pmap.c revision 1.60.2.6 1 1.60.2.1 uebayasi /* $NetBSD: pmap.c,v 1.60.2.6 2010/10/30 08:41:10 uebayasi Exp $ */
2 1.1 simonb
3 1.1 simonb /*
4 1.1 simonb * Copyright 2001 Wasabi Systems, Inc.
5 1.1 simonb * All rights reserved.
6 1.1 simonb *
7 1.1 simonb * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 1.1 simonb *
9 1.1 simonb * Redistribution and use in source and binary forms, with or without
10 1.1 simonb * modification, are permitted provided that the following conditions
11 1.1 simonb * are met:
12 1.1 simonb * 1. Redistributions of source code must retain the above copyright
13 1.1 simonb * notice, this list of conditions and the following disclaimer.
14 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 simonb * notice, this list of conditions and the following disclaimer in the
16 1.1 simonb * documentation and/or other materials provided with the distribution.
17 1.1 simonb * 3. All advertising materials mentioning features or use of this software
18 1.1 simonb * must display the following acknowledgement:
19 1.1 simonb * This product includes software developed for the NetBSD Project by
20 1.1 simonb * Wasabi Systems, Inc.
21 1.1 simonb * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.1 simonb * or promote products derived from this software without specific prior
23 1.1 simonb * written permission.
24 1.1 simonb *
25 1.1 simonb * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.1 simonb * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 simonb * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 simonb * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.1 simonb * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 simonb * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 simonb * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 simonb * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 simonb * POSSIBILITY OF SUCH DAMAGE.
36 1.1 simonb */
37 1.1 simonb
38 1.1 simonb /*
39 1.1 simonb * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 1.1 simonb * Copyright (C) 1995, 1996 TooLs GmbH.
41 1.1 simonb * All rights reserved.
42 1.1 simonb *
43 1.1 simonb * Redistribution and use in source and binary forms, with or without
44 1.1 simonb * modification, are permitted provided that the following conditions
45 1.1 simonb * are met:
46 1.1 simonb * 1. Redistributions of source code must retain the above copyright
47 1.1 simonb * notice, this list of conditions and the following disclaimer.
48 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 simonb * notice, this list of conditions and the following disclaimer in the
50 1.1 simonb * documentation and/or other materials provided with the distribution.
51 1.1 simonb * 3. All advertising materials mentioning features or use of this software
52 1.1 simonb * must display the following acknowledgement:
53 1.1 simonb * This product includes software developed by TooLs GmbH.
54 1.1 simonb * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 1.1 simonb * derived from this software without specific prior written permission.
56 1.1 simonb *
57 1.1 simonb * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 1.1 simonb * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 1.1 simonb * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 1.1 simonb * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 1.1 simonb * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 1.1 simonb * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 1.1 simonb * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 1.1 simonb * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 1.1 simonb * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 1.1 simonb * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 1.1 simonb */
68 1.23 lukem
69 1.23 lukem #include <sys/cdefs.h>
70 1.60.2.1 uebayasi __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.60.2.6 2010/10/30 08:41:10 uebayasi Exp $");
71 1.1 simonb
72 1.60.2.4 uebayasi #include "opt_xip.h"
73 1.60.2.4 uebayasi
74 1.1 simonb #include <sys/param.h>
75 1.1 simonb #include <sys/malloc.h>
76 1.1 simonb #include <sys/proc.h>
77 1.1 simonb #include <sys/queue.h>
78 1.1 simonb #include <sys/systm.h>
79 1.1 simonb #include <sys/pool.h>
80 1.1 simonb #include <sys/device.h>
81 1.1 simonb
82 1.1 simonb #include <uvm/uvm.h>
83 1.1 simonb
84 1.10 eeh #include <machine/cpu.h>
85 1.1 simonb #include <machine/pcb.h>
86 1.1 simonb #include <machine/powerpc.h>
87 1.1 simonb
88 1.1 simonb #include <powerpc/spr.h>
89 1.60.2.3 uebayasi #include <powerpc/ibm4xx/spr.h>
90 1.10 eeh #include <machine/tlb.h>
91 1.1 simonb
92 1.1 simonb /*
93 1.1 simonb * kernmap is an array of PTEs large enough to map in
94 1.1 simonb * 4GB. At 16KB/page it is 256K entries or 2MB.
95 1.1 simonb */
96 1.19 thorpej #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1)
97 1.47 christos void *kernmap;
98 1.1 simonb
99 1.1 simonb #define MINCTX 2
100 1.1 simonb #define NUMCTX 256
101 1.42 freza
102 1.1 simonb volatile struct pmap *ctxbusy[NUMCTX];
103 1.1 simonb
104 1.1 simonb #define TLBF_USED 0x1
105 1.1 simonb #define TLBF_REF 0x2
106 1.1 simonb #define TLBF_LOCKED 0x4
107 1.1 simonb #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
108 1.42 freza
109 1.1 simonb typedef struct tlb_info_s {
110 1.1 simonb char ti_flags;
111 1.1 simonb char ti_ctx; /* TLB_PID assiciated with the entry */
112 1.1 simonb u_int ti_va;
113 1.1 simonb } tlb_info_t;
114 1.1 simonb
115 1.1 simonb volatile tlb_info_t tlb_info[NTLB];
116 1.1 simonb /* We'll use a modified FIFO replacement policy cause it's cheap */
117 1.42 freza volatile int tlbnext;
118 1.42 freza
119 1.42 freza static int tlb_nreserved = 0;
120 1.42 freza static int pmap_bootstrap_done = 0;
121 1.1 simonb
122 1.14 thorpej /* Event counters */
123 1.14 thorpej struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
124 1.1 simonb NULL, "cpu", "tlbmiss");
125 1.14 thorpej struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
126 1.1 simonb NULL, "cpu", "tlbhit");
127 1.14 thorpej struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
128 1.1 simonb NULL, "cpu", "tlbflush");
129 1.14 thorpej struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
130 1.1 simonb NULL, "cpu", "tlbenter");
131 1.1 simonb
132 1.1 simonb struct pmap kernel_pmap_;
133 1.52 pooka struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
134 1.1 simonb
135 1.1 simonb static int npgs;
136 1.1 simonb static u_int nextavail;
137 1.1 simonb #ifndef MSGBUFADDR
138 1.1 simonb extern paddr_t msgbuf_paddr;
139 1.1 simonb #endif
140 1.1 simonb
141 1.1 simonb static struct mem_region *mem, *avail;
142 1.1 simonb
143 1.1 simonb /*
144 1.1 simonb * This is a cache of referenced/modified bits.
145 1.1 simonb * Bits herein are shifted by ATTRSHFT.
146 1.1 simonb */
147 1.1 simonb static char *pmap_attrib;
148 1.1 simonb
149 1.1 simonb #define PV_WIRED 0x1
150 1.1 simonb #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
151 1.30 chs #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED)
152 1.30 chs #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED)
153 1.30 chs #define PV_CMPVA(va,pv) (!(((pv)->pv_va ^ (va)) & (~PV_WIRED)))
154 1.1 simonb
155 1.1 simonb struct pv_entry {
156 1.1 simonb struct pv_entry *pv_next; /* Linked list of mappings */
157 1.1 simonb vaddr_t pv_va; /* virtual address of mapping */
158 1.1 simonb struct pmap *pv_pm;
159 1.1 simonb };
160 1.1 simonb
161 1.42 freza /* Each index corresponds to TLB_SIZE_* value. */
162 1.42 freza static size_t tlbsize[] = {
163 1.42 freza 1024, /* TLB_SIZE_1K */
164 1.42 freza 4096, /* TLB_SIZE_4K */
165 1.42 freza 16384, /* TLB_SIZE_16K */
166 1.42 freza 65536, /* TLB_SIZE_64K */
167 1.42 freza 262144, /* TLB_SIZE_256K */
168 1.42 freza 1048576, /* TLB_SIZE_1M */
169 1.42 freza 4194304, /* TLB_SIZE_4M */
170 1.42 freza 16777216, /* TLB_SIZE_16M */
171 1.42 freza };
172 1.42 freza
173 1.1 simonb struct pv_entry *pv_table;
174 1.1 simonb static struct pool pv_pool;
175 1.1 simonb
176 1.1 simonb static int pmap_initialized;
177 1.1 simonb
178 1.1 simonb static int ctx_flush(int);
179 1.1 simonb
180 1.1 simonb inline struct pv_entry *pa_to_pv(paddr_t);
181 1.1 simonb static inline char *pa_to_attr(paddr_t);
182 1.1 simonb
183 1.1 simonb static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
184 1.1 simonb static inline int pte_enter(struct pmap *, vaddr_t, u_int);
185 1.1 simonb
186 1.49 hannken static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
187 1.1 simonb static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
188 1.1 simonb
189 1.42 freza static int ppc4xx_tlb_size_mask(size_t, int *, int *);
190 1.42 freza
191 1.1 simonb
192 1.1 simonb inline struct pv_entry *
193 1.1 simonb pa_to_pv(paddr_t pa)
194 1.1 simonb {
195 1.1 simonb int bank, pg;
196 1.1 simonb
197 1.60.2.4 uebayasi #ifdef XIP
198 1.60.2.4 uebayasi bank = vm_physseg_find_device(atop(pa), &pg);
199 1.60.2.4 uebayasi if (bank != -1)
200 1.60.2.4 uebayasi return &VM_PHYSDEV_PTR(bank)->pmseg.pvent[pg];
201 1.60.2.4 uebayasi #endif
202 1.1 simonb bank = vm_physseg_find(atop(pa), &pg);
203 1.60.2.4 uebayasi if (bank != -1)
204 1.60.2.4 uebayasi return &VM_PHYSMEM_PTR(bank)->pmseg.pvent[pg];
205 1.60.2.4 uebayasi return NULL;
206 1.1 simonb }
207 1.1 simonb
208 1.1 simonb static inline char *
209 1.1 simonb pa_to_attr(paddr_t pa)
210 1.1 simonb {
211 1.1 simonb int bank, pg;
212 1.1 simonb
213 1.60.2.4 uebayasi #ifdef XIP
214 1.60.2.4 uebayasi bank = vm_physseg_find_device(atop(pa), &pg);
215 1.60.2.4 uebayasi if (bank != -1)
216 1.60.2.4 uebayasi return &VM_PHYSDEV_PTR(bank)->pmseg.attrs[pg];
217 1.60.2.4 uebayasi #endif
218 1.1 simonb bank = vm_physseg_find(atop(pa), &pg);
219 1.60.2.4 uebayasi if (bank != -1)
220 1.60.2.4 uebayasi return &VM_PHYSMEM_PTR(bank)->pmseg.attrs[pg];
221 1.60.2.4 uebayasi return NULL;
222 1.1 simonb }
223 1.1 simonb
224 1.1 simonb /*
225 1.1 simonb * Insert PTE into page table.
