Home | History | Annotate | Line # | Download | only in ibm4xx
pmap.c revision 1.99
      1  1.99       rin /*	$NetBSD: pmap.c,v 1.99 2021/09/04 14:31:04 rin Exp $	*/
      2   1.1    simonb 
      3   1.1    simonb /*
      4   1.1    simonb  * Copyright 2001 Wasabi Systems, Inc.
      5   1.1    simonb  * All rights reserved.
      6   1.1    simonb  *
      7   1.1    simonb  * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
      8   1.1    simonb  *
      9   1.1    simonb  * Redistribution and use in source and binary forms, with or without
     10   1.1    simonb  * modification, are permitted provided that the following conditions
     11   1.1    simonb  * are met:
     12   1.1    simonb  * 1. Redistributions of source code must retain the above copyright
     13   1.1    simonb  *    notice, this list of conditions and the following disclaimer.
     14   1.1    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     15   1.1    simonb  *    notice, this list of conditions and the following disclaimer in the
     16   1.1    simonb  *    documentation and/or other materials provided with the distribution.
     17   1.1    simonb  * 3. All advertising materials mentioning features or use of this software
     18   1.1    simonb  *    must display the following acknowledgement:
     19   1.1    simonb  *      This product includes software developed for the NetBSD Project by
     20   1.1    simonb  *      Wasabi Systems, Inc.
     21   1.1    simonb  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22   1.1    simonb  *    or promote products derived from this software without specific prior
     23   1.1    simonb  *    written permission.
     24   1.1    simonb  *
     25   1.1    simonb  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26   1.1    simonb  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27   1.1    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28   1.1    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29   1.1    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30   1.1    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31   1.1    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32   1.1    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33   1.1    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34   1.1    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35   1.1    simonb  * POSSIBILITY OF SUCH DAMAGE.
     36   1.1    simonb  */
     37   1.1    simonb 
     38   1.1    simonb /*
     39   1.1    simonb  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40   1.1    simonb  * Copyright (C) 1995, 1996 TooLs GmbH.
     41   1.1    simonb  * All rights reserved.
     42   1.1    simonb  *
     43   1.1    simonb  * Redistribution and use in source and binary forms, with or without
     44   1.1    simonb  * modification, are permitted provided that the following conditions
     45   1.1    simonb  * are met:
     46   1.1    simonb  * 1. Redistributions of source code must retain the above copyright
     47   1.1    simonb  *    notice, this list of conditions and the following disclaimer.
     48   1.1    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     49   1.1    simonb  *    notice, this list of conditions and the following disclaimer in the
     50   1.1    simonb  *    documentation and/or other materials provided with the distribution.
     51   1.1    simonb  * 3. All advertising materials mentioning features or use of this software
     52   1.1    simonb  *    must display the following acknowledgement:
     53   1.1    simonb  *	This product includes software developed by TooLs GmbH.
     54   1.1    simonb  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55   1.1    simonb  *    derived from this software without specific prior written permission.
     56   1.1    simonb  *
     57   1.1    simonb  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58   1.1    simonb  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59   1.1    simonb  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60   1.1    simonb  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61   1.1    simonb  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62   1.1    simonb  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63   1.1    simonb  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64   1.1    simonb  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65   1.1    simonb  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66   1.1    simonb  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67   1.1    simonb  */
     68  1.23     lukem 
     69  1.23     lukem #include <sys/cdefs.h>
     70  1.99       rin __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.99 2021/09/04 14:31:04 rin Exp $");
     71  1.90       rin 
     72  1.90       rin #ifdef _KERNEL_OPT
     73  1.90       rin #include "opt_ddb.h"
     74  1.93       rin #include "opt_pmap.h"
     75  1.90       rin #endif
     76   1.1    simonb 
     77   1.1    simonb #include <sys/param.h>
     78  1.68      matt #include <sys/cpu.h>
     79  1.68      matt #include <sys/device.h>
     80  1.72      para #include <sys/kmem.h>
     81  1.68      matt #include <sys/pool.h>
     82   1.1    simonb #include <sys/proc.h>
     83   1.1    simonb #include <sys/queue.h>
     84   1.1    simonb #include <sys/systm.h>
     85   1.1    simonb 
     86   1.1    simonb #include <uvm/uvm.h>
     87   1.1    simonb 
     88   1.1    simonb #include <machine/powerpc.h>
     89   1.1    simonb 
     90  1.68      matt #include <powerpc/pcb.h>
     91  1.68      matt 
     92   1.1    simonb #include <powerpc/spr.h>
     93  1.62      matt #include <powerpc/ibm4xx/spr.h>
     94  1.67      matt 
     95  1.67      matt #include <powerpc/ibm4xx/cpu.h>
     96  1.96       rin #include <powerpc/ibm4xx/tlb.h>
     97   1.1    simonb 
     98   1.1    simonb /*
     99   1.1    simonb  * kernmap is an array of PTEs large enough to map in
    100   1.1    simonb  * 4GB.  At 16KB/page it is 256K entries or 2MB.
