pmap.c revision 1.6 1 1.6 simonb /* $NetBSD: pmap.c,v 1.6 2001/11/06 04:49:49 simonb Exp $ */
2 1.1 simonb
3 1.1 simonb /*
4 1.1 simonb * Copyright 2001 Wasabi Systems, Inc.
5 1.1 simonb * All rights reserved.
6 1.1 simonb *
7 1.1 simonb * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 1.1 simonb *
9 1.1 simonb * Redistribution and use in source and binary forms, with or without
10 1.1 simonb * modification, are permitted provided that the following conditions
11 1.1 simonb * are met:
12 1.1 simonb * 1. Redistributions of source code must retain the above copyright
13 1.1 simonb * notice, this list of conditions and the following disclaimer.
14 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 simonb * notice, this list of conditions and the following disclaimer in the
16 1.1 simonb * documentation and/or other materials provided with the distribution.
17 1.1 simonb * 3. All advertising materials mentioning features or use of this software
18 1.1 simonb * must display the following acknowledgement:
19 1.1 simonb * This product includes software developed for the NetBSD Project by
20 1.1 simonb * Wasabi Systems, Inc.
21 1.1 simonb * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.1 simonb * or promote products derived from this software without specific prior
23 1.1 simonb * written permission.
24 1.1 simonb *
25 1.1 simonb * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.1 simonb * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 simonb * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 simonb * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.1 simonb * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 simonb * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 simonb * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 simonb * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 simonb * POSSIBILITY OF SUCH DAMAGE.
36 1.1 simonb */
37 1.1 simonb
38 1.1 simonb /*
39 1.1 simonb * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 1.1 simonb * Copyright (C) 1995, 1996 TooLs GmbH.
41 1.1 simonb * All rights reserved.
42 1.1 simonb *
43 1.1 simonb * Redistribution and use in source and binary forms, with or without
44 1.1 simonb * modification, are permitted provided that the following conditions
45 1.1 simonb * are met:
46 1.1 simonb * 1. Redistributions of source code must retain the above copyright
47 1.1 simonb * notice, this list of conditions and the following disclaimer.
48 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 simonb * notice, this list of conditions and the following disclaimer in the
50 1.1 simonb * documentation and/or other materials provided with the distribution.
51 1.1 simonb * 3. All advertising materials mentioning features or use of this software
52 1.1 simonb * must display the following acknowledgement:
53 1.1 simonb * This product includes software developed by TooLs GmbH.
54 1.1 simonb * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 1.1 simonb * derived from this software without specific prior written permission.
56 1.1 simonb *
57 1.1 simonb * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 1.1 simonb * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 1.1 simonb * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 1.1 simonb * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 1.1 simonb * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 1.1 simonb * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 1.1 simonb * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 1.1 simonb * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 1.1 simonb * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 1.1 simonb * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 1.1 simonb */
68 1.1 simonb
69 1.1 simonb #undef NOCACHE
70 1.1 simonb
71 1.1 simonb #include <sys/param.h>
72 1.1 simonb #include <sys/malloc.h>
73 1.1 simonb #include <sys/proc.h>
74 1.1 simonb #include <sys/user.h>
75 1.1 simonb #include <sys/queue.h>
76 1.1 simonb #include <sys/systm.h>
77 1.1 simonb #include <sys/pool.h>
78 1.1 simonb #include <sys/device.h>
79 1.1 simonb
80 1.1 simonb #include <uvm/uvm.h>
81 1.1 simonb
82 1.1 simonb #include <machine/pcb.h>
83 1.1 simonb #include <machine/powerpc.h>
84 1.1 simonb
85 1.1 simonb #include <powerpc/spr.h>
86 1.1 simonb #include <powerpc/ibm4xx/tlb.h>
87 1.1 simonb
88 1.1 simonb
89 1.1 simonb #define CACHE_LINE 32
90 1.1 simonb
91 1.1 simonb /*
92 1.1 simonb * kernmap is an array of PTEs large enough to map in
93 1.1 simonb * 4GB. At 16KB/page it is 256K entries or 2MB.
94 1.1 simonb */
95 1.1 simonb #define KERNMAP_SIZE ((0xffffffffU/NBPG)+1)
96 1.1 simonb caddr_t kernmap;
97 1.1 simonb
98 1.1 simonb #define MINCTX 2
99 1.1 simonb #define NUMCTX 256
100 1.1 simonb volatile struct pmap *ctxbusy[NUMCTX];
101 1.1 simonb
102 1.1 simonb #define TLBF_USED 0x1
103 1.1 simonb #define TLBF_REF 0x2
104 1.1 simonb #define TLBF_LOCKED 0x4
105 1.1 simonb #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
106 1.1 simonb typedef struct tlb_info_s {
107 1.1 simonb char ti_flags;
108 1.1 simonb char ti_ctx; /* TLB_PID assiciated with the entry */
109 1.1 simonb u_int ti_va;
110 1.1 simonb } tlb_info_t;
111 1.1 simonb
112 1.1 simonb volatile tlb_info_t tlb_info[NTLB];
113 1.1 simonb /* We'll use a modified FIFO replacement policy cause it's cheap */
114 1.1 simonb volatile int tlbnext = TLB_NRESERVED;
115 1.1 simonb
116 1.1 simonb u_long dtlb_miss_count = 0;
117 1.1 simonb u_long itlb_miss_count = 0;
118 1.1 simonb u_long ktlb_miss_count = 0;
119 1.1 simonb u_long utlb_miss_count = 0;
120 1.1 simonb
121 1.1 simonb /* Event counters -- XXX type `INTR' so we can see them with vmstat -i */
122 1.1 simonb struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_INTR,
123 1.1 simonb NULL, "cpu", "tlbmiss");
124 1.1 simonb struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_INTR,
125 1.1 simonb NULL, "cpu", "tlbhit");
126 1.1 simonb struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_INTR,
127 1.1 simonb NULL, "cpu", "tlbflush");
128 1.1 simonb struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_INTR,
129 1.1 simonb NULL, "cpu", "tlbenter");
130 1.1 simonb
131 1.1 simonb struct pmap kernel_pmap_;
132 1.1 simonb
133 1.1 simonb int physmem;
134 1.1 simonb static int npgs;
135 1.1 simonb static u_int nextavail;
136 1.1 simonb #ifndef MSGBUFADDR
137 1.1 simonb extern paddr_t msgbuf_paddr;
138 1.1 simonb #endif
139 1.1 simonb
140 1.1 simonb static struct mem_region *mem, *avail;
141 1.1 simonb
142 1.1 simonb /*
143 1.1 simonb * This is a cache of referenced/modified bits.
144 1.1 simonb * Bits herein are shifted by ATTRSHFT.
145 1.1 simonb */
146 1.1 simonb static char *pmap_attrib;
147 1.1 simonb
148 1.1 simonb #define PV_WIRED 0x1
149 1.1 simonb #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
150 1.1 simonb #define PV_CMPVA(va,pv) (!(((pv)->pv_va^(va))&(~PV_WIRED)))
151 1.1 simonb
152 1.1 simonb struct pv_entry {
153 1.1 simonb struct pv_entry *pv_next; /* Linked list of mappings */
154 1.1 simonb vaddr_t pv_va; /* virtual address of mapping */
155 1.1 simonb struct pmap *pv_pm;
156 1.1 simonb };
157 1.1 simonb
158 1.1 simonb struct pv_entry *pv_table;
159 1.1 simonb static struct pool pv_pool;
160 1.1 simonb
161 1.1 simonb static int pmap_initialized;
162 1.1 simonb
163 1.1 simonb static int ctx_flush(int);
164 1.1 simonb
165 1.1 simonb static inline void dcache_flush_page(vaddr_t);
166 1.1 simonb static inline void icache_flush_page(vaddr_t);
167 1.1 simonb static inline void dcache_flush(vaddr_t, vsize_t);
168 1.1 simonb static inline void icache_flush(vaddr_t, vsize_t);
169 1.1 simonb
170 1.1 simonb inline struct pv_entry *pa_to_pv(paddr_t);
171 1.1 simonb static inline char *pa_to_attr(paddr_t);
172 1.1 simonb
173 1.1 simonb static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
174 1.1 simonb static inline int pte_enter(struct pmap *, vaddr_t, u_int);
175 1.1 simonb
176 1.1 simonb static void pmap_pinit(pmap_t);
177 1.1 simonb static void pmap_release(pmap_t);
178 1.1 simonb static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t);
179 1.1 simonb static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
180 1.1 simonb
181 1.1 simonb /*
182 1.1 simonb * These small routines may have to be replaced,
183 1.1 simonb * if/when we support processors other that the 604.
184 1.1 simonb */
185 1.1 simonb
186 1.1 simonb static inline void
187 1.1 simonb dcache_flush_page(vaddr_t va)
188 1.1 simonb {
189 1.1 simonb int i;
190 1.1 simonb
191 1.1 simonb for (i = 0; i < NBPG; i += CACHE_LINE)
192 1.1 simonb asm volatile("dcbf %0,%1" : : "r" (va), "r" (i));
193 1.1 simonb asm volatile("sync;isync" : : );
194 1.1 simonb }
195 1.1 simonb
196 1.1 simonb static inline void
197 1.1 simonb icache_flush_page(vaddr_t va)
198 1.1 simonb {
199 1.1 simonb int i;
200 1.1 simonb
201 1.1 simonb for (i = 0; i < NBPG; i += CACHE_LINE)
202 1.1 simonb asm volatile("icbi %0,%1" : : "r" (va), "r" (i));
203 1.1 simonb asm volatile("sync;isync" : : );
204 1.1 simonb }
205 1.1 simonb
206 1.1 simonb static inline void
207 1.1 simonb dcache_flush(vaddr_t va, vsize_t len)
208 1.1 simonb {
209 1.1 simonb int i;
210 1.1 simonb
211 1.1 simonb if (len == 0)
212 1.1 simonb return;
213 1.1 simonb
214 1.1 simonb /* Make sure we flush all cache lines */
215 1.1 simonb len += va & (CACHE_LINE-1);
216 1.1 simonb for (i = 0; i < len; i += CACHE_LINE)
217 1.1 simonb asm volatile("dcbf %0,%1" : : "r" (va), "r" (i));
218 1.1 simonb asm volatile("sync;isync" : : );
219 1.1 simonb }
220 1.1 simonb
221 1.1 simonb static inline void
222 1.1 simonb icache_flush(vaddr_t va, vsize_t len)
223 1.1 simonb {
224 1.1 simonb int i;
225 1.1 simonb
226 1.1 simonb if (len == 0)
227 1.1 simonb return;
228 1.1 simonb
229 1.1 simonb /* Make sure we flush all cache lines */
230 1.1 simonb len += va & (CACHE_LINE-1);
231 1.1 simonb for (i = 0; i < len; i += CACHE_LINE)
232 1.1 simonb asm volatile("icbi %0,%1" : : "r" (va), "r" (i));
233 1.1 simonb asm volatile("sync;isync" : : );
234 1.1 simonb }
235 1.1 simonb
236 1.1 simonb inline struct pv_entry *
237 1.1 simonb pa_to_pv(paddr_t pa)
238 1.1 simonb {
239 1.1 simonb int bank, pg;
240 1.1 simonb
241 1.1 simonb bank = vm_physseg_find(atop(pa), &pg);
242 1.1 simonb if (bank == -1)
243 1.1 simonb return NULL;
244 1.1 simonb return &vm_physmem[bank].pmseg.pvent[pg];
245 1.1 simonb }
246 1.1 simonb
247 1.1 simonb static inline char *
248 1.1 simonb pa_to_attr(paddr_t pa)
249 1.1 simonb {
250 1.1 simonb int bank, pg;
251 1.1 simonb
252 1.1 simonb bank = vm_physseg_find(atop(pa), &pg);
253 1.1 simonb if (bank == -1)
254 1.1 simonb return NULL;
255 1.1 simonb return &vm_physmem[bank].pmseg.attrs[pg];
256 1.1 simonb }
257 1.1 simonb
258 1.1 simonb /*
259 1.1 simonb * Insert PTE into page table.
