pmap.c revision 1.90 1 1.90 rin /* $NetBSD: pmap.c,v 1.90 2020/07/06 10:40:21 rin Exp $ */
2 1.1 simonb
3 1.1 simonb /*
4 1.1 simonb * Copyright 2001 Wasabi Systems, Inc.
5 1.1 simonb * All rights reserved.
6 1.1 simonb *
7 1.1 simonb * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 1.1 simonb *
9 1.1 simonb * Redistribution and use in source and binary forms, with or without
10 1.1 simonb * modification, are permitted provided that the following conditions
11 1.1 simonb * are met:
12 1.1 simonb * 1. Redistributions of source code must retain the above copyright
13 1.1 simonb * notice, this list of conditions and the following disclaimer.
14 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 simonb * notice, this list of conditions and the following disclaimer in the
16 1.1 simonb * documentation and/or other materials provided with the distribution.
17 1.1 simonb * 3. All advertising materials mentioning features or use of this software
18 1.1 simonb * must display the following acknowledgement:
19 1.1 simonb * This product includes software developed for the NetBSD Project by
20 1.1 simonb * Wasabi Systems, Inc.
21 1.1 simonb * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.1 simonb * or promote products derived from this software without specific prior
23 1.1 simonb * written permission.
24 1.1 simonb *
25 1.1 simonb * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.1 simonb * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 simonb * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 simonb * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.1 simonb * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 simonb * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 simonb * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 simonb * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 simonb * POSSIBILITY OF SUCH DAMAGE.
36 1.1 simonb */
37 1.1 simonb
38 1.1 simonb /*
39 1.1 simonb * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 1.1 simonb * Copyright (C) 1995, 1996 TooLs GmbH.
41 1.1 simonb * All rights reserved.
42 1.1 simonb *
43 1.1 simonb * Redistribution and use in source and binary forms, with or without
44 1.1 simonb * modification, are permitted provided that the following conditions
45 1.1 simonb * are met:
46 1.1 simonb * 1. Redistributions of source code must retain the above copyright
47 1.1 simonb * notice, this list of conditions and the following disclaimer.
48 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 simonb * notice, this list of conditions and the following disclaimer in the
50 1.1 simonb * documentation and/or other materials provided with the distribution.
51 1.1 simonb * 3. All advertising materials mentioning features or use of this software
52 1.1 simonb * must display the following acknowledgement:
53 1.1 simonb * This product includes software developed by TooLs GmbH.
54 1.1 simonb * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 1.1 simonb * derived from this software without specific prior written permission.
56 1.1 simonb *
57 1.1 simonb * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 1.1 simonb * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 1.1 simonb * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 1.1 simonb * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 1.1 simonb * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 1.1 simonb * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 1.1 simonb * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 1.1 simonb * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 1.1 simonb * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 1.1 simonb * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 1.1 simonb */
68 1.23 lukem
69 1.23 lukem #include <sys/cdefs.h>
70 1.90 rin __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.90 2020/07/06 10:40:21 rin Exp $");
71 1.90 rin
72 1.90 rin #ifdef _KERNEL_OPT
73 1.90 rin #include "opt_ddb.h"
74 1.90 rin #endif
75 1.1 simonb
76 1.1 simonb #include <sys/param.h>
77 1.68 matt #include <sys/cpu.h>
78 1.68 matt #include <sys/device.h>
79 1.72 para #include <sys/kmem.h>
80 1.68 matt #include <sys/pool.h>
81 1.1 simonb #include <sys/proc.h>
82 1.1 simonb #include <sys/queue.h>
83 1.1 simonb #include <sys/systm.h>
84 1.1 simonb
85 1.1 simonb #include <uvm/uvm.h>
86 1.1 simonb
87 1.1 simonb #include <machine/powerpc.h>
88 1.67 matt #include <machine/tlb.h>
89 1.1 simonb
90 1.68 matt #include <powerpc/pcb.h>
91 1.68 matt
92 1.1 simonb #include <powerpc/spr.h>
93 1.62 matt #include <powerpc/ibm4xx/spr.h>
94 1.67 matt
95 1.67 matt #include <powerpc/ibm4xx/cpu.h>
96 1.1 simonb
97 1.1 simonb /*
98 1.1 simonb * kernmap is an array of PTEs large enough to map in
99 1.1 simonb * 4GB. At 16KB/page it is 256K entries or 2MB.
100 1.1 simonb */
101 1.19 thorpej #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1)
102 1.47 christos void *kernmap;
103 1.1 simonb
104 1.1 simonb #define MINCTX 2
105 1.1 simonb #define NUMCTX 256
106 1.42 freza
107 1.1 simonb volatile struct pmap *ctxbusy[NUMCTX];
108 1.1 simonb
109 1.1 simonb #define TLBF_USED 0x1
110 1.1 simonb #define TLBF_REF 0x2
111 1.1 simonb #define TLBF_LOCKED 0x4
112 1.1 simonb #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
113 1.42 freza
114 1.1 simonb typedef struct tlb_info_s {
115 1.1 simonb char ti_flags;
116 1.1 simonb char ti_ctx; /* TLB_PID assiciated with the entry */
117 1.1 simonb u_int ti_va;
118 1.1 simonb } tlb_info_t;
119 1.1 simonb
120 1.1 simonb volatile tlb_info_t tlb_info[NTLB];
121 1.1 simonb /* We'll use a modified FIFO replacement policy cause it's cheap */
122 1.42 freza volatile int tlbnext;
123 1.42 freza
124 1.42 freza static int tlb_nreserved = 0;
125 1.42 freza static int pmap_bootstrap_done = 0;
126 1.1 simonb
127 1.14 thorpej /* Event counters */
128 1.14 thorpej struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
129 1.1 simonb NULL, "cpu", "tlbmiss");
130 1.14 thorpej struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
131 1.1 simonb NULL, "cpu", "tlbflush");
132 1.14 thorpej struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
133 1.1 simonb NULL, "cpu", "tlbenter");
134 1.66 matt EVCNT_ATTACH_STATIC(tlbmiss_ev);
135 1.66 matt EVCNT_ATTACH_STATIC(tlbflush_ev);
136 1.66 matt EVCNT_ATTACH_STATIC(tlbenter_ev);
137 1.1 simonb
138 1.1 simonb struct pmap kernel_pmap_;
139 1.52 pooka struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
140 1.1 simonb
141 1.1 simonb static int npgs;
142 1.1 simonb static u_int nextavail;
143 1.1 simonb #ifndef MSGBUFADDR
144 1.1 simonb extern paddr_t msgbuf_paddr;
145 1.1 simonb #endif
146 1.1 simonb
147 1.1 simonb static struct mem_region *mem, *avail;
148 1.1 simonb
149 1.1 simonb /*
150 1.1 simonb * This is a cache of referenced/modified bits.
151 1.1 simonb * Bits herein are shifted by ATTRSHFT.
152 1.1 simonb */
153 1.1 simonb static char *pmap_attrib;
154 1.1 simonb
155 1.1 simonb #define PV_WIRED 0x1
156 1.1 simonb #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
157 1.30 chs #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED)
158 1.30 chs #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED)
159 1.30 chs #define PV_CMPVA(va,pv) (!(((pv)->pv_va ^ (va)) & (~PV_WIRED)))
160 1.1 simonb
161 1.1 simonb struct pv_entry {
162 1.1 simonb struct pv_entry *pv_next; /* Linked list of mappings */
163 1.68 matt struct pmap *pv_pm;
164 1.1 simonb vaddr_t pv_va; /* virtual address of mapping */
165 1.1 simonb };
166 1.1 simonb
167 1.42 freza /* Each index corresponds to TLB_SIZE_* value. */
168 1.42 freza static size_t tlbsize[] = {
169 1.42 freza 1024, /* TLB_SIZE_1K */
170 1.42 freza 4096, /* TLB_SIZE_4K */
171 1.42 freza 16384, /* TLB_SIZE_16K */
172 1.42 freza 65536, /* TLB_SIZE_64K */
173 1.42 freza 262144, /* TLB_SIZE_256K */
174 1.42 freza 1048576, /* TLB_SIZE_1M */
175 1.42 freza 4194304, /* TLB_SIZE_4M */
176 1.42 freza 16777216, /* TLB_SIZE_16M */
177 1.42 freza };
178 1.42 freza
179 1.1 simonb struct pv_entry *pv_table;
180 1.1 simonb static struct pool pv_pool;
181 1.1 simonb
182 1.1 simonb static int pmap_initialized;
183 1.1 simonb
184 1.1 simonb static int ctx_flush(int);
185 1.1 simonb
186 1.68 matt struct pv_entry *pa_to_pv(paddr_t);
187 1.1 simonb static inline char *pa_to_attr(paddr_t);
188 1.1 simonb
189 1.1 simonb static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
190 1.1 simonb static inline int pte_enter(struct pmap *, vaddr_t, u_int);
191 1.1 simonb
192 1.49 hannken static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
193 1.1 simonb static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
194 1.1 simonb
195 1.42 freza static int ppc4xx_tlb_size_mask(size_t, int *, int *);
196 1.42 freza
197 1.1 simonb
198 1.68 matt struct pv_entry *
199 1.1 simonb pa_to_pv(paddr_t pa)
200 1.1 simonb {
201 1.75 cherry uvm_physseg_t bank;
202 1.75 cherry psize_t pg;
203 1.1 simonb
204 1.74 cherry bank = uvm_physseg_find(atop(pa), &pg);
205 1.76 cherry if (bank == UVM_PHYSSEG_TYPE_INVALID)
206 1.1 simonb return NULL;
207 1.75 cherry return &uvm_physseg_get_pmseg(bank)->pvent[pg];
208 1.1 simonb }
209 1.1 simonb
210 1.1 simonb static inline char *
211 1.1 simonb pa_to_attr(paddr_t pa)
212 1.1 simonb {
213 1.75 cherry uvm_physseg_t bank;
214 1.75 cherry psize_t pg;
215 1.1 simonb
216 1.74 cherry bank = uvm_physseg_find(atop(pa), &pg);
217 1.76 cherry if (bank == UVM_PHYSSEG_TYPE_INVALID)
218 1.1 simonb return NULL;
219 1.75 cherry return &uvm_physseg_get_pmseg(bank)->attrs[pg];
220 1.1 simonb }
221 1.1 simonb
222 1.1 simonb /*
223 1.1 simonb * Insert PTE into page table.