226 1.1 simonb */
227 1.1 simonb int
228 1.1 simonb pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
229 1.1 simonb {
230 1.1 simonb int seg = STIDX(va);
231 1.1 simonb int ptn = PTIDX(va);
232 1.22 scw u_int oldpte;
233 1.1 simonb
234 1.1 simonb if (!pm->pm_ptbl[seg]) {
235 1.1 simonb /* Don't allocate a page to clear a non-existent mapping. */
236 1.30 chs if (!pte)
237 1.30 chs return (0);
238 1.1 simonb /* Allocate a page XXXX this will sleep! */
239 1.19 thorpej pm->pm_ptbl[seg] =
240 1.34 yamt (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
241 1.34 yamt UVM_KMF_WIRED | UVM_KMF_ZERO);
242 1.1 simonb }
243 1.22 scw oldpte = pm->pm_ptbl[seg][ptn];
244 1.1 simonb pm->pm_ptbl[seg][ptn] = pte;
245 1.1 simonb
246 1.1 simonb /* Flush entry. */
247 1.1 simonb ppc4xx_tlb_flush(va, pm->pm_ctx);
248 1.22 scw if (oldpte != pte) {
249 1.22 scw if (pte == 0)
250 1.22 scw pm->pm_stats.resident_count--;
251 1.22 scw else
252 1.22 scw pm->pm_stats.resident_count++;
253 1.22 scw }
254 1.1 simonb return (1);
255 1.1 simonb }
256 1.1 simonb
257 1.1 simonb /*
258 1.1 simonb * Get a pointer to a PTE in a page table.
259 1.1 simonb */
260 1.1 simonb volatile u_int *
261 1.1 simonb pte_find(struct pmap *pm, vaddr_t va)
262 1.1 simonb {
263 1.1 simonb int seg = STIDX(va);
264 1.1 simonb int ptn = PTIDX(va);
265 1.1 simonb
266 1.1 simonb if (pm->pm_ptbl[seg])
267 1.1 simonb return (&pm->pm_ptbl[seg][ptn]);
268 1.1 simonb
269 1.1 simonb return (NULL);
270 1.1 simonb }
271 1.1 simonb
272 1.1 simonb /*
273 1.1 simonb * This is called during initppc, before the system is really initialized.
274 1.1 simonb */
275 1.1 simonb void
276 1.1 simonb pmap_bootstrap(u_int kernelstart, u_int kernelend)
277 1.1 simonb {
278 1.1 simonb struct mem_region *mp, *mp1;
279 1.1 simonb int cnt, i;
280 1.1 simonb u_int s, e, sz;
281 1.1 simonb
282 1.42 freza tlbnext = tlb_nreserved;
283 1.42 freza
284 1.1 simonb /*
285 1.1 simonb * Allocate the kernel page table at the end of
286 1.1 simonb * kernel space so it's in the locked TTE.
287 1.1 simonb */
288 1.47 christos kernmap = (void *)kernelend;
289 1.1 simonb
290 1.1 simonb /*
291 1.1 simonb * Initialize kernel page table.
292 1.1 simonb */
293 1.1 simonb for (i = 0; i < STSZ; i++) {
294 1.10 eeh pmap_kernel()->pm_ptbl[i] = 0;
295 1.1 simonb }
296 1.1 simonb ctxbusy[0] = ctxbusy[1] = pmap_kernel();
297 1.1 simonb
298 1.1 simonb /*
299 1.1 simonb * Announce page-size to the VM-system
300 1.1 simonb */
301 1.1 simonb uvmexp.pagesize = NBPG;
302 1.1 simonb uvm_setpagesize();
303 1.1 simonb
304 1.1 simonb /*
305 1.1 simonb * Get memory.
306 1.1 simonb */
307 1.1 simonb mem_regions(&mem, &avail);
308 1.1 simonb for (mp = mem; mp->size; mp++) {
309 1.1 simonb physmem += btoc(mp->size);
310 1.1 simonb printf("+%lx,",mp->size);
311 1.1 simonb }
312 1.1 simonb printf("\n");
313 1.1 simonb ppc4xx_tlb_init();
314 1.1 simonb /*
315 1.1 simonb * Count the number of available entries.
316 1.1 simonb */
317 1.1 simonb for (cnt = 0, mp = avail; mp->size; mp++)
318 1.1 simonb cnt++;
319 1.1 simonb
320 1.1 simonb /*
321 1.1 simonb * Page align all regions.
322 1.1 simonb * Non-page aligned memory isn't very interesting to us.
323 1.1 simonb * Also, sort the entries for ascending addresses.
324 1.1 simonb */
325 1.1 simonb kernelstart &= ~PGOFSET;
326 1.1 simonb kernelend = (kernelend + PGOFSET) & ~PGOFSET;
327 1.1 simonb for (mp = avail; mp->size; mp++) {
328 1.1 simonb s = mp->start;
329 1.1 simonb e = mp->start + mp->size;
330 1.1 simonb printf("%08x-%08x -> ",s,e);
331 1.1 simonb /*
332 1.1 simonb * Check whether this region holds all of the kernel.
333 1.1 simonb */
334 1.1 simonb if (s < kernelstart && e > kernelend) {
335 1.1 simonb avail[cnt].start = kernelend;
336 1.1 simonb avail[cnt++].size = e - kernelend;
337 1.1 simonb e = kernelstart;
338 1.1 simonb }
339 1.1 simonb /*
340 1.1 simonb * Look whether this regions starts within the kernel.
341 1.1 simonb */
342 1.1 simonb if (s >= kernelstart && s < kernelend) {
343 1.1 simonb if (e <= kernelend)
344 1.1 simonb goto empty;
345 1.1 simonb s = kernelend;
346 1.1 simonb }
347 1.1 simonb /*
348 1.1 simonb * Now look whether this region ends within the kernel.
349 1.1 simonb */
350 1.1 simonb if (e > kernelstart && e <= kernelend) {
351 1.1 simonb if (s >= kernelstart)
352 1.1 simonb goto empty;
353 1.1 simonb e = kernelstart;
354 1.1 simonb }
355 1.1 simonb /*
356 1.1 simonb * Now page align the start and size of the region.
357 1.1 simonb */
358 1.1 simonb s = round_page(s);
359 1.1 simonb e = trunc_page(e);
360 1.1 simonb if (e < s)
361 1.1 simonb e = s;
362 1.1 simonb sz = e - s;
363 1.1 simonb printf("%08x-%08x = %x\n",s,e,sz);
364 1.1 simonb /*
365 1.1 simonb * Check whether some memory is left here.
366 1.1 simonb */
367 1.1 simonb if (sz == 0) {
368 1.1 simonb empty:
369 1.3 wiz memmove(mp, mp + 1,
370 1.3 wiz (cnt - (mp - avail)) * sizeof *mp);
371 1.1 simonb cnt--;
372 1.1 simonb mp--;
373 1.1 simonb continue;
374 1.1 simonb }
375 1.1 simonb /*
376 1.1 simonb * Do an insertion sort.
377 1.1 simonb */
378 1.1 simonb npgs += btoc(sz);
379 1.1 simonb for (mp1 = avail; mp1 < mp; mp1++)
380 1.1 simonb if (s < mp1->start)
381 1.1 simonb break;
382 1.1 simonb if (mp1 < mp) {
383 1.3 wiz memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
384 1.1 simonb mp1->start = s;
385 1.1 simonb mp1->size = sz;
386 1.1 simonb } else {
387 1.1 simonb mp->start = s;
388 1.1 simonb mp->size = sz;
389 1.1 simonb }
390 1.1 simonb }
391 1.1 simonb
392 1.1 simonb /*
393 1.1 simonb * We cannot do pmap_steal_memory here,
394 1.1 simonb * since we don't run with translation enabled yet.
395 1.1 simonb */
396 1.1 simonb #ifndef MSGBUFADDR
397 1.1 simonb /*
398 1.1 simonb * allow for msgbuf
399 1.1 simonb */
400 1.1 simonb sz = round_page(MSGBUFSIZE);
401 1.1 simonb mp = NULL;
402 1.1 simonb for (mp1 = avail; mp1->size; mp1++)
403 1.1 simonb if (mp1->size >= sz)
404 1.1 simonb mp = mp1;
405 1.1 simonb if (mp == NULL)
406 1.1 simonb panic("not enough memory?");
407 1.1 simonb
408 1.1 simonb npgs -= btoc(sz);
409 1.1 simonb msgbuf_paddr = mp->start + mp->size - sz;
410 1.1 simonb mp->size -= sz;
411 1.1 simonb if (mp->size <= 0)
412 1.3 wiz memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
413 1.1 simonb #endif
414 1.1 simonb
415 1.1 simonb for (mp = avail; mp->size; mp++)
416 1.1 simonb uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
417 1.1 simonb atop(mp->start), atop(mp->start + mp->size),
418 1.1 simonb VM_FREELIST_DEFAULT);
419 1.1 simonb
420 1.1 simonb /*
421 1.1 simonb * Initialize kernel pmap and hardware.
422 1.1 simonb */
423 1.1 simonb /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
424 1.1 simonb pmap_kernel()->pm_ctx = KERNEL_PID;
425 1.1 simonb nextavail = avail->start;
426 1.1 simonb
427 1.29 simonb evcnt_attach_static(&tlbmiss_ev);
428 1.1 simonb evcnt_attach_static(&tlbhit_ev);
429 1.1 simonb evcnt_attach_static(&tlbflush_ev);
430 1.1 simonb evcnt_attach_static(&tlbenter_ev);
431 1.42 freza
432 1.42 freza pmap_bootstrap_done = 1;
433 1.1 simonb }
434 1.1 simonb
435 1.1 simonb /*
436 1.1 simonb * Restrict given range to physical memory
437 1.1 simonb *
438 1.1 simonb * (Used by /dev/mem)
439 1.1 simonb */
440 1.1 simonb void
441 1.1 simonb pmap_real_memory(paddr_t *start, psize_t *size)
442 1.1 simonb {
443 1.1 simonb struct mem_region *mp;
444 1.1 simonb
445 1.1 simonb for (mp = mem; mp->size; mp++) {
446 1.1 simonb if (*start + *size > mp->start &&
447 1.1 simonb *start < mp->start + mp->size) {
448 1.1 simonb if (*start < mp->start) {
449 1.1 simonb *size -= mp->start - *start;
450 1.1 simonb *start = mp->start;
451 1.1 simonb }
452 1.1 simonb if (*start + *size > mp->start + mp->size)
453 1.1 simonb *size = mp->start + mp->size - *start;
454 1.1 simonb return;
455 1.1 simonb }
456 1.1 simonb }
457 1.1 simonb *size = 0;
458 1.1 simonb }
459 1.1 simonb
460 1.1 simonb /*
461 1.1 simonb * Initialize anything else for pmap handling.
462 1.1 simonb * Called during vm_init().
