm = pv->pv_pm;
1159 1.5.4.2 briggs va = pv->pv_va;
1160 1.5.4.2 briggs pmap_protect(pm, va, va+NBPG, prot);
1161 1.5.4.2 briggs }
1162 1.5.4.2 briggs /* Now check the head pv */
1163 1.5.4.2 briggs if (pvh->pv_pm) {
1164 1.5.4.2 briggs pv = pvh;
1165 1.5.4.2 briggs pm = pv->pv_pm;
1166 1.5.4.2 briggs va = pv->pv_va;
1167 1.5.4.2 briggs pmap_protect(pm, va, va+NBPG, prot);
1168 1.5.4.2 briggs }
1169 1.5.4.2 briggs }
1170 1.5.4.2 briggs
1171 1.5.4.2 briggs /*
1172 1.5.4.2 briggs * Activate the address space for the specified process. If the process
1173 1.5.4.2 briggs * is the current process, load the new MMU context.
1174 1.5.4.2 briggs */
1175 1.5.4.2 briggs void
1176 1.5.4.2 briggs pmap_activate(struct lwp *l)
1177 1.5.4.2 briggs {
1178 1.5.4.2 briggs #if 0
1179 1.5.4.2 briggs struct pcb *pcb = &l->l_proc->p_addr->u_pcb;
1180 1.5.4.2 briggs pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1181 1.5.4.2 briggs
1182 1.5.4.2 briggs /*
1183 1.5.4.2 briggs * XXX Normally performed in cpu_fork().
1184 1.5.4.2 briggs */
1185 1.5.4.2 briggs printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1186 1.5.4.2 briggs if (pcb->pcb_pm != pmap) {
1187 1.5.4.2 briggs pcb->pcb_pm = pmap;
1188 1.5.4.2 briggs (void) pmap_extract(pmap_kernel(), (vaddr_t)pcb->pcb_pm,
1189 1.5.4.2 briggs (paddr_t *)&pcb->pcb_pmreal);
1190 1.5.4.2 briggs }
1191 1.5.4.2 briggs
1192 1.5.4.2 briggs if (l == curproc) {
1193 1.5.4.2 briggs /* Store pointer to new current pmap. */
1194 1.5.4.2 briggs curpm = pcb->pcb_pmreal;
1195 1.5.4.2 briggs }
1196 1.5.4.2 briggs #endif
1197 1.5.4.2 briggs }
1198 1.5.4.2 briggs
1199 1.5.4.2 briggs /*
1200 1.5.4.2 briggs * Deactivate the specified process's address space.
1201 1.5.4.2 briggs */
1202 1.5.4.2 briggs void
1203 1.5.4.2 briggs pmap_deactivate(struct lwp *l)
1204 1.5.4.2 briggs {
1205 1.5.4.2 briggs }
1206 1.5.4.2 briggs
1207 1.5.4.2 briggs /*
1208 1.5.4.2 briggs * Synchronize caches corresponding to [addr, addr+len) in p.
1209 1.5.4.2 briggs */
1210 1.5.4.2 briggs void
1211 1.5.4.2 briggs pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1212 1.5.4.2 briggs {
1213 1.5.4.2 briggs struct pmap *pm = p->p_vmspace->vm_map.pmap;
1214 1.5.4.2 briggs int msr, ctx, opid;
1215 1.5.4.2 briggs
1216 1.5.4.2 briggs
1217 1.5.4.2 briggs /*
1218 1.5.4.2 briggs * Need to turn off IMMU and switch to user context.
1219 1.5.4.2 briggs * (icbi uses DMMU).
1220 1.5.4.2 briggs */
1221 1.5.4.2 briggs if (!(ctx = pm->pm_ctx)) {
1222 1.5.4.2 briggs /* No context -- assign it one */
1223 1.5.4.2 briggs ctx_alloc(pm);
1224 1.5.4.2 briggs ctx = pm->pm_ctx;
1225 1.5.4.2 briggs }
1226 1.5.4.2 briggs __asm __volatile("mfmsr %0;"
1227 1.5.4.2 briggs "li %1, 0x20;"
1228 1.5.4.2 briggs "andc %1,%0,%1;"
1229 1.5.4.2 briggs "mtmsr %1;"
1230 1.5.4.2 briggs "sync;isync;"
1231 1.5.4.2 briggs "mfpid %1;"
1232 1.5.4.2 briggs "mtpid %2;"
1233 1.5.4.2 briggs "sync; isync;"
1234 1.5.4.2 briggs "1:"
1235 1.5.4.2 briggs "dcbf 0,%3;"
1236 1.5.4.2 briggs "icbi 0,%3;"
1237 1.5.4.2 briggs "addi %3,%3,32;"
1238 1.5.4.2 briggs "addic. %4,%4,-32;"
1239 1.5.4.2 briggs "bge 1b;"
1240 1.5.4.2 briggs "mtpid %1;"
1241 1.5.4.2 briggs "mtmsr %0;"
1242 1.5.4.2 briggs "sync; isync"
1243 1.5.4.2 briggs : "=&r" (msr), "=&r" (opid)
1244 1.5.4.2 briggs : "r" (ctx), "r" (va), "r" (len));
1245 1.5.4.2 briggs }
1246 1.5.4.2 briggs
1247 1.5.4.2 briggs
1248 1.5.4.2 briggs /* This has to be done in real mode !!! */
1249 1.5.4.2 briggs void