224 1.1 simonb */
225 1.1 simonb int
226 1.1 simonb pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
227 1.1 simonb {
228 1.1 simonb int seg = STIDX(va);
229 1.1 simonb int ptn = PTIDX(va);
230 1.22 scw u_int oldpte;
231 1.1 simonb
232 1.1 simonb if (!pm->pm_ptbl[seg]) {
233 1.1 simonb /* Don't allocate a page to clear a non-existent mapping. */
234 1.30 chs if (!pte)
235 1.30 chs return (0);
236 1.1 simonb /* Allocate a page XXXX this will sleep! */
237 1.19 thorpej pm->pm_ptbl[seg] =
238 1.34 yamt (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
239 1.34 yamt UVM_KMF_WIRED | UVM_KMF_ZERO);
240 1.1 simonb }
241 1.22 scw oldpte = pm->pm_ptbl[seg][ptn];
242 1.1 simonb pm->pm_ptbl[seg][ptn] = pte;
243 1.1 simonb
244 1.1 simonb /* Flush entry. */
245 1.1 simonb ppc4xx_tlb_flush(va, pm->pm_ctx);
246 1.22 scw if (oldpte != pte) {
247 1.22 scw if (pte == 0)
248 1.22 scw pm->pm_stats.resident_count--;
249 1.22 scw else
250 1.22 scw pm->pm_stats.resident_count++;
251 1.22 scw }
252 1.1 simonb return (1);
253 1.1 simonb }
254 1.1 simonb
255 1.1 simonb /*
256 1.1 simonb * Get a pointer to a PTE in a page table.
257 1.1 simonb */
258 1.1 simonb volatile u_int *
259 1.1 simonb pte_find(struct pmap *pm, vaddr_t va)
260 1.1 simonb {
261 1.1 simonb int seg = STIDX(va);
262 1.1 simonb int ptn = PTIDX(va);
263 1.1 simonb
264 1.1 simonb if (pm->pm_ptbl[seg])
265 1.1 simonb return (&pm->pm_ptbl[seg][ptn]);
266 1.1 simonb
267 1.1 simonb return (NULL);
268 1.1 simonb }
269 1.1 simonb
270 1.1 simonb /*
271 1.1 simonb * This is called during initppc, before the system is really initialized.
272 1.1 simonb */
273 1.1 simonb void
274 1.1 simonb pmap_bootstrap(u_int kernelstart, u_int kernelend)
275 1.1 simonb {
276 1.1 simonb struct mem_region *mp, *mp1;
277 1.1 simonb int cnt, i;
278 1.1 simonb u_int s, e, sz;
279 1.1 simonb
280 1.42 freza tlbnext = tlb_nreserved;
281 1.42 freza
282 1.1 simonb /*
283 1.1 simonb * Allocate the kernel page table at the end of
284 1.1 simonb * kernel space so it's in the locked TTE.
285 1.1 simonb */
286 1.47 christos kernmap = (void *)kernelend;
287 1.1 simonb
288 1.1 simonb /*
289 1.1 simonb * Initialize kernel page table.
290 1.1 simonb */
291 1.1 simonb for (i = 0; i < STSZ; i++) {
292 1.10 eeh pmap_kernel()->pm_ptbl[i] = 0;
293 1.1 simonb }
294 1.1 simonb ctxbusy[0] = ctxbusy[1] = pmap_kernel();
295 1.1 simonb
296 1.1 simonb /*
297 1.1 simonb * Announce page-size to the VM-system
298 1.1 simonb */
299 1.1 simonb uvmexp.pagesize = NBPG;
300 1.73 cherry uvm_md_init();
301 1.1 simonb
302 1.1 simonb /*
303 1.1 simonb * Get memory.
304 1.1 simonb */
305 1.1 simonb mem_regions(&mem, &avail);
306 1.1 simonb for (mp = mem; mp->size; mp++) {
307 1.1 simonb physmem += btoc(mp->size);
308 1.1 simonb printf("+%lx,",mp->size);
309 1.1 simonb }
310 1.1 simonb printf("\n");
311 1.1 simonb ppc4xx_tlb_init();
312 1.1 simonb /*
313 1.1 simonb * Count the number of available entries.
314 1.1 simonb */
315 1.1 simonb for (cnt = 0, mp = avail; mp->size; mp++)
316 1.1 simonb cnt++;
317 1.1 simonb
318 1.1 simonb /*
319 1.1 simonb * Page align all regions.
320 1.1 simonb * Non-page aligned memory isn't very interesting to us.
321 1.1 simonb * Also, sort the entries for ascending addresses.
322 1.1 simonb */
323 1.1 simonb kernelstart &= ~PGOFSET;
324 1.1 simonb kernelend = (kernelend + PGOFSET) & ~PGOFSET;
325 1.1 simonb for (mp = avail; mp->size; mp++) {
326 1.1 simonb s = mp->start;
327 1.1 simonb e = mp->start + mp->size;
328 1.1 simonb printf("%08x-%08x -> ",s,e);
329 1.1 simonb /*
330 1.1 simonb * Check whether this region holds all of the kernel.
331 1.1 simonb */
332 1.1 simonb if (s < kernelstart && e > kernelend) {
333 1.1 simonb avail[cnt].start = kernelend;
334 1.1 simonb avail[cnt++].size = e - kernelend;
335 1.1 simonb e = kernelstart;
336 1.1 simonb }
337 1.1 simonb /*
338 1.1 simonb * Look whether this regions starts within the kernel.
339 1.1 simonb */
340 1.1 simonb if (s >= kernelstart && s < kernelend) {
341 1.1 simonb if (e <= kernelend)
342 1.1 simonb goto empty;
343 1.1 simonb s = kernelend;
344 1.1 simonb }
345 1.1 simonb /*
346 1.1 simonb * Now look whether this region ends within the kernel.
347 1.1 simonb */
348 1.1 simonb if (e > kernelstart && e <= kernelend) {
349 1.1 simonb if (s >= kernelstart)
350 1.1 simonb goto empty;
351 1.1 simonb e = kernelstart;
352 1.1 simonb }
353 1.1 simonb /*
354 1.1 simonb * Now page align the start and size of the region.
355 1.1 simonb */
356 1.1 simonb s = round_page(s);
357 1.1 simonb e = trunc_page(e);
358 1.1 simonb if (e < s)
359 1.1 simonb e = s;
360 1.1 simonb sz = e - s;
361 1.1 simonb printf("%08x-%08x = %x\n",s,e,sz);
362 1.1 simonb /*
363 1.1 simonb * Check whether some memory is left here.
364 1.1 simonb */
365 1.1 simonb if (sz == 0) {
366 1.1 simonb empty:
367 1.3 wiz memmove(mp, mp + 1,
368 1.3 wiz (cnt - (mp - avail)) * sizeof *mp);
369 1.1 simonb cnt--;
370 1.1 simonb mp--;
371 1.1 simonb continue;
372 1.1 simonb }
373 1.1 simonb /*
374 1.1 simonb * Do an insertion sort.
375 1.1 simonb */
376 1.1 simonb npgs += btoc(sz);
377 1.1 simonb for (mp1 = avail; mp1 < mp; mp1++)
378 1.1 simonb if (s < mp1->start)
379 1.1 simonb break;
380 1.1 simonb if (mp1 < mp) {
381 1.3 wiz memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
382 1.1 simonb mp1->start = s;
383 1.1 simonb mp1->size = sz;
384 1.1 simonb } else {
385 1.1 simonb mp->start = s;
386 1.1 simonb mp->size = sz;
387 1.1 simonb }
388 1.1 simonb }
389 1.1 simonb
390 1.1 simonb /*
391 1.1 simonb * We cannot do pmap_steal_memory here,
392 1.1 simonb * since we don't run with translation enabled yet.
393 1.1 simonb */
394 1.1 simonb #ifndef MSGBUFADDR
395 1.1 simonb /*
396 1.1 simonb * allow for msgbuf
397 1.1 simonb */
398 1.1 simonb sz = round_page(MSGBUFSIZE);
399 1.1 simonb mp = NULL;
400 1.1 simonb for (mp1 = avail; mp1->size; mp1++)
401 1.1 simonb if (mp1->size >= sz)
402 1.1 simonb mp = mp1;
403 1.1 simonb if (mp == NULL)
404 1.1 simonb panic("not enough memory?");
405 1.1 simonb
406 1.1 simonb npgs -= btoc(sz);
407 1.1 simonb msgbuf_paddr = mp->start + mp->size - sz;
408 1.1 simonb mp->size -= sz;
409 1.1 simonb if (mp->size <= 0)
410 1.3 wiz memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
411 1.1 simonb #endif
412 1.1 simonb
413 1.1 simonb for (mp = avail; mp->size; mp++)
414 1.1 simonb uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
415 1.1 simonb atop(mp->start), atop(mp->start + mp->size),
416 1.1 simonb VM_FREELIST_DEFAULT);
417 1.1 simonb
418 1.1 simonb /*
419 1.1 simonb * Initialize kernel pmap and hardware.
420 1.1 simonb */
421 1.1 simonb /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
422 1.1 simonb pmap_kernel()->pm_ctx = KERNEL_PID;
423 1.1 simonb nextavail = avail->start;
424 1.1 simonb
425 1.42 freza pmap_bootstrap_done = 1;
426 1.1 simonb }
427 1.1 simonb
428 1.1 simonb /*
429 1.1 simonb * Restrict given range to physical memory
430 1.1 simonb *
431 1.1 simonb * (Used by /dev/mem)
432 1.1 simonb */
433 1.1 simonb void
434 1.1 simonb pmap_real_memory(paddr_t *start, psize_t *size)
435 1.1 simonb {
436 1.1 simonb struct mem_region *mp;
437 1.1 simonb
438 1.1 simonb for (mp = mem; mp->size; mp++) {
439 1.1 simonb if (*start + *size > mp->start &&
440 1.1 simonb *start < mp->start + mp->size) {
441 1.1 simonb if (*start < mp->start) {
442 1.1 simonb *size -= mp->start - *start;
443 1.1 simonb *start = mp->start;
444 1.1 simonb }
445 1.1 simonb if (*start + *size > mp->start + mp->size)
446 1.1 simonb *size = mp->start + mp->size - *start;
447 1.1 simonb return;
448 1.1 simonb }
449 1.1 simonb }
450 1.1 simonb *size = 0;
451 1.1 simonb }
452 1.1 simonb
453 1.1 simonb /*
454 1.1 simonb * Initialize anything else for pmap handling.
455 1.1 simonb * Called during vm_init().