463 1.1 simonb */
464 1.1 simonb void
465 1.1 simonb pmap_init(void)
466 1.1 simonb {
467 1.1 simonb struct pv_entry *pv;
468 1.1 simonb vsize_t sz;
469 1.1 simonb vaddr_t addr;
470 1.1 simonb int i, s;
471 1.1 simonb int bank;
472 1.1 simonb char *attr;
473 1.1 simonb
474 1.1 simonb sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
475 1.1 simonb sz = round_page(sz);
476 1.34 yamt addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
477 1.1 simonb s = splvm();
478 1.1 simonb pv = pv_table = (struct pv_entry *)addr;
479 1.1 simonb for (i = npgs; --i >= 0;)
480 1.1 simonb pv++->pv_pm = NULL;
481 1.1 simonb pmap_attrib = (char *)pv;
482 1.2 wiz memset(pv, 0, npgs);
483 1.1 simonb
484 1.1 simonb pv = pv_table;
485 1.1 simonb attr = pmap_attrib;
486 1.1 simonb for (bank = 0; bank < vm_nphysseg; bank++) {
487 1.60.2.2 uebayasi sz = VM_PHYSMEM_PTR(bank)->end - VM_PHYSMEM_PTR(bank)->start;
488 1.60.2.2 uebayasi VM_PHYSMEM_PTR(bank)->pmseg.pvent = pv;
489 1.60.2.2 uebayasi VM_PHYSMEM_PTR(bank)->pmseg.attrs = attr;
490 1.1 simonb pv += sz;
491 1.1 simonb attr += sz;
492 1.1 simonb }
493 1.1 simonb
494 1.1 simonb pmap_initialized = 1;
495 1.1 simonb splx(s);
496 1.1 simonb
497 1.1 simonb /* Setup a pool for additional pvlist structures */
498 1.48 ad pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL,
499 1.48 ad IPL_VM);
500 1.21 thorpej }
501 1.21 thorpej
502 1.60.2.4 uebayasi void
503 1.60.2.4 uebayasi pmap_physseg_init(struct vm_physseg *seg)
504 1.60.2.4 uebayasi {
505 1.60.2.4 uebayasi size_t npages;
506 1.60.2.4 uebayasi vsize_t sz;
507 1.60.2.4 uebayasi struct pv_entry *pv;
508 1.60.2.4 uebayasi char *attr;
509 1.60.2.4 uebayasi
510 1.60.2.4 uebayasi npages = seg->end - seg->start + 1;
511 1.60.2.4 uebayasi sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npages);
512 1.60.2.4 uebayasi sz = round_page(sz);
513 1.60.2.4 uebayasi pv = (void *)uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
514 1.60.2.4 uebayasi attr = (void *)(pv + npages);
515 1.60.2.4 uebayasi
516 1.60.2.4 uebayasi seg->pmseg.pvent = pv;
517 1.60.2.4 uebayasi seg->pmseg.attrs = attr;
518 1.60.2.4 uebayasi }
519 1.60.2.4 uebayasi
520 1.60.2.4 uebayasi void
521 1.60.2.4 uebayasi pmap_physseg_fini(struct vm_physseg *seg)
522 1.60.2.4 uebayasi {
523 1.60.2.4 uebayasi size_t npages;
524 1.60.2.4 uebayasi vsize_t sz;
525 1.60.2.4 uebayasi
526 1.60.2.4 uebayasi npages = seg->end - seg->start + 1;
527 1.60.2.4 uebayasi sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npages);
528 1.60.2.4 uebayasi sz = round_page(sz);
529 1.60.2.4 uebayasi uvm_km_free(kernel_map, (vaddr_t)seg->pmseg.pvent, sz, UVM_KMF_WIRED);
530 1.60.2.4 uebayasi }
531 1.60.2.4 uebayasi
532 1.21 thorpej /*
533 1.21 thorpej * How much virtual space is available to the kernel?
534 1.21 thorpej */
535 1.21 thorpej void
536 1.21 thorpej pmap_virtual_space(vaddr_t *start, vaddr_t *end)
537 1.21 thorpej {
538 1.21 thorpej
539 1.21 thorpej #if 0
540 1.21 thorpej /*
541 1.21 thorpej * Reserve one segment for kernel virtual memory
542 1.21 thorpej */
543 1.21 thorpej *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
544 1.21 thorpej *end = *start + SEGMENT_LENGTH;
545 1.21 thorpej #else
546 1.21 thorpej *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
547 1.21 thorpej *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
548 1.21 thorpej #endif
549 1.1 simonb }
550 1.1 simonb
551 1.5 eeh #ifdef PMAP_GROWKERNEL
552 1.5 eeh /*
553 1.5 eeh * Preallocate kernel page tables to a specified VA.
554 1.5 eeh * This simply loops through the first TTE for each
555 1.12 simonb * page table from the beginning of the kernel pmap,
556 1.5 eeh * reads the entry, and if the result is
557 1.5 eeh * zero (either invalid entry or no page table) it stores
558 1.5 eeh * a zero there, populating page tables in the process.
559 1.5 eeh * This is not the most efficient technique but i don't
560 1.5 eeh * expect it to be called that often.
561 1.5 eeh */
562 1.53 dsl extern struct vm_page *vm_page_alloc1(void);
563 1.53 dsl extern void vm_page_free1(struct vm_page *);
564 1.5 eeh
565 1.5 eeh vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
566 1.5 eeh
567 1.12 simonb vaddr_t
568 1.30 chs pmap_growkernel(vaddr_t maxkvaddr)
569 1.5 eeh {
570 1.5 eeh int s;
571 1.5 eeh int seg;
572 1.5 eeh paddr_t pg;
573 1.5 eeh struct pmap *pm = pmap_kernel();
574 1.12 simonb
575 1.5 eeh s = splvm();
576 1.5 eeh
577 1.5 eeh /* Align with the start of a page table */
578 1.5 eeh for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
579 1.5 eeh kbreak += PTMAP) {
580 1.5 eeh seg = STIDX(kbreak);
581 1.5 eeh
582 1.30 chs if (pte_find(pm, kbreak))
583 1.30 chs continue;
584 1.12 simonb
585 1.5 eeh if (uvm.page_init_done) {
586 1.5 eeh pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
587 1.5 eeh } else {
588 1.5 eeh if (!uvm_page_physget(&pg))
589 1.5 eeh panic("pmap_growkernel: no memory");
590 1.5 eeh }
591 1.32 simonb if (!pg)
592 1.32 simonb panic("pmap_growkernel: no pages");
593 1.5 eeh pmap_zero_page((paddr_t)pg);
594 1.5 eeh
595 1.5 eeh /* XXX This is based on all phymem being addressable */
596 1.5 eeh pm->pm_ptbl[seg] = (u_int *)pg;
597 1.5 eeh }
598 1.5 eeh splx(s);
599 1.5 eeh return (kbreak);
600 1.5 eeh }
601 1.5 eeh
602 1.5 eeh /*
603 1.5 eeh * vm_page_alloc1:
604 1.5 eeh *
605 1.5 eeh * Allocate and return a memory cell with no associated object.
606 1.5 eeh */
607 1.5 eeh struct vm_page *
608 1.30 chs vm_page_alloc1(void)
609 1.5 eeh {
610 1.30 chs struct vm_page *pg;
611 1.30 chs
612 1.30 chs pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
613 1.5 eeh if (pg) {
614 1.5 eeh pg->wire_count = 1; /* no mappings yet */
615 1.5 eeh pg->flags &= ~PG_BUSY; /* never busy */
616 1.5 eeh }
617 1.5 eeh return pg;
618 1.5 eeh }
619 1.5 eeh
620 1.5 eeh /*
621 1.5 eeh * vm_page_free1:
622 1.5 eeh *
623 1.5 eeh * Returns the given page to the free list,
624 1.5 eeh * disassociating it with any VM object.
625 1.5 eeh *
626 1.5 eeh * Object and page must be locked prior to entry.
627 1.5 eeh */
628 1.5 eeh void
629 1.36 scw vm_page_free1(struct vm_page *pg)
630 1.5 eeh {
631 1.10 eeh #ifdef DIAGNOSTIC
632 1.36 scw if (pg->flags != (PG_CLEAN|PG_FAKE)) {
633 1.36 scw printf("Freeing invalid page %p\n", pg);
634 1.36 scw printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg));
635 1.10 eeh #ifdef DDB
636 1.5 eeh Debugger();
637 1.10 eeh #endif
638 1.5 eeh return;
639 1.5 eeh }
640 1.10 eeh #endif
641 1.36 scw pg->flags |= PG_BUSY;
642 1.36 scw pg->wire_count = 0;
643 1.36 scw uvm_pagefree(pg);
644 1.5 eeh }
645 1.5 eeh #endif
646 1.5 eeh
647 1.1 simonb /*
648 1.1 simonb * Create and return a physical map.
649 1.1 simonb */
650 1.1 simonb struct pmap *
651 1.1 simonb pmap_create(void)
652 1.1 simonb {
653 1.1 simonb struct pmap *pm;
654 1.1 simonb
655 1.30 chs pm = malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
656 1.30 chs memset(pm, 0, sizeof *pm);
657 1.30 chs pm->pm_refs = 1;
658 1.1 simonb return pm;
659 1.1 simonb }
660 1.1 simonb
661 1.1 simonb /*
662 1.1 simonb * Add a reference to the given pmap.
663 1.1 simonb */
664 1.1 simonb void
665 1.1 simonb pmap_reference(struct pmap *pm)
666 1.1 simonb {
667 1.1 simonb
668 1.1 simonb pm->pm_refs++;
669 1.1 simonb }
670 1.1 simonb
671 1.1 simonb /*
672 1.1 simonb * Retire the given pmap from service.
673 1.1 simonb * Should only be called if the map contains no valid mappings.
674 1.1 simonb */
675 1.1 simonb void
676 1.1 simonb pmap_destroy(struct pmap *pm)
677 1.1 simonb {
678 1.30 chs int i;
679 1.1 simonb
680 1.30 chs if (--pm->pm_refs > 0) {
681 1.30 chs return;
682 1.1 simonb }
683 1.30 chs KASSERT(pm->pm_stats.resident_count == 0);
684 1.30 chs KASSERT(pm->pm_stats.wired_count == 0);
685 1.1 simonb for (i = 0; i < STSZ; i++)
686 1.1 simonb if (pm->pm_ptbl[i]) {
687 1.19 thorpej uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
688 1.34 yamt PAGE_SIZE, UVM_KMF_WIRED);
689 1.1 simonb pm->pm_ptbl[i] = NULL;
690 1.1 simonb }
691 1.30 chs if (pm->pm_ctx)
692 1.30 chs ctx_free(pm);
693 1.30 chs free(pm, M_VMPMAP);
694 1.1 simonb }
695 1.1 simonb
696 1.1 simonb /*
697 1.1 simonb * Copy the range specified by src_addr/len
698 1.1 simonb * from the source map to the range dst_addr/len
699 1.1 simonb * in the destination map.
700 1.1 simonb *
701 1.1 simonb * This routine is only advisory and need not do anything.
702 1.1 simonb */
703 1.1 simonb void
704 1.1 simonb pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
705 1.1 simonb vsize_t len, vaddr_t src_addr)
706 1.1 simonb {
707 1.1 simonb }
708 1.1 simonb
709 1.1 simonb /*
710 1.1 simonb * Require that all active physical maps contain no
711 1.1 simonb * incorrect entries NOW.
712 1.1 simonb */
713 1.1 simonb void
714 1.4 chris pmap_update(struct pmap *pmap)
715 1.1 simonb {
716 1.1 simonb }
717 1.1 simonb
718 1.1 simonb /*
719 1.1 simonb * Fill the given physical page with zeroes.
720 1.1 simonb */
721 1.1 simonb void
722 1.1 simonb pmap_zero_page(paddr_t pa)
723 1.1 simonb {
724 1.1 simonb
725 1.8 thorpej #ifdef PPC_4XX_NOCACHE
726 1.47 christos memset((void *)pa, 0, PAGE_SIZE);
727 1.1 simonb #else
728 1.1 simonb int i;
729 1.1 simonb
730 1.19 thorpej for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
731 1.38 perry __asm volatile ("dcbz 0,%0" :: "r"(pa));
732 1.1 simonb pa += CACHELINESIZE;
733 1.1 simonb }
734 1.1 simonb #endif
735 1.1 simonb }
736 1.1 simonb
737 1.1 simonb /*
738 1.1 simonb * Copy the given physical source page to its destination.