1250 1.5.4.2 briggs ppc4xx_tlb_flush(vaddr_t va, int pid)
1251 1.5.4.2 briggs {
1252 1.5.4.2 briggs u_long i, found;
1253 1.5.4.2 briggs u_long msr;
1254 1.5.4.2 briggs
1255 1.5.4.2 briggs /* If there's no context then it can't be mapped. */
1256 1.5.4.2 briggs if (!pid) return;
1257 1.5.4.2 briggs
1258 1.5.4.2 briggs asm("mfpid %1;" /* Save PID */
1259 1.5.4.2 briggs "mfmsr %2;" /* Save MSR */
1260 1.5.4.2 briggs "li %0,0;" /* Now clear MSR */
1261 1.5.4.2 briggs "mtmsr %0;"
1262 1.5.4.2 briggs "mtpid %4;" /* Set PID */
1263 1.5.4.2 briggs "sync;"
1264 1.5.4.2 briggs "tlbsx. %0,0,%3;" /* Search TLB */
1265 1.5.4.2 briggs "sync;"
1266 1.5.4.2 briggs "mtpid %1;" /* Restore PID */
1267 1.5.4.2 briggs "mtmsr %2;" /* Restore MSR */
1268 1.5.4.2 briggs "sync;isync;"
1269 1.5.4.2 briggs "li %1,1;"
1270 1.5.4.2 briggs "beq 1f;"
1271 1.5.4.2 briggs "li %1,0;"
1272 1.5.4.2 briggs "1:"
1273 1.5.4.2 briggs : "=&r" (i), "=&r" (found), "=&r" (msr)
1274 1.5.4.2 briggs : "r" (va), "r" (pid));
1275 1.5.4.2 briggs if (found && !TLB_LOCKED(i)) {
1276 1.5.4.2 briggs
1277 1.5.4.2 briggs /* Now flush translation */
1278 1.5.4.2 briggs asm volatile(
1279 1.5.4.2 briggs "tlbwe %0,%1,0;"
1280 1.5.4.2 briggs "sync;isync;"
1281 1.5.4.2 briggs : : "r" (0), "r" (i));
1282 1.5.4.2 briggs
1283 1.5.4.2 briggs tlb_info[i].ti_ctx = 0;
1284 1.5.4.2 briggs tlb_info[i].ti_flags = 0;
1285 1.5.4.2 briggs tlbnext = i;
1286 1.5.4.2 briggs /* Successful flushes */
1287 1.5.4.2 briggs tlbflush_ev.ev_count++;
1288 1.5.4.2 briggs }
1289 1.5.4.2 briggs }
1290 1.5.4.2 briggs
1291 1.5.4.2 briggs void
1292 1.5.4.2 briggs ppc4xx_tlb_flush_all(void)
1293 1.5.4.2 briggs {
1294 1.5.4.2 briggs u_long i;
1295 1.5.4.2 briggs
1296 1.5.4.2 briggs for (i = 0; i < NTLB; i++)
1297 1.5.4.2 briggs if (!TLB_LOCKED(i)) {
1298 1.5.4.2 briggs asm volatile(
1299 1.5.4.2 briggs "tlbwe %0,%1,0;"
1300 1.5.4.2 briggs "sync;isync;"
1301 1.5.4.2 briggs : : "r" (0), "r" (i));
1302 1.5.4.2 briggs tlb_info[i].ti_ctx = 0;
1303 1.5.4.2 briggs tlb_info[i].ti_flags = 0;
1304 1.5.4.2 briggs }
1305 1.5.4.2 briggs
1306 1.5.4.2 briggs asm volatile("sync;isync");
1307 1.5.4.2 briggs }
1308 1.5.4.2 briggs
1309 1.5.4.2 briggs /* Find a TLB entry to evict. */
1310 1.5.4.2 briggs static int
1311 1.5.4.2 briggs ppc4xx_tlb_find_victim(void)
1312 1.5.4.2 briggs {
1313 1.5.4.2 briggs int flags;
1314 1.5.4.2 briggs
1315 1.5.4.2 briggs for (;;) {
1316 1.5.4.2 briggs if (++tlbnext >= NTLB)
1317 1.5.4.2 briggs tlbnext = TLB_NRESERVED;
1318 1.5.4.2 briggs flags = tlb_info[tlbnext].ti_flags;
1319 1.5.4.2 briggs if (!(flags & TLBF_USED) ||
1320 1.5.4.2 briggs (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1321 1.5.4.2 briggs u_long va, stack = (u_long)&va;
1322 1.5.4.2 briggs
1323 1.5.4.2 briggs if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1324 1.5.4.2 briggs (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1325 1.5.4.2 briggs (flags & TLBF_USED)) {
1326 1.5.4.2 briggs /* Kernel stack page */
1327 1.5.4.2 briggs flags |= TLBF_USED;
1328 1.5.4.2 briggs tlb_info[tlbnext].ti_flags = flags;
1329 1.5.4.2 briggs } else {
1330 1.5.4.2 briggs /* Found it! */
1331 1.5.4.2 briggs return (tlbnext);
1332 1.5.4.2 briggs }
1333 1.5.4.2 briggs } else {
1334 1.5.4.2 briggs tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1335 1.5.4.2 briggs }
1336 1.5.4.2 briggs }
1337 1.5.4.2 briggs }
1338 1.5.4.2 briggs
1339 1.5.4.2 briggs void
1340 1.5.4.2 briggs ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1341 1.5.4.2 briggs {