456 1.1 simonb */
457 1.1 simonb void
458 1.1 simonb pmap_init(void)
459 1.1 simonb {
460 1.1 simonb struct pv_entry *pv;
461 1.1 simonb vsize_t sz;
462 1.1 simonb vaddr_t addr;
463 1.1 simonb int i, s;
464 1.1 simonb int bank;
465 1.1 simonb char *attr;
466 1.1 simonb
467 1.1 simonb sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
468 1.1 simonb sz = round_page(sz);
469 1.34 yamt addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
470 1.1 simonb s = splvm();
471 1.1 simonb pv = pv_table = (struct pv_entry *)addr;
472 1.1 simonb for (i = npgs; --i >= 0;)
473 1.1 simonb pv++->pv_pm = NULL;
474 1.1 simonb pmap_attrib = (char *)pv;
475 1.2 wiz memset(pv, 0, npgs);
476 1.1 simonb
477 1.1 simonb pv = pv_table;
478 1.1 simonb attr = pmap_attrib;
479 1.75 cherry for (bank = uvm_physseg_get_first();
480 1.75 cherry uvm_physseg_valid_p(bank);
481 1.75 cherry bank = uvm_physseg_get_next(bank)) {
482 1.75 cherry sz = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
483 1.75 cherry uvm_physseg_get_pmseg(bank)->pvent = pv;
484 1.75 cherry uvm_physseg_get_pmseg(bank)->attrs = attr;
485 1.1 simonb pv += sz;
486 1.1 simonb attr += sz;
487 1.1 simonb }
488 1.1 simonb
489 1.1 simonb pmap_initialized = 1;
490 1.1 simonb splx(s);
491 1.1 simonb
492 1.1 simonb /* Setup a pool for additional pvlist structures */
493 1.48 ad pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL,
494 1.48 ad IPL_VM);
495 1.21 thorpej }
496 1.21 thorpej
497 1.21 thorpej /*
498 1.21 thorpej * How much virtual space is available to the kernel?
499 1.21 thorpej */
500 1.21 thorpej void
501 1.21 thorpej pmap_virtual_space(vaddr_t *start, vaddr_t *end)
502 1.21 thorpej {
503 1.21 thorpej
504 1.21 thorpej #if 0
505 1.21 thorpej /*
506 1.21 thorpej * Reserve one segment for kernel virtual memory
507 1.21 thorpej */
508 1.21 thorpej *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
509 1.21 thorpej *end = *start + SEGMENT_LENGTH;
510 1.21 thorpej #else
511 1.21 thorpej *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
512 1.21 thorpej *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
513 1.21 thorpej #endif
514 1.1 simonb }
515 1.1 simonb
516 1.5 eeh #ifdef PMAP_GROWKERNEL
517 1.5 eeh /*
518 1.5 eeh * Preallocate kernel page tables to a specified VA.
519 1.5 eeh * This simply loops through the first TTE for each
520 1.12 simonb * page table from the beginning of the kernel pmap,
521 1.5 eeh * reads the entry, and if the result is
522 1.5 eeh * zero (either invalid entry or no page table) it stores
523 1.5 eeh * a zero there, populating page tables in the process.
524 1.5 eeh * This is not the most efficient technique but i don't
525 1.5 eeh * expect it to be called that often.
526 1.5 eeh */
527 1.53 dsl extern struct vm_page *vm_page_alloc1(void);
528 1.53 dsl extern void vm_page_free1(struct vm_page *);
529 1.5 eeh
530 1.5 eeh vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
531 1.5 eeh
532 1.12 simonb vaddr_t
533 1.30 chs pmap_growkernel(vaddr_t maxkvaddr)
534 1.5 eeh {
535 1.5 eeh int s;
536 1.5 eeh int seg;
537 1.5 eeh paddr_t pg;
538 1.5 eeh struct pmap *pm = pmap_kernel();
539 1.12 simonb
540 1.5 eeh s = splvm();
541 1.5 eeh
542 1.5 eeh /* Align with the start of a page table */
543 1.5 eeh for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
544 1.5 eeh kbreak += PTMAP) {
545 1.5 eeh seg = STIDX(kbreak);
546 1.5 eeh
547 1.30 chs if (pte_find(pm, kbreak))
548 1.30 chs continue;
549 1.12 simonb
550 1.5 eeh if (uvm.page_init_done) {
551 1.5 eeh pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
552 1.5 eeh } else {
553 1.5 eeh if (!uvm_page_physget(&pg))
554 1.5 eeh panic("pmap_growkernel: no memory");
555 1.5 eeh }
556 1.32 simonb if (!pg)
557 1.32 simonb panic("pmap_growkernel: no pages");
558 1.5 eeh pmap_zero_page((paddr_t)pg);
559 1.5 eeh
560 1.5 eeh /* XXX This is based on all phymem being addressable */
561 1.5 eeh pm->pm_ptbl[seg] = (u_int *)pg;
562 1.5 eeh }
563 1.5 eeh splx(s);
564 1.5 eeh return (kbreak);
565 1.5 eeh }
566 1.5 eeh
567 1.5 eeh /*
568 1.5 eeh * vm_page_alloc1:
569 1.5 eeh *
570 1.5 eeh * Allocate and return a memory cell with no associated object.
571 1.5 eeh */
572 1.5 eeh struct vm_page *
573 1.30 chs vm_page_alloc1(void)
574 1.5 eeh {
575 1.30 chs struct vm_page *pg;
576 1.30 chs
577 1.30 chs pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
578 1.5 eeh if (pg) {
579 1.5 eeh pg->wire_count = 1; /* no mappings yet */
580 1.5 eeh pg->flags &= ~PG_BUSY; /* never busy */
581 1.5 eeh }
582 1.5 eeh return pg;
583 1.5 eeh }
584 1.5 eeh
585 1.5 eeh /*
586 1.5 eeh * vm_page_free1:
587 1.5 eeh *
588 1.5 eeh * Returns the given page to the free list,
589 1.5 eeh * disassociating it with any VM object.
590 1.5 eeh *
591 1.5 eeh * Object and page must be locked prior to entry.
592 1.5 eeh */
593 1.5 eeh void
594 1.36 scw vm_page_free1(struct vm_page *pg)
595 1.5 eeh {
596 1.10 eeh #ifdef DIAGNOSTIC
597 1.36 scw if (pg->flags != (PG_CLEAN|PG_FAKE)) {
598 1.36 scw printf("Freeing invalid page %p\n", pg);
599 1.36 scw printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg));
600 1.10 eeh #ifdef DDB
601 1.5 eeh Debugger();
602 1.10 eeh #endif
603 1.5 eeh return;
604 1.5 eeh }
605 1.10 eeh #endif
606 1.36 scw pg->flags |= PG_BUSY;
607 1.36 scw pg->wire_count = 0;
608 1.36 scw uvm_pagefree(pg);
609 1.5 eeh }
610 1.5 eeh #endif
611 1.5 eeh
612 1.1 simonb /*
613 1.1 simonb * Create and return a physical map.
614 1.1 simonb */
615 1.1 simonb struct pmap *
616 1.1 simonb pmap_create(void)
617 1.1 simonb {
618 1.1 simonb struct pmap *pm;
619 1.1 simonb
620 1.72 para pm = kmem_alloc(sizeof(*pm), KM_SLEEP);
621 1.30 chs memset(pm, 0, sizeof *pm);
622 1.30 chs pm->pm_refs = 1;
623 1.1 simonb return pm;
624 1.1 simonb }
625 1.1 simonb
626 1.1 simonb /*
627 1.1 simonb * Add a reference to the given pmap.
628 1.1 simonb */
629 1.1 simonb void
630 1.1 simonb pmap_reference(struct pmap *pm)
631 1.1 simonb {
632 1.1 simonb
633 1.1 simonb pm->pm_refs++;
634 1.1 simonb }
635 1.1 simonb
636 1.1 simonb /*
637 1.1 simonb * Retire the given pmap from service.
638 1.1 simonb * Should only be called if the map contains no valid mappings.
639 1.1 simonb */
640 1.1 simonb void
641 1.1 simonb pmap_destroy(struct pmap *pm)
642 1.1 simonb {
643 1.30 chs int i;
644 1.1 simonb
645 1.30 chs if (--pm->pm_refs > 0) {
646 1.30 chs return;
647 1.1 simonb }
648 1.30 chs KASSERT(pm->pm_stats.resident_count == 0);
649 1.30 chs KASSERT(pm->pm_stats.wired_count == 0);
650 1.1 simonb for (i = 0; i < STSZ; i++)
651 1.1 simonb if (pm->pm_ptbl[i]) {
652 1.19 thorpej uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
653 1.34 yamt PAGE_SIZE, UVM_KMF_WIRED);
654 1.1 simonb pm->pm_ptbl[i] = NULL;
655 1.1 simonb }
656 1.30 chs if (pm->pm_ctx)
657 1.30 chs ctx_free(pm);
658 1.72 para kmem_free(pm, sizeof(*pm));
659 1.1 simonb }
660 1.1 simonb
661 1.1 simonb /*
662 1.1 simonb * Copy the range specified by src_addr/len
663 1.1 simonb * from the source map to the range dst_addr/len
664 1.1 simonb * in the destination map.
665 1.1 simonb *
666 1.1 simonb * This routine is only advisory and need not do anything.
667 1.1 simonb */
668 1.1 simonb void
669 1.1 simonb pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
670 1.1 simonb vsize_t len, vaddr_t src_addr)
671 1.1 simonb {
672 1.1 simonb }
673 1.1 simonb
674 1.1 simonb /*
675 1.1 simonb * Require that all active physical maps contain no
676 1.1 simonb * incorrect entries NOW.
677 1.1 simonb */
678 1.1 simonb void
679 1.4 chris pmap_update(struct pmap *pmap)
680 1.1 simonb {
681 1.1 simonb }
682 1.1 simonb
683 1.1 simonb /*
684 1.1 simonb * Fill the given physical page with zeroes.
685 1.1 simonb */
686 1.1 simonb void
687 1.1 simonb pmap_zero_page(paddr_t pa)
688 1.1 simonb {
689 1.1 simonb
690 1.8 thorpej #ifdef PPC_4XX_NOCACHE
691 1.47 christos memset((void *)pa, 0, PAGE_SIZE);
692 1.1 simonb #else
693 1.1 simonb int i;
694 1.1 simonb
695 1.19 thorpej for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
696 1.38 perry __asm volatile ("dcbz 0,%0" :: "r"(pa));
697 1.1 simonb pa += CACHELINESIZE;
698 1.1 simonb }
699 1.1 simonb #endif
700 1.1 simonb }
701 1.1 simonb
702 1.1 simonb /*
703 1.1 simonb * Copy the given physical source page to its destination.
704 1.1 simonb */
705 1.1 simonb void
706 1.1 simonb pmap_copy_page(paddr_t src, paddr_t dst)
707 1.1 simonb {
708 1.1 simonb
709 1.47 christos memcpy((void *)dst, (void *)src, PAGE_SIZE);
710 1.69 matt dcache_wbinv_page(dst);
711 1.1 simonb }
712 1.1 simonb
713 1.1 simonb /*
714 1.49 hannken * This returns != 0 on success.
715 1.1 simonb */
716 1.1 simonb static inline int
717 1.49 hannken pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
718 1.1 simonb {
719 1.1 simonb struct pv_entry *pv, *npv = NULL;
720 1.1 simonb int s;
721 1.1 simonb
722 1.1 simonb if (!pmap_initialized)
723 1.1 simonb return 0;
724 1.1 simonb
725 1.1 simonb s = splvm();
726 1.1 simonb pv = pa_to_pv(pa);
727 1.1 simonb if (!pv->pv_pm) {
728 1.1 simonb /*
729 1.1 simonb * No entries yet, use header as the first entry.