739 1.1 simonb */
740 1.1 simonb void
741 1.1 simonb pmap_copy_page(paddr_t src, paddr_t dst)
742 1.1 simonb {
743 1.1 simonb
744 1.47 christos memcpy((void *)dst, (void *)src, PAGE_SIZE);
745 1.1 simonb dcache_flush_page(dst);
746 1.1 simonb }
747 1.1 simonb
748 1.1 simonb /*
749 1.49 hannken * This returns != 0 on success.
750 1.1 simonb */
751 1.1 simonb static inline int
752 1.49 hannken pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
753 1.1 simonb {
754 1.1 simonb struct pv_entry *pv, *npv = NULL;
755 1.1 simonb int s;
756 1.1 simonb
757 1.1 simonb if (!pmap_initialized)
758 1.1 simonb return 0;
759 1.1 simonb
760 1.1 simonb s = splvm();
761 1.1 simonb pv = pa_to_pv(pa);
762 1.1 simonb if (!pv->pv_pm) {
763 1.1 simonb /*
764 1.1 simonb * No entries yet, use header as the first entry.
765 1.1 simonb */
766 1.1 simonb pv->pv_va = va;
767 1.1 simonb pv->pv_pm = pm;
768 1.1 simonb pv->pv_next = NULL;
769 1.1 simonb } else {
770 1.1 simonb /*
771 1.1 simonb * There is at least one other VA mapping this page.
772 1.1 simonb * Place this entry after the header.
773 1.1 simonb */
774 1.49 hannken npv = pool_get(&pv_pool, PR_NOWAIT);
775 1.49 hannken if (npv == NULL) {
776 1.49 hannken if ((flags & PMAP_CANFAIL) == 0)
777 1.49 hannken panic("pmap_enter_pv: failed");
778 1.49 hannken splx(s);
779 1.49 hannken return 0;
780 1.49 hannken }
781 1.1 simonb npv->pv_va = va;
782 1.1 simonb npv->pv_pm = pm;
783 1.1 simonb npv->pv_next = pv->pv_next;
784 1.1 simonb pv->pv_next = npv;
785 1.33 chs pv = npv;
786 1.1 simonb }
787 1.49 hannken if (flags & PMAP_WIRED) {
788 1.30 chs PV_WIRE(pv);
789 1.33 chs pm->pm_stats.wired_count++;
790 1.30 chs }
791 1.1 simonb splx(s);
792 1.1 simonb return (1);
793 1.1 simonb }
794 1.1 simonb
795 1.1 simonb static void
796 1.1 simonb pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
797 1.1 simonb {
798 1.1 simonb struct pv_entry *pv, *npv;
799 1.1 simonb
800 1.1 simonb /*
801 1.1 simonb * Remove from the PV table.
802 1.1 simonb */
803 1.1 simonb pv = pa_to_pv(pa);
804 1.30 chs if (!pv)
805 1.30 chs return;
806 1.1 simonb
807 1.1 simonb /*
808 1.1 simonb * If it is the first entry on the list, it is actually
809 1.1 simonb * in the header and we must copy the following entry up
810 1.1 simonb * to the header. Otherwise we must search the list for
811 1.1 simonb * the entry. In either case we free the now unused entry.
812 1.1 simonb */
813 1.1 simonb if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
814 1.30 chs if (PV_ISWIRED(pv)) {
815 1.30 chs pm->pm_stats.wired_count--;
816 1.30 chs }
817 1.1 simonb if ((npv = pv->pv_next)) {
818 1.1 simonb *pv = *npv;
819 1.1 simonb pool_put(&pv_pool, npv);
820 1.1 simonb } else
821 1.1 simonb pv->pv_pm = NULL;
822 1.1 simonb } else {
823 1.1 simonb for (; (npv = pv->pv_next) != NULL; pv = npv)
824 1.1 simonb if (pm == npv->pv_pm && PV_CMPVA(va, npv))
825 1.1 simonb break;
826 1.1 simonb if (npv) {
827 1.1 simonb pv->pv_next = npv->pv_next;
828 1.30 chs if (PV_ISWIRED(npv)) {
829 1.30 chs pm->pm_stats.wired_count--;
830 1.30 chs }
831 1.1 simonb pool_put(&pv_pool, npv);
832 1.1 simonb }
833 1.1 simonb }
834 1.1 simonb }
835 1.1 simonb
836 1.1 simonb /*
837 1.1 simonb * Insert physical page at pa into the given pmap at virtual address va.
838 1.1 simonb */
839 1.1 simonb int
840 1.55 he pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
841 1.1 simonb {
842 1.1 simonb int s;
843 1.1 simonb u_int tte;
844 1.57 thorpej bool managed;
845 1.1 simonb
846 1.1 simonb /*
847 1.1 simonb * Have to remove any existing mapping first.
848 1.1 simonb */
849 1.19 thorpej pmap_remove(pm, va, va + PAGE_SIZE);
850 1.1 simonb
851 1.30 chs if (flags & PMAP_WIRED)
852 1.30 chs flags |= prot;
853 1.1 simonb
854 1.60.2.1 uebayasi managed = ((flags & PMAP_UNMANAGED) == 0) && uvm_pageismanaged(pa);
855 1.1 simonb
856 1.1 simonb /*
857 1.1 simonb * Generate TTE.
858 1.1 simonb */
859 1.26 chs tte = TTE_PA(pa);
860 1.1 simonb /* XXXX -- need to support multiple page sizes. */
861 1.1 simonb tte |= TTE_SZ_16K;
862 1.1 simonb #ifdef DIAGNOSTIC
863 1.1 simonb if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
864 1.1 simonb (PME_NOCACHE | PME_WRITETHROUG))
865 1.13 provos panic("pmap_enter: uncached & writethrough");
866 1.1 simonb #endif
867 1.1 simonb if (flags & PME_NOCACHE)
868 1.1 simonb /* Must be I/O mapping */
869 1.1 simonb tte |= TTE_I | TTE_G;
870 1.8 thorpej #ifdef PPC_4XX_NOCACHE
871 1.1 simonb tte |= TTE_I;
872 1.1 simonb #else
873 1.1 simonb else if (flags & PME_WRITETHROUG)
874 1.1 simonb /* Uncached and writethrough are not compatible */
875 1.1 simonb tte |= TTE_W;
876 1.1 simonb #endif
877 1.1 simonb if (pm == pmap_kernel())
878 1.1 simonb tte |= TTE_ZONE(ZONE_PRIV);
879 1.1 simonb else
880 1.1 simonb tte |= TTE_ZONE(ZONE_USER);
881 1.1 simonb
882 1.1 simonb if (flags & VM_PROT_WRITE)
883 1.1 simonb tte |= TTE_WR;
884 1.1 simonb
885 1.26 chs if (flags & VM_PROT_EXECUTE)
886 1.26 chs tte |= TTE_EX;
887 1.26 chs
888 1.1 simonb /*
889 1.1 simonb * Now record mapping for later back-translation.
890 1.1 simonb */
891 1.1 simonb if (pmap_initialized && managed) {
892 1.1 simonb char *attr;
893 1.1 simonb
894 1.49 hannken if (!pmap_enter_pv(pm, va, pa, flags)) {
895 1.1 simonb /* Could not enter pv on a managed page */
896 1.1 simonb return 1;
897 1.1 simonb }
898 1.1 simonb
899 1.1 simonb /* Now set attributes. */
900 1.1 simonb attr = pa_to_attr(pa);
901 1.1 simonb #ifdef DIAGNOSTIC
902 1.1 simonb if (!attr)
903 1.13 provos panic("managed but no attr");
904 1.1 simonb #endif
905 1.1 simonb if (flags & VM_PROT_ALL)
906 1.30 chs *attr |= PMAP_ATTR_REF;
907 1.1 simonb if (flags & VM_PROT_WRITE)
908 1.30 chs *attr |= PMAP_ATTR_CHG;
909 1.1 simonb }
910 1.1 simonb
911 1.1 simonb s = splvm();
912 1.1 simonb
913 1.1 simonb /* Insert page into page table. */
914 1.1 simonb pte_enter(pm, va, tte);
915 1.1 simonb
916 1.1 simonb /* If this is a real fault, enter it in the tlb */
917 1.1 simonb if (tte && ((flags & PMAP_WIRED) == 0)) {
918 1.1 simonb ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
919 1.1 simonb }
920 1.1 simonb splx(s);
921 1.6 simonb
922 1.6 simonb /* Flush the real memory from the instruction cache. */
923 1.6 simonb if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
924 1.6 simonb __syncicache((void *)pa, PAGE_SIZE);
925 1.6 simonb
926 1.1 simonb return 0;
927 1.1 simonb }
928 1.1 simonb
929 1.1 simonb void
930 1.1 simonb pmap_unwire(struct pmap *pm, vaddr_t va)
931 1.1 simonb {
932 1.33 chs struct pv_entry *pv;
933 1.1 simonb paddr_t pa;
934 1.30 chs int s;
935 1.1 simonb
936 1.1 simonb if (!pmap_extract(pm, va, &pa)) {
937 1.1 simonb return;
938 1.1 simonb }
939 1.1 simonb
940 1.1 simonb pv = pa_to_pv(pa);
941 1.30 chs if (!pv)
942 1.30 chs return;
943 1.1 simonb
944 1.30 chs s = splvm();
945 1.33 chs while (pv != NULL) {
946 1.33 chs if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
947 1.33 chs if (PV_ISWIRED(pv)) {
948 1.33 chs PV_UNWIRE(pv);
949 1.30 chs pm->pm_stats.wired_count--;
950 1.30 chs }
951 1.1 simonb break;
952 1.1 simonb }
953 1.33 chs pv = pv->pv_next;
954 1.1 simonb }
955 1.1 simonb splx(s);
956 1.1 simonb }
957 1.1 simonb
958 1.1 simonb void
959 1.59 cegger pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
960 1.1 simonb {
961 1.1 simonb int s;
962 1.1 simonb u_int tte;
963 1.1 simonb struct pmap *pm = pmap_kernel();
964 1.1 simonb
965 1.1 simonb /*
966 1.1 simonb * Have to remove any existing mapping first.
967 1.1 simonb */
968 1.1 simonb
969 1.1 simonb /*
970 1.1 simonb * Generate TTE.
971 1.1 simonb *
972 1.1 simonb * XXXX
973 1.1 simonb *
974 1.1 simonb * Since the kernel does not handle execution privileges properly,
975 1.1 simonb * we will handle read and execute permissions together.