1342 1.5.4.2 briggs u_long th, tl, idx;
1343 1.5.4.2 briggs tlbpid_t pid;
1344 1.5.4.2 briggs u_short msr;
1345 1.5.4.2 briggs int s;
1346 1.5.4.2 briggs
1347 1.5.4.2 briggs tlbenter_ev.ev_count++;
1348 1.5.4.2 briggs
1349 1.5.4.2 briggs th = (va & TLB_EPN_MASK) |
1350 1.5.4.2 briggs (((pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT) << TLB_SIZE_SHFT) |
1351 1.5.4.2 briggs TLB_VALID;
1352 1.5.4.3 nathanw tl = pte & ~(TTE_SZ_MASK|TTE_ENDIAN);
1353 1.5.4.2 briggs
1354 1.5.4.2 briggs s = splhigh();
1355 1.5.4.2 briggs idx = ppc4xx_tlb_find_victim();
1356 1.5.4.2 briggs
1357 1.5.4.2 briggs #ifdef DIAGNOSTIC
1358 1.5.4.2 briggs if ((idx < TLB_NRESERVED) || (idx >= NTLB)) {
1359 1.5.4.2 briggs panic("ppc4xx_tlb_enter: repacing entry %ld\n", idx);
1360 1.5.4.2 briggs }
1361 1.5.4.2 briggs #endif
1362 1.5.4.2 briggs
1363 1.5.4.2 briggs tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1364 1.5.4.2 briggs tlb_info[idx].ti_ctx = ctx;
1365 1.5.4.2 briggs tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1366 1.5.4.2 briggs
1367 1.5.4.2 briggs asm volatile(
1368 1.5.4.2 briggs "mfmsr %0;" /* Save MSR */
1369 1.5.4.2 briggs "li %1,0;"
1370 1.5.4.2 briggs "tlbwe %1,%3,0;" /* Invalidate old entry. */
1371 1.5.4.2 briggs "mtmsr %1;" /* Clear MSR */
1372 1.5.4.2 briggs "mfpid %1;" /* Save old PID */
1373 1.5.4.2 briggs "mtpid %2;" /* Load translation ctx */
1374 1.5.4.2 briggs "sync; isync;"
1375 1.5.4.2 briggs #ifdef DEBUG
1376 1.5.4.2 briggs "andi. %3,%3,63;"
1377 1.5.4.2 briggs "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */
1378 1.5.4.2 briggs #endif
1379 1.5.4.2 briggs "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1380 1.5.4.2 briggs "sync; isync;"
1381 1.5.4.2 briggs "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1382 1.5.4.2 briggs "sync; isync;"
1383 1.5.4.2 briggs : "=&r" (msr), "=&r" (pid)
1384 1.5.4.2 briggs : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1385 1.5.4.2 briggs splx(s);
1386 1.5.4.2 briggs }
1387 1.5.4.2 briggs
1388 1.5.4.2 briggs void
1389 1.5.4.2 briggs ppc4xx_tlb_unpin(int i)
1390 1.5.4.2 briggs {
1391 1.5.4.2 briggs
1392 1.5.4.2 briggs if (i == -1)
1393 1.5.4.2 briggs for (i = 0; i < TLB_NRESERVED; i++)
1394 1.5.4.2 briggs tlb_info[i].ti_flags &= ~TLBF_LOCKED;
1395 1.5.4.2 briggs else
1396 1.5.4.2 briggs tlb_info[i].ti_flags &= ~TLBF_LOCKED;
1397 1.5.4.2 briggs }
1398 1.5.4.2 briggs
1399 1.5.4.2 briggs void
1400 1.5.4.2 briggs ppc4xx_tlb_init(void)
1401 1.5.4.2 briggs {
1402 1.5.4.2 briggs int i;
1403 1.5.4.2 briggs
1404 1.5.4.2 briggs /* Mark reserved TLB entries */
1405 1.5.4.2 briggs for (i = 0; i < TLB_NRESERVED; i++) {
1406 1.5.4.2 briggs tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1407 1.5.4.2 briggs tlb_info[i].ti_ctx = KERNEL_PID;
1408 1.5.4.2 briggs }
1409 1.5.4.2 briggs
1410 1.5.4.2 briggs /* Setup security zones */
1411 1.5.4.2 briggs /* Z0 - accessible by kernel only if TLB entry permissions allow
1412 1.5.4.2 briggs * Z1,Z2 - access is controlled by TLB entry permissions
1413 1.5.4.2 briggs * Z3 - full access regardless of TLB entry permissions
1414 1.5.4.2 briggs */
1415 1.5.4.2 briggs
1416 1.5.4.2 briggs asm volatile(
1417 1.5.4.2 briggs "mtspr %0,%1;"
1418 1.5.4.2 briggs "sync;"
1419 1.5.4.2 briggs :: "K"(SPR_ZPR), "r" (0x1b000000));
1420 1.5.4.2 briggs }
1421 1.5.4.2 briggs
1422 1.5.4.2 briggs
1423 1.5.4.2 briggs /*
1424 1.5.4.2 briggs * We should pass the ctx in from trap code.