730 1.1 simonb */
731 1.1 simonb pv->pv_va = va;
732 1.1 simonb pv->pv_pm = pm;
733 1.1 simonb pv->pv_next = NULL;
734 1.1 simonb } else {
735 1.1 simonb /*
736 1.1 simonb * There is at least one other VA mapping this page.
737 1.1 simonb * Place this entry after the header.
738 1.1 simonb */
739 1.49 hannken npv = pool_get(&pv_pool, PR_NOWAIT);
740 1.49 hannken if (npv == NULL) {
741 1.49 hannken if ((flags & PMAP_CANFAIL) == 0)
742 1.49 hannken panic("pmap_enter_pv: failed");
743 1.49 hannken splx(s);
744 1.49 hannken return 0;
745 1.49 hannken }
746 1.1 simonb npv->pv_va = va;
747 1.1 simonb npv->pv_pm = pm;
748 1.1 simonb npv->pv_next = pv->pv_next;
749 1.1 simonb pv->pv_next = npv;
750 1.33 chs pv = npv;
751 1.1 simonb }
752 1.49 hannken if (flags & PMAP_WIRED) {
753 1.30 chs PV_WIRE(pv);
754 1.33 chs pm->pm_stats.wired_count++;
755 1.30 chs }
756 1.1 simonb splx(s);
757 1.1 simonb return (1);
758 1.1 simonb }
759 1.1 simonb
760 1.1 simonb static void
761 1.1 simonb pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
762 1.1 simonb {
763 1.1 simonb struct pv_entry *pv, *npv;
764 1.1 simonb
765 1.1 simonb /*
766 1.1 simonb * Remove from the PV table.
767 1.1 simonb */
768 1.1 simonb pv = pa_to_pv(pa);
769 1.30 chs if (!pv)
770 1.30 chs return;
771 1.1 simonb
772 1.1 simonb /*
773 1.1 simonb * If it is the first entry on the list, it is actually
774 1.1 simonb * in the header and we must copy the following entry up
775 1.1 simonb * to the header. Otherwise we must search the list for
776 1.1 simonb * the entry. In either case we free the now unused entry.
777 1.1 simonb */
778 1.1 simonb if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
779 1.30 chs if (PV_ISWIRED(pv)) {
780 1.30 chs pm->pm_stats.wired_count--;
781 1.30 chs }
782 1.1 simonb if ((npv = pv->pv_next)) {
783 1.1 simonb *pv = *npv;
784 1.1 simonb pool_put(&pv_pool, npv);
785 1.1 simonb } else
786 1.1 simonb pv->pv_pm = NULL;
787 1.1 simonb } else {
788 1.1 simonb for (; (npv = pv->pv_next) != NULL; pv = npv)
789 1.1 simonb if (pm == npv->pv_pm && PV_CMPVA(va, npv))
790 1.1 simonb break;
791 1.1 simonb if (npv) {
792 1.1 simonb pv->pv_next = npv->pv_next;
793 1.30 chs if (PV_ISWIRED(npv)) {
794 1.30 chs pm->pm_stats.wired_count--;
795 1.30 chs }
796 1.1 simonb pool_put(&pv_pool, npv);
797 1.1 simonb }
798 1.1 simonb }
799 1.1 simonb }
800 1.1 simonb
801 1.1 simonb /*
802 1.1 simonb * Insert physical page at pa into the given pmap at virtual address va.
803 1.1 simonb */
804 1.1 simonb int
805 1.55 he pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
806 1.1 simonb {
807 1.1 simonb int s;
808 1.1 simonb u_int tte;
809 1.57 thorpej bool managed;
810 1.1 simonb
811 1.1 simonb /*
812 1.1 simonb * Have to remove any existing mapping first.
813 1.1 simonb */
814 1.19 thorpej pmap_remove(pm, va, va + PAGE_SIZE);
815 1.1 simonb
816 1.30 chs if (flags & PMAP_WIRED)
817 1.30 chs flags |= prot;
818 1.1 simonb
819 1.57 thorpej managed = uvm_pageismanaged(pa);
820 1.1 simonb
821 1.1 simonb /*
822 1.1 simonb * Generate TTE.
823 1.1 simonb */
824 1.26 chs tte = TTE_PA(pa);
825 1.1 simonb /* XXXX -- need to support multiple page sizes. */
826 1.1 simonb tte |= TTE_SZ_16K;
827 1.1 simonb #ifdef DIAGNOSTIC
828 1.70 matt if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) ==
829 1.70 matt (PMAP_NOCACHE | PME_WRITETHROUG))
830 1.13 provos panic("pmap_enter: uncached & writethrough");
831 1.1 simonb #endif
832 1.70 matt if (flags & PMAP_NOCACHE)
833 1.1 simonb /* Must be I/O mapping */
834 1.1 simonb tte |= TTE_I | TTE_G;
835 1.8 thorpej #ifdef PPC_4XX_NOCACHE
836 1.1 simonb tte |= TTE_I;
837 1.1 simonb #else
838 1.1 simonb else if (flags & PME_WRITETHROUG)
839 1.1 simonb /* Uncached and writethrough are not compatible */
840 1.1 simonb tte |= TTE_W;
841 1.1 simonb #endif
842 1.1 simonb if (pm == pmap_kernel())
843 1.1 simonb tte |= TTE_ZONE(ZONE_PRIV);
844 1.1 simonb else
845 1.1 simonb tte |= TTE_ZONE(ZONE_USER);
846 1.1 simonb
847 1.1 simonb if (flags & VM_PROT_WRITE)
848 1.1 simonb tte |= TTE_WR;
849 1.1 simonb
850 1.26 chs if (flags & VM_PROT_EXECUTE)
851 1.26 chs tte |= TTE_EX;
852 1.26 chs
853 1.1 simonb /*
854 1.1 simonb * Now record mapping for later back-translation.
855 1.1 simonb */
856 1.1 simonb if (pmap_initialized && managed) {
857 1.1 simonb char *attr;
858 1.1 simonb
859 1.49 hannken if (!pmap_enter_pv(pm, va, pa, flags)) {
860 1.1 simonb /* Could not enter pv on a managed page */
861 1.1 simonb return 1;
862 1.1 simonb }
863 1.1 simonb
864 1.1 simonb /* Now set attributes. */
865 1.1 simonb attr = pa_to_attr(pa);
866 1.1 simonb #ifdef DIAGNOSTIC
867 1.1 simonb if (!attr)
868 1.13 provos panic("managed but no attr");
869 1.1 simonb #endif
870 1.1 simonb if (flags & VM_PROT_ALL)
871 1.30 chs *attr |= PMAP_ATTR_REF;
872 1.1 simonb if (flags & VM_PROT_WRITE)
873 1.30 chs *attr |= PMAP_ATTR_CHG;
874 1.1 simonb }
875 1.1 simonb
876 1.1 simonb s = splvm();
877 1.1 simonb
878 1.1 simonb /* Insert page into page table. */
879 1.1 simonb pte_enter(pm, va, tte);
880 1.1 simonb
881 1.1 simonb /* If this is a real fault, enter it in the tlb */
882 1.1 simonb if (tte && ((flags & PMAP_WIRED) == 0)) {
883 1.71 kiyohara int s2 = splhigh();
884 1.1 simonb ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
885 1.71 kiyohara splx(s2);
886 1.1 simonb }
887 1.1 simonb splx(s);
888 1.6 simonb
889 1.6 simonb /* Flush the real memory from the instruction cache. */
890 1.6 simonb if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
891 1.6 simonb __syncicache((void *)pa, PAGE_SIZE);
892 1.6 simonb
893 1.1 simonb return 0;
894 1.1 simonb }
895 1.1 simonb
896 1.1 simonb void
897 1.1 simonb pmap_unwire(struct pmap *pm, vaddr_t va)
898 1.1 simonb {
899 1.33 chs struct pv_entry *pv;
900 1.1 simonb paddr_t pa;
901 1.30 chs int s;
902 1.1 simonb
903 1.1 simonb if (!pmap_extract(pm, va, &pa)) {
904 1.1 simonb return;
905 1.1 simonb }
906 1.1 simonb
907 1.1 simonb pv = pa_to_pv(pa);
908 1.30 chs if (!pv)
909 1.30 chs return;
910 1.1 simonb
911 1.30 chs s = splvm();
912 1.33 chs while (pv != NULL) {
913 1.33 chs if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
914 1.33 chs if (PV_ISWIRED(pv)) {
915 1.33 chs PV_UNWIRE(pv);
916 1.30 chs pm->pm_stats.wired_count--;
917 1.30 chs }
918 1.1 simonb break;
919 1.1 simonb }
920 1.33 chs pv = pv->pv_next;
921 1.1 simonb }
922 1.1 simonb splx(s);
923 1.1 simonb }
924 1.1 simonb
925 1.1 simonb void
926 1.59 cegger pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
927 1.1 simonb {
928 1.1 simonb int s;
929 1.1 simonb u_int tte;
930 1.1 simonb struct pmap *pm = pmap_kernel();
931 1.1 simonb
932 1.1 simonb /*
933 1.1 simonb * Have to remove any existing mapping first.
934 1.1 simonb */
935 1.1 simonb
936 1.1 simonb /*
937 1.1 simonb * Generate TTE.
938 1.1 simonb *
939 1.1 simonb * XXXX
940 1.1 simonb *
941 1.1 simonb * Since the kernel does not handle execution privileges properly,
942 1.1 simonb * we will handle read and execute permissions together.
943 1.1 simonb */
944 1.1 simonb tte = 0;
945 1.1 simonb if (prot & VM_PROT_ALL) {
946 1.1 simonb
947 1.1 simonb tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
948 1.1 simonb /* XXXX -- need to support multiple page sizes. */
949 1.1 simonb tte |= TTE_SZ_16K;
950 1.1 simonb #ifdef DIAGNOSTIC
951 1.70 matt if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) ==
952 1.70 matt (PMAP_NOCACHE | PME_WRITETHROUG))
953 1.13 provos panic("pmap_kenter_pa: uncached & writethrough");
954 1.1 simonb #endif
955 1.70 matt if (flags & PMAP_NOCACHE)
956 1.1 simonb /* Must be I/O mapping */
957 1.1 simonb tte |= TTE_I | TTE_G;
958 1.8 thorpej #ifdef PPC_4XX_NOCACHE
959 1.1 simonb tte |= TTE_I;
960 1.1 simonb #else
961 1.1 simonb else if (prot & PME_WRITETHROUG)
962 1.1 simonb /* Uncached and writethrough are not compatible */
963 1.1 simonb tte |= TTE_W;
964 1.1 simonb #endif
965 1.1 simonb if (prot & VM_PROT_WRITE)
966 1.1 simonb tte |= TTE_WR;
967 1.1 simonb }
968 1.1 simonb
969 1.1 simonb s = splvm();
970 1.1 simonb
971 1.1 simonb /* Insert page into page table. */
972 1.1 simonb pte_enter(pm, va, tte);
973 1.1 simonb splx(s);
974 1.1 simonb }
975 1.1 simonb
976 1.1 simonb void
977 1.1 simonb pmap_kremove(vaddr_t va, vsize_t len)
978 1.1 simonb {
979 1.1 simonb
980 1.1 simonb while (len > 0) {
981 1.1 simonb pte_enter(pmap_kernel(), va, 0);
982 1.1 simonb va += PAGE_SIZE;
983 1.1 simonb len -= PAGE_SIZE;
984 1.1 simonb }
985 1.1 simonb }
986 1.1 simonb
987 1.1 simonb /*
988 1.1 simonb * Remove the given range of mapping entries.