976 1.1 simonb */
977 1.1 simonb tte = 0;
978 1.1 simonb if (prot & VM_PROT_ALL) {
979 1.1 simonb
980 1.1 simonb tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
981 1.1 simonb /* XXXX -- need to support multiple page sizes. */
982 1.1 simonb tte |= TTE_SZ_16K;
983 1.1 simonb #ifdef DIAGNOSTIC
984 1.1 simonb if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
985 1.1 simonb (PME_NOCACHE | PME_WRITETHROUG))
986 1.13 provos panic("pmap_kenter_pa: uncached & writethrough");
987 1.1 simonb #endif
988 1.1 simonb if (prot & PME_NOCACHE)
989 1.1 simonb /* Must be I/O mapping */
990 1.1 simonb tte |= TTE_I | TTE_G;
991 1.8 thorpej #ifdef PPC_4XX_NOCACHE
992 1.1 simonb tte |= TTE_I;
993 1.1 simonb #else
994 1.1 simonb else if (prot & PME_WRITETHROUG)
995 1.1 simonb /* Uncached and writethrough are not compatible */
996 1.1 simonb tte |= TTE_W;
997 1.1 simonb #endif
998 1.1 simonb if (prot & VM_PROT_WRITE)
999 1.1 simonb tte |= TTE_WR;
1000 1.1 simonb }
1001 1.1 simonb
1002 1.1 simonb s = splvm();
1003 1.1 simonb
1004 1.1 simonb /* Insert page into page table. */
1005 1.1 simonb pte_enter(pm, va, tte);
1006 1.1 simonb splx(s);
1007 1.1 simonb }
1008 1.1 simonb
1009 1.1 simonb void
1010 1.1 simonb pmap_kremove(vaddr_t va, vsize_t len)
1011 1.1 simonb {
1012 1.1 simonb
1013 1.1 simonb while (len > 0) {
1014 1.1 simonb pte_enter(pmap_kernel(), va, 0);
1015 1.1 simonb va += PAGE_SIZE;
1016 1.1 simonb len -= PAGE_SIZE;
1017 1.1 simonb }
1018 1.1 simonb }
1019 1.1 simonb
1020 1.1 simonb /*
1021 1.1 simonb * Remove the given range of mapping entries.
1022 1.1 simonb */
1023 1.1 simonb void
1024 1.1 simonb pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
1025 1.1 simonb {
1026 1.1 simonb int s;
1027 1.1 simonb paddr_t pa;
1028 1.1 simonb volatile u_int *ptp;
1029 1.1 simonb
1030 1.1 simonb s = splvm();
1031 1.1 simonb while (va < endva) {
1032 1.1 simonb
1033 1.1 simonb if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
1034 1.1 simonb pa = TTE_PA(pa);
1035 1.1 simonb pmap_remove_pv(pm, va, pa);
1036 1.1 simonb *ptp = 0;
1037 1.1 simonb ppc4xx_tlb_flush(va, pm->pm_ctx);
1038 1.1 simonb pm->pm_stats.resident_count--;
1039 1.1 simonb }
1040 1.19 thorpej va += PAGE_SIZE;
1041 1.1 simonb }
1042 1.1 simonb
1043 1.1 simonb splx(s);
1044 1.1 simonb }
1045 1.1 simonb
1046 1.1 simonb /*
1047 1.60.2.6 uebayasi * Convert the given kernel virtual address to the page frame
1048 1.60.2.6 uebayasi * number (mmap cookie).
1049 1.60.2.6 uebayasi */
1050 1.60.2.6 uebayasi paddr_t
1051 1.60.2.6 uebayasi pmap_mmap(vaddr_t addr, off_t off)
1052 1.60.2.6 uebayasi {
1053 1.60.2.6 uebayasi
1054 1.60.2.6 uebayasi return trunc_page((paddr_t)addr + off);
1055 1.60.2.6 uebayasi }
1056 1.60.2.6 uebayasi
1057 1.60.2.6 uebayasi /*
1058 1.1 simonb * Get the physical page address for the given pmap/virtual address.
1059 1.1 simonb */
1060 1.45 thorpej bool
1061 1.1 simonb pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1062 1.1 simonb {
1063 1.1 simonb int seg = STIDX(va);
1064 1.1 simonb int ptn = PTIDX(va);
1065 1.1 simonb u_int pa = 0;
1066 1.30 chs int s;
1067 1.1 simonb
1068 1.30 chs s = splvm();
1069 1.1 simonb if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
1070 1.1 simonb *pap = TTE_PA(pa) | (va & PGOFSET);
1071 1.1 simonb }
1072 1.1 simonb splx(s);
1073 1.1 simonb return (pa != 0);
1074 1.1 simonb }
1075 1.1 simonb
1076 1.1 simonb /*
1077 1.1 simonb * Lower the protection on the specified range of this pmap.
1078 1.1 simonb *
1079 1.1 simonb * There are only two cases: either the protection is going to 0,
1080 1.1 simonb * or it is going to read-only.
1081 1.1 simonb */
1082 1.1 simonb void
1083 1.1 simonb pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1084 1.1 simonb {
1085 1.1 simonb volatile u_int *ptp;
1086 1.26 chs int s, bic;
1087 1.1 simonb
1088 1.26 chs if ((prot & VM_PROT_READ) == 0) {
1089 1.26 chs pmap_remove(pm, sva, eva);
1090 1.26 chs return;
1091 1.26 chs }
1092 1.26 chs bic = 0;
1093 1.26 chs if ((prot & VM_PROT_WRITE) == 0) {
1094 1.26 chs bic |= TTE_WR;
1095 1.26 chs }
1096 1.26 chs if ((prot & VM_PROT_EXECUTE) == 0) {
1097 1.26 chs bic |= TTE_EX;
1098 1.26 chs }
1099 1.26 chs if (bic == 0) {
1100 1.26 chs return;
1101 1.26 chs }
1102 1.26 chs s = splvm();
1103 1.26 chs while (sva < eva) {
1104 1.26 chs if ((ptp = pte_find(pm, sva)) != NULL) {
1105 1.26 chs *ptp &= ~bic;
1106 1.26 chs ppc4xx_tlb_flush(sva, pm->pm_ctx);
1107 1.1 simonb }
1108 1.26 chs sva += PAGE_SIZE;
1109 1.1 simonb }
1110 1.26 chs splx(s);
1111 1.1 simonb }
1112 1.1 simonb
1113 1.45 thorpej bool
1114 1.30 chs pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
1115 1.1 simonb {
1116 1.30 chs paddr_t pa;
1117 1.1 simonb char *attr;
1118 1.30 chs int s, rv;
1119 1.1 simonb
1120 1.1 simonb /*
1121 1.1 simonb * First modify bits in cache.
1122 1.1 simonb */
1123 1.30 chs pa = VM_PAGE_TO_PHYS(pg);
1124 1.1 simonb attr = pa_to_attr(pa);
1125 1.1 simonb if (attr == NULL)
1126 1.46 thorpej return false;
1127 1.1 simonb
1128 1.30 chs s = splvm();
1129 1.1 simonb rv = ((*attr & mask) != 0);
1130 1.11 eeh if (clear) {
1131 1.1 simonb *attr &= ~mask;
1132 1.30 chs pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
1133 1.11 eeh }
1134 1.1 simonb splx(s);
1135 1.1 simonb return rv;
1136 1.1 simonb }
1137 1.1 simonb
1138 1.1 simonb
1139 1.1 simonb /*
1140 1.1 simonb * Lower the protection on the specified physical page.
1141 1.1 simonb *
1142 1.1 simonb * There are only two cases: either the protection is going to 0,
1143 1.1 simonb * or it is going to read-only.
1144 1.1 simonb */
1145 1.1 simonb void
1146 1.1 simonb pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1147 1.1 simonb {
1148 1.1 simonb paddr_t pa = VM_PAGE_TO_PHYS(pg);
1149 1.1 simonb vaddr_t va;
1150 1.1 simonb struct pv_entry *pvh, *pv, *npv;
1151 1.1 simonb struct pmap *pm;
1152 1.1 simonb
1153 1.1 simonb pvh = pa_to_pv(pa);
1154 1.1 simonb if (pvh == NULL)
1155 1.1 simonb return;
1156 1.1 simonb
1157 1.1 simonb /* Handle extra pvs which may be deleted in the operation */
1158 1.1 simonb for (pv = pvh->pv_next; pv; pv = npv) {
1159 1.1 simonb npv = pv->pv_next;
1160 1.1 simonb
1161 1.1 simonb pm = pv->pv_pm;
1162 1.1 simonb va = pv->pv_va;
1163 1.26 chs pmap_protect(pm, va, va + PAGE_SIZE, prot);
1164 1.1 simonb }
1165 1.1 simonb /* Now check the head pv */
1166 1.1 simonb if (pvh->pv_pm) {
1167 1.1 simonb pv = pvh;
1168 1.1 simonb pm = pv->pv_pm;
1169 1.1 simonb va = pv->pv_va;
1170 1.26 chs pmap_protect(pm, va, va + PAGE_SIZE, prot);
1171 1.1 simonb }
1172 1.1 simonb }
1173 1.1 simonb
1174 1.1 simonb /*
1175 1.1 simonb * Activate the address space for the specified process. If the process
1176 1.1 simonb * is the current process, load the new MMU context.
1177 1.1 simonb */
1178 1.1 simonb void
1179 1.17 thorpej pmap_activate(struct lwp *l)
1180 1.1 simonb {
1181 1.1 simonb #if 0
1182 1.17 thorpej struct pcb *pcb = &l->l_proc->p_addr->u_pcb;
1183 1.17 thorpej pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1184 1.1 simonb
1185 1.1 simonb /*
1186 1.60.2.3 uebayasi * XXX Normally performed in cpu_lwp_fork().
1187 1.1 simonb */
1188 1.17 thorpej printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1189 1.25 matt pcb->pcb_pm = pmap;
1190 1.1 simonb #endif
1191 1.1 simonb }
1192 1.1 simonb
1193 1.1 simonb /*
1194 1.1 simonb * Deactivate the specified process's address space.
1195 1.1 simonb */
1196 1.1 simonb void
1197 1.17 thorpej pmap_deactivate(struct lwp *l)
1198 1.1 simonb {
1199 1.1 simonb }
1200 1.1 simonb
1201 1.1 simonb /*
1202 1.1 simonb * Synchronize caches corresponding to [addr, addr+len) in p.
1203 1.1 simonb */
1204 1.1 simonb void
1205 1.1 simonb pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1206 1.1 simonb {
1207 1.1 simonb struct pmap *pm = p->p_vmspace->vm_map.pmap;
1208 1.18 hannken int msr, ctx, opid, step;
1209 1.18 hannken
1210 1.18 hannken step = CACHELINESIZE;
1211 1.1 simonb
1212 1.1 simonb /*
1213 1.1 simonb * Need to turn off IMMU and switch to user context.
1214 1.1 simonb * (icbi uses DMMU).