1425 1.5.4.2 briggs */
1426 1.5.4.2 briggs int
1427 1.5.4.2 briggs pmap_tlbmiss(vaddr_t va, int ctx)
1428 1.5.4.2 briggs {
1429 1.5.4.2 briggs volatile u_int *pte;
1430 1.5.4.2 briggs u_long tte;
1431 1.5.4.2 briggs
1432 1.5.4.2 briggs tlbmiss_ev.ev_count++;
1433 1.5.4.2 briggs
1434 1.5.4.2 briggs /*
1435 1.5.4.2 briggs * XXXX We will reserve 0-0x80000000 for va==pa mappings.
1436 1.5.4.2 briggs */
1437 1.5.4.2 briggs if (ctx != KERNEL_PID || (va & 0x80000000)) {
1438 1.5.4.2 briggs pte = pte_find((struct pmap *)ctxbusy[ctx], va);
1439 1.5.4.2 briggs if (pte == NULL) {
1440 1.5.4.2 briggs /* Map unmanaged addresses directly for kernel access */
1441 1.5.4.2 briggs return 1;
1442 1.5.4.2 briggs }
1443 1.5.4.2 briggs tte = *pte;
1444 1.5.4.2 briggs if (tte == 0) {
1445 1.5.4.2 briggs return 1;
1446 1.5.4.2 briggs }
1447 1.5.4.2 briggs } else {
1448 1.5.4.2 briggs /* Create a 16MB writeable mapping. */
1449 1.5.4.3 nathanw #ifdef PPC_4XX_NOCACHE
1450 1.5.4.2 briggs tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I | TTE_WR;
1451 1.5.4.2 briggs #else
1452 1.5.4.2 briggs tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1453 1.5.4.2 briggs #endif
1454 1.5.4.2 briggs }
1455 1.5.4.2 briggs tlbhit_ev.ev_count++;
1456 1.5.4.2 briggs ppc4xx_tlb_enter(ctx, va, tte);
1457 1.5.4.2 briggs
1458 1.5.4.2 briggs return 0;
1459 1.5.4.2 briggs }
1460 1.5.4.2 briggs
1461 1.5.4.2 briggs /*
1462 1.5.4.2 briggs * Flush all the entries matching a context from the TLB.
1463 1.5.4.2 briggs */
1464 1.5.4.2 briggs static int
1465 1.5.4.2 briggs ctx_flush(int cnum)
1466 1.5.4.2 briggs {
1467 1.5.4.2 briggs int i;
1468 1.5.4.2 briggs
1469 1.5.4.2 briggs /* We gotta steal this context */
1470 1.5.4.2 briggs for (i = TLB_NRESERVED; i < NTLB; i++) {
1471 1.5.4.2 briggs if (tlb_info[i].ti_ctx == cnum) {
1472 1.5.4.2 briggs /* Can't steal ctx if it has a locked entry. */
1473 1.5.4.2 briggs if (TLB_LOCKED(i)) {
1474 1.5.4.2 briggs #ifdef DIAGNOSTIC
1475 1.5.4.2 briggs printf("ctx_flush: can't invalidate "
1476 1.5.4.2 briggs "locked mapping %d "
1477 1.5.4.2 briggs "for context %d\n", i, cnum);
1478 1.5.4.2 briggs Debugger();
1479 1.5.4.2 briggs #endif
1480 1.5.4.2 briggs return (1);
1481 1.5.4.2 briggs }
1482 1.5.4.2 briggs #ifdef DIAGNOSTIC
1483 1.5.4.2 briggs if (i < TLB_NRESERVED)
1484 1.5.4.2 briggs panic("TLB entry %d not locked\n", i);
1485 1.5.4.2 briggs #endif
1486 1.5.4.2 briggs /* Invalidate particular TLB entry regardless of locked status */
1487 1.5.4.2 briggs asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1488 1.5.4.2 briggs tlb_info[i].ti_flags = 0;
1489 1.5.4.2 briggs }
1490 1.5.4.2 briggs }
1491 1.5.4.2 briggs return (0);
1492 1.5.4.2 briggs }
1493 1.5.4.2 briggs
1494 1.5.4.2 briggs /*
1495 1.5.4.2 briggs * Allocate a context. If necessary, steal one from someone else.
1496 1.5.4.2 briggs *
1497 1.5.4.2 briggs * The new context is flushed from the TLB before returning.