260 1.1 simonb */
261 1.1 simonb int
262 1.1 simonb pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
263 1.1 simonb {
264 1.1 simonb int seg = STIDX(va);
265 1.1 simonb int ptn = PTIDX(va);
266 1.1 simonb paddr_t pa;
267 1.1 simonb
268 1.1 simonb if (!pm->pm_ptbl[seg]) {
269 1.1 simonb /* Don't allocate a page to clear a non-existent mapping. */
270 1.1 simonb if (!pte) return (1);
271 1.1 simonb /* Allocate a page XXXX this will sleep! */
272 1.1 simonb pa = 0;
273 1.1 simonb pm->pm_ptbl[seg] = (uint *)uvm_km_alloc1(kernel_map, NBPG, 1);
274 1.1 simonb }
275 1.1 simonb pm->pm_ptbl[seg][ptn] = pte;
276 1.1 simonb
277 1.1 simonb /* Flush entry. */
278 1.1 simonb ppc4xx_tlb_flush(va, pm->pm_ctx);
279 1.1 simonb return (1);
280 1.1 simonb }
281 1.1 simonb
282 1.1 simonb /*
283 1.1 simonb * Get a pointer to a PTE in a page table.
284 1.1 simonb */
285 1.1 simonb volatile u_int *
286 1.1 simonb pte_find(struct pmap *pm, vaddr_t va)
287 1.1 simonb {
288 1.1 simonb int seg = STIDX(va);
289 1.1 simonb int ptn = PTIDX(va);
290 1.1 simonb
291 1.1 simonb if (pm->pm_ptbl[seg])
292 1.1 simonb return (&pm->pm_ptbl[seg][ptn]);
293 1.1 simonb
294 1.1 simonb return (NULL);
295 1.1 simonb }
296 1.1 simonb
297 1.1 simonb /*
298 1.1 simonb * This is called during initppc, before the system is really initialized.
299 1.1 simonb */
300 1.1 simonb void
301 1.1 simonb pmap_bootstrap(u_int kernelstart, u_int kernelend)
302 1.1 simonb {
303 1.1 simonb struct mem_region *mp, *mp1;
304 1.1 simonb int cnt, i;
305 1.1 simonb u_int s, e, sz;
306 1.1 simonb
307 1.1 simonb /*
308 1.1 simonb * Allocate the kernel page table at the end of
309 1.1 simonb * kernel space so it's in the locked TTE.
310 1.1 simonb */
311 1.1 simonb kernmap = (caddr_t)kernelend;
312 1.5 eeh // kernelend += KERNMAP_SIZE*sizeof(struct pte);
313 1.1 simonb
314 1.1 simonb /*
315 1.1 simonb * Initialize kernel page table.
316 1.1 simonb */
317 1.5 eeh // memset(kernmap, 0, KERNMAP_SIZE*sizeof(struct pte));
318 1.1 simonb for (i = 0; i < STSZ; i++) {
319 1.5 eeh pmap_kernel()->pm_ptbl[i] = 0; // (u_int *)(kernmap + i*NBPG);
320 1.1 simonb }
321 1.1 simonb ctxbusy[0] = ctxbusy[1] = pmap_kernel();
322 1.1 simonb
323 1.1 simonb /*
324 1.1 simonb * Announce page-size to the VM-system
325 1.1 simonb */
326 1.1 simonb uvmexp.pagesize = NBPG;
327 1.1 simonb uvm_setpagesize();
328 1.1 simonb
329 1.1 simonb /*
330 1.1 simonb * Get memory.
331 1.1 simonb */
332 1.1 simonb mem_regions(&mem, &avail);
333 1.1 simonb for (mp = mem; mp->size; mp++) {
334 1.1 simonb physmem += btoc(mp->size);
335 1.1 simonb printf("+%lx,",mp->size);
336 1.1 simonb }
337 1.1 simonb printf("\n");
338 1.1 simonb ppc4xx_tlb_init();
339 1.1 simonb /*
340 1.1 simonb * Count the number of available entries.
341 1.1 simonb */
342 1.1 simonb for (cnt = 0, mp = avail; mp->size; mp++)
343 1.1 simonb cnt++;
344 1.1 simonb
345 1.1 simonb /*
346 1.1 simonb * Page align all regions.
347 1.1 simonb * Non-page aligned memory isn't very interesting to us.
348 1.1 simonb * Also, sort the entries for ascending addresses.
349 1.1 simonb */
350 1.1 simonb kernelstart &= ~PGOFSET;
351 1.1 simonb kernelend = (kernelend + PGOFSET) & ~PGOFSET;
352 1.1 simonb for (mp = avail; mp->size; mp++) {
353 1.1 simonb s = mp->start;
354 1.1 simonb e = mp->start + mp->size;
355 1.1 simonb printf("%08x-%08x -> ",s,e);
356 1.1 simonb /*
357 1.1 simonb * Check whether this region holds all of the kernel.
358 1.1 simonb */
359 1.1 simonb if (s < kernelstart && e > kernelend) {
360 1.1 simonb avail[cnt].start = kernelend;
361 1.1 simonb avail[cnt++].size = e - kernelend;
362 1.1 simonb e = kernelstart;
363 1.1 simonb }
364 1.1 simonb /*
365 1.1 simonb * Look whether this regions starts within the kernel.
366 1.1 simonb */
367 1.1 simonb if (s >= kernelstart && s < kernelend) {
368 1.1 simonb if (e <= kernelend)
369 1.1 simonb goto empty;
370 1.1 simonb s = kernelend;
371 1.1 simonb }
372 1.1 simonb /*
373 1.1 simonb * Now look whether this region ends within the kernel.
374 1.1 simonb */
375 1.1 simonb if (e > kernelstart && e <= kernelend) {
376 1.1 simonb if (s >= kernelstart)
377 1.1 simonb goto empty;
378 1.1 simonb e = kernelstart;
379 1.1 simonb }
380 1.1 simonb /*
381 1.1 simonb * Now page align the start and size of the region.
382 1.1 simonb */
383 1.1 simonb s = round_page(s);
384 1.1 simonb e = trunc_page(e);
385 1.1 simonb if (e < s)
386 1.1 simonb e = s;
387 1.1 simonb sz = e - s;
388 1.1 simonb printf("%08x-%08x = %x\n",s,e,sz);
389 1.1 simonb /*
390 1.1 simonb * Check whether some memory is left here.
391 1.1 simonb */
392 1.1 simonb if (sz == 0) {
393 1.1 simonb empty:
394 1.3 wiz memmove(mp, mp + 1,
395 1.3 wiz (cnt - (mp - avail)) * sizeof *mp);
396 1.1 simonb cnt--;
397 1.1 simonb mp--;
398 1.1 simonb continue;
399 1.1 simonb }
400 1.1 simonb /*
401 1.1 simonb * Do an insertion sort.
402 1.1 simonb */
403 1.1 simonb npgs += btoc(sz);
404 1.1 simonb for (mp1 = avail; mp1 < mp; mp1++)
405 1.1 simonb if (s < mp1->start)
406 1.1 simonb break;
407 1.1 simonb if (mp1 < mp) {
408 1.3 wiz memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
409 1.1 simonb mp1->start = s;
410 1.1 simonb mp1->size = sz;
411 1.1 simonb } else {
412 1.1 simonb mp->start = s;
413 1.1 simonb mp->size = sz;
414 1.1 simonb }
415 1.1 simonb }
416 1.1 simonb
417 1.1 simonb /*
418 1.1 simonb * We cannot do pmap_steal_memory here,
419 1.1 simonb * since we don't run with translation enabled yet.
420 1.1 simonb */
421 1.1 simonb #ifndef MSGBUFADDR
422 1.1 simonb /*
423 1.1 simonb * allow for msgbuf
424 1.1 simonb */
425 1.1 simonb sz = round_page(MSGBUFSIZE);
426 1.1 simonb mp = NULL;
427 1.1 simonb for (mp1 = avail; mp1->size; mp1++)
428 1.1 simonb if (mp1->size >= sz)
429 1.1 simonb mp = mp1;
430 1.1 simonb if (mp == NULL)
431 1.1 simonb panic("not enough memory?");
432 1.1 simonb
433 1.1 simonb npgs -= btoc(sz);
434 1.1 simonb msgbuf_paddr = mp->start + mp->size - sz;
435 1.1 simonb mp->size -= sz;
436 1.1 simonb if (mp->size <= 0)
437 1.3 wiz memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
438 1.1 simonb #endif
439 1.1 simonb
440 1.1 simonb printf("Loading pages\n");
441 1.1 simonb for (mp = avail; mp->size; mp++)
442 1.1 simonb uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
443 1.1 simonb atop(mp->start), atop(mp->start + mp->size),
444 1.1 simonb VM_FREELIST_DEFAULT);
445 1.1 simonb
446 1.1 simonb /*
447 1.1 simonb * Initialize kernel pmap and hardware.