1215 1.1 simonb */
1216 1.1 simonb if (!(ctx = pm->pm_ctx)) {
1217 1.1 simonb /* No context -- assign it one */
1218 1.1 simonb ctx_alloc(pm);
1219 1.1 simonb ctx = pm->pm_ctx;
1220 1.1 simonb }
1221 1.38 perry __asm volatile("mfmsr %0;"
1222 1.27 simonb "li %1, %7;"
1223 1.1 simonb "andc %1,%0,%1;"
1224 1.1 simonb "mtmsr %1;"
1225 1.1 simonb "sync;isync;"
1226 1.1 simonb "mfpid %1;"
1227 1.1 simonb "mtpid %2;"
1228 1.1 simonb "sync; isync;"
1229 1.12 simonb "1:"
1230 1.1 simonb "dcbf 0,%3;"
1231 1.1 simonb "icbi 0,%3;"
1232 1.18 hannken "add %3,%3,%5;"
1233 1.18 hannken "addc. %4,%4,%6;"
1234 1.1 simonb "bge 1b;"
1235 1.1 simonb "mtpid %1;"
1236 1.1 simonb "mtmsr %0;"
1237 1.1 simonb "sync; isync"
1238 1.1 simonb : "=&r" (msr), "=&r" (opid)
1239 1.27 simonb : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
1240 1.27 simonb "K" (PSL_IR | PSL_DR));
1241 1.1 simonb }
1242 1.1 simonb
1243 1.1 simonb
1244 1.1 simonb /* This has to be done in real mode !!! */
1245 1.1 simonb void
1246 1.1 simonb ppc4xx_tlb_flush(vaddr_t va, int pid)
1247 1.1 simonb {
1248 1.1 simonb u_long i, found;
1249 1.1 simonb u_long msr;
1250 1.1 simonb
1251 1.1 simonb /* If there's no context then it can't be mapped. */
1252 1.26 chs if (!pid)
1253 1.26 chs return;
1254 1.1 simonb
1255 1.42 freza __asm( "mfpid %1;" /* Save PID */
1256 1.1 simonb "mfmsr %2;" /* Save MSR */
1257 1.1 simonb "li %0,0;" /* Now clear MSR */
1258 1.1 simonb "mtmsr %0;"
1259 1.1 simonb "mtpid %4;" /* Set PID */
1260 1.1 simonb "sync;"
1261 1.1 simonb "tlbsx. %0,0,%3;" /* Search TLB */
1262 1.1 simonb "sync;"
1263 1.1 simonb "mtpid %1;" /* Restore PID */
1264 1.1 simonb "mtmsr %2;" /* Restore MSR */
1265 1.1 simonb "sync;isync;"
1266 1.1 simonb "li %1,1;"
1267 1.1 simonb "beq 1f;"
1268 1.1 simonb "li %1,0;"
1269 1.1 simonb "1:"
1270 1.1 simonb : "=&r" (i), "=&r" (found), "=&r" (msr)
1271 1.1 simonb : "r" (va), "r" (pid));
1272 1.1 simonb if (found && !TLB_LOCKED(i)) {
1273 1.1 simonb
1274 1.1 simonb /* Now flush translation */
1275 1.39 perry __asm volatile(
1276 1.1 simonb "tlbwe %0,%1,0;"
1277 1.1 simonb "sync;isync;"
1278 1.1 simonb : : "r" (0), "r" (i));
1279 1.1 simonb
1280 1.1 simonb tlb_info[i].ti_ctx = 0;
1281 1.1 simonb tlb_info[i].ti_flags = 0;
1282 1.1 simonb tlbnext = i;
1283 1.1 simonb /* Successful flushes */
1284 1.1 simonb tlbflush_ev.ev_count++;
1285 1.1 simonb }
1286 1.1 simonb }
1287 1.1 simonb
1288 1.1 simonb void
1289 1.1 simonb ppc4xx_tlb_flush_all(void)
1290 1.1 simonb {
1291 1.1 simonb u_long i;
1292 1.1 simonb
1293 1.1 simonb for (i = 0; i < NTLB; i++)
1294 1.1 simonb if (!TLB_LOCKED(i)) {
1295 1.39 perry __asm volatile(
1296 1.1 simonb "tlbwe %0,%1,0;"
1297 1.1 simonb "sync;isync;"
1298 1.1 simonb : : "r" (0), "r" (i));
1299 1.1 simonb tlb_info[i].ti_ctx = 0;
1300 1.1 simonb tlb_info[i].ti_flags = 0;
1301 1.1 simonb }
1302 1.1 simonb
1303 1.39 perry __asm volatile("sync;isync");
1304 1.1 simonb }
1305 1.1 simonb
1306 1.1 simonb /* Find a TLB entry to evict. */
1307 1.1 simonb static int
1308 1.1 simonb ppc4xx_tlb_find_victim(void)
1309 1.1 simonb {
1310 1.1 simonb int flags;
1311 1.1 simonb
1312 1.1 simonb for (;;) {
1313 1.1 simonb if (++tlbnext >= NTLB)
1314 1.42 freza tlbnext = tlb_nreserved;
1315 1.1 simonb flags = tlb_info[tlbnext].ti_flags;
1316 1.12 simonb if (!(flags & TLBF_USED) ||
1317 1.1 simonb (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1318 1.1 simonb u_long va, stack = (u_long)&va;
1319 1.1 simonb
1320 1.1 simonb if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1321 1.1 simonb (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1322 1.1 simonb (flags & TLBF_USED)) {
1323 1.1 simonb /* Kernel stack page */
1324 1.1 simonb flags |= TLBF_USED;
1325 1.1 simonb tlb_info[tlbnext].ti_flags = flags;
1326 1.1 simonb } else {
1327 1.1 simonb /* Found it! */
1328 1.1 simonb return (tlbnext);
1329 1.1 simonb }
1330 1.1 simonb } else {
1331 1.1 simonb tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1332 1.1 simonb }
1333 1.1 simonb }
1334 1.1 simonb }
1335 1.1 simonb
1336 1.1 simonb void
1337 1.1 simonb ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1338 1.1 simonb {
1339 1.1 simonb u_long th, tl, idx;
1340 1.1 simonb tlbpid_t pid;
1341 1.1 simonb u_short msr;
1342 1.10 eeh paddr_t pa;
1343 1.10 eeh int s, sz;
1344 1.10 eeh
1345 1.1 simonb tlbenter_ev.ev_count++;
1346 1.1 simonb
1347 1.10 eeh sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1348 1.10 eeh pa = (pte & TTE_RPN_MASK(sz));
1349 1.10 eeh th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1350 1.10 eeh tl = (pte & ~TLB_RPN_MASK) | pa;
1351 1.10 eeh tl |= ppc4xx_tlbflags(va, pa);
1352 1.1 simonb
1353 1.1 simonb s = splhigh();
1354 1.1 simonb idx = ppc4xx_tlb_find_victim();
1355 1.1 simonb
1356 1.1 simonb #ifdef DIAGNOSTIC
1357 1.42 freza if ((idx < tlb_nreserved) || (idx >= NTLB)) {
1358 1.31 simonb panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
1359 1.1 simonb }
1360 1.1 simonb #endif
1361 1.12 simonb
1362 1.1 simonb tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1363 1.1 simonb tlb_info[idx].ti_ctx = ctx;
1364 1.1 simonb tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1365 1.1 simonb
1366 1.39 perry __asm volatile(
1367 1.1 simonb "mfmsr %0;" /* Save MSR */
1368 1.1 simonb "li %1,0;"
1369 1.1 simonb "tlbwe %1,%3,0;" /* Invalidate old entry. */
1370 1.1 simonb "mtmsr %1;" /* Clear MSR */
1371 1.1 simonb "mfpid %1;" /* Save old PID */
1372 1.1 simonb "mtpid %2;" /* Load translation ctx */
1373 1.1 simonb "sync; isync;"
1374 1.1 simonb #ifdef DEBUG
1375 1.1 simonb "andi. %3,%3,63;"
1376 1.1 simonb "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */
1377 1.1 simonb #endif
1378 1.1 simonb "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1379 1.1 simonb "sync; isync;"
1380 1.1 simonb "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1381 1.1 simonb "sync; isync;"
1382 1.1 simonb : "=&r" (msr), "=&r" (pid)
1383 1.1 simonb : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1384 1.1 simonb splx(s);
1385 1.1 simonb }
1386 1.1 simonb
1387 1.1 simonb void
1388 1.1 simonb ppc4xx_tlb_init(void)
1389 1.1 simonb {
1390 1.1 simonb int i;
1391 1.1 simonb
1392 1.1 simonb /* Mark reserved TLB entries */
1393 1.42 freza for (i = 0; i < tlb_nreserved; i++) {
1394 1.1 simonb tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1395 1.1 simonb tlb_info[i].ti_ctx = KERNEL_PID;
1396 1.1 simonb }
1397 1.1 simonb
1398 1.1 simonb /* Setup security zones */
1399 1.1 simonb /* Z0 - accessible by kernel only if TLB entry permissions allow
1400 1.1 simonb * Z1,Z2 - access is controlled by TLB entry permissions
1401 1.1 simonb * Z3 - full access regardless of TLB entry permissions
1402 1.1 simonb */
1403 1.1 simonb
1404 1.39 perry __asm volatile(
1405 1.1 simonb "mtspr %0,%1;"
1406 1.1 simonb "sync;"
1407 1.1 simonb :: "K"(SPR_ZPR), "r" (0x1b000000));
1408 1.1 simonb }
1409 1.1 simonb
1410 1.42 freza /*
1411 1.42 freza * ppc4xx_tlb_size_mask:
1412 1.42 freza *
1413 1.42 freza * Roundup size to supported page size, return TLBHI mask and real size.
1414 1.42 freza */
1415 1.42 freza static int
1416 1.42 freza ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
1417 1.42 freza {
1418 1.42 freza int i;
1419 1.42 freza
1420 1.42 freza for (i = 0; i < __arraycount(tlbsize); i++)
1421 1.42 freza if (size <= tlbsize[i]) {
1422 1.42 freza *mask = (i << TLB_SIZE_SHFT);
1423 1.42 freza *rsiz = tlbsize[i];
1424 1.42 freza return (0);
1425 1.42 freza }
1426 1.42 freza return (EINVAL);
1427 1.42 freza }
1428 1.42 freza
1429 1.42 freza /*
1430 1.42 freza * ppc4xx_tlb_mapiodev:
1431 1.42 freza *
1432 1.42 freza * Lookup virtual address of mapping previously entered via
1433 1.42 freza * ppc4xx_tlb_reserve. Search TLB directly so that we don't
1434 1.42 freza * need to waste extra storage for reserved mappings. Note
1435 1.42 freza * that reading TLBHI also sets PID, but all reserved mappings
1436 1.42 freza * use KERNEL_PID, so the side effect is nil.
1437 1.42 freza */
1438 1.42 freza void *
1439 1.42 freza ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
1440 1.42 freza {
1441 1.42 freza paddr_t pa;
1442 1.42 freza vaddr_t va;
1443 1.42 freza u_int lo, hi, sz;
1444 1.42 freza int i;
1445 1.42 freza
1446 1.42 freza /* tlb_nreserved is only allowed to grow, so this is safe. */
1447 1.42 freza for (i = 0; i < tlb_nreserved; i++) {
1448 1.42 freza __asm volatile (
1449 1.42 freza " tlbre %0,%2,1 \n" /* TLBLO */
1450 1.42 freza " tlbre %1,%2,0 \n" /* TLBHI */
1451 1.42 freza : "=&r" (lo), "=&r" (hi)
1452 1.42 freza : "r" (i));
1453 1.42 freza
1454 1.42 freza KASSERT(hi & TLB_VALID);
1455 1.42 freza KASSERT(mfspr(SPR_PID) == KERNEL_PID);
1456 1.42 freza
1457 1.42 freza pa = (lo & TLB_RPN_MASK);
1458 1.42 freza if (base < pa)
1459 1.42 freza continue;
1460 1.42 freza
1461 1.42 freza sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
1462 1.42 freza if ((base + len) > (pa + sz))
1463 1.42 freza continue;
1464 1.42 freza
1465 1.42 freza va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); /* sz = 2^n */
1466 1.42 freza return (void *)(va);
1467 1.42 freza }
1468 1.42 freza
1469 1.42 freza return (NULL);
1470 1.42 freza }
1471 1.42 freza
1472 1.42 freza /*
1473 1.42 freza * ppc4xx_tlb_reserve:
1474 1.42 freza *
1475 1.42 freza * Map physical range to kernel virtual chunk via reserved TLB entry.