1498 1.5.4.2 briggs */
1499 1.5.4.2 briggs int
1500 1.5.4.2 briggs ctx_alloc(struct pmap *pm)
1501 1.5.4.2 briggs {
1502 1.5.4.2 briggs int s, cnum;
1503 1.5.4.2 briggs static int next = MINCTX;
1504 1.5.4.2 briggs
1505 1.5.4.2 briggs if (pm == pmap_kernel()) {
1506 1.5.4.2 briggs #ifdef DIAGNOSTIC
1507 1.5.4.2 briggs printf("ctx_alloc: kernel pmap!\n");
1508 1.5.4.2 briggs #endif
1509 1.5.4.2 briggs return (0);
1510 1.5.4.2 briggs }
1511 1.5.4.2 briggs s = splvm();
1512 1.5.4.2 briggs
1513 1.5.4.2 briggs /* Find a likely context. */
1514 1.5.4.2 briggs cnum = next;
1515 1.5.4.2 briggs do {
1516 1.5.4.2 briggs if ((++cnum) > NUMCTX)
1517 1.5.4.2 briggs cnum = MINCTX;
1518 1.5.4.2 briggs } while (ctxbusy[cnum] != NULL && cnum != next);
1519 1.5.4.2 briggs
1520 1.5.4.2 briggs /* Now clean it out */
1521 1.5.4.2 briggs oops:
1522 1.5.4.2 briggs if (cnum < MINCTX)
1523 1.5.4.2 briggs cnum = MINCTX; /* Never steal ctx 0 or 1 */
1524 1.5.4.2 briggs if (ctx_flush(cnum)) {
1525 1.5.4.2 briggs /* oops -- something's wired. */
1526 1.5.4.2 briggs if ((++cnum) > NUMCTX)
1527 1.5.4.2 briggs cnum = MINCTX;
1528 1.5.4.2 briggs goto oops;
1529 1.5.4.2 briggs }
1530 1.5.4.2 briggs
1531 1.5.4.2 briggs if (ctxbusy[cnum]) {
1532 1.5.4.2 briggs #ifdef DEBUG
1533 1.5.4.2 briggs /* We should identify this pmap and clear it */
1534 1.5.4.2 briggs printf("Warning: stealing context %d\n", cnum);
1535 1.5.4.2 briggs #endif
1536 1.5.4.2 briggs ctxbusy[cnum]->pm_ctx = 0;
1537 1.5.4.2 briggs }
1538 1.5.4.2 briggs ctxbusy[cnum] = pm;
1539 1.5.4.2 briggs next = cnum;
1540 1.5.4.2 briggs splx(s);
1541 1.5.4.2 briggs pm->pm_ctx = cnum;
1542 1.5.4.2 briggs
1543 1.5.4.2 briggs return cnum;
1544 1.5.4.2 briggs }
1545 1.5.4.2 briggs
1546 1.5.4.2 briggs /*
1547 1.5.4.2 briggs * Give away a context.
1548 1.5.4.2 briggs */
1549 1.5.4.2 briggs void
1550 1.5.4.2 briggs ctx_free(struct pmap *pm)
1551 1.5.4.2 briggs {
1552 1.5.4.2 briggs int oldctx;
1553 1.5.4.2 briggs
1554 1.5.4.2 briggs oldctx = pm->pm_ctx;
1555 1.5.4.2 briggs
1556 1.5.4.2 briggs if (oldctx == 0)
1557 1.5.4.2 briggs panic("ctx_free: freeing kernel context");
1558 1.5.4.2 briggs #ifdef DIAGNOSTIC
1559 1.5.4.2 briggs if (ctxbusy[oldctx] == 0)
1560 1.5.4.2 briggs printf("ctx_free: freeing free context %d\n", oldctx);
1561 1.5.4.2 briggs if (ctxbusy[oldctx] != pm) {
1562 1.5.4.2 briggs printf("ctx_free: freeing someone esle's context\n "
1563 1.5.4.2 briggs "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1564 1.5.4.2 briggs oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1565 1.5.4.2 briggs Debugger();
1566 1.5.4.2 briggs }
1567 1.5.4.2 briggs #endif
1568 1.5.4.2 briggs /* We should verify it has not been stolen and reallocated... */
1569 1.5.4.2 briggs ctxbusy[oldctx] = NULL;
1570 1.5.4.2 briggs ctx_flush(oldctx);
1571 1.5.4.2 briggs }
1572 1.5.4.2 briggs
1573 1.5.4.2 briggs
1574 1.5.4.2 briggs #ifdef DEBUG
1575 1.5.4.2 briggs /*
1576 1.5.4.2 briggs * Test ref/modify handling.