448 1.1 simonb */
449 1.1 simonb /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
450 1.1 simonb pmap_kernel()->pm_ctx = KERNEL_PID;
451 1.1 simonb nextavail = avail->start;
452 1.1 simonb
453 1.1 simonb
454 1.1 simonb evcnt_attach_static(&tlbhit_ev);
455 1.1 simonb evcnt_attach_static(&tlbmiss_ev);
456 1.1 simonb evcnt_attach_static(&tlbflush_ev);
457 1.1 simonb evcnt_attach_static(&tlbenter_ev);
458 1.1 simonb printf("Done\n");
459 1.1 simonb }
460 1.1 simonb
461 1.1 simonb /*
462 1.1 simonb * Restrict given range to physical memory
463 1.1 simonb *
464 1.1 simonb * (Used by /dev/mem)
465 1.1 simonb */
466 1.1 simonb void
467 1.1 simonb pmap_real_memory(paddr_t *start, psize_t *size)
468 1.1 simonb {
469 1.1 simonb struct mem_region *mp;
470 1.1 simonb
471 1.1 simonb for (mp = mem; mp->size; mp++) {
472 1.1 simonb if (*start + *size > mp->start &&
473 1.1 simonb *start < mp->start + mp->size) {
474 1.1 simonb if (*start < mp->start) {
475 1.1 simonb *size -= mp->start - *start;
476 1.1 simonb *start = mp->start;
477 1.1 simonb }
478 1.1 simonb if (*start + *size > mp->start + mp->size)
479 1.1 simonb *size = mp->start + mp->size - *start;
480 1.1 simonb return;
481 1.1 simonb }
482 1.1 simonb }
483 1.1 simonb *size = 0;
484 1.1 simonb }
485 1.1 simonb
486 1.1 simonb /*
487 1.1 simonb * Initialize anything else for pmap handling.
488 1.1 simonb * Called during vm_init().
489 1.1 simonb */
490 1.1 simonb void
491 1.1 simonb pmap_init(void)
492 1.1 simonb {
493 1.1 simonb struct pv_entry *pv;
494 1.1 simonb vsize_t sz;
495 1.1 simonb vaddr_t addr;
496 1.1 simonb int i, s;
497 1.1 simonb int bank;
498 1.1 simonb char *attr;
499 1.1 simonb
500 1.1 simonb sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
501 1.1 simonb sz = round_page(sz);
502 1.1 simonb addr = uvm_km_zalloc(kernel_map, sz);
503 1.1 simonb s = splvm();
504 1.1 simonb pv = pv_table = (struct pv_entry *)addr;
505 1.1 simonb for (i = npgs; --i >= 0;)
506 1.1 simonb pv++->pv_pm = NULL;
507 1.1 simonb pmap_attrib = (char *)pv;
508 1.2 wiz memset(pv, 0, npgs);
509 1.1 simonb
510 1.1 simonb pv = pv_table;
511 1.1 simonb attr = pmap_attrib;
512 1.1 simonb for (bank = 0; bank < vm_nphysseg; bank++) {
513 1.1 simonb sz = vm_physmem[bank].end - vm_physmem[bank].start;
514 1.1 simonb vm_physmem[bank].pmseg.pvent = pv;
515 1.1 simonb vm_physmem[bank].pmseg.attrs = attr;
516 1.1 simonb pv += sz;
517 1.1 simonb attr += sz;
518 1.1 simonb }
519 1.1 simonb
520 1.1 simonb pmap_initialized = 1;
521 1.1 simonb splx(s);
522 1.1 simonb
523 1.1 simonb /* Setup a pool for additional pvlist structures */
524 1.1 simonb pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", 0,
525 1.1 simonb NULL, NULL, 0);
526 1.1 simonb }
527 1.1 simonb
528 1.1 simonb /*
529 1.1 simonb * How much virtual space is available to the kernel?
530 1.1 simonb */
531 1.1 simonb void
532 1.1 simonb pmap_virtual_space(vaddr_t *start, vaddr_t *end)
533 1.1 simonb {
534 1.1 simonb
535 1.1 simonb #if 0
536 1.1 simonb /*
537 1.1 simonb * Reserve one segment for kernel virtual memory
538 1.1 simonb */
539 1.1 simonb *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
540 1.1 simonb *end = *start + SEGMENT_LENGTH;
541 1.1 simonb #else
542 1.1 simonb *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
543 1.1 simonb *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
544 1.1 simonb #endif
545 1.1 simonb }
546 1.1 simonb
547 1.5 eeh #ifdef PMAP_GROWKERNEL
548 1.5 eeh /*
549 1.5 eeh * Preallocate kernel page tables to a specified VA.
550 1.5 eeh * This simply loops through the first TTE for each
551 1.5 eeh * page table from the beginning of the kernel pmap,
552 1.5 eeh * reads the entry, and if the result is
553 1.5 eeh * zero (either invalid entry or no page table) it stores
554 1.5 eeh * a zero there, populating page tables in the process.
555 1.5 eeh * This is not the most efficient technique but i don't
556 1.5 eeh * expect it to be called that often.
557 1.5 eeh */
558 1.5 eeh extern struct vm_page *vm_page_alloc1 __P((void));
559 1.5 eeh extern void vm_page_free1 __P((struct vm_page *));
560 1.5 eeh
561 1.5 eeh vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
562 1.5 eeh
563 1.5 eeh vaddr_t
564 1.5 eeh pmap_growkernel(maxkvaddr)
565 1.5 eeh vaddr_t maxkvaddr;
566 1.5 eeh {
567 1.5 eeh int s;
568 1.5 eeh int seg;
569 1.5 eeh paddr_t pg;
570 1.5 eeh struct pmap *pm = pmap_kernel();
571 1.5 eeh
572 1.5 eeh s = splvm();
573 1.5 eeh
574 1.5 eeh /* Align with the start of a page table */
575 1.5 eeh for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
576 1.5 eeh kbreak += PTMAP) {
577 1.5 eeh seg = STIDX(kbreak);
578 1.5 eeh
579 1.5 eeh if (pte_find(pm, kbreak)) continue;
580 1.5 eeh
581 1.5 eeh if (uvm.page_init_done) {
582 1.5 eeh pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
583 1.5 eeh } else {
584 1.5 eeh if (!uvm_page_physget(&pg))
585 1.5 eeh panic("pmap_growkernel: no memory");
586 1.5 eeh }
587 1.5 eeh if (!pg) panic("pmap_growkernel: no pages");
588 1.5 eeh pmap_zero_page((paddr_t)pg);
589 1.5 eeh
590 1.5 eeh /* XXX This is based on all phymem being addressable */
591 1.5 eeh pm->pm_ptbl[seg] = (u_int *)pg;
592 1.5 eeh }
593 1.5 eeh splx(s);
594 1.5 eeh return (kbreak);
595 1.5 eeh }
596 1.5 eeh
597 1.5 eeh /*
598 1.5 eeh * vm_page_alloc1:
599 1.5 eeh *
600 1.5 eeh * Allocate and return a memory cell with no associated object.
601 1.5 eeh */
602 1.5 eeh struct vm_page *
603 1.5 eeh vm_page_alloc1()
604 1.5 eeh {
605 1.5 eeh struct vm_page *pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
606 1.5 eeh if (pg) {
607 1.5 eeh pg->wire_count = 1; /* no mappings yet */
608 1.5 eeh pg->flags &= ~PG_BUSY; /* never busy */
609 1.5 eeh }
610 1.5 eeh return pg;
611 1.5 eeh }
612 1.5 eeh
613 1.5 eeh /*
614 1.5 eeh * vm_page_free1:
615 1.5 eeh *
616 1.5 eeh * Returns the given page to the free list,
617 1.5 eeh * disassociating it with any VM object.
618 1.5 eeh *
619 1.5 eeh * Object and page must be locked prior to entry.
620 1.5 eeh */
621 1.5 eeh void
622 1.5 eeh vm_page_free1(mem)
623 1.5 eeh struct vm_page *mem;
624 1.5 eeh {
625 1.5 eeh if (mem->flags != (PG_CLEAN|PG_FAKE)) {
626 1.5 eeh printf("Freeing invalid page %p\n", mem);
627 1.5 eeh printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(mem));
628 1.5 eeh Debugger();
629 1.5 eeh return;
630 1.5 eeh }
631 1.5 eeh mem->flags |= PG_BUSY;
632 1.5 eeh mem->wire_count = 0;
633 1.5 eeh uvm_pagefree(mem);
634 1.5 eeh }
635 1.5 eeh #endif
636 1.5 eeh
637 1.1 simonb /*
638 1.1 simonb * Create and return a physical map.
639 1.1 simonb */
640 1.1 simonb struct pmap *
641 1.1 simonb pmap_create(void)
642 1.1 simonb {
643 1.1 simonb struct pmap *pm;
644 1.1 simonb
645 1.1 simonb pm = (struct pmap *)malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
646 1.2 wiz memset((caddr_t)pm, 0, sizeof *pm);
647 1.1 simonb pmap_pinit(pm);
648 1.1 simonb return pm;
649 1.1 simonb }
650 1.1 simonb
651 1.1 simonb /*
652 1.1 simonb * Initialize a preallocated and zeroed pmap structure.
653 1.1 simonb */
654 1.1 simonb void
655 1.1 simonb pmap_pinit(struct pmap *pm)
656 1.1 simonb {
657 1.1 simonb int i;
658 1.1 simonb
659 1.1 simonb /*
660 1.1 simonb * Allocate some segment registers for this pmap.
661 1.1 simonb */
662 1.1 simonb pm->pm_refs = 1;
663 1.1 simonb for (i = 0; i < STSZ; i++)
664 1.1 simonb pm->pm_ptbl[i] = NULL;
665 1.1 simonb }
666 1.1 simonb
667 1.1 simonb /*
668 1.1 simonb * Add a reference to the given pmap.
669 1.1 simonb */
670 1.1 simonb void
671 1.1 simonb pmap_reference(struct pmap *pm)
672 1.1 simonb {
673 1.1 simonb
674 1.1 simonb pm->pm_refs++;
675 1.1 simonb }
676 1.1 simonb
677 1.1 simonb /*
678 1.1 simonb * Retire the given pmap from service.
679 1.1 simonb * Should only be called if the map contains no valid mappings.
680 1.1 simonb */
681 1.1 simonb void
682 1.1 simonb pmap_destroy(struct pmap *pm)
683 1.1 simonb {
684 1.1 simonb
685 1.1 simonb if (--pm->pm_refs == 0) {
686 1.1 simonb pmap_release(pm);
687 1.1 simonb free((caddr_t)pm, M_VMPMAP);
688 1.1 simonb }
689 1.1 simonb }
690 1.1 simonb
691 1.1 simonb /*
692 1.1 simonb * Release any resources held by the given physical map.
693 1.1 simonb * Called when a pmap initialized by pmap_pinit is being released.
694 1.1 simonb */
695 1.1 simonb static void
696 1.1 simonb pmap_release(struct pmap *pm)
697 1.1 simonb {
698 1.1 simonb int i;
699 1.1 simonb
700 1.1 simonb for (i = 0; i < STSZ; i++)
701 1.1 simonb if (pm->pm_ptbl[i]) {
702 1.1 simonb uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i], NBPG);
703 1.1 simonb pm->pm_ptbl[i] = NULL;
704 1.1 simonb }
705 1.1 simonb if (pm->pm_ctx) ctx_free(pm);
706 1.1 simonb }
707 1.1 simonb
708 1.1 simonb /*
709 1.1 simonb * Copy the range specified by src_addr/len
710 1.1 simonb * from the source map to the range dst_addr/len
711 1.1 simonb * in the destination map.