    101   1.1    simonb  */
    102  1.99       rin #define KERNMAP_SIZE	((0xffffffffU / PAGE_SIZE) + 1)
    103  1.47  christos void *kernmap;
    104   1.1    simonb 
    105   1.1    simonb #define MINCTX		2
    106   1.1    simonb #define NUMCTX		256
    107  1.42     freza 
    108   1.1    simonb volatile struct pmap *ctxbusy[NUMCTX];
    109   1.1    simonb 
    110   1.1    simonb #define TLBF_USED	0x1
    111   1.1    simonb #define	TLBF_REF	0x2
    112   1.1    simonb #define	TLBF_LOCKED	0x4
    113   1.1    simonb #define	TLB_LOCKED(i)	(tlb_info[(i)].ti_flags & TLBF_LOCKED)
    114  1.42     freza 
    115   1.1    simonb typedef struct tlb_info_s {
    116   1.1    simonb 	char	ti_flags;
    117   1.1    simonb 	char	ti_ctx;		/* TLB_PID assiciated with the entry */
    118   1.1    simonb 	u_int	ti_va;
    119   1.1    simonb } tlb_info_t;
    120   1.1    simonb 
    121   1.1    simonb volatile tlb_info_t tlb_info[NTLB];
    122   1.1    simonb /* We'll use a modified FIFO replacement policy cause it's cheap */
    123  1.42     freza volatile int tlbnext;
    124  1.42     freza 
    125  1.42     freza static int tlb_nreserved = 0;
    126  1.42     freza static int pmap_bootstrap_done = 0;
    127   1.1    simonb 
    128  1.14   thorpej /* Event counters */
    129  1.14   thorpej struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    130  1.99       rin     NULL, "cpu", "tlbmiss");
    131  1.14   thorpej struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    132  1.99       rin     NULL, "cpu", "tlbflush");
    133  1.14   thorpej struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
    134  1.99       rin     NULL, "cpu", "tlbenter");
    135  1.66      matt EVCNT_ATTACH_STATIC(tlbmiss_ev);
    136  1.66      matt EVCNT_ATTACH_STATIC(tlbflush_ev);
    137  1.66      matt EVCNT_ATTACH_STATIC(tlbenter_ev);
    138   1.1    simonb 
    139   1.1    simonb struct pmap kernel_pmap_;
    140  1.52     pooka struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
    141   1.1    simonb 
    142   1.1    simonb static int npgs;
    143   1.1    simonb static u_int nextavail;
    144   1.1    simonb #ifndef MSGBUFADDR
    145   1.1    simonb extern paddr_t msgbuf_paddr;
    146   1.1    simonb #endif
    147   1.1    simonb 
    148   1.1    simonb static struct mem_region *mem, *avail;
    149   1.1    simonb 
    150   1.1    simonb /*
    151   1.1    simonb  * This is a cache of referenced/modified bits.
    152   1.1    simonb  * Bits herein are shifted by ATTRSHFT.