1577 1.5.4.2 briggs */
1578 1.5.4.2 briggs void pmap_testout __P((void));
1579 1.5.4.2 briggs void
1580 1.5.4.2 briggs pmap_testout()
1581 1.5.4.2 briggs {
1582 1.5.4.2 briggs vaddr_t va;
1583 1.5.4.2 briggs volatile int *loc;
1584 1.5.4.2 briggs int val = 0;
1585 1.5.4.2 briggs paddr_t pa;
1586 1.5.4.2 briggs struct vm_page *pg;
1587 1.5.4.2 briggs int ref, mod;
1588 1.5.4.2 briggs
1589 1.5.4.2 briggs /* Allocate a page */
1590 1.5.4.2 briggs va = (vaddr_t)uvm_km_alloc1(kernel_map, NBPG, 1);
1591 1.5.4.2 briggs loc = (int*)va;
1592 1.5.4.2 briggs
1593 1.5.4.2 briggs pmap_extract(pmap_kernel(), va, &pa);
1594 1.5.4.2 briggs pg = PHYS_TO_VM_PAGE(pa);
1595 1.5.4.2 briggs pmap_unwire(pmap_kernel(), va);
1596 1.5.4.2 briggs
1597 1.5.4.2 briggs pmap_remove(pmap_kernel(), va, va+1);
1598 1.5.4.2 briggs pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1599 1.5.4.2 briggs pmap_update(pmap_kernel());
1600 1.5.4.2 briggs
1601 1.5.4.2 briggs /* Now clear reference and modify */
1602 1.5.4.2 briggs ref = pmap_clear_reference(pg);
1603 1.5.4.2 briggs mod = pmap_clear_modify(pg);
1604 1.5.4.2 briggs printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1605 1.5.4.2 briggs (void *)(u_long)va, (long)pa,
1606 1.5.4.2 briggs ref, mod);
1607 1.5.4.2 briggs
1608 1.5.4.2 briggs /* Check it's properly cleared */
1609 1.5.4.2 briggs ref = pmap_is_referenced(pg);
1610 1.5.4.2 briggs mod = pmap_is_modified(pg);
1611 1.5.4.2 briggs printf("Checking cleared page: ref %d, mod %d\n",
1612 1.5.4.2 briggs ref, mod);
1613 1.5.4.2 briggs
1614 1.5.4.2 briggs /* Reference page */
1615 1.5.4.2 briggs val = *loc;
1616 1.5.4.2 briggs
1617 1.5.4.2 briggs ref = pmap_is_referenced(pg);
1618 1.5.4.2 briggs mod = pmap_is_modified(pg);
1619 1.5.4.2 briggs printf("Referenced page: ref %d, mod %d val %x\n",
1620 1.5.4.2 briggs ref, mod, val);
1621 1.5.4.2 briggs
1622 1.5.4.2 briggs /* Now clear reference and modify */
1623 1.5.4.2 briggs ref = pmap_clear_reference(pg);
1624 1.5.4.2 briggs mod = pmap_clear_modify(pg);
1625 1.5.4.2 briggs printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1626 1.5.4.2 briggs (void *)(u_long)va, (long)pa,
1627 1.5.4.2 briggs ref, mod);
1628 1.5.4.2 briggs
1629 1.5.4.2 briggs /* Modify page */
1630 1.5.4.2 briggs *loc = 1;
1631 1.5.4.2 briggs
1632 1.5.4.2 briggs ref = pmap_is_referenced(pg);
1633 1.5.4.2 briggs mod = pmap_is_modified(pg);
1634 1.5.4.2 briggs printf("Modified page: ref %d, mod %d\n",
1635 1.5.4.2 briggs ref, mod);
1636 1.5.4.2 briggs
1637 1.5.4.2 briggs /* Now clear reference and modify */
1638 1.5.4.2 briggs ref = pmap_clear_reference(pg);
1639 1.5.4.2 briggs mod = pmap_clear_modify(pg);
1640 1.5.4.2 briggs printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1641 1.5.4.2 briggs (void *)(u_long)va, (long)pa,
1642 1.5.4.2 briggs ref, mod);
1643 1.5.4.2 briggs
1644 1.5.4.2 briggs /* Check it's properly cleared */
1645 1.5.4.2 briggs ref = pmap_is_referenced(pg);
1646 1.5.4.2 briggs mod = pmap_is_modified(pg);
1647 1.5.4.2 briggs printf("Checking cleared page: ref %d, mod %d\n",
1648 1.5.4.2 briggs ref, mod);
1649 1.5.4.2 briggs
1650 1.5.4.2 briggs /* Modify page */
1651 1.5.4.2 briggs *loc = 1;
1652 1.5.4.2 briggs
1653 1.5.4.2 briggs ref = pmap_is_referenced(pg);
1654 1.5.4.2 briggs mod = pmap_is_modified(pg);
1655 1.5.4.2 briggs printf("Modified page: ref %d, mod %d\n",
1656 1.5.4.2 briggs ref, mod);
1657 1.5.4.2 briggs
1658 1.5.4.2 briggs /* Check pmap_protect() */
1659 1.5.4.2 briggs pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1660 1.5.4.2 briggs pmap_update(pmap_kernel());
1661 1.5.4.2 briggs ref = pmap_is_referenced(pg);
1662 1.5.4.2 briggs mod = pmap_is_modified(pg);
1663 1.5.4.2 briggs printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1664 1.5.4.2 briggs ref, mod);
1665 1.5.4.2 briggs
1666 1.5.4.2 briggs /* Now clear reference and modify */
1667 1.5.4.2 briggs ref = pmap_clear_reference(pg);
1668 1.5.4.2 briggs mod = pmap_clear_modify(pg);