712 1.1 simonb *
713 1.1 simonb * This routine is only advisory and need not do anything.
714 1.1 simonb */
715 1.1 simonb void
716 1.1 simonb pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
717 1.1 simonb vsize_t len, vaddr_t src_addr)
718 1.1 simonb {
719 1.1 simonb }
720 1.1 simonb
721 1.1 simonb /*
722 1.1 simonb * Require that all active physical maps contain no
723 1.1 simonb * incorrect entries NOW.
724 1.1 simonb */
725 1.1 simonb void
726 1.4 chris pmap_update(struct pmap *pmap)
727 1.1 simonb {
728 1.1 simonb }
729 1.1 simonb
730 1.1 simonb /*
731 1.1 simonb * Garbage collects the physical map system for
732 1.1 simonb * pages which are no longer used.
733 1.1 simonb * Success need not be guaranteed -- that is, there
734 1.1 simonb * may well be pages which are not referenced, but
735 1.1 simonb * others may be collected.
736 1.1 simonb * Called by the pageout daemon when pages are scarce.
737 1.1 simonb */
738 1.1 simonb void
739 1.1 simonb pmap_collect(struct pmap *pm)
740 1.1 simonb {
741 1.1 simonb }
742 1.1 simonb
743 1.1 simonb /*
744 1.1 simonb * Fill the given physical page with zeroes.
745 1.1 simonb */
746 1.1 simonb void
747 1.1 simonb pmap_zero_page(paddr_t pa)
748 1.1 simonb {
749 1.1 simonb
750 1.1 simonb #ifdef NOCACHE
751 1.2 wiz memset((caddr_t)pa, 0, NBPG);
752 1.1 simonb #else
753 1.1 simonb int i;
754 1.1 simonb
755 1.1 simonb for (i = NBPG/CACHELINESIZE; i > 0; i--) {
756 1.1 simonb __asm __volatile ("dcbz 0,%0" :: "r"(pa));
757 1.1 simonb pa += CACHELINESIZE;
758 1.1 simonb }
759 1.1 simonb #endif
760 1.1 simonb }
761 1.1 simonb
762 1.1 simonb /*
763 1.1 simonb * Copy the given physical source page to its destination.
764 1.1 simonb */
765 1.1 simonb void
766 1.1 simonb pmap_copy_page(paddr_t src, paddr_t dst)
767 1.1 simonb {
768 1.1 simonb
769 1.2 wiz memcpy((caddr_t)dst, (caddr_t)src, NBPG);
770 1.1 simonb dcache_flush_page(dst);
771 1.1 simonb }
772 1.1 simonb
773 1.1 simonb /*
774 1.1 simonb * This returns whether this is the first mapping of a page.
775 1.1 simonb */
776 1.1 simonb static inline int
777 1.1 simonb pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
778 1.1 simonb {
779 1.1 simonb struct pv_entry *pv, *npv = NULL;
780 1.1 simonb int s;
781 1.1 simonb
782 1.1 simonb if (!pmap_initialized)
783 1.1 simonb return 0;
784 1.1 simonb
785 1.1 simonb s = splvm();
786 1.1 simonb
787 1.1 simonb pv = pa_to_pv(pa);
788 1.1 simonb if (!pv->pv_pm) {
789 1.1 simonb /*
790 1.1 simonb * No entries yet, use header as the first entry.
791 1.1 simonb */
792 1.1 simonb pv->pv_va = va;
793 1.1 simonb pv->pv_pm = pm;
794 1.1 simonb pv->pv_next = NULL;
795 1.1 simonb } else {
796 1.1 simonb /*
797 1.1 simonb * There is at least one other VA mapping this page.
798 1.1 simonb * Place this entry after the header.
799 1.1 simonb */
800 1.1 simonb npv = pool_get(&pv_pool, PR_WAITOK);
801 1.1 simonb if (!npv) return (0);
802 1.1 simonb npv->pv_va = va;
803 1.1 simonb npv->pv_pm = pm;
804 1.1 simonb npv->pv_next = pv->pv_next;
805 1.1 simonb pv->pv_next = npv;
806 1.1 simonb }
807 1.1 simonb splx(s);
808 1.1 simonb return (1);
809 1.1 simonb }
810 1.1 simonb
811 1.1 simonb static void
812 1.1 simonb pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
813 1.1 simonb {
814 1.1 simonb struct pv_entry *pv, *npv;
815 1.1 simonb
816 1.1 simonb /*
817 1.1 simonb * Remove from the PV table.
818 1.1 simonb */
819 1.1 simonb pv = pa_to_pv(pa);
820 1.1 simonb if (!pv) return;
821 1.1 simonb
822 1.1 simonb /*
823 1.1 simonb * If it is the first entry on the list, it is actually
824 1.1 simonb * in the header and we must copy the following entry up
825 1.1 simonb * to the header. Otherwise we must search the list for
826 1.1 simonb * the entry. In either case we free the now unused entry.
827 1.1 simonb */
828 1.1 simonb if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
829 1.1 simonb if ((npv = pv->pv_next)) {
830 1.1 simonb *pv = *npv;
831 1.1 simonb pool_put(&pv_pool, npv);
832 1.1 simonb } else
833 1.1 simonb pv->pv_pm = NULL;
834 1.1 simonb } else {
835 1.1 simonb for (; (npv = pv->pv_next) != NULL; pv = npv)
836 1.1 simonb if (pm == npv->pv_pm && PV_CMPVA(va, npv))
837 1.1 simonb break;
838 1.1 simonb if (npv) {
839 1.1 simonb pv->pv_next = npv->pv_next;
840 1.1 simonb pool_put(&pv_pool, npv);
841 1.1 simonb }
842 1.1 simonb }
843 1.1 simonb }
844 1.1 simonb
845 1.1 simonb /*
846 1.1 simonb * Insert physical page at pa into the given pmap at virtual address va.
847 1.1 simonb */
848 1.1 simonb int
849 1.1 simonb pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
850 1.1 simonb {
851 1.1 simonb int s;
852 1.1 simonb u_int tte;
853 1.1 simonb int managed;
854 1.1 simonb
855 1.1 simonb /*
856 1.1 simonb * Have to remove any existing mapping first.
857 1.1 simonb */
858 1.1 simonb pmap_remove(pm, va, va + NBPG);
859 1.1 simonb
860 1.1 simonb if (flags & PMAP_WIRED) flags |= prot;
861 1.1 simonb
862 1.1 simonb /* If it has no protections don't bother w/the rest */
863 1.1 simonb if (!(flags & VM_PROT_ALL))
864 1.1 simonb return (0);
865 1.1 simonb
866 1.1 simonb managed = 0;
867 1.1 simonb if (vm_physseg_find(atop(pa), NULL) != -1)
868 1.1 simonb managed = 1;
869 1.1 simonb
870 1.1 simonb /*
871 1.1 simonb * Generate TTE.
872 1.1 simonb *
873 1.1 simonb * XXXX
874 1.1 simonb *
875 1.1 simonb * Since the kernel does not handle execution privileges properly,
876 1.1 simonb * we will handle read and execute permissions together.
877 1.1 simonb */
878 1.1 simonb tte = TTE_PA(pa) | TTE_EX;
879 1.1 simonb /* XXXX -- need to support multiple page sizes. */
880 1.1 simonb tte |= TTE_SZ_16K;
881 1.1 simonb #ifdef DIAGNOSTIC
882 1.1 simonb if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
883 1.1 simonb (PME_NOCACHE | PME_WRITETHROUG))
884 1.1 simonb panic("pmap_enter: uncached & writethrough\n");
885 1.1 simonb #endif
886 1.1 simonb if (flags & PME_NOCACHE)
887 1.1 simonb /* Must be I/O mapping */
888 1.1 simonb tte |= TTE_I | TTE_G;
889 1.1 simonb #ifdef NOCACHE
890 1.1 simonb tte |= TTE_I;
891 1.1 simonb #else
892 1.1 simonb else if (flags & PME_WRITETHROUG)
893 1.1 simonb /* Uncached and writethrough are not compatible */
894 1.1 simonb tte |= TTE_W;
895 1.1 simonb #endif
896 1.1 simonb if (pm == pmap_kernel())
897 1.1 simonb tte |= TTE_ZONE(ZONE_PRIV);
898 1.1 simonb else
899 1.1 simonb tte |= TTE_ZONE(ZONE_USER);
900 1.1 simonb
901 1.1 simonb if (flags & VM_PROT_WRITE)
902 1.1 simonb tte |= TTE_WR;
903 1.1 simonb
904 1.1 simonb /*
905 1.1 simonb * Now record mapping for later back-translation.
906 1.1 simonb */
907 1.1 simonb if (pmap_initialized && managed) {
908 1.1 simonb char *attr;
909 1.1 simonb
910 1.1 simonb if (!pmap_enter_pv(pm, va, pa)) {
911 1.1 simonb /* Could not enter pv on a managed page */
912 1.1 simonb return 1;
913 1.1 simonb }
914 1.1 simonb
915 1.1 simonb /* Now set attributes. */
916 1.1 simonb attr = pa_to_attr(pa);
917 1.1 simonb #ifdef DIAGNOSTIC
918 1.1 simonb if (!attr)
919 1.1 simonb panic("managed but no attr\n");
920 1.1 simonb #endif
921 1.1 simonb if (flags & VM_PROT_ALL)
922 1.1 simonb *attr |= PTE_HI_REF;
923 1.1 simonb if (flags & VM_PROT_WRITE)
924 1.1 simonb *attr |= PTE_HI_CHG;
925 1.1 simonb }
926 1.1 simonb
927 1.1 simonb s = splvm();
928 1.1 simonb pm->pm_stats.resident_count++;
929 1.1 simonb
930 1.1 simonb /* Insert page into page table. */
931 1.1 simonb pte_enter(pm, va, tte);
932 1.1 simonb
933 1.1 simonb /* If this is a real fault, enter it in the tlb */
934 1.1 simonb if (tte && ((flags & PMAP_WIRED) == 0)) {
935 1.1 simonb ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
936 1.1 simonb }
937 1.1 simonb splx(s);
938 1.6 simonb
939 1.6 simonb /* Flush the real memory from the instruction cache. */
940 1.6 simonb if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
941 1.6 simonb __syncicache((void *)pa, PAGE_SIZE);
942 1.6 simonb
943 1.1 simonb return 0;
944 1.1 simonb }
945 1.1 simonb
946 1.1 simonb void
947 1.1 simonb pmap_unwire(struct pmap *pm, vaddr_t va)
948 1.1 simonb {
949 1.1 simonb struct pv_entry *pv, *npv;
950 1.1 simonb paddr_t pa;
951 1.1 simonb int s = splvm();
952 1.1 simonb
953 1.1 simonb if (pm == NULL) {
954 1.1 simonb return;
955 1.1 simonb }
956 1.1 simonb
957 1.1 simonb if (!pmap_extract(pm, va, &pa)) {
958 1.1 simonb return;
959 1.1 simonb }
960 1.1 simonb
961 1.1 simonb va |= PV_WIRED;
962 1.1 simonb
963 1.1 simonb pv = pa_to_pv(pa);
964 1.1 simonb if (!pv) return;
965 1.1 simonb
966 1.1 simonb /*
967 1.1 simonb * If it is the first entry on the list, it is actually
968 1.1 simonb * in the header and we must copy the following entry up
969 1.1 simonb * to the header. Otherwise we must search the list for
970 1.1 simonb * the entry. In either case we free the now unused entry.