989 1.1 simonb */
990 1.1 simonb void
991 1.1 simonb pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
992 1.1 simonb {
993 1.1 simonb int s;
994 1.1 simonb paddr_t pa;
995 1.1 simonb volatile u_int *ptp;
996 1.1 simonb
997 1.1 simonb s = splvm();
998 1.1 simonb while (va < endva) {
999 1.1 simonb
1000 1.1 simonb if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
1001 1.1 simonb pa = TTE_PA(pa);
1002 1.1 simonb pmap_remove_pv(pm, va, pa);
1003 1.1 simonb *ptp = 0;
1004 1.1 simonb ppc4xx_tlb_flush(va, pm->pm_ctx);
1005 1.1 simonb pm->pm_stats.resident_count--;
1006 1.1 simonb }
1007 1.19 thorpej va += PAGE_SIZE;
1008 1.1 simonb }
1009 1.1 simonb
1010 1.1 simonb splx(s);
1011 1.1 simonb }
1012 1.1 simonb
1013 1.1 simonb /*
1014 1.1 simonb * Get the physical page address for the given pmap/virtual address.
1015 1.1 simonb */
1016 1.45 thorpej bool
1017 1.1 simonb pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1018 1.1 simonb {
1019 1.1 simonb int seg = STIDX(va);
1020 1.1 simonb int ptn = PTIDX(va);
1021 1.1 simonb u_int pa = 0;
1022 1.30 chs int s;
1023 1.1 simonb
1024 1.30 chs s = splvm();
1025 1.77 rin if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn]) && pap) {
1026 1.1 simonb *pap = TTE_PA(pa) | (va & PGOFSET);
1027 1.1 simonb }
1028 1.1 simonb splx(s);
1029 1.1 simonb return (pa != 0);
1030 1.1 simonb }
1031 1.1 simonb
1032 1.1 simonb /*
1033 1.1 simonb * Lower the protection on the specified range of this pmap.
1034 1.1 simonb *
1035 1.1 simonb * There are only two cases: either the protection is going to 0,
1036 1.1 simonb * or it is going to read-only.
1037 1.1 simonb */
1038 1.1 simonb void
1039 1.1 simonb pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1040 1.1 simonb {
1041 1.1 simonb volatile u_int *ptp;
1042 1.26 chs int s, bic;
1043 1.1 simonb
1044 1.26 chs if ((prot & VM_PROT_READ) == 0) {
1045 1.26 chs pmap_remove(pm, sva, eva);
1046 1.26 chs return;
1047 1.26 chs }
1048 1.26 chs bic = 0;
1049 1.26 chs if ((prot & VM_PROT_WRITE) == 0) {
1050 1.26 chs bic |= TTE_WR;
1051 1.26 chs }
1052 1.26 chs if ((prot & VM_PROT_EXECUTE) == 0) {
1053 1.26 chs bic |= TTE_EX;
1054 1.26 chs }
1055 1.26 chs if (bic == 0) {
1056 1.26 chs return;
1057 1.26 chs }
1058 1.26 chs s = splvm();
1059 1.26 chs while (sva < eva) {
1060 1.26 chs if ((ptp = pte_find(pm, sva)) != NULL) {
1061 1.26 chs *ptp &= ~bic;
1062 1.26 chs ppc4xx_tlb_flush(sva, pm->pm_ctx);
1063 1.1 simonb }
1064 1.26 chs sva += PAGE_SIZE;
1065 1.1 simonb }
1066 1.26 chs splx(s);
1067 1.1 simonb }
1068 1.1 simonb
1069 1.45 thorpej bool
1070 1.30 chs pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
1071 1.1 simonb {
1072 1.30 chs paddr_t pa;
1073 1.1 simonb char *attr;
1074 1.30 chs int s, rv;
1075 1.1 simonb
1076 1.1 simonb /*
1077 1.1 simonb * First modify bits in cache.
1078 1.1 simonb */
1079 1.30 chs pa = VM_PAGE_TO_PHYS(pg);
1080 1.1 simonb attr = pa_to_attr(pa);
1081 1.1 simonb if (attr == NULL)
1082 1.46 thorpej return false;
1083 1.1 simonb
1084 1.30 chs s = splvm();
1085 1.1 simonb rv = ((*attr & mask) != 0);
1086 1.11 eeh if (clear) {
1087 1.1 simonb *attr &= ~mask;
1088 1.30 chs pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
1089 1.11 eeh }
1090 1.1 simonb splx(s);
1091 1.1 simonb return rv;
1092 1.1 simonb }
1093 1.1 simonb
1094 1.1 simonb
1095 1.1 simonb /*
1096 1.1 simonb * Lower the protection on the specified physical page.
1097 1.1 simonb *
1098 1.1 simonb * There are only two cases: either the protection is going to 0,
1099 1.1 simonb * or it is going to read-only.
1100 1.1 simonb */
1101 1.1 simonb void
1102 1.1 simonb pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1103 1.1 simonb {
1104 1.1 simonb paddr_t pa = VM_PAGE_TO_PHYS(pg);
1105 1.1 simonb vaddr_t va;
1106 1.1 simonb struct pv_entry *pvh, *pv, *npv;
1107 1.1 simonb struct pmap *pm;
1108 1.1 simonb
1109 1.1 simonb pvh = pa_to_pv(pa);
1110 1.1 simonb if (pvh == NULL)
1111 1.1 simonb return;
1112 1.1 simonb
1113 1.1 simonb /* Handle extra pvs which may be deleted in the operation */
1114 1.1 simonb for (pv = pvh->pv_next; pv; pv = npv) {
1115 1.1 simonb npv = pv->pv_next;
1116 1.1 simonb
1117 1.1 simonb pm = pv->pv_pm;
1118 1.1 simonb va = pv->pv_va;
1119 1.26 chs pmap_protect(pm, va, va + PAGE_SIZE, prot);
1120 1.1 simonb }
1121 1.1 simonb /* Now check the head pv */
1122 1.1 simonb if (pvh->pv_pm) {
1123 1.1 simonb pv = pvh;
1124 1.1 simonb pm = pv->pv_pm;
1125 1.1 simonb va = pv->pv_va;
1126 1.26 chs pmap_protect(pm, va, va + PAGE_SIZE, prot);
1127 1.1 simonb }
1128 1.1 simonb }
1129 1.1 simonb
1130 1.1 simonb /*
1131 1.1 simonb * Activate the address space for the specified process. If the process
1132 1.1 simonb * is the current process, load the new MMU context.
1133 1.1 simonb */
1134 1.1 simonb void
1135 1.17 thorpej pmap_activate(struct lwp *l)
1136 1.1 simonb {
1137 1.1 simonb #if 0
1138 1.65 rmind struct pcb *pcb = lwp_getpcb(l);
1139 1.17 thorpej pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1140 1.1 simonb
1141 1.1 simonb /*
1142 1.61 skrll * XXX Normally performed in cpu_lwp_fork().
1143 1.1 simonb */
1144 1.17 thorpej printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1145 1.25 matt pcb->pcb_pm = pmap;
1146 1.1 simonb #endif
1147 1.1 simonb }
1148 1.1 simonb
1149 1.1 simonb /*
1150 1.1 simonb * Deactivate the specified process's address space.
1151 1.1 simonb */
1152 1.1 simonb void
1153 1.17 thorpej pmap_deactivate(struct lwp *l)
1154 1.1 simonb {
1155 1.1 simonb }
1156 1.1 simonb
1157 1.1 simonb /*
1158 1.1 simonb * Synchronize caches corresponding to [addr, addr+len) in p.
1159 1.1 simonb */
1160 1.1 simonb void
1161 1.1 simonb pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1162 1.1 simonb {
1163 1.1 simonb struct pmap *pm = p->p_vmspace->vm_map.pmap;
1164 1.18 hannken int msr, ctx, opid, step;
1165 1.18 hannken
1166 1.18 hannken step = CACHELINESIZE;
1167 1.1 simonb
1168 1.1 simonb /*
1169 1.1 simonb * Need to turn off IMMU and switch to user context.
1170 1.1 simonb * (icbi uses DMMU).