1476 1.42 freza */
1477 1.42 freza void
1478 1.42 freza ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
1479 1.42 freza {
1480 1.42 freza u_int lo, hi;
1481 1.42 freza int szmask, rsize;
1482 1.42 freza
1483 1.42 freza /* Called before pmap_bootstrap(), va outside kernel space. */
1484 1.42 freza KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
1485 1.42 freza KASSERT(! pmap_bootstrap_done);
1486 1.42 freza KASSERT(tlb_nreserved < NTLB);
1487 1.42 freza
1488 1.42 freza /* Resolve size. */
1489 1.42 freza if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
1490 1.42 freza panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
1491 1.42 freza size, tlb_nreserved);
1492 1.42 freza
1493 1.42 freza /* Real size will be power of two >= 1024, so this is OK. */
1494 1.42 freza pa &= ~(rsize - 1); /* RPN */
1495 1.42 freza va &= ~(rsize - 1); /* EPN */
1496 1.42 freza
1497 1.42 freza lo = pa | TLB_WR | flags;
1498 1.43 kiyohara hi = va | TLB_VALID | szmask;
1499 1.42 freza
1500 1.42 freza #ifdef PPC_4XX_NOCACHE
1501 1.42 freza lo |= TLB_I;
1502 1.42 freza #endif
1503 1.42 freza
1504 1.42 freza __asm volatile(
1505 1.42 freza " tlbwe %1,%0,1 \n" /* write TLBLO */
1506 1.42 freza " tlbwe %2,%0,0 \n" /* write TLBHI */
1507 1.42 freza " sync \n"
1508 1.42 freza " isync \n"
1509 1.42 freza : : "r" (tlb_nreserved), "r" (lo), "r" (hi));
1510 1.42 freza
1511 1.42 freza tlb_nreserved++;
1512 1.42 freza }
1513 1.1 simonb
1514 1.1 simonb /*
1515 1.1 simonb * We should pass the ctx in from trap code.
1516 1.1 simonb */
1517 1.1 simonb int
1518 1.1 simonb pmap_tlbmiss(vaddr_t va, int ctx)
1519 1.1 simonb {
1520 1.1 simonb volatile u_int *pte;
1521 1.1 simonb u_long tte;
1522 1.1 simonb
1523 1.1 simonb tlbmiss_ev.ev_count++;
1524 1.1 simonb
1525 1.1 simonb /*
1526 1.44 freza * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
1527 1.44 freza * Physical RAM is expected to live in this range, care must be taken
1528 1.44 freza * to not clobber 0 upto ${physmem} with device mappings in machdep
1529 1.44 freza * code.
1530 1.1 simonb */
1531 1.60.2.5 uebayasi if (ctx != KERNEL_PID ||
1532 1.60.2.5 uebayasi (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) {
1533 1.36 scw pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
1534 1.1 simonb if (pte == NULL) {
1535 1.1 simonb /* Map unmanaged addresses directly for kernel access */
1536 1.1 simonb return 1;
1537 1.1 simonb }
1538 1.1 simonb tte = *pte;
1539 1.1 simonb if (tte == 0) {
1540 1.1 simonb return 1;
1541 1.1 simonb }
1542 1.1 simonb } else {
1543 1.16 wiz /* Create a 16MB writable mapping. */
1544 1.8 thorpej #ifdef PPC_4XX_NOCACHE
1545 1.44 freza tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR;
1546 1.1 simonb #else
1547 1.1 simonb tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1548 1.1 simonb #endif
1549 1.1 simonb }
1550 1.1 simonb tlbhit_ev.ev_count++;
1551 1.1 simonb ppc4xx_tlb_enter(ctx, va, tte);
1552 1.1 simonb
1553 1.1 simonb return 0;
1554 1.1 simonb }
1555 1.1 simonb
1556 1.1 simonb /*
1557 1.1 simonb * Flush all the entries matching a context from the TLB.
1558 1.1 simonb */
1559 1.1 simonb static int
1560 1.1 simonb ctx_flush(int cnum)
1561 1.1 simonb {
1562 1.1 simonb int i;
1563 1.1 simonb
1564 1.1 simonb /* We gotta steal this context */
1565 1.42 freza for (i = tlb_nreserved; i < NTLB; i++) {
1566 1.1 simonb if (tlb_info[i].ti_ctx == cnum) {
1567 1.1 simonb /* Can't steal ctx if it has a locked entry. */
1568 1.1 simonb if (TLB_LOCKED(i)) {
1569 1.1 simonb #ifdef DIAGNOSTIC
1570 1.1 simonb printf("ctx_flush: can't invalidate "
1571 1.1 simonb "locked mapping %d "
1572 1.1 simonb "for context %d\n", i, cnum);
1573 1.10 eeh #ifdef DDB
1574 1.1 simonb Debugger();
1575 1.1 simonb #endif
1576 1.10 eeh #endif
1577 1.1 simonb return (1);
1578 1.1 simonb }
1579 1.1 simonb #ifdef DIAGNOSTIC
1580 1.42 freza if (i < tlb_nreserved)
1581 1.13 provos panic("TLB entry %d not locked", i);
1582 1.1 simonb #endif
1583 1.1 simonb /* Invalidate particular TLB entry regardless of locked status */
1584 1.39 perry __asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1585 1.1 simonb tlb_info[i].ti_flags = 0;
1586 1.1 simonb }
1587 1.1 simonb }
1588 1.1 simonb return (0);
1589 1.1 simonb }
1590 1.1 simonb
1591 1.1 simonb /*
1592 1.1 simonb * Allocate a context. If necessary, steal one from someone else.
1593 1.1 simonb *
1594 1.1 simonb * The new context is flushed from the TLB before returning.
1595 1.1 simonb */
1596 1.1 simonb int
1597 1.1 simonb ctx_alloc(struct pmap *pm)
1598 1.1 simonb {
1599 1.1 simonb int s, cnum;
1600 1.1 simonb static int next = MINCTX;
1601 1.1 simonb
1602 1.1 simonb if (pm == pmap_kernel()) {
1603 1.1 simonb #ifdef DIAGNOSTIC
1604 1.1 simonb printf("ctx_alloc: kernel pmap!\n");
1605 1.1 simonb #endif
1606 1.1 simonb return (0);
1607 1.1 simonb }
1608 1.1 simonb s = splvm();
1609 1.1 simonb
1610 1.1 simonb /* Find a likely context. */
1611 1.1 simonb cnum = next;
1612 1.1 simonb do {
1613 1.1 simonb if ((++cnum) > NUMCTX)
1614 1.1 simonb cnum = MINCTX;
1615 1.1 simonb } while (ctxbusy[cnum] != NULL && cnum != next);
1616 1.1 simonb
1617 1.1 simonb /* Now clean it out */
1618 1.1 simonb oops:
1619 1.1 simonb if (cnum < MINCTX)
1620 1.1 simonb cnum = MINCTX; /* Never steal ctx 0 or 1 */
1621 1.1 simonb if (ctx_flush(cnum)) {
1622 1.1 simonb /* oops -- something's wired. */
1623 1.1 simonb if ((++cnum) > NUMCTX)
1624 1.1 simonb cnum = MINCTX;
1625 1.1 simonb goto oops;
1626 1.1 simonb }
1627 1.1 simonb
1628 1.1 simonb if (ctxbusy[cnum]) {
1629 1.1 simonb #ifdef DEBUG
1630 1.1 simonb /* We should identify this pmap and clear it */
1631 1.1 simonb printf("Warning: stealing context %d\n", cnum);
1632 1.1 simonb #endif
1633 1.1 simonb ctxbusy[cnum]->pm_ctx = 0;
1634 1.1 simonb }
1635 1.1 simonb ctxbusy[cnum] = pm;
1636 1.1 simonb next = cnum;
1637 1.1 simonb splx(s);
1638 1.1 simonb pm->pm_ctx = cnum;
1639 1.1 simonb
1640 1.1 simonb return cnum;
1641 1.1 simonb }
1642 1.1 simonb
1643 1.1 simonb /*
1644 1.1 simonb * Give away a context.
1645 1.1 simonb */
1646 1.1 simonb void
1647 1.1 simonb ctx_free(struct pmap *pm)
1648 1.1 simonb {
1649 1.1 simonb int oldctx;
1650 1.1 simonb
1651 1.1 simonb oldctx = pm->pm_ctx;
1652 1.1 simonb
1653 1.1 simonb if (oldctx == 0)
1654 1.1 simonb panic("ctx_free: freeing kernel context");
1655 1.1 simonb #ifdef DIAGNOSTIC
1656 1.1 simonb if (ctxbusy[oldctx] == 0)
1657 1.1 simonb printf("ctx_free: freeing free context %d\n", oldctx);
1658 1.1 simonb if (ctxbusy[oldctx] != pm) {
1659 1.1 simonb printf("ctx_free: freeing someone esle's context\n "
1660 1.1 simonb "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1661 1.1 simonb oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1662 1.10 eeh #ifdef DDB
1663 1.1 simonb Debugger();
1664 1.10 eeh #endif
1665 1.1 simonb }
1666 1.1 simonb #endif
1667 1.1 simonb /* We should verify it has not been stolen and reallocated... */
1668 1.1 simonb ctxbusy[oldctx] = NULL;
1669 1.1 simonb ctx_flush(oldctx);
1670 1.1 simonb }
1671 1.5 eeh
1672 1.1 simonb
1673 1.1 simonb #ifdef DEBUG
1674 1.1 simonb /*
1675 1.1 simonb * Test ref/modify handling.