971 1.1 simonb */
972 1.1 simonb for (npv = pv; (npv = pv->pv_next) != NULL; pv = npv) {
973 1.1 simonb if (pm == npv->pv_pm && PV_CMPVA(va, npv)) {
974 1.1 simonb npv->pv_va &= ~PV_WIRED;
975 1.1 simonb break;
976 1.1 simonb }
977 1.1 simonb }
978 1.1 simonb splx(s);
979 1.1 simonb }
980 1.1 simonb
981 1.1 simonb void
982 1.1 simonb pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
983 1.1 simonb {
984 1.1 simonb int s;
985 1.1 simonb u_int tte;
986 1.1 simonb struct pmap *pm = pmap_kernel();
987 1.1 simonb
988 1.1 simonb /*
989 1.1 simonb * Have to remove any existing mapping first.
990 1.1 simonb */
991 1.1 simonb
992 1.1 simonb /*
993 1.1 simonb * Generate TTE.
994 1.1 simonb *
995 1.1 simonb * XXXX
996 1.1 simonb *
997 1.1 simonb * Since the kernel does not handle execution privileges properly,
998 1.1 simonb * we will handle read and execute permissions together.
999 1.1 simonb */
1000 1.1 simonb tte = 0;
1001 1.1 simonb if (prot & VM_PROT_ALL) {
1002 1.1 simonb
1003 1.1 simonb tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
1004 1.1 simonb /* XXXX -- need to support multiple page sizes. */
1005 1.1 simonb tte |= TTE_SZ_16K;
1006 1.1 simonb #ifdef DIAGNOSTIC
1007 1.1 simonb if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
1008 1.1 simonb (PME_NOCACHE | PME_WRITETHROUG))
1009 1.1 simonb panic("pmap_kenter_pa: uncached & writethrough\n");
1010 1.1 simonb #endif
1011 1.1 simonb if (prot & PME_NOCACHE)
1012 1.1 simonb /* Must be I/O mapping */
1013 1.1 simonb tte |= TTE_I | TTE_G;
1014 1.1 simonb #ifdef NOCACHE
1015 1.1 simonb tte |= TTE_I;
1016 1.1 simonb #else
1017 1.1 simonb else if (prot & PME_WRITETHROUG)
1018 1.1 simonb /* Uncached and writethrough are not compatible */
1019 1.1 simonb tte |= TTE_W;
1020 1.1 simonb #endif
1021 1.1 simonb if (prot & VM_PROT_WRITE)
1022 1.1 simonb tte |= TTE_WR;
1023 1.1 simonb }
1024 1.1 simonb
1025 1.1 simonb s = splvm();
1026 1.1 simonb pm->pm_stats.resident_count++;
1027 1.1 simonb
1028 1.1 simonb /* Insert page into page table. */
1029 1.1 simonb pte_enter(pm, va, tte);
1030 1.1 simonb splx(s);
1031 1.1 simonb }
1032 1.1 simonb
1033 1.1 simonb void
1034 1.1 simonb pmap_kremove(vaddr_t va, vsize_t len)
1035 1.1 simonb {
1036 1.1 simonb
1037 1.1 simonb while (len > 0) {
1038 1.1 simonb pte_enter(pmap_kernel(), va, 0);
1039 1.1 simonb va += PAGE_SIZE;
1040 1.1 simonb len -= PAGE_SIZE;
1041 1.1 simonb }
1042 1.1 simonb }
1043 1.1 simonb
1044 1.1 simonb /*
1045 1.1 simonb * Remove the given range of mapping entries.
1046 1.1 simonb */
1047 1.1 simonb void
1048 1.1 simonb pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
1049 1.1 simonb {
1050 1.1 simonb int s;
1051 1.1 simonb paddr_t pa;
1052 1.1 simonb volatile u_int *ptp;
1053 1.1 simonb
1054 1.1 simonb s = splvm();
1055 1.1 simonb while (va < endva) {
1056 1.1 simonb
1057 1.1 simonb if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
1058 1.1 simonb pa = TTE_PA(pa);
1059 1.1 simonb pmap_remove_pv(pm, va, pa);
1060 1.1 simonb *ptp = 0;
1061 1.1 simonb ppc4xx_tlb_flush(va, pm->pm_ctx);
1062 1.1 simonb pm->pm_stats.resident_count--;
1063 1.1 simonb }
1064 1.1 simonb va += NBPG;
1065 1.1 simonb }
1066 1.1 simonb
1067 1.1 simonb splx(s);
1068 1.1 simonb }
1069 1.1 simonb
1070 1.1 simonb /*
1071 1.1 simonb * Get the physical page address for the given pmap/virtual address.
1072 1.1 simonb */
1073 1.1 simonb boolean_t
1074 1.1 simonb pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1075 1.1 simonb {
1076 1.1 simonb int seg = STIDX(va);
1077 1.1 simonb int ptn = PTIDX(va);
1078 1.1 simonb u_int pa = 0;
1079 1.1 simonb int s = splvm();
1080 1.1 simonb
1081 1.1 simonb if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
1082 1.1 simonb *pap = TTE_PA(pa) | (va & PGOFSET);
1083 1.1 simonb }
1084 1.1 simonb splx(s);
1085 1.1 simonb return (pa != 0);
1086 1.1 simonb }
1087 1.1 simonb
1088 1.1 simonb /*
1089 1.1 simonb * Lower the protection on the specified range of this pmap.
1090 1.1 simonb *
1091 1.1 simonb * There are only two cases: either the protection is going to 0,
1092 1.1 simonb * or it is going to read-only.
1093 1.1 simonb */
1094 1.1 simonb void
1095 1.1 simonb pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1096 1.1 simonb {
1097 1.1 simonb volatile u_int *ptp;
1098 1.1 simonb int s;
1099 1.1 simonb
1100 1.1 simonb if (prot & VM_PROT_READ) {
1101 1.1 simonb s = splvm();
1102 1.1 simonb while (sva < eva) {
1103 1.1 simonb if ((ptp = pte_find(pm, sva)) != NULL) {
1104 1.1 simonb *ptp &= ~TTE_WR;
1105 1.1 simonb ppc4xx_tlb_flush(sva, pm->pm_ctx);
1106 1.1 simonb }
1107 1.1 simonb sva += NBPG;
1108 1.1 simonb }
1109 1.1 simonb splx(s);
1110 1.1 simonb return;
1111 1.1 simonb }
1112 1.1 simonb pmap_remove(pm, sva, eva);
1113 1.1 simonb }
1114 1.1 simonb
1115 1.1 simonb boolean_t
1116 1.1 simonb check_attr(struct vm_page *pg, u_int mask, int clear)
1117 1.1 simonb {
1118 1.1 simonb paddr_t pa = VM_PAGE_TO_PHYS(pg);
1119 1.1 simonb int s;
1120 1.1 simonb char *attr;
1121 1.1 simonb int rv;
1122 1.1 simonb
1123 1.1 simonb /*
1124 1.1 simonb * First modify bits in cache.
1125 1.1 simonb */
1126 1.1 simonb s = splvm();
1127 1.1 simonb attr = pa_to_attr(pa);
1128 1.1 simonb if (attr == NULL)
1129 1.1 simonb return FALSE;
1130 1.1 simonb
1131 1.1 simonb rv = ((*attr & mask) != 0);
1132 1.1 simonb if (clear)
1133 1.1 simonb *attr &= ~mask;
1134 1.1 simonb
1135 1.1 simonb splx(s);
1136 1.1 simonb return rv;
1137 1.1 simonb }
1138 1.1 simonb
1139 1.1 simonb
1140 1.1 simonb /*
1141 1.1 simonb * Lower the protection on the specified physical page.
1142 1.1 simonb *
1143 1.1 simonb * There are only two cases: either the protection is going to 0,
1144 1.1 simonb * or it is going to read-only.
1145 1.1 simonb */
1146 1.1 simonb void
1147 1.1 simonb pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1148 1.1 simonb {
1149 1.1 simonb paddr_t pa = VM_PAGE_TO_PHYS(pg);
1150 1.1 simonb vaddr_t va;
1151 1.1 simonb struct pv_entry *pvh, *pv, *npv;
1152 1.1 simonb struct pmap *pm;
1153 1.1 simonb
1154 1.1 simonb pvh = pa_to_pv(pa);
1155 1.1 simonb if (pvh == NULL)
1156 1.1 simonb return;
1157 1.1 simonb
1158 1.1 simonb /* Handle extra pvs which may be deleted in the operation */
1159 1.1 simonb for (pv = pvh->pv_next; pv; pv = npv) {
1160 1.1 simonb npv = pv->pv_next;
1161 1.1 simonb
1162 1.1 simonb pm = pv->pv_pm;
1163 1.1 simonb va = pv->pv_va;
1164 1.1 simonb pmap_protect(pm, va, va+NBPG, prot);
1165 1.1 simonb }
1166 1.1 simonb /* Now check the head pv */
1167 1.1 simonb if (pvh->pv_pm) {
1168 1.1 simonb pv = pvh;
1169 1.1 simonb pm = pv->pv_pm;
1170 1.1 simonb va = pv->pv_va;
1171 1.1 simonb pmap_protect(pm, va, va+NBPG, prot);
1172 1.1 simonb }
1173 1.1 simonb }
1174 1.1 simonb
1175 1.1 simonb /*
1176 1.1 simonb * Activate the address space for the specified process. If the process
1177 1.1 simonb * is the current process, load the new MMU context.
1178 1.1 simonb */
1179 1.1 simonb void
1180 1.1 simonb pmap_activate(struct proc *p)
1181 1.1 simonb {
1182 1.1 simonb #if 0
1183 1.1 simonb struct pcb *pcb = &p->p_addr->u_pcb;
1184 1.1 simonb pmap_t pmap = p->p_vmspace->vm_map.pmap;
1185 1.1 simonb
1186 1.1 simonb /*
1187 1.1 simonb * XXX Normally performed in cpu_fork().