1669 1.5.4.2 briggs printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1670 1.5.4.2 briggs (void *)(u_long)va, (long)pa,
1671 1.5.4.2 briggs ref, mod);
1672 1.5.4.2 briggs
1673 1.5.4.2 briggs /* Reference page */
1674 1.5.4.2 briggs val = *loc;
1675 1.5.4.2 briggs
1676 1.5.4.2 briggs ref = pmap_is_referenced(pg);
1677 1.5.4.2 briggs mod = pmap_is_modified(pg);
1678 1.5.4.2 briggs printf("Referenced page: ref %d, mod %d val %x\n",
1679 1.5.4.2 briggs ref, mod, val);
1680 1.5.4.2 briggs
1681 1.5.4.2 briggs /* Now clear reference and modify */
1682 1.5.4.2 briggs ref = pmap_clear_reference(pg);
1683 1.5.4.2 briggs mod = pmap_clear_modify(pg);
1684 1.5.4.2 briggs printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1685 1.5.4.2 briggs (void *)(u_long)va, (long)pa,
1686 1.5.4.2 briggs ref, mod);
1687 1.5.4.2 briggs
1688 1.5.4.2 briggs /* Modify page */
1689 1.5.4.2 briggs #if 0
1690 1.5.4.2 briggs pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1691 1.5.4.2 briggs pmap_update(pmap_kernel());
1692 1.5.4.2 briggs #endif
1693 1.5.4.2 briggs *loc = 1;
1694 1.5.4.2 briggs
1695 1.5.4.2 briggs ref = pmap_is_referenced(pg);
1696 1.5.4.2 briggs mod = pmap_is_modified(pg);
1697 1.5.4.2 briggs printf("Modified page: ref %d, mod %d\n",
1698 1.5.4.2 briggs ref, mod);
1699 1.5.4.2 briggs
1700 1.5.4.2 briggs /* Check pmap_protect() */
1701 1.5.4.2 briggs pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1702 1.5.4.2 briggs pmap_update(pmap_kernel());
1703 1.5.4.2 briggs ref = pmap_is_referenced(pg);
1704 1.5.4.2 briggs mod = pmap_is_modified(pg);
1705 1.5.4.2 briggs printf("pmap_protect(): ref %d, mod %d\n",
1706 1.5.4.2 briggs ref, mod);
1707 1.5.4.2 briggs
1708 1.5.4.2 briggs /* Now clear reference and modify */
1709 1.5.4.2 briggs ref = pmap_clear_reference(pg);
1710 1.5.4.2 briggs mod = pmap_clear_modify(pg);
1711 1.5.4.2 briggs printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1712 1.5.4.2 briggs (void *)(u_long)va, (long)pa,
1713 1.5.4.2 briggs ref, mod);
1714 1.5.4.2 briggs
1715 1.5.4.2 briggs /* Reference page */
1716 1.5.4.2 briggs val = *loc;
1717 1.5.4.2 briggs
1718 1.5.4.2 briggs ref = pmap_is_referenced(pg);
1719 1.5.4.2 briggs mod = pmap_is_modified(pg);
1720 1.5.4.2 briggs printf("Referenced page: ref %d, mod %d val %x\n",
1721 1.5.4.2 briggs ref, mod, val);
1722 1.5.4.2 briggs
1723 1.5.4.2 briggs /* Now clear reference and modify */
1724 1.5.4.2 briggs ref = pmap_clear_reference(pg);
1725 1.5.4.2 briggs mod = pmap_clear_modify(pg);
1726 1.5.4.2 briggs printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1727 1.5.4.2 briggs (void *)(u_long)va, (long)pa,
1728 1.5.4.2 briggs ref, mod);
1729 1.5.4.2 briggs
1730 1.5.4.2 briggs /* Modify page */
1731 1.5.4.2 briggs #if 0
1732 1.5.4.2 briggs pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1733 1.5.4.2 briggs pmap_update(pmap_kernel());
1734 1.5.4.2 briggs #endif
1735 1.5.4.2 briggs *loc = 1;
1736 1.5.4.2 briggs
1737 1.5.4.2 briggs ref = pmap_is_referenced(pg);
1738 1.5.4.2 briggs mod = pmap_is_modified(pg);
1739 1.5.4.2 briggs printf("Modified page: ref %d, mod %d\n",
1740 1.5.4.2 briggs ref, mod);
1741 1.5.4.2 briggs
1742 1.5.4.2 briggs /* Check pmap_pag_protect() */
1743 1.5.4.2 briggs pmap_page_protect(pg, VM_PROT_READ);
1744 1.5.4.2 briggs ref = pmap_is_referenced(pg);
1745 1.5.4.2 briggs mod = pmap_is_modified(pg);
1746 1.5.4.2 briggs printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1747 1.5.4.2 briggs ref, mod);
1748 1.5.4.2 briggs
1749 1.5.4.2 briggs /* Now clear reference and modify */
1750 1.5.4.2 briggs ref = pmap_clear_reference(pg);
1751 1.5.4.2 briggs mod = pmap_clear_modify(pg);
1752 1.5.4.2 briggs printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1753 1.5.4.2 briggs (void *)(u_long)va, (long)pa,
1754 1.5.4.2 briggs ref, mod);
1755 1.5.4.2 briggs
1756 1.5.4.2 briggs /* Reference page */
1757 1.5.4.2 briggs val = *loc;
1758 1.5.4.2 briggs
1759 1.5.4.2 briggs ref = pmap_is_referenced(pg);