1171 1.1 simonb */
1172 1.1 simonb if (!(ctx = pm->pm_ctx)) {
1173 1.1 simonb /* No context -- assign it one */
1174 1.1 simonb ctx_alloc(pm);
1175 1.1 simonb ctx = pm->pm_ctx;
1176 1.1 simonb }
1177 1.81 rin __asm volatile(
1178 1.81 rin "mfmsr %0;"
1179 1.86 rin "li %1, %7;"
1180 1.1 simonb "andc %1,%0,%1;"
1181 1.1 simonb "mtmsr %1;"
1182 1.88 rin "isync;"
1183 1.1 simonb "mfpid %1;"
1184 1.1 simonb "mtpid %2;"
1185 1.88 rin "isync;"
1186 1.12 simonb "1:"
1187 1.83 rin "dcbst 0,%3;"
1188 1.1 simonb "icbi 0,%3;"
1189 1.18 hannken "add %3,%3,%5;"
1190 1.18 hannken "addc. %4,%4,%6;"
1191 1.1 simonb "bge 1b;"
1192 1.88 rin "sync;"
1193 1.1 simonb "mtpid %1;"
1194 1.1 simonb "mtmsr %0;"
1195 1.88 rin "isync;"
1196 1.1 simonb : "=&r" (msr), "=&r" (opid)
1197 1.86 rin : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
1198 1.86 rin "K" (PSL_IR | PSL_DR));
1199 1.1 simonb }
1200 1.1 simonb
1201 1.1 simonb
1202 1.1 simonb /* This has to be done in real mode !!! */
1203 1.1 simonb void
1204 1.1 simonb ppc4xx_tlb_flush(vaddr_t va, int pid)
1205 1.1 simonb {
1206 1.1 simonb u_long i, found;
1207 1.1 simonb u_long msr;
1208 1.1 simonb
1209 1.1 simonb /* If there's no context then it can't be mapped. */
1210 1.26 chs if (!pid)
1211 1.26 chs return;
1212 1.1 simonb
1213 1.81 rin __asm volatile(
1214 1.81 rin "mfpid %1;" /* Save PID */
1215 1.1 simonb "mfmsr %2;" /* Save MSR */
1216 1.1 simonb "li %0,0;" /* Now clear MSR */
1217 1.1 simonb "mtmsr %0;"
1218 1.88 rin "isync;"
1219 1.1 simonb "mtpid %4;" /* Set PID */
1220 1.88 rin "isync;"
1221 1.1 simonb "tlbsx. %0,0,%3;" /* Search TLB */
1222 1.88 rin "isync;"
1223 1.1 simonb "mtpid %1;" /* Restore PID */
1224 1.1 simonb "mtmsr %2;" /* Restore MSR */
1225 1.88 rin "isync;"
1226 1.1 simonb "li %1,1;"
1227 1.1 simonb "beq 1f;"
1228 1.1 simonb "li %1,0;"
1229 1.1 simonb "1:"
1230 1.1 simonb : "=&r" (i), "=&r" (found), "=&r" (msr)
1231 1.1 simonb : "r" (va), "r" (pid));
1232 1.1 simonb if (found && !TLB_LOCKED(i)) {
1233 1.1 simonb /* Now flush translation */
1234 1.39 perry __asm volatile(
1235 1.1 simonb "tlbwe %0,%1,0;"
1236 1.88 rin "isync;"
1237 1.1 simonb : : "r" (0), "r" (i));
1238 1.1 simonb
1239 1.1 simonb tlb_info[i].ti_ctx = 0;
1240 1.1 simonb tlb_info[i].ti_flags = 0;
1241 1.1 simonb tlbnext = i;
1242 1.1 simonb /* Successful flushes */
1243 1.1 simonb tlbflush_ev.ev_count++;
1244 1.1 simonb }
1245 1.1 simonb }
1246 1.1 simonb
1247 1.1 simonb void
1248 1.1 simonb ppc4xx_tlb_flush_all(void)
1249 1.1 simonb {
1250 1.1 simonb u_long i;
1251 1.1 simonb
1252 1.1 simonb for (i = 0; i < NTLB; i++)
1253 1.1 simonb if (!TLB_LOCKED(i)) {
1254 1.39 perry __asm volatile(
1255 1.88 rin "tlbwe %0,%1,0;" : : "r" (0), "r" (i));
1256 1.1 simonb tlb_info[i].ti_ctx = 0;
1257 1.1 simonb tlb_info[i].ti_flags = 0;
1258 1.1 simonb }
1259 1.1 simonb
1260 1.88 rin __asm volatile("isync");
1261 1.1 simonb }
1262 1.1 simonb
1263 1.1 simonb /* Find a TLB entry to evict. */
1264 1.1 simonb static int
1265 1.1 simonb ppc4xx_tlb_find_victim(void)
1266 1.1 simonb {
1267 1.1 simonb int flags;
1268 1.1 simonb
1269 1.1 simonb for (;;) {
1270 1.1 simonb if (++tlbnext >= NTLB)
1271 1.42 freza tlbnext = tlb_nreserved;
1272 1.1 simonb flags = tlb_info[tlbnext].ti_flags;
1273 1.12 simonb if (!(flags & TLBF_USED) ||
1274 1.1 simonb (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1275 1.1 simonb u_long va, stack = (u_long)&va;
1276 1.1 simonb
1277 1.1 simonb if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1278 1.1 simonb (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1279 1.1 simonb (flags & TLBF_USED)) {
1280 1.1 simonb /* Kernel stack page */
1281 1.80 rin flags |= TLBF_REF;
1282 1.1 simonb tlb_info[tlbnext].ti_flags = flags;
1283 1.1 simonb } else {
1284 1.1 simonb /* Found it! */
1285 1.1 simonb return (tlbnext);
1286 1.1 simonb }
1287 1.1 simonb } else {
1288 1.1 simonb tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1289 1.1 simonb }
1290 1.1 simonb }
1291 1.1 simonb }
1292 1.1 simonb
1293 1.1 simonb void
1294 1.1 simonb ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1295 1.1 simonb {
1296 1.1 simonb u_long th, tl, idx;
1297 1.84 rin int msr, pid;
1298 1.10 eeh paddr_t pa;
1299 1.71 kiyohara int sz;
1300 1.10 eeh
1301 1.1 simonb tlbenter_ev.ev_count++;
1302 1.1 simonb
1303 1.10 eeh sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1304 1.10 eeh pa = (pte & TTE_RPN_MASK(sz));
1305 1.10 eeh th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1306 1.10 eeh tl = (pte & ~TLB_RPN_MASK) | pa;
1307 1.10 eeh tl |= ppc4xx_tlbflags(va, pa);
1308 1.1 simonb
1309 1.1 simonb idx = ppc4xx_tlb_find_victim();
1310 1.1 simonb
1311 1.1 simonb #ifdef DIAGNOSTIC
1312 1.81 rin if ((idx < tlb_nreserved) || (idx >= NTLB) || (idx & 63) == 0) {
1313 1.31 simonb panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
1314 1.1 simonb }
1315 1.1 simonb #endif
1316 1.12 simonb
1317 1.1 simonb tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1318 1.1 simonb tlb_info[idx].ti_ctx = ctx;
1319 1.1 simonb tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1320 1.1 simonb
1321 1.39 perry __asm volatile(
1322 1.1 simonb "mfmsr %0;" /* Save MSR */
1323 1.1 simonb "li %1,0;"
1324 1.82 rin "mtmsr %1;" /* Clear MSR */
1325 1.88 rin "isync;"
1326 1.1 simonb "tlbwe %1,%3,0;" /* Invalidate old entry. */
1327 1.1 simonb "mfpid %1;" /* Save old PID */
1328 1.1 simonb "mtpid %2;" /* Load translation ctx */
1329 1.88 rin "isync;"
1330 1.1 simonb "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1331 1.88 rin "isync;"
1332 1.1 simonb "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1333 1.88 rin "isync;"
1334 1.1 simonb : "=&r" (msr), "=&r" (pid)
1335 1.1 simonb : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1336 1.1 simonb }
1337 1.1 simonb
1338 1.1 simonb void
1339 1.1 simonb ppc4xx_tlb_init(void)
1340 1.1 simonb {
1341 1.1 simonb int i;
1342 1.1 simonb
1343 1.1 simonb /* Mark reserved TLB entries */
1344 1.42 freza for (i = 0; i < tlb_nreserved; i++) {
1345 1.1 simonb tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1346 1.1 simonb tlb_info[i].ti_ctx = KERNEL_PID;
1347 1.1 simonb }
1348 1.1 simonb
1349 1.1 simonb /* Setup security zones */
1350 1.1 simonb /* Z0 - accessible by kernel only if TLB entry permissions allow
1351 1.1 simonb * Z1,Z2 - access is controlled by TLB entry permissions
1352 1.1 simonb * Z3 - full access regardless of TLB entry permissions
1353 1.1 simonb */
1354 1.1 simonb
1355 1.39 perry __asm volatile(
1356 1.1 simonb "mtspr %0,%1;"
1357 1.88 rin "isync;"
1358 1.1 simonb :: "K"(SPR_ZPR), "r" (0x1b000000));
1359 1.1 simonb }
1360 1.1 simonb
1361 1.42 freza /*
1362 1.42 freza * ppc4xx_tlb_size_mask:
1363 1.42 freza *
1364 1.42 freza * Roundup size to supported page size, return TLBHI mask and real size.
1365 1.42 freza */
1366 1.42 freza static int
1367 1.42 freza ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
1368 1.42 freza {
1369 1.42 freza int i;
1370 1.42 freza
1371 1.42 freza for (i = 0; i < __arraycount(tlbsize); i++)
1372 1.42 freza if (size <= tlbsize[i]) {
1373 1.42 freza *mask = (i << TLB_SIZE_SHFT);
1374 1.42 freza *rsiz = tlbsize[i];
1375 1.42 freza return (0);
1376 1.42 freza }
1377 1.42 freza return (EINVAL);
1378 1.42 freza }
1379 1.42 freza
1380 1.42 freza /*
1381 1.42 freza * ppc4xx_tlb_mapiodev:
1382 1.42 freza *
1383 1.42 freza * Lookup virtual address of mapping previously entered via
1384 1.42 freza * ppc4xx_tlb_reserve. Search TLB directly so that we don't
1385 1.42 freza * need to waste extra storage for reserved mappings. Note
1386 1.42 freza * that reading TLBHI also sets PID, but all reserved mappings
1387 1.42 freza * use KERNEL_PID, so the side effect is nil.
1388 1.42 freza */
1389 1.42 freza void *
1390 1.42 freza ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
1391 1.42 freza {
1392 1.42 freza paddr_t pa;
1393 1.42 freza vaddr_t va;
1394 1.42 freza u_int lo, hi, sz;
1395 1.42 freza int i;
1396 1.42 freza
1397 1.42 freza /* tlb_nreserved is only allowed to grow, so this is safe. */
1398 1.42 freza for (i = 0; i < tlb_nreserved; i++) {
1399 1.42 freza __asm volatile (
1400 1.42 freza " tlbre %0,%2,1 \n" /* TLBLO */
1401 1.42 freza " tlbre %1,%2,0 \n" /* TLBHI */
1402 1.42 freza : "=&r" (lo), "=&r" (hi)
1403 1.42 freza : "r" (i));
1404 1.42 freza
1405 1.42 freza KASSERT(hi & TLB_VALID);
1406 1.42 freza KASSERT(mfspr(SPR_PID) == KERNEL_PID);
1407 1.42 freza
1408 1.42 freza pa = (lo & TLB_RPN_MASK);
1409 1.42 freza if (base < pa)
1410 1.42 freza continue;
1411 1.42 freza
1412 1.42 freza sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
1413 1.42 freza if ((base + len) > (pa + sz))
1414 1.42 freza continue;
1415 1.42 freza
1416 1.42 freza va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); /* sz = 2^n */
1417 1.42 freza return (void *)(va);
1418 1.42 freza }
1419 1.42 freza
1420 1.42 freza return (NULL);
1421 1.42 freza }
1422 1.42 freza
1423 1.42 freza /*
1424 1.42 freza * ppc4xx_tlb_reserve:
1425 1.42 freza *
1426 1.42 freza * Map physical range to kernel virtual chunk via reserved TLB entry.