1188 1.1 simonb */
1189 1.1 simonb printf("pmap_activate(%p), pmap=%p\n",p,pmap);
1190 1.1 simonb if (pcb->pcb_pm != pmap) {
1191 1.1 simonb pcb->pcb_pm = pmap;
1192 1.1 simonb (void) pmap_extract(pmap_kernel(), (vaddr_t)pcb->pcb_pm,
1193 1.1 simonb (paddr_t *)&pcb->pcb_pmreal);
1194 1.1 simonb }
1195 1.1 simonb
1196 1.1 simonb if (p == curproc) {
1197 1.1 simonb /* Store pointer to new current pmap. */
1198 1.1 simonb curpm = pcb->pcb_pmreal;
1199 1.1 simonb }
1200 1.1 simonb #endif
1201 1.1 simonb }
1202 1.1 simonb
1203 1.1 simonb /*
1204 1.1 simonb * Deactivate the specified process's address space.
1205 1.1 simonb */
1206 1.1 simonb void
1207 1.1 simonb pmap_deactivate(struct proc *p)
1208 1.1 simonb {
1209 1.1 simonb }
1210 1.1 simonb
1211 1.1 simonb /*
1212 1.1 simonb * Synchronize caches corresponding to [addr, addr+len) in p.
1213 1.1 simonb */
1214 1.1 simonb void
1215 1.1 simonb pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1216 1.1 simonb {
1217 1.1 simonb struct pmap *pm = p->p_vmspace->vm_map.pmap;
1218 1.1 simonb int msr, ctx, opid;
1219 1.1 simonb
1220 1.1 simonb
1221 1.1 simonb /*
1222 1.1 simonb * Need to turn off IMMU and switch to user context.
1223 1.1 simonb * (icbi uses DMMU).
1224 1.1 simonb */
1225 1.1 simonb if (!(ctx = pm->pm_ctx)) {
1226 1.1 simonb /* No context -- assign it one */
1227 1.1 simonb ctx_alloc(pm);
1228 1.1 simonb ctx = pm->pm_ctx;
1229 1.1 simonb }
1230 1.1 simonb __asm __volatile("mfmsr %0;"
1231 1.1 simonb "li %1, 0x20;"
1232 1.1 simonb "andc %1,%0,%1;"
1233 1.1 simonb "mtmsr %1;"
1234 1.1 simonb "sync;isync;"
1235 1.1 simonb "mfpid %1;"
1236 1.1 simonb "mtpid %2;"
1237 1.1 simonb "sync; isync;"
1238 1.1 simonb "1:"
1239 1.1 simonb "dcbf 0,%3;"
1240 1.1 simonb "icbi 0,%3;"
1241 1.1 simonb "addi %3,%3,32;"
1242 1.1 simonb "addic. %4,%4,-32;"
1243 1.1 simonb "bge 1b;"
1244 1.1 simonb "mtpid %1;"
1245 1.1 simonb "mtmsr %0;"
1246 1.1 simonb "sync; isync"
1247 1.1 simonb : "=&r" (msr), "=&r" (opid)
1248 1.1 simonb : "r" (ctx), "r" (va), "r" (len));
1249 1.1 simonb }
1250 1.1 simonb
1251 1.1 simonb
1252 1.1 simonb /* This has to be done in real mode !!! */
1253 1.1 simonb void
1254 1.1 simonb ppc4xx_tlb_flush(vaddr_t va, int pid)
1255 1.1 simonb {
1256 1.1 simonb u_long i, found;
1257 1.1 simonb u_long msr;
1258 1.1 simonb
1259 1.1 simonb /* If there's no context then it can't be mapped. */
1260 1.1 simonb if (!pid) return;
1261 1.1 simonb
1262 1.1 simonb asm("mfpid %1;" /* Save PID */
1263 1.1 simonb "mfmsr %2;" /* Save MSR */
1264 1.1 simonb "li %0,0;" /* Now clear MSR */
1265 1.1 simonb "mtmsr %0;"
1266 1.1 simonb "mtpid %4;" /* Set PID */
1267 1.1 simonb "sync;"
1268 1.1 simonb "tlbsx. %0,0,%3;" /* Search TLB */
1269 1.1 simonb "sync;"
1270 1.1 simonb "mtpid %1;" /* Restore PID */
1271 1.1 simonb "mtmsr %2;" /* Restore MSR */
1272 1.1 simonb "sync;isync;"
1273 1.1 simonb "li %1,1;"
1274 1.1 simonb "beq 1f;"
1275 1.1 simonb "li %1,0;"
1276 1.1 simonb "1:"
1277 1.1 simonb : "=&r" (i), "=&r" (found), "=&r" (msr)
1278 1.1 simonb : "r" (va), "r" (pid));
1279 1.1 simonb if (found && !TLB_LOCKED(i)) {
1280 1.1 simonb
1281 1.1 simonb /* Now flush translation */
1282 1.1 simonb asm volatile(
1283 1.1 simonb "tlbwe %0,%1,0;"
1284 1.1 simonb "sync;isync;"
1285 1.1 simonb : : "r" (0), "r" (i));
1286 1.1 simonb
1287 1.1 simonb tlb_info[i].ti_ctx = 0;
1288 1.1 simonb tlb_info[i].ti_flags = 0;
1289 1.1 simonb tlbnext = i;
1290 1.1 simonb /* Successful flushes */
1291 1.1 simonb tlbflush_ev.ev_count++;
1292 1.1 simonb }
1293 1.1 simonb }
1294 1.1 simonb
1295 1.1 simonb void
1296 1.1 simonb ppc4xx_tlb_flush_all(void)
1297 1.1 simonb {
1298 1.1 simonb u_long i;
1299 1.1 simonb
1300 1.1 simonb for (i = 0; i < NTLB; i++)
1301 1.1 simonb if (!TLB_LOCKED(i)) {
1302 1.1 simonb asm volatile(
1303 1.1 simonb "tlbwe %0,%1,0;"
1304 1.1 simonb "sync;isync;"
1305 1.1 simonb : : "r" (0), "r" (i));
1306 1.1 simonb tlb_info[i].ti_ctx = 0;
1307 1.1 simonb tlb_info[i].ti_flags = 0;
1308 1.1 simonb }
1309 1.1 simonb
1310 1.1 simonb asm volatile("sync;isync");
1311 1.1 simonb }
1312 1.1 simonb
1313 1.1 simonb /* Find a TLB entry to evict. */
1314 1.1 simonb static int
1315 1.1 simonb ppc4xx_tlb_find_victim(void)
1316 1.1 simonb {
1317 1.1 simonb int flags;
1318 1.1 simonb
1319 1.1 simonb for (;;) {
1320 1.1 simonb if (++tlbnext >= NTLB)
1321 1.1 simonb tlbnext = TLB_NRESERVED;
1322 1.1 simonb flags = tlb_info[tlbnext].ti_flags;
1323 1.1 simonb if (!(flags & TLBF_USED) ||
1324 1.1 simonb (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1325 1.1 simonb u_long va, stack = (u_long)&va;
1326 1.1 simonb
1327 1.1 simonb if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1328 1.1 simonb (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1329 1.1 simonb (flags & TLBF_USED)) {
1330 1.1 simonb /* Kernel stack page */
1331 1.1 simonb flags |= TLBF_USED;
1332 1.1 simonb tlb_info[tlbnext].ti_flags = flags;
1333 1.1 simonb } else {
1334 1.1 simonb /* Found it! */
1335 1.1 simonb return (tlbnext);
1336 1.1 simonb }
1337 1.1 simonb } else {
1338 1.1 simonb tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1339 1.1 simonb }
1340 1.1 simonb }
1341 1.1 simonb }
1342 1.1 simonb
1343 1.1 simonb void
1344 1.1 simonb ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1345 1.1 simonb {
1346 1.1 simonb u_long th, tl, idx;
1347 1.1 simonb tlbpid_t pid;
1348 1.1 simonb u_short msr;
1349 1.1 simonb int s;
1350 1.1 simonb
1351 1.1 simonb tlbenter_ev.ev_count++;
1352 1.1 simonb
1353 1.1 simonb th = (va & TLB_EPN_MASK) |
1354 1.1 simonb (((pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT) << TLB_SIZE_SHFT) |
1355 1.1 simonb TLB_VALID;
1356 1.1 simonb tl = pte;
1357 1.1 simonb
1358 1.1 simonb s = splhigh();
1359 1.1 simonb idx = ppc4xx_tlb_find_victim();
1360 1.1 simonb
1361 1.1 simonb #ifdef DIAGNOSTIC
1362 1.1 simonb if ((idx < TLB_NRESERVED) || (idx >= NTLB)) {
1363 1.1 simonb panic("ppc4xx_tlb_enter: repacing entry %ld\n", idx);
1364 1.1 simonb }
1365 1.1 simonb #endif
1366 1.1 simonb
1367 1.1 simonb tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1368 1.1 simonb tlb_info[idx].ti_ctx = ctx;
1369 1.1 simonb tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1370 1.1 simonb
1371 1.1 simonb asm volatile(
1372 1.1 simonb "mfmsr %0;" /* Save MSR */
1373 1.1 simonb "li %1,0;"
1374 1.1 simonb "tlbwe %1,%3,0;" /* Invalidate old entry. */
1375 1.1 simonb "mtmsr %1;" /* Clear MSR */
1376 1.1 simonb "mfpid %1;" /* Save old PID */
1377 1.1 simonb "mtpid %2;" /* Load translation ctx */
1378 1.1 simonb "sync; isync;"
1379 1.1 simonb #ifdef DEBUG
1380 1.1 simonb "andi. %3,%3,63;"
1381 1.1 simonb "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */
1382 1.1 simonb #endif
1383 1.1 simonb "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1384 1.1 simonb "sync; isync;"
1385 1.1 simonb "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1386 1.1 simonb "sync; isync;"
1387 1.1 simonb : "=&r" (msr), "=&r" (pid)
1388 1.1 simonb : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1389 1.1 simonb splx(s);
1390 1.1 simonb }
1391 1.1 simonb
1392 1.1 simonb void
1393 1.1 simonb ppc4xx_tlb_unpin(int i)
1394 1.1 simonb {
1395 1.1 simonb
1396 1.1 simonb if (i == -1)
1397 1.1 simonb for (i = 0; i < TLB_NRESERVED; i++)
1398 1.1 simonb tlb_info[i].ti_flags &= ~TLBF_LOCKED;
1399 1.1 simonb else
1400 1.1 simonb tlb_info[i].ti_flags &= ~TLBF_LOCKED;
1401 1.1 simonb }
1402 1.1 simonb
1403 1.1 simonb void
1404 1.1 simonb ppc4xx_tlb_init(void)
1405 1.1 simonb {
1406 1.1 simonb int i;
1407 1.1 simonb
1408 1.1 simonb /* Mark reserved TLB entries */
1409 1.1 simonb for (i = 0; i < TLB_NRESERVED; i++) {
1410 1.1 simonb tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1411 1.1 simonb tlb_info[i].ti_ctx = KERNEL_PID;
1412 1.1 simonb }
1413 1.1 simonb
1414 1.1 simonb /* Setup security zones */
1415 1.1 simonb /* Z0 - accessible by kernel only if TLB entry permissions allow
1416 1.1 simonb * Z1,Z2 - access is controlled by TLB entry permissions
1417 1.1 simonb * Z3 - full access regardless of TLB entry permissions
1418 1.1 simonb */
1419 1.1 simonb
1420 1.1 simonb asm volatile(
1421 1.1 simonb "mtspr %0,%1;"
1422 1.1 simonb "sync;"
1423 1.1 simonb :: "K"(SPR_ZPR), "r" (0x1b000000));
1424 1.1 simonb }
1425 1.1 simonb
1426 1.1 simonb
1427 1.1 simonb /*
1428 1.1 simonb * We should pass the ctx in from trap code.