1760 1.5.4.2 briggs mod = pmap_is_modified(pg);
1761 1.5.4.2 briggs printf("Referenced page: ref %d, mod %d val %x\n",
1762 1.5.4.2 briggs ref, mod, val);
1763 1.5.4.2 briggs
1764 1.5.4.2 briggs /* Now clear reference and modify */
1765 1.5.4.2 briggs ref = pmap_clear_reference(pg);
1766 1.5.4.2 briggs mod = pmap_clear_modify(pg);
1767 1.5.4.2 briggs printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1768 1.5.4.2 briggs (void *)(u_long)va, (long)pa,
1769 1.5.4.2 briggs ref, mod);
1770 1.5.4.2 briggs
1771 1.5.4.2 briggs /* Modify page */
1772 1.5.4.2 briggs #if 0
1773 1.5.4.2 briggs pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1774 1.5.4.2 briggs pmap_update(pmap_kernel());
1775 1.5.4.2 briggs #endif
1776 1.5.4.2 briggs *loc = 1;
1777 1.5.4.2 briggs
1778 1.5.4.2 briggs ref = pmap_is_referenced(pg);
1779 1.5.4.2 briggs mod = pmap_is_modified(pg);
1780 1.5.4.2 briggs printf("Modified page: ref %d, mod %d\n",
1781 1.5.4.2 briggs ref, mod);
1782 1.5.4.2 briggs
1783 1.5.4.2 briggs /* Check pmap_pag_protect() */
1784 1.5.4.2 briggs pmap_page_protect(pg, VM_PROT_NONE);
1785 1.5.4.2 briggs ref = pmap_is_referenced(pg);
1786 1.5.4.2 briggs mod = pmap_is_modified(pg);
1787 1.5.4.2 briggs printf("pmap_page_protect(): ref %d, mod %d\n",
1788 1.5.4.2 briggs ref, mod);
1789 1.5.4.2 briggs
1790 1.5.4.2 briggs /* Now clear reference and modify */
1791 1.5.4.2 briggs ref = pmap_clear_reference(pg);
1792 1.5.4.2 briggs mod = pmap_clear_modify(pg);
1793 1.5.4.2 briggs printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1794 1.5.4.2 briggs (void *)(u_long)va, (long)pa,
1795 1.5.4.2 briggs ref, mod);
1796 1.5.4.2 briggs
1797 1.5.4.2 briggs
1798 1.5.4.2 briggs /* Reference page */
1799 1.5.4.2 briggs val = *loc;
1800 1.5.4.2 briggs
1801 1.5.4.2 briggs ref = pmap_is_referenced(pg);
1802 1.5.4.2 briggs mod = pmap_is_modified(pg);
1803 1.5.4.2 briggs printf("Referenced page: ref %d, mod %d val %x\n",
1804 1.5.4.2 briggs ref, mod, val);
1805 1.5.4.2 briggs
1806 1.5.4.2 briggs /* Now clear reference and modify */
1807 1.5.4.2 briggs ref = pmap_clear_reference(pg);
1808 1.5.4.2 briggs mod = pmap_clear_modify(pg);
1809 1.5.4.2 briggs printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1810 1.5.4.2 briggs (void *)(u_long)va, (long)pa,
1811 1.5.4.2 briggs ref, mod);
1812 1.5.4.2 briggs
1813 1.5.4.2 briggs /* Modify page */
1814 1.5.4.2 briggs #if 0
1815 1.5.4.2 briggs pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1816 1.5.4.2 briggs pmap_update(pmap_kernel());
1817 1.5.4.2 briggs #endif
1818 1.5.4.2 briggs *loc = 1;
1819 1.5.4.2 briggs
1820 1.5.4.2 briggs ref = pmap_is_referenced(pg);
1821 1.5.4.2 briggs mod = pmap_is_modified(pg);
1822 1.5.4.2 briggs printf("Modified page: ref %d, mod %d\n",
1823 1.5.4.2 briggs ref, mod);
1824 1.5.4.2 briggs
1825 1.5.4.2 briggs /* Unmap page */
1826 1.5.4.2 briggs pmap_remove(pmap_kernel(), va, va+1);
1827 1.5.4.2 briggs pmap_update(pmap_kernel());
1828 1.5.4.2 briggs ref = pmap_is_referenced(pg);
1829 1.5.4.2 briggs mod = pmap_is_modified(pg);
1830 1.5.4.2 briggs printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1831 1.5.4.2 briggs
1832 1.5.4.2 briggs /* Now clear reference and modify */
1833 1.5.4.2 briggs ref = pmap_clear_reference(pg);
1834 1.5.4.2 briggs mod = pmap_clear_modify(pg);
1835 1.5.4.2 briggs printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1836 1.5.4.2 briggs (void *)(u_long)va, (long)pa, ref, mod);
1837 1.5.4.2 briggs
1838 1.5.4.2 briggs /* Check it's properly cleared */
1839 1.5.4.2 briggs ref = pmap_is_referenced(pg);
1840 1.5.4.2 briggs mod = pmap_is_modified(pg);
1841 1.5.4.2 briggs printf("Checking cleared page: ref %d, mod %d\n",
1842 1.5.4.2 briggs ref, mod);
1843 1.5.4.2 briggs
1844 1.5.4.2 briggs pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL,
1845 1.5.4.2 briggs VM_PROT_ALL|PMAP_WIRED);
1846 1.5.4.2 briggs uvm_km_free(kernel_map, (vaddr_t)va, NBPG);
1847 1.5.4.2 briggs }
1848 1.5.4.2 briggs #endif
1849