1427 1.42 freza */
1428 1.42 freza void
1429 1.42 freza ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
1430 1.42 freza {
1431 1.42 freza u_int lo, hi;
1432 1.42 freza int szmask, rsize;
1433 1.42 freza
1434 1.42 freza /* Called before pmap_bootstrap(), va outside kernel space. */
1435 1.42 freza KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
1436 1.42 freza KASSERT(! pmap_bootstrap_done);
1437 1.42 freza KASSERT(tlb_nreserved < NTLB);
1438 1.42 freza
1439 1.42 freza /* Resolve size. */
1440 1.42 freza if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
1441 1.42 freza panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
1442 1.42 freza size, tlb_nreserved);
1443 1.42 freza
1444 1.42 freza /* Real size will be power of two >= 1024, so this is OK. */
1445 1.42 freza pa &= ~(rsize - 1); /* RPN */
1446 1.42 freza va &= ~(rsize - 1); /* EPN */
1447 1.42 freza
1448 1.42 freza lo = pa | TLB_WR | flags;
1449 1.43 kiyohara hi = va | TLB_VALID | szmask;
1450 1.42 freza
1451 1.42 freza #ifdef PPC_4XX_NOCACHE
1452 1.42 freza lo |= TLB_I;
1453 1.42 freza #endif
1454 1.42 freza
1455 1.42 freza __asm volatile(
1456 1.42 freza " tlbwe %1,%0,1 \n" /* write TLBLO */
1457 1.42 freza " tlbwe %2,%0,0 \n" /* write TLBHI */
1458 1.42 freza " isync \n"
1459 1.42 freza : : "r" (tlb_nreserved), "r" (lo), "r" (hi));
1460 1.42 freza
1461 1.42 freza tlb_nreserved++;
1462 1.42 freza }
1463 1.1 simonb
1464 1.1 simonb /*
1465 1.1 simonb * We should pass the ctx in from trap code.
1466 1.1 simonb */
1467 1.1 simonb int
1468 1.1 simonb pmap_tlbmiss(vaddr_t va, int ctx)
1469 1.1 simonb {
1470 1.1 simonb volatile u_int *pte;
1471 1.1 simonb u_long tte;
1472 1.1 simonb
1473 1.1 simonb tlbmiss_ev.ev_count++;
1474 1.1 simonb
1475 1.1 simonb /*
1476 1.44 freza * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
1477 1.44 freza * Physical RAM is expected to live in this range, care must be taken
1478 1.44 freza * to not clobber 0 upto ${physmem} with device mappings in machdep
1479 1.44 freza * code.
1480 1.1 simonb */
1481 1.63 uebayasi if (ctx != KERNEL_PID ||
1482 1.63 uebayasi (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) {
1483 1.36 scw pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
1484 1.1 simonb if (pte == NULL) {
1485 1.1 simonb /* Map unmanaged addresses directly for kernel access */
1486 1.1 simonb return 1;
1487 1.1 simonb }
1488 1.1 simonb tte = *pte;
1489 1.1 simonb if (tte == 0) {
1490 1.1 simonb return 1;
1491 1.1 simonb }
1492 1.1 simonb } else {
1493 1.16 wiz /* Create a 16MB writable mapping. */
1494 1.8 thorpej #ifdef PPC_4XX_NOCACHE
1495 1.44 freza tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR;
1496 1.1 simonb #else
1497 1.1 simonb tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1498 1.1 simonb #endif
1499 1.1 simonb }
1500 1.1 simonb ppc4xx_tlb_enter(ctx, va, tte);
1501 1.1 simonb
1502 1.1 simonb return 0;
1503 1.1 simonb }
1504 1.1 simonb
1505 1.1 simonb /*
1506 1.1 simonb * Flush all the entries matching a context from the TLB.
1507 1.1 simonb */
1508 1.1 simonb static int
1509 1.1 simonb ctx_flush(int cnum)
1510 1.1 simonb {
1511 1.1 simonb int i;
1512 1.1 simonb
1513 1.1 simonb /* We gotta steal this context */
1514 1.42 freza for (i = tlb_nreserved; i < NTLB; i++) {
1515 1.1 simonb if (tlb_info[i].ti_ctx == cnum) {
1516 1.1 simonb /* Can't steal ctx if it has a locked entry. */
1517 1.1 simonb if (TLB_LOCKED(i)) {
1518 1.1 simonb #ifdef DIAGNOSTIC
1519 1.1 simonb printf("ctx_flush: can't invalidate "
1520 1.1 simonb "locked mapping %d "
1521 1.1 simonb "for context %d\n", i, cnum);
1522 1.10 eeh #ifdef DDB
1523 1.1 simonb Debugger();
1524 1.1 simonb #endif
1525 1.10 eeh #endif
1526 1.1 simonb return (1);
1527 1.1 simonb }
1528 1.1 simonb #ifdef DIAGNOSTIC
1529 1.42 freza if (i < tlb_nreserved)
1530 1.13 provos panic("TLB entry %d not locked", i);
1531 1.1 simonb #endif
1532 1.1 simonb /* Invalidate particular TLB entry regardless of locked status */
1533 1.39 perry __asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1534 1.79 rin tlb_info[i].ti_ctx = 0;
1535 1.1 simonb tlb_info[i].ti_flags = 0;
1536 1.1 simonb }
1537 1.1 simonb }
1538 1.1 simonb return (0);
1539 1.1 simonb }
1540 1.1 simonb
1541 1.1 simonb /*
1542 1.1 simonb * Allocate a context. If necessary, steal one from someone else.
1543 1.1 simonb *
1544 1.1 simonb * The new context is flushed from the TLB before returning.
1545 1.1 simonb */
1546 1.1 simonb int
1547 1.1 simonb ctx_alloc(struct pmap *pm)
1548 1.1 simonb {
1549 1.1 simonb int s, cnum;
1550 1.1 simonb static int next = MINCTX;
1551 1.1 simonb
1552 1.1 simonb if (pm == pmap_kernel()) {
1553 1.1 simonb #ifdef DIAGNOSTIC
1554 1.1 simonb printf("ctx_alloc: kernel pmap!\n");
1555 1.1 simonb #endif
1556 1.1 simonb return (0);
1557 1.1 simonb }
1558 1.1 simonb s = splvm();
1559 1.1 simonb
1560 1.1 simonb /* Find a likely context. */
1561 1.1 simonb cnum = next;
1562 1.1 simonb do {
1563 1.78 rin if ((++cnum) >= NUMCTX)
1564 1.1 simonb cnum = MINCTX;
1565 1.1 simonb } while (ctxbusy[cnum] != NULL && cnum != next);
1566 1.1 simonb
1567 1.1 simonb /* Now clean it out */
1568 1.1 simonb oops:
1569 1.1 simonb if (cnum < MINCTX)
1570 1.1 simonb cnum = MINCTX; /* Never steal ctx 0 or 1 */
1571 1.1 simonb if (ctx_flush(cnum)) {
1572 1.1 simonb /* oops -- something's wired. */
1573 1.78 rin if ((++cnum) >= NUMCTX)
1574 1.1 simonb cnum = MINCTX;
1575 1.1 simonb goto oops;
1576 1.1 simonb }
1577 1.1 simonb
1578 1.1 simonb if (ctxbusy[cnum]) {
1579 1.1 simonb #ifdef DEBUG
1580 1.1 simonb /* We should identify this pmap and clear it */
1581 1.1 simonb printf("Warning: stealing context %d\n", cnum);
1582 1.1 simonb #endif
1583 1.1 simonb ctxbusy[cnum]->pm_ctx = 0;
1584 1.1 simonb }
1585 1.1 simonb ctxbusy[cnum] = pm;
1586 1.1 simonb next = cnum;
1587 1.1 simonb splx(s);
1588 1.1 simonb pm->pm_ctx = cnum;
1589 1.1 simonb
1590 1.1 simonb return cnum;
1591 1.1 simonb }
1592 1.1 simonb
1593 1.1 simonb /*
1594 1.1 simonb * Give away a context.
1595 1.1 simonb */
1596 1.1 simonb void
1597 1.1 simonb ctx_free(struct pmap *pm)
1598 1.1 simonb {
1599 1.1 simonb int oldctx;
1600 1.1 simonb
1601 1.1 simonb oldctx = pm->pm_ctx;
1602 1.1 simonb
1603 1.1 simonb if (oldctx == 0)
1604 1.1 simonb panic("ctx_free: freeing kernel context");
1605 1.1 simonb #ifdef DIAGNOSTIC
1606 1.1 simonb if (ctxbusy[oldctx] == 0)
1607 1.1 simonb printf("ctx_free: freeing free context %d\n", oldctx);
1608 1.1 simonb if (ctxbusy[oldctx] != pm) {
1609 1.1 simonb printf("ctx_free: freeing someone esle's context\n "
1610 1.1 simonb "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1611 1.1 simonb oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1612 1.10 eeh #ifdef DDB
1613 1.1 simonb Debugger();
1614 1.10 eeh #endif
1615 1.1 simonb }
1616 1.1 simonb #endif
1617 1.1 simonb /* We should verify it has not been stolen and reallocated... */
1618 1.1 simonb ctxbusy[oldctx] = NULL;
1619 1.1 simonb ctx_flush(oldctx);
1620 1.1 simonb }
1621 1.5 eeh
1622 1.1 simonb
1623 1.1 simonb #ifdef DEBUG
1624 1.1 simonb /*
1625 1.1 simonb * Test ref/modify handling.