1429 1.1 simonb */
1430 1.1 simonb int
1431 1.1 simonb pmap_tlbmiss(vaddr_t va, int ctx)
1432 1.1 simonb {
1433 1.1 simonb volatile u_int *pte;
1434 1.1 simonb u_long tte;
1435 1.1 simonb
1436 1.1 simonb tlbmiss_ev.ev_count++;
1437 1.1 simonb
1438 1.1 simonb /*
1439 1.1 simonb * XXXX We will reserve 0-0x80000000 for va==pa mappings.
1440 1.1 simonb */
1441 1.1 simonb if (ctx != KERNEL_PID || (va & 0x80000000)) {
1442 1.1 simonb pte = pte_find((struct pmap *)ctxbusy[ctx], va);
1443 1.1 simonb if (pte == NULL) {
1444 1.1 simonb /* Map unmanaged addresses directly for kernel access */
1445 1.1 simonb return 1;
1446 1.1 simonb }
1447 1.1 simonb tte = *pte;
1448 1.1 simonb if (tte == 0) {
1449 1.1 simonb return 1;
1450 1.1 simonb }
1451 1.1 simonb } else {
1452 1.1 simonb /* Create a 16MB writeable mapping. */
1453 1.1 simonb #ifdef NOCACHE
1454 1.1 simonb tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I | TTE_WR;
1455 1.1 simonb #else
1456 1.1 simonb tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1457 1.1 simonb #endif
1458 1.1 simonb }
1459 1.1 simonb tlbhit_ev.ev_count++;
1460 1.1 simonb ppc4xx_tlb_enter(ctx, va, tte);
1461 1.1 simonb
1462 1.1 simonb return 0;
1463 1.1 simonb }
1464 1.1 simonb
1465 1.1 simonb /*
1466 1.1 simonb * Flush all the entries matching a context from the TLB.
1467 1.1 simonb */
1468 1.1 simonb static int
1469 1.1 simonb ctx_flush(int cnum)
1470 1.1 simonb {
1471 1.1 simonb int i;
1472 1.1 simonb
1473 1.1 simonb /* We gotta steal this context */
1474 1.1 simonb for (i = TLB_NRESERVED; i < NTLB; i++) {
1475 1.1 simonb if (tlb_info[i].ti_ctx == cnum) {
1476 1.1 simonb /* Can't steal ctx if it has a locked entry. */
1477 1.1 simonb if (TLB_LOCKED(i)) {
1478 1.1 simonb #ifdef DIAGNOSTIC
1479 1.1 simonb printf("ctx_flush: can't invalidate "
1480 1.1 simonb "locked mapping %d "
1481 1.1 simonb "for context %d\n", i, cnum);
1482 1.1 simonb Debugger();
1483 1.1 simonb #endif
1484 1.1 simonb return (1);
1485 1.1 simonb }
1486 1.1 simonb #ifdef DIAGNOSTIC
1487 1.1 simonb if (i < TLB_NRESERVED)
1488 1.1 simonb panic("TLB entry %d not locked\n", i);
1489 1.1 simonb #endif
1490 1.1 simonb /* Invalidate particular TLB entry regardless of locked status */
1491 1.1 simonb asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1492 1.1 simonb tlb_info[i].ti_flags = 0;
1493 1.1 simonb }
1494 1.1 simonb }
1495 1.1 simonb return (0);
1496 1.1 simonb }
1497 1.1 simonb
1498 1.1 simonb /*
1499 1.1 simonb * Allocate a context. If necessary, steal one from someone else.
1500 1.1 simonb *
1501 1.1 simonb * The new context is flushed from the TLB before returning.
1502 1.1 simonb */
1503 1.1 simonb int
1504 1.1 simonb ctx_alloc(struct pmap *pm)
1505 1.1 simonb {
1506 1.1 simonb int s, cnum;
1507 1.1 simonb static int next = MINCTX;
1508 1.1 simonb
1509 1.1 simonb if (pm == pmap_kernel()) {
1510 1.1 simonb #ifdef DIAGNOSTIC
1511 1.1 simonb printf("ctx_alloc: kernel pmap!\n");
1512 1.1 simonb #endif
1513 1.1 simonb return (0);
1514 1.1 simonb }
1515 1.1 simonb s = splvm();
1516 1.1 simonb
1517 1.1 simonb /* Find a likely context. */
1518 1.1 simonb cnum = next;
1519 1.1 simonb do {
1520 1.1 simonb if ((++cnum) > NUMCTX)
1521 1.1 simonb cnum = MINCTX;
1522 1.1 simonb } while (ctxbusy[cnum] != NULL && cnum != next);
1523 1.1 simonb
1524 1.1 simonb /* Now clean it out */
1525 1.1 simonb oops:
1526 1.1 simonb if (cnum < MINCTX)
1527 1.1 simonb cnum = MINCTX; /* Never steal ctx 0 or 1 */
1528 1.1 simonb if (ctx_flush(cnum)) {
1529 1.1 simonb /* oops -- something's wired. */
1530 1.1 simonb if ((++cnum) > NUMCTX)
1531 1.1 simonb cnum = MINCTX;
1532 1.1 simonb goto oops;
1533 1.1 simonb }
1534 1.1 simonb
1535 1.1 simonb if (ctxbusy[cnum]) {
1536 1.1 simonb #ifdef DEBUG
1537 1.1 simonb /* We should identify this pmap and clear it */
1538 1.1 simonb printf("Warning: stealing context %d\n", cnum);
1539 1.1 simonb #endif
1540 1.1 simonb ctxbusy[cnum]->pm_ctx = 0;
1541 1.1 simonb }
1542 1.1 simonb ctxbusy[cnum] = pm;
1543 1.1 simonb next = cnum;
1544 1.1 simonb splx(s);
1545 1.1 simonb pm->pm_ctx = cnum;
1546 1.1 simonb
1547 1.1 simonb return cnum;
1548 1.1 simonb }
1549 1.1 simonb
1550 1.1 simonb /*
1551 1.1 simonb * Give away a context.
1552 1.1 simonb */
1553 1.1 simonb void
1554 1.1 simonb ctx_free(struct pmap *pm)
1555 1.1 simonb {
1556 1.1 simonb int oldctx;
1557 1.1 simonb
1558 1.1 simonb oldctx = pm->pm_ctx;
1559 1.1 simonb
1560 1.1 simonb if (oldctx == 0)
1561 1.1 simonb panic("ctx_free: freeing kernel context");
1562 1.1 simonb #ifdef DIAGNOSTIC
1563 1.1 simonb if (ctxbusy[oldctx] == 0)
1564 1.1 simonb printf("ctx_free: freeing free context %d\n", oldctx);
1565 1.1 simonb if (ctxbusy[oldctx] != pm) {
1566 1.1 simonb printf("ctx_free: freeing someone esle's context\n "
1567 1.1 simonb "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1568 1.1 simonb oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1569 1.1 simonb Debugger();
1570 1.1 simonb }
1571 1.1 simonb #endif
1572 1.1 simonb /* We should verify it has not been stolen and reallocated... */
1573 1.1 simonb ctxbusy[oldctx] = NULL;
1574 1.1 simonb ctx_flush(oldctx);
1575 1.1 simonb }
1576 1.5 eeh
1577 1.1 simonb
1578 1.1 simonb #ifdef DEBUG
1579 1.1 simonb /*
1580 1.1 simonb * Test ref/modify handling.