    153   1.1    simonb  */
    154   1.1    simonb static char *pmap_attrib;
    155   1.1    simonb 
    156   1.1    simonb #define PV_WIRED	0x1
    157   1.1    simonb #define PV_WIRE(pv)	((pv)->pv_va |= PV_WIRED)
    158  1.30       chs #define PV_UNWIRE(pv)	((pv)->pv_va &= ~PV_WIRED)
    159  1.30       chs #define PV_ISWIRED(pv)	((pv)->pv_va & PV_WIRED)
    160  1.91       rin #define PV_VA(pv)	((pv)->pv_va & ~PV_WIRED)
    161  1.91       rin #define PV_CMPVA(va,pv)	(!(PV_VA(pv) ^ (va)))
    162   1.1    simonb 
    163   1.1    simonb struct pv_entry {
    164   1.1    simonb 	struct pv_entry *pv_next;	/* Linked list of mappings */
    165  1.68      matt 	struct pmap *pv_pm;
    166   1.1    simonb 	vaddr_t pv_va;			/* virtual address of mapping */
    167   1.1    simonb };
    168   1.1    simonb 
    169  1.42     freza /* Each index corresponds to TLB_SIZE_* value. */
    170  1.42     freza static size_t tlbsize[] = {
    171  1.42     freza 	1024, 		/* TLB_SIZE_1K */
    172  1.42     freza 	4096, 		/* TLB_SIZE_4K */
    173  1.42     freza 	16384, 		/* TLB_SIZE_16K */
    174  1.42     freza 	65536, 		/* TLB_SIZE_64K */
    175  1.42     freza 	262144, 	/* TLB_SIZE_256K */
    176  1.42     freza 	1048576, 	/* TLB_SIZE_1M */
    177  1.42     freza 	4194304, 	/* TLB_SIZE_4M */
    178  1.42     freza 	16777216, 	/* TLB_SIZE_16M */
    179  1.42     freza };
    180  1.42     freza 
    181   1.1    simonb struct pv_entry *pv_table;
    182   1.1    simonb static struct pool pv_pool;
    183   1.1    simonb 
    184   1.1    simonb static int pmap_initialized;
    185   1.1    simonb 
    186   1.1    simonb static int ctx_flush(int);
    187   1.1    simonb 
    188  1.68      matt struct pv_entry *pa_to_pv(paddr_t);
    189   1.1    simonb static inline char *pa_to_attr(paddr_t);
    190   1.1    simonb 
    191   1.1    simonb static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
    192   1.1    simonb static inline int pte_enter(struct pmap *, vaddr_t, u_int);
    193   1.1    simonb 
    194  1.49   hannken static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
    195   1.1    simonb static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
    196   1.1    simonb 
    197  1.93       rin static inline void tlb_invalidate_entry(int);
    198  1.93       rin 
    199  1.42     freza static int ppc4xx_tlb_size_mask(size_t, int *, int *);
    200  1.42     freza 
    201   1.1    simonb 
    202  1.68      matt struct pv_entry *
    203   1.1    simonb pa_to_pv(paddr_t pa)
    204   1.1    simonb {
    205  1.75    cherry 	uvm_physseg_t bank;
    206  1.75    cherry 	psize_t pg;
    207   1.1    simonb 
    208  1.74    cherry 	bank = uvm_physseg_find(atop(pa), &pg);
    209  1.76    cherry 	if (bank == UVM_PHYSSEG_TYPE_INVALID)
    210   1.1    simonb 		return NULL;
    211  1.75    cherry 	return &uvm_physseg_get_pmseg(bank)->pvent[pg];
    212   1.1    simonb }
    213   1.1    simonb 
    214   1.1    simonb static inline char *
    215   1.1    simonb pa_to_attr(paddr_t pa)
    216   1.1    simonb {
    217  1.75    cherry 	uvm_physseg_t bank;
    218  1.75    cherry 	psize_t pg;
    219   1.1    simonb 
    220  1.74    cherry 	bank = uvm_physseg_find(atop(pa), &pg);
    221  1.76    cherry 	if (bank == UVM_PHYSSEG_TYPE_INVALID)
    222   1.1    simonb 		return NULL;
    223  1.75    cherry 	return &uvm_physseg_get_pmseg(bank)->attrs[pg];
    224   1.1    simonb }
    225   1.1    simonb 
    226   1.1    simonb /*
    227   1.1    simonb  * Insert PTE into page table.
    228   1.1    simonb  */
    229  1.97       rin static inline int
    230   1.1    simonb pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
    231   1.1    simonb {
    232  1.99       rin 	int seg = STIDX(va), ptn = PTIDX(va);
    233  1.22       scw 	u_int oldpte;
    234   1.1    simonb 
    235   1.1    simonb 	if (!pm->pm_ptbl[seg]) {
    236   1.1    simonb 		/* Don't allocate a page to clear a non-existent mapping. */
    237  1.30       chs 		if (!pte)
    238  1.98       rin 			return 1;
    239  1.98       rin 
    240  1.98       rin 		vaddr_t km = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    241  1.98       rin 		    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
    242  1.98       rin 
    243  1.98       rin 		if (__predict_false(km == 0))
    244  1.97       rin 			return 0;
    245  1.98       rin 
    246  1.98       rin 		pm->pm_ptbl[seg] = (u_int *)km;
    247   1.1    simonb 	}
    248  1.22       scw 	oldpte = pm->pm_ptbl[seg][ptn];
    249   1.1    simonb 	pm->pm_ptbl[seg][ptn] = pte;
    250   1.1    simonb 
    251   1.1    simonb 	/* Flush entry. */
    252   1.1    simonb 	ppc4xx_tlb_flush(va, pm->pm_ctx);
    253  1.22       scw 	if (oldpte != pte) {
    254  1.22       scw 		if (pte == 0)
    255  1.22       scw 			pm->pm_stats.resident_count--;
    256  1.22       scw 		else
    257  1.22       scw 			pm->pm_stats.resident_count++;
    258  1.22       scw 	}
    259  1.97       rin 	return 1;
    260   1.1    simonb }
    261   1.1    simonb 
    262   1.1    simonb /*
    263   1.1    simonb  * Get a pointer to a PTE in a page table.