1626 1.1 simonb */
1627 1.53 dsl void pmap_testout(void);
1628 1.1 simonb void
1629 1.54 cegger pmap_testout(void)
1630 1.1 simonb {
1631 1.1 simonb vaddr_t va;
1632 1.1 simonb volatile int *loc;
1633 1.1 simonb int val = 0;
1634 1.1 simonb paddr_t pa;
1635 1.1 simonb struct vm_page *pg;
1636 1.1 simonb int ref, mod;
1637 1.1 simonb
1638 1.1 simonb /* Allocate a page */
1639 1.34 yamt va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1640 1.34 yamt UVM_KMF_WIRED | UVM_KMF_ZERO);
1641 1.1 simonb loc = (int*)va;
1642 1.1 simonb
1643 1.1 simonb pmap_extract(pmap_kernel(), va, &pa);
1644 1.1 simonb pg = PHYS_TO_VM_PAGE(pa);
1645 1.1 simonb pmap_unwire(pmap_kernel(), va);
1646 1.1 simonb
1647 1.34 yamt pmap_kremove(va, PAGE_SIZE);
1648 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1649 1.4 chris pmap_update(pmap_kernel());
1650 1.1 simonb
1651 1.1 simonb /* Now clear reference and modify */
1652 1.1 simonb ref = pmap_clear_reference(pg);
1653 1.1 simonb mod = pmap_clear_modify(pg);
1654 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1655 1.1 simonb (void *)(u_long)va, (long)pa,
1656 1.1 simonb ref, mod);
1657 1.1 simonb
1658 1.1 simonb /* Check it's properly cleared */
1659 1.1 simonb ref = pmap_is_referenced(pg);
1660 1.1 simonb mod = pmap_is_modified(pg);
1661 1.1 simonb printf("Checking cleared page: ref %d, mod %d\n",
1662 1.1 simonb ref, mod);
1663 1.1 simonb
1664 1.1 simonb /* Reference page */
1665 1.1 simonb val = *loc;
1666 1.1 simonb
1667 1.1 simonb ref = pmap_is_referenced(pg);
1668 1.1 simonb mod = pmap_is_modified(pg);
1669 1.1 simonb printf("Referenced page: ref %d, mod %d val %x\n",
1670 1.1 simonb ref, mod, val);
1671 1.1 simonb
1672 1.1 simonb /* Now clear reference and modify */
1673 1.1 simonb ref = pmap_clear_reference(pg);
1674 1.1 simonb mod = pmap_clear_modify(pg);
1675 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1676 1.1 simonb (void *)(u_long)va, (long)pa,
1677 1.1 simonb ref, mod);
1678 1.12 simonb
1679 1.1 simonb /* Modify page */
1680 1.1 simonb *loc = 1;
1681 1.1 simonb
1682 1.1 simonb ref = pmap_is_referenced(pg);
1683 1.1 simonb mod = pmap_is_modified(pg);
1684 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1685 1.1 simonb ref, mod);
1686 1.1 simonb
1687 1.1 simonb /* Now clear reference and modify */
1688 1.1 simonb ref = pmap_clear_reference(pg);
1689 1.1 simonb mod = pmap_clear_modify(pg);
1690 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1691 1.1 simonb (void *)(u_long)va, (long)pa,
1692 1.1 simonb ref, mod);
1693 1.1 simonb
1694 1.1 simonb /* Check it's properly cleared */
1695 1.1 simonb ref = pmap_is_referenced(pg);
1696 1.1 simonb mod = pmap_is_modified(pg);
1697 1.1 simonb printf("Checking cleared page: ref %d, mod %d\n",
1698 1.1 simonb ref, mod);
1699 1.1 simonb
1700 1.1 simonb /* Modify page */
1701 1.1 simonb *loc = 1;
1702 1.1 simonb
1703 1.1 simonb ref = pmap_is_referenced(pg);
1704 1.1 simonb mod = pmap_is_modified(pg);
1705 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1706 1.1 simonb ref, mod);
1707 1.1 simonb
1708 1.1 simonb /* Check pmap_protect() */
1709 1.1 simonb pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1710 1.4 chris pmap_update(pmap_kernel());
1711 1.1 simonb ref = pmap_is_referenced(pg);
1712 1.1 simonb mod = pmap_is_modified(pg);
1713 1.1 simonb printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1714 1.1 simonb ref, mod);
1715 1.1 simonb
1716 1.1 simonb /* Now clear reference and modify */
1717 1.1 simonb ref = pmap_clear_reference(pg);
1718 1.1 simonb mod = pmap_clear_modify(pg);
1719 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1720 1.1 simonb (void *)(u_long)va, (long)pa,
1721 1.1 simonb ref, mod);
1722 1.1 simonb
1723 1.1 simonb /* Reference page */
1724 1.1 simonb val = *loc;
1725 1.1 simonb
1726 1.1 simonb ref = pmap_is_referenced(pg);
1727 1.1 simonb mod = pmap_is_modified(pg);
1728 1.1 simonb printf("Referenced page: ref %d, mod %d val %x\n",
1729 1.1 simonb ref, mod, val);
1730 1.1 simonb
1731 1.1 simonb /* Now clear reference and modify */
1732 1.1 simonb ref = pmap_clear_reference(pg);
1733 1.1 simonb mod = pmap_clear_modify(pg);
1734 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1735 1.1 simonb (void *)(u_long)va, (long)pa,
1736 1.1 simonb ref, mod);
1737 1.12 simonb
1738 1.1 simonb /* Modify page */
1739 1.1 simonb #if 0
1740 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1741 1.4 chris pmap_update(pmap_kernel());
1742 1.1 simonb #endif
1743 1.1 simonb *loc = 1;
1744 1.1 simonb
1745 1.1 simonb ref = pmap_is_referenced(pg);
1746 1.1 simonb mod = pmap_is_modified(pg);
1747 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1748 1.1 simonb ref, mod);
1749 1.1 simonb
1750 1.1 simonb /* Check pmap_protect() */
1751 1.1 simonb pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1752 1.4 chris pmap_update(pmap_kernel());
1753 1.1 simonb ref = pmap_is_referenced(pg);
1754 1.1 simonb mod = pmap_is_modified(pg);
1755 1.1 simonb printf("pmap_protect(): ref %d, mod %d\n",
1756 1.1 simonb ref, mod);
1757 1.1 simonb
1758 1.1 simonb /* Now clear reference and modify */
1759 1.1 simonb ref = pmap_clear_reference(pg);
1760 1.1 simonb mod = pmap_clear_modify(pg);
1761 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1762 1.1 simonb (void *)(u_long)va, (long)pa,
1763 1.1 simonb ref, mod);
1764 1.1 simonb
1765 1.1 simonb /* Reference page */
1766 1.1 simonb val = *loc;
1767 1.1 simonb
1768 1.1 simonb ref = pmap_is_referenced(pg);
1769 1.1 simonb mod = pmap_is_modified(pg);
1770 1.1 simonb printf("Referenced page: ref %d, mod %d val %x\n",
1771 1.1 simonb ref, mod, val);
1772 1.1 simonb
1773 1.1 simonb /* Now clear reference and modify */
1774 1.1 simonb ref = pmap_clear_reference(pg);
1775 1.1 simonb mod = pmap_clear_modify(pg);
1776 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1777 1.1 simonb (void *)(u_long)va, (long)pa,
1778 1.1 simonb ref, mod);
1779 1.12 simonb
1780 1.1 simonb /* Modify page */
1781 1.1 simonb #if 0
1782 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1783 1.4 chris pmap_update(pmap_kernel());
1784 1.1 simonb #endif
1785 1.1 simonb *loc = 1;
1786 1.1 simonb
1787 1.1 simonb ref = pmap_is_referenced(pg);
1788 1.1 simonb mod = pmap_is_modified(pg);
1789 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1790 1.1 simonb ref, mod);
1791 1.1 simonb
1792 1.1 simonb /* Check pmap_pag_protect() */
1793 1.1 simonb pmap_page_protect(pg, VM_PROT_READ);
1794 1.1 simonb ref = pmap_is_referenced(pg);
1795 1.1 simonb mod = pmap_is_modified(pg);
1796 1.1 simonb printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1797 1.1 simonb ref, mod);
1798 1.1 simonb
1799 1.1 simonb /* Now clear reference and modify */
1800 1.1 simonb ref = pmap_clear_reference(pg);
1801 1.1 simonb mod = pmap_clear_modify(pg);
1802 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1803 1.1 simonb (void *)(u_long)va, (long)pa,
1804 1.1 simonb ref, mod);
1805 1.1 simonb
1806 1.1 simonb /* Reference page */
1807 1.1 simonb val = *loc;
1808 1.1 simonb
1809 1.1 simonb ref = pmap_is_referenced(pg);
1810 1.1 simonb mod = pmap_is_modified(pg);
1811 1.1 simonb printf("Referenced page: ref %d, mod %d val %x\n",
1812 1.1 simonb ref, mod, val);
1813 1.1 simonb
1814 1.1 simonb /* Now clear reference and modify */
1815 1.1 simonb ref = pmap_clear_reference(pg);
1816 1.1 simonb mod = pmap_clear_modify(pg);
1817 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1818 1.1 simonb (void *)(u_long)va, (long)pa,
1819 1.1 simonb ref, mod);
1820 1.12 simonb
1821 1.1 simonb /* Modify page */
1822 1.1 simonb #if 0
1823 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1824 1.4 chris pmap_update(pmap_kernel());
1825 1.1 simonb #endif
1826 1.1 simonb *loc = 1;
1827 1.1 simonb
1828 1.1 simonb ref = pmap_is_referenced(pg);
1829 1.1 simonb mod = pmap_is_modified(pg);
1830 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1831 1.1 simonb ref, mod);
1832 1.1 simonb
1833 1.1 simonb /* Check pmap_pag_protect() */
1834 1.1 simonb pmap_page_protect(pg, VM_PROT_NONE);
1835 1.1 simonb ref = pmap_is_referenced(pg);
1836 1.1 simonb mod = pmap_is_modified(pg);
1837 1.1 simonb printf("pmap_page_protect(): ref %d, mod %d\n",
1838 1.1 simonb ref, mod);
1839 1.1 simonb
1840 1.1 simonb /* Now clear reference and modify */
1841 1.1 simonb ref = pmap_clear_reference(pg);
1842 1.1 simonb mod = pmap_clear_modify(pg);
1843 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1844 1.1 simonb (void *)(u_long)va, (long)pa,
1845 1.1 simonb ref, mod);
1846 1.1 simonb
1847 1.1 simonb
1848 1.1 simonb /* Reference page */
1849 1.1 simonb val = *loc;
1850 1.1 simonb
1851 1.1 simonb ref = pmap_is_referenced(pg);
1852 1.1 simonb mod = pmap_is_modified(pg);
1853 1.1 simonb printf("Referenced page: ref %d, mod %d val %x\n",
1854 1.1 simonb ref, mod, val);
1855 1.1 simonb
1856 1.1 simonb /* Now clear reference and modify */
1857 1.1 simonb ref = pmap_clear_reference(pg);
1858 1.1 simonb mod = pmap_clear_modify(pg);
1859 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1860 1.1 simonb (void *)(u_long)va, (long)pa,
1861 1.1 simonb ref, mod);
1862 1.12 simonb
1863 1.1 simonb /* Modify page */
1864 1.1 simonb #if 0
1865 1.1 simonb pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1866 1.4 chris pmap_update(pmap_kernel());
1867 1.1 simonb #endif
1868 1.1 simonb *loc = 1;
1869 1.1 simonb
1870 1.1 simonb ref = pmap_is_referenced(pg);
1871 1.1 simonb mod = pmap_is_modified(pg);
1872 1.1 simonb printf("Modified page: ref %d, mod %d\n",
1873 1.1 simonb ref, mod);
1874 1.1 simonb
1875 1.1 simonb /* Unmap page */
1876 1.1 simonb pmap_remove(pmap_kernel(), va, va+1);
1877 1.4 chris pmap_update(pmap_kernel());
1878 1.1 simonb ref = pmap_is_referenced(pg);
1879 1.1 simonb mod = pmap_is_modified(pg);
1880 1.1 simonb printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1881 1.1 simonb
1882 1.1 simonb /* Now clear reference and modify */
1883 1.1 simonb ref = pmap_clear_reference(pg);
1884 1.1 simonb mod = pmap_clear_modify(pg);
1885 1.1 simonb printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1886 1.1 simonb (void *)(u_long)va, (long)pa, ref, mod);
1887 1.1 simonb
1888 1.1 simonb /* Check it's properly cleared */
1889 1.1 simonb ref = pmap_is_referenced(pg);
1890 1.1 simonb mod = pmap_is_modified(pg);
1891 1.1 simonb printf("Checking cleared page: ref %d, mod %d\n",
1892 1.1 simonb ref, mod);
1893 1.1 simonb
1894 1.34 yamt pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
1895 1.59 cegger pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
1896 1.34 yamt uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
1897 1.1 simonb }
1898 1.1 simonb #endif
1899