1581 1.1 simonb */
1582 1.1 simonb void pmap_testout __P((void));
1583 1.1 simonb void
1584 1.1 simonb pmap_testout()
1585 1.1 simonb {
1586 1.1 simonb vaddr_t va;
1587 1.1 simonb volatile int *loc;
1588 1.1 simonb int val = 0;
1589 1.1 simonb paddr_t pa;
1590 1.1 simonb struct vm_page *pg;
1591 1.1 simonb int ref, mod;
1592 1.1 simonb
1593 1.1 simonb /* Allocate a page */
1594 1.1 simonb va = (vaddr_t)uvm_km_alloc1(kernel_map, NBPG, 1);
1595 1.1 simonb loc = (int*)va;
1596 1.1 simonb
1597 1.1 simonb pmap_extract(pmap_kernel(), va, &pa);
1598 1.1 simonb pg = PHYS_TO_VM_PAGE(pa);
1599 1.1 simonb pmap_unwire(pmap_kernel(), va);
1600 1.1 simonb
1601 1.1 simonb pmap_remove(pmap_kernel(), va, va+1);
1602 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1603 1.4 chris pmap_update(pmap_kernel());
1604 1.1 simonb
1605 1.1 simonb /* Now clear reference and modify */
1606 1.1 simonb ref = pmap_clear_reference(pg);
1607 1.1 simonb mod = pmap_clear_modify(pg);
1608 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1609 1.1 simonb (void *)(u_long)va, (long)pa,
1610 1.1 simonb ref, mod);
1611 1.1 simonb
1612 1.1 simonb /* Check it's properly cleared */
1613 1.1 simonb ref = pmap_is_referenced(pg);
1614 1.1 simonb mod = pmap_is_modified(pg);
1615 1.1 simonb printf("Checking cleared page: ref %d, mod %d\n",
1616 1.1 simonb ref, mod);
1617 1.1 simonb
1618 1.1 simonb /* Reference page */
1619 1.1 simonb val = *loc;
1620 1.1 simonb
1621 1.1 simonb ref = pmap_is_referenced(pg);
1622 1.1 simonb mod = pmap_is_modified(pg);
1623 1.1 simonb printf("Referenced page: ref %d, mod %d val %x\n",
1624 1.1 simonb ref, mod, val);
1625 1.1 simonb
1626 1.1 simonb /* Now clear reference and modify */
1627 1.1 simonb ref = pmap_clear_reference(pg);
1628 1.1 simonb mod = pmap_clear_modify(pg);
1629 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1630 1.1 simonb (void *)(u_long)va, (long)pa,
1631 1.1 simonb ref, mod);
1632 1.1 simonb
1633 1.1 simonb /* Modify page */
1634 1.1 simonb *loc = 1;
1635 1.1 simonb
1636 1.1 simonb ref = pmap_is_referenced(pg);
1637 1.1 simonb mod = pmap_is_modified(pg);
1638 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1639 1.1 simonb ref, mod);
1640 1.1 simonb
1641 1.1 simonb /* Now clear reference and modify */
1642 1.1 simonb ref = pmap_clear_reference(pg);
1643 1.1 simonb mod = pmap_clear_modify(pg);
1644 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1645 1.1 simonb (void *)(u_long)va, (long)pa,
1646 1.1 simonb ref, mod);
1647 1.1 simonb
1648 1.1 simonb /* Check it's properly cleared */
1649 1.1 simonb ref = pmap_is_referenced(pg);
1650 1.1 simonb mod = pmap_is_modified(pg);
1651 1.1 simonb printf("Checking cleared page: ref %d, mod %d\n",
1652 1.1 simonb ref, mod);
1653 1.1 simonb
1654 1.1 simonb /* Modify page */
1655 1.1 simonb *loc = 1;
1656 1.1 simonb
1657 1.1 simonb ref = pmap_is_referenced(pg);
1658 1.1 simonb mod = pmap_is_modified(pg);
1659 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1660 1.1 simonb ref, mod);
1661 1.1 simonb
1662 1.1 simonb /* Check pmap_protect() */
1663 1.1 simonb pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1664 1.4 chris pmap_update(pmap_kernel());
1665 1.1 simonb ref = pmap_is_referenced(pg);
1666 1.1 simonb mod = pmap_is_modified(pg);
1667 1.1 simonb printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1668 1.1 simonb ref, mod);
1669 1.1 simonb
1670 1.1 simonb /* Now clear reference and modify */
1671 1.1 simonb ref = pmap_clear_reference(pg);
1672 1.1 simonb mod = pmap_clear_modify(pg);
1673 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1674 1.1 simonb (void *)(u_long)va, (long)pa,
1675 1.1 simonb ref, mod);
1676 1.1 simonb
1677 1.1 simonb /* Reference page */
1678 1.1 simonb val = *loc;
1679 1.1 simonb
1680 1.1 simonb ref = pmap_is_referenced(pg);
1681 1.1 simonb mod = pmap_is_modified(pg);
1682 1.1 simonb printf("Referenced page: ref %d, mod %d val %x\n",
1683 1.1 simonb ref, mod, val);
1684 1.1 simonb
1685 1.1 simonb /* Now clear reference and modify */
1686 1.1 simonb ref = pmap_clear_reference(pg);
1687 1.1 simonb mod = pmap_clear_modify(pg);
1688 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1689 1.1 simonb (void *)(u_long)va, (long)pa,
1690 1.1 simonb ref, mod);
1691 1.1 simonb
1692 1.1 simonb /* Modify page */
1693 1.1 simonb #if 0
1694 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1695 1.4 chris pmap_update(pmap_kernel());
1696 1.1 simonb #endif
1697 1.1 simonb *loc = 1;
1698 1.1 simonb
1699 1.1 simonb ref = pmap_is_referenced(pg);
1700 1.1 simonb mod = pmap_is_modified(pg);
1701 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1702 1.1 simonb ref, mod);
1703 1.1 simonb
1704 1.1 simonb /* Check pmap_protect() */
1705 1.1 simonb pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1706 1.4 chris pmap_update(pmap_kernel());
1707 1.1 simonb ref = pmap_is_referenced(pg);
1708 1.1 simonb mod = pmap_is_modified(pg);
1709 1.1 simonb printf("pmap_protect(): ref %d, mod %d\n",
1710 1.1 simonb ref, mod);
1711 1.1 simonb
1712 1.1 simonb /* Now clear reference and modify */
1713 1.1 simonb ref = pmap_clear_reference(pg);
1714 1.1 simonb mod = pmap_clear_modify(pg);
1715 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1716 1.1 simonb (void *)(u_long)va, (long)pa,
1717 1.1 simonb ref, mod);
1718 1.1 simonb
1719 1.1 simonb /* Reference page */
1720 1.1 simonb val = *loc;
1721 1.1 simonb
1722 1.1 simonb ref = pmap_is_referenced(pg);
1723 1.1 simonb mod = pmap_is_modified(pg);
1724 1.1 simonb printf("Referenced page: ref %d, mod %d val %x\n",
1725 1.1 simonb ref, mod, val);
1726 1.1 simonb
1727 1.1 simonb /* Now clear reference and modify */
1728 1.1 simonb ref = pmap_clear_reference(pg);
1729 1.1 simonb mod = pmap_clear_modify(pg);
1730 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1731 1.1 simonb (void *)(u_long)va, (long)pa,
1732 1.1 simonb ref, mod);
1733 1.1 simonb
1734 1.1 simonb /* Modify page */
1735 1.1 simonb #if 0
1736 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1737 1.4 chris pmap_update(pmap_kernel());
1738 1.1 simonb #endif
1739 1.1 simonb *loc = 1;
1740 1.1 simonb
1741 1.1 simonb ref = pmap_is_referenced(pg);
1742 1.1 simonb mod = pmap_is_modified(pg);
1743 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1744 1.1 simonb ref, mod);
1745 1.1 simonb
1746 1.1 simonb /* Check pmap_pag_protect() */
1747 1.1 simonb pmap_page_protect(pg, VM_PROT_READ);
1748 1.1 simonb ref = pmap_is_referenced(pg);
1749 1.1 simonb mod = pmap_is_modified(pg);
1750 1.1 simonb printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1751 1.1 simonb ref, mod);
1752 1.1 simonb
1753 1.1 simonb /* Now clear reference and modify */
1754 1.1 simonb ref = pmap_clear_reference(pg);
1755 1.1 simonb mod = pmap_clear_modify(pg);
1756 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1757 1.1 simonb (void *)(u_long)va, (long)pa,
1758 1.1 simonb ref, mod);
1759 1.1 simonb
1760 1.1 simonb /* Reference page */
1761 1.1 simonb val = *loc;
1762 1.1 simonb
1763 1.1 simonb ref = pmap_is_referenced(pg);
1764 1.1 simonb mod = pmap_is_modified(pg);
1765 1.1 simonb printf("Referenced page: ref %d, mod %d val %x\n",
1766 1.1 simonb ref, mod, val);
1767 1.1 simonb
1768 1.1 simonb /* Now clear reference and modify */
1769 1.1 simonb ref = pmap_clear_reference(pg);
1770 1.1 simonb mod = pmap_clear_modify(pg);
1771 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1772 1.1 simonb (void *)(u_long)va, (long)pa,
1773 1.1 simonb ref, mod);
1774 1.1 simonb
1775 1.1 simonb /* Modify page */
1776 1.1 simonb #if 0
1777 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1778 1.4 chris pmap_update(pmap_kernel());
1779 1.1 simonb #endif
1780 1.1 simonb *loc = 1;
1781 1.1 simonb
1782 1.1 simonb ref = pmap_is_referenced(pg);
1783 1.1 simonb mod = pmap_is_modified(pg);
1784 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1785 1.1 simonb ref, mod);
1786 1.1 simonb
1787 1.1 simonb /* Check pmap_pag_protect() */
1788 1.1 simonb pmap_page_protect(pg, VM_PROT_NONE);
1789 1.1 simonb ref = pmap_is_referenced(pg);
1790 1.1 simonb mod = pmap_is_modified(pg);
1791 1.1 simonb printf("pmap_page_protect(): ref %d, mod %d\n",
1792 1.1 simonb ref, mod);
1793 1.1 simonb
1794 1.1 simonb /* Now clear reference and modify */
1795 1.1 simonb ref = pmap_clear_reference(pg);
1796 1.1 simonb mod = pmap_clear_modify(pg);
1797 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1798 1.1 simonb (void *)(u_long)va, (long)pa,
1799 1.1 simonb ref, mod);
1800 1.1 simonb
1801 1.1 simonb
1802 1.1 simonb /* Reference page */
1803 1.1 simonb val = *loc;
1804 1.1 simonb
1805 1.1 simonb ref = pmap_is_referenced(pg);
1806 1.1 simonb mod = pmap_is_modified(pg);
1807 1.1 simonb printf("Referenced page: ref %d, mod %d val %x\n",
1808 1.1 simonb ref, mod, val);
1809 1.1 simonb
1810 1.1 simonb /* Now clear reference and modify */
1811 1.1 simonb ref = pmap_clear_reference(pg);
1812 1.1 simonb mod = pmap_clear_modify(pg);
1813 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1814 1.1 simonb (void *)(u_long)va, (long)pa,
1815 1.1 simonb ref, mod);
1816 1.1 simonb
1817 1.1 simonb /* Modify page */
1818 1.1 simonb #if 0
1819 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1820 1.4 chris pmap_update(pmap_kernel());
1821 1.1 simonb #endif
1822 1.1 simonb *loc = 1;
1823 1.1 simonb
1824 1.1 simonb ref = pmap_is_referenced(pg);
1825 1.1 simonb mod = pmap_is_modified(pg);
1826 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1827 1.1 simonb ref, mod);
1828 1.1 simonb
1829 1.1 simonb /* Unmap page */
1830 1.1 simonb pmap_remove(pmap_kernel(), va, va+1);
1831 1.4 chris pmap_update(pmap_kernel());
1832 1.1 simonb ref = pmap_is_referenced(pg);
1833 1.1 simonb mod = pmap_is_modified(pg);
1834 1.1 simonb printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1835 1.1 simonb
1836 1.1 simonb /* Now clear reference and modify */
1837 1.1 simonb ref = pmap_clear_reference(pg);
1838 1.1 simonb mod = pmap_clear_modify(pg);
1839 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1840 1.1 simonb (void *)(u_long)va, (long)pa, ref, mod);
1841 1.1 simonb
1842 1.1 simonb /* Check it's properly cleared */
1843 1.1 simonb ref = pmap_is_referenced(pg);
1844 1.1 simonb mod = pmap_is_modified(pg);
1845 1.1 simonb printf("Checking cleared page: ref %d, mod %d\n",
1846 1.1 simonb ref, mod);
1847 1.1 simonb
1848 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL,
1849 1.1 simonb VM_PROT_ALL|PMAP_WIRED);
1850 1.1 simonb uvm_km_free(kernel_map, (vaddr_t)va, NBPG);
1851 1.1 simonb }
1852 1.1 simonb #endif
1853