1676 1.1 simonb */
1677 1.53 dsl void pmap_testout(void);
1678 1.1 simonb void
1679 1.54 cegger pmap_testout(void)
1680 1.1 simonb {
1681 1.1 simonb vaddr_t va;
1682 1.1 simonb volatile int *loc;
1683 1.1 simonb int val = 0;
1684 1.1 simonb paddr_t pa;
1685 1.1 simonb struct vm_page *pg;
1686 1.1 simonb int ref, mod;
1687 1.1 simonb
1688 1.1 simonb /* Allocate a page */
1689 1.34 yamt va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1690 1.34 yamt UVM_KMF_WIRED | UVM_KMF_ZERO);
1691 1.1 simonb loc = (int*)va;
1692 1.1 simonb
1693 1.1 simonb pmap_extract(pmap_kernel(), va, &pa);
1694 1.1 simonb pg = PHYS_TO_VM_PAGE(pa);
1695 1.1 simonb pmap_unwire(pmap_kernel(), va);
1696 1.1 simonb
1697 1.34 yamt pmap_kremove(va, PAGE_SIZE);
1698 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1699 1.4 chris pmap_update(pmap_kernel());
1700 1.1 simonb
1701 1.1 simonb /* Now clear reference and modify */
1702 1.1 simonb ref = pmap_clear_reference(pg);
1703 1.1 simonb mod = pmap_clear_modify(pg);
1704 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1705 1.1 simonb (void *)(u_long)va, (long)pa,
1706 1.1 simonb ref, mod);
1707 1.1 simonb
1708 1.1 simonb /* Check it's properly cleared */
1709 1.1 simonb ref = pmap_is_referenced(pg);
1710 1.1 simonb mod = pmap_is_modified(pg);
1711 1.1 simonb printf("Checking cleared page: ref %d, mod %d\n",
1712 1.1 simonb ref, mod);
1713 1.1 simonb
1714 1.1 simonb /* Reference page */
1715 1.1 simonb val = *loc;
1716 1.1 simonb
1717 1.1 simonb ref = pmap_is_referenced(pg);
1718 1.1 simonb mod = pmap_is_modified(pg);
1719 1.1 simonb printf("Referenced page: ref %d, mod %d val %x\n",
1720 1.1 simonb ref, mod, val);
1721 1.1 simonb
1722 1.1 simonb /* Now clear reference and modify */
1723 1.1 simonb ref = pmap_clear_reference(pg);
1724 1.1 simonb mod = pmap_clear_modify(pg);
1725 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1726 1.1 simonb (void *)(u_long)va, (long)pa,
1727 1.1 simonb ref, mod);
1728 1.12 simonb
1729 1.1 simonb /* Modify page */
1730 1.1 simonb *loc = 1;
1731 1.1 simonb
1732 1.1 simonb ref = pmap_is_referenced(pg);
1733 1.1 simonb mod = pmap_is_modified(pg);
1734 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1735 1.1 simonb ref, mod);
1736 1.1 simonb
1737 1.1 simonb /* Now clear reference and modify */
1738 1.1 simonb ref = pmap_clear_reference(pg);
1739 1.1 simonb mod = pmap_clear_modify(pg);
1740 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1741 1.1 simonb (void *)(u_long)va, (long)pa,
1742 1.1 simonb ref, mod);
1743 1.1 simonb
1744 1.1 simonb /* Check it's properly cleared */
1745 1.1 simonb ref = pmap_is_referenced(pg);
1746 1.1 simonb mod = pmap_is_modified(pg);
1747 1.1 simonb printf("Checking cleared page: ref %d, mod %d\n",
1748 1.1 simonb ref, mod);
1749 1.1 simonb
1750 1.1 simonb /* Modify page */
1751 1.1 simonb *loc = 1;
1752 1.1 simonb
1753 1.1 simonb ref = pmap_is_referenced(pg);
1754 1.1 simonb mod = pmap_is_modified(pg);
1755 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1756 1.1 simonb ref, mod);
1757 1.1 simonb
1758 1.1 simonb /* Check pmap_protect() */
1759 1.1 simonb pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1760 1.4 chris pmap_update(pmap_kernel());
1761 1.1 simonb ref = pmap_is_referenced(pg);
1762 1.1 simonb mod = pmap_is_modified(pg);
1763 1.1 simonb printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1764 1.1 simonb ref, mod);
1765 1.1 simonb
1766 1.1 simonb /* Now clear reference and modify */
1767 1.1 simonb ref = pmap_clear_reference(pg);
1768 1.1 simonb mod = pmap_clear_modify(pg);
1769 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1770 1.1 simonb (void *)(u_long)va, (long)pa,
1771 1.1 simonb ref, mod);
1772 1.1 simonb
1773 1.1 simonb /* Reference page */
1774 1.1 simonb val = *loc;
1775 1.1 simonb
1776 1.1 simonb ref = pmap_is_referenced(pg);
1777 1.1 simonb mod = pmap_is_modified(pg);
1778 1.1 simonb printf("Referenced page: ref %d, mod %d val %x\n",
1779 1.1 simonb ref, mod, val);
1780 1.1 simonb
1781 1.1 simonb /* Now clear reference and modify */
1782 1.1 simonb ref = pmap_clear_reference(pg);
1783 1.1 simonb mod = pmap_clear_modify(pg);
1784 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1785 1.1 simonb (void *)(u_long)va, (long)pa,
1786 1.1 simonb ref, mod);
1787 1.12 simonb
1788 1.1 simonb /* Modify page */
1789 1.1 simonb #if 0
1790 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1791 1.4 chris pmap_update(pmap_kernel());
1792 1.1 simonb #endif
1793 1.1 simonb *loc = 1;
1794 1.1 simonb
1795 1.1 simonb ref = pmap_is_referenced(pg);
1796 1.1 simonb mod = pmap_is_modified(pg);
1797 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1798 1.1 simonb ref, mod);
1799 1.1 simonb
1800 1.1 simonb /* Check pmap_protect() */
1801 1.1 simonb pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1802 1.4 chris pmap_update(pmap_kernel());
1803 1.1 simonb ref = pmap_is_referenced(pg);
1804 1.1 simonb mod = pmap_is_modified(pg);
1805 1.1 simonb printf("pmap_protect(): ref %d, mod %d\n",
1806 1.1 simonb ref, mod);
1807 1.1 simonb
1808 1.1 simonb /* Now clear reference and modify */
1809 1.1 simonb ref = pmap_clear_reference(pg);
1810 1.1 simonb mod = pmap_clear_modify(pg);
1811 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1812 1.1 simonb (void *)(u_long)va, (long)pa,
1813 1.1 simonb ref, mod);
1814 1.1 simonb
1815 1.1 simonb /* Reference page */
1816 1.1 simonb val = *loc;
1817 1.1 simonb
1818 1.1 simonb ref = pmap_is_referenced(pg);
1819 1.1 simonb mod = pmap_is_modified(pg);
1820 1.1 simonb printf("Referenced page: ref %d, mod %d val %x\n",
1821 1.1 simonb ref, mod, val);
1822 1.1 simonb
1823 1.1 simonb /* Now clear reference and modify */
1824 1.1 simonb ref = pmap_clear_reference(pg);
1825 1.1 simonb mod = pmap_clear_modify(pg);
1826 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1827 1.1 simonb (void *)(u_long)va, (long)pa,
1828 1.1 simonb ref, mod);
1829 1.12 simonb
1830 1.1 simonb /* Modify page */
1831 1.1 simonb #if 0
1832 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1833 1.4 chris pmap_update(pmap_kernel());
1834 1.1 simonb #endif
1835 1.1 simonb *loc = 1;
1836 1.1 simonb
1837 1.1 simonb ref = pmap_is_referenced(pg);
1838 1.1 simonb mod = pmap_is_modified(pg);
1839 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1840 1.1 simonb ref, mod);
1841 1.1 simonb
1842 1.1 simonb /* Check pmap_pag_protect() */
1843 1.1 simonb pmap_page_protect(pg, VM_PROT_READ);
1844 1.1 simonb ref = pmap_is_referenced(pg);
1845 1.1 simonb mod = pmap_is_modified(pg);
1846 1.1 simonb printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1847 1.1 simonb ref, mod);
1848 1.1 simonb
1849 1.1 simonb /* Now clear reference and modify */
1850 1.1 simonb ref = pmap_clear_reference(pg);
1851 1.1 simonb mod = pmap_clear_modify(pg);
1852 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1853 1.1 simonb (void *)(u_long)va, (long)pa,
1854 1.1 simonb ref, mod);
1855 1.1 simonb
1856 1.1 simonb /* Reference page */
1857 1.1 simonb val = *loc;
1858 1.1 simonb
1859 1.1 simonb ref = pmap_is_referenced(pg);
1860 1.1 simonb mod = pmap_is_modified(pg);
1861 1.1 simonb printf("Referenced page: ref %d, mod %d val %x\n",
1862 1.1 simonb ref, mod, val);
1863 1.1 simonb
1864 1.1 simonb /* Now clear reference and modify */
1865 1.1 simonb ref = pmap_clear_reference(pg);
1866 1.1 simonb mod = pmap_clear_modify(pg);
1867 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1868 1.1 simonb (void *)(u_long)va, (long)pa,
1869 1.1 simonb ref, mod);
1870 1.12 simonb
1871 1.1 simonb /* Modify page */
1872 1.1 simonb #if 0
1873 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1874 1.4 chris pmap_update(pmap_kernel());
1875 1.1 simonb #endif
1876 1.1 simonb *loc = 1;
1877 1.1 simonb
1878 1.1 simonb ref = pmap_is_referenced(pg);
1879 1.1 simonb mod = pmap_is_modified(pg);
1880 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1881 1.1 simonb ref, mod);
1882 1.1 simonb
1883 1.1 simonb /* Check pmap_pag_protect() */
1884 1.1 simonb pmap_page_protect(pg, VM_PROT_NONE);
1885 1.1 simonb ref = pmap_is_referenced(pg);
1886 1.1 simonb mod = pmap_is_modified(pg);
1887 1.1 simonb printf("pmap_page_protect(): ref %d, mod %d\n",
1888 1.1 simonb ref, mod);
1889 1.1 simonb
1890 1.1 simonb /* Now clear reference and modify */
1891 1.1 simonb ref = pmap_clear_reference(pg);
1892 1.1 simonb mod = pmap_clear_modify(pg);
1893 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1894 1.1 simonb (void *)(u_long)va, (long)pa,
1895 1.1 simonb ref, mod);
1896 1.1 simonb
1897 1.1 simonb
1898 1.1 simonb /* Reference page */
1899 1.1 simonb val = *loc;
1900 1.1 simonb
1901 1.1 simonb ref = pmap_is_referenced(pg);
1902 1.1 simonb mod = pmap_is_modified(pg);
1903 1.1 simonb printf("Referenced page: ref %d, mod %d val %x\n",
1904 1.1 simonb ref, mod, val);
1905 1.1 simonb
1906 1.1 simonb /* Now clear reference and modify */
1907 1.1 simonb ref = pmap_clear_reference(pg);
1908 1.1 simonb mod = pmap_clear_modify(pg);
1909 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1910 1.1 simonb (void *)(u_long)va, (long)pa,
1911 1.1 simonb ref, mod);
1912 1.12 simonb
1913 1.1 simonb /* Modify page */
1914 1.1 simonb #if 0
1915 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1916 1.4 chris pmap_update(pmap_kernel());
1917 1.1 simonb #endif
1918 1.1 simonb *loc = 1;
1919 1.1 simonb
1920 1.1 simonb ref = pmap_is_referenced(pg);
1921 1.1 simonb mod = pmap_is_modified(pg);
1922 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1923 1.1 simonb ref, mod);
1924 1.1 simonb
1925 1.1 simonb /* Unmap page */
1926 1.1 simonb pmap_remove(pmap_kernel(), va, va+1);
1927 1.4 chris pmap_update(pmap_kernel());
1928 1.1 simonb ref = pmap_is_referenced(pg);
1929 1.1 simonb mod = pmap_is_modified(pg);
1930 1.1 simonb printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1931 1.1 simonb
1932 1.1 simonb /* Now clear reference and modify */
1933 1.1 simonb ref = pmap_clear_reference(pg);
1934 1.1 simonb mod = pmap_clear_modify(pg);
1935 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1936 1.1 simonb (void *)(u_long)va, (long)pa, ref, mod);
1937 1.1 simonb
1938 1.1 simonb /* Check it's properly cleared */
1939 1.1 simonb ref = pmap_is_referenced(pg);
1940 1.1 simonb mod = pmap_is_modified(pg);
1941 1.1 simonb printf("Checking cleared page: ref %d, mod %d\n",
1942 1.1 simonb ref, mod);
1943 1.1 simonb
1944 1.34 yamt pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
1945 1.59 cegger pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
1946 1.34 yamt uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
1947 1.1 simonb }
1948 1.1 simonb #endif
1949