    264   1.1    simonb  */
    265   1.1    simonb volatile u_int *
    266   1.1    simonb pte_find(struct pmap *pm, vaddr_t va)
    267   1.1    simonb {
    268  1.99       rin 	int seg = STIDX(va), ptn = PTIDX(va);
    269   1.1    simonb 
    270   1.1    simonb 	if (pm->pm_ptbl[seg])
    271  1.97       rin 		return &pm->pm_ptbl[seg][ptn];
    272   1.1    simonb 
    273  1.97       rin 	return NULL;
    274   1.1    simonb }
    275   1.1    simonb 
    276   1.1    simonb /*
    277   1.1    simonb  * This is called during initppc, before the system is really initialized.
    278   1.1    simonb  */
    279   1.1    simonb void
    280   1.1    simonb pmap_bootstrap(u_int kernelstart, u_int kernelend)
    281   1.1    simonb {
    282   1.1    simonb 	struct mem_region *mp, *mp1;
    283   1.1    simonb 	int cnt, i;
    284   1.1    simonb 	u_int s, e, sz;
    285   1.1    simonb 
    286  1.42     freza 	tlbnext = tlb_nreserved;
    287  1.42     freza 
    288   1.1    simonb 	/*
    289   1.1    simonb 	 * Allocate the kernel page table at the end of
    290   1.1    simonb 	 * kernel space so it's in the locked TTE.
    291   1.1    simonb 	 */
    292  1.47  christos 	kernmap = (void *)kernelend;
    293   1.1    simonb 
    294   1.1    simonb 	/*
    295   1.1    simonb 	 * Initialize kernel page table.
    296   1.1    simonb 	 */
    297  1.99       rin 	for (i = 0; i < STSZ; i++)
    298  1.97       rin 		pmap_kernel()->pm_ptbl[i] = NULL;
    299   1.1    simonb 	ctxbusy[0] = ctxbusy[1] = pmap_kernel();
    300   1.1    simonb 
    301   1.1    simonb 	/*
    302   1.1    simonb 	 * Announce page-size to the VM-system
    303   1.1    simonb 	 */
    304   1.1    simonb 	uvmexp.pagesize = NBPG;
    305  1.73    cherry 	uvm_md_init();
    306   1.1    simonb 
    307   1.1    simonb 	/*
    308   1.1    simonb 	 * Get memory.
    309   1.1    simonb 	 */
    310   1.1    simonb 	mem_regions(&mem, &avail);
    311   1.1    simonb 	for (mp = mem; mp->size; mp++) {
    312   1.1    simonb 		physmem += btoc(mp->size);
    313  1.99       rin 		printf("+%lx,", mp->size);
    314   1.1    simonb 	}
    315   1.1    simonb 	printf("\n");
    316   1.1    simonb 	ppc4xx_tlb_init();
    317   1.1    simonb 	/*
    318   1.1    simonb 	 * Count the number of available entries.
    319   1.1    simonb 	 */
    320   1.1    simonb 	for (cnt = 0, mp = avail; mp->size; mp++)
    321   1.1    simonb 		cnt++;
    322   1.1    simonb 
    323   1.1    simonb 	/*
    324   1.1    simonb 	 * Page align all regions.
    325   1.1    simonb 	 * Non-page aligned memory isn't very interesting to us.
    326   1.1    simonb 	 * Also, sort the entries for ascending addresses.
    327   1.1    simonb 	 */
    328   1.1    simonb 	kernelstart &= ~PGOFSET;
    329   1.1    simonb 	kernelend = (kernelend + PGOFSET) & ~PGOFSET;
    330   1.1    simonb 	for (mp = avail; mp->size; mp++) {
    331   1.1    simonb 		s = mp->start;
    332   1.1    simonb 		e = mp->start + mp->size;
    333  1.99       rin 		printf("%08x-%08x -> ", s, e);
    334   1.1    simonb 		/*
    335   1.1    simonb 		 * Check whether this region holds all of the kernel.
    336   1.1    simonb 		 */
    337   1.1    simonb 		if (s < kernelstart && e > kernelend) {
    338   1.1    simonb 			avail[cnt].start = kernelend;
    339   1.1    simonb 			avail[cnt++].size = e - kernelend;
    340   1.1    simonb 			e = kernelstart;
    341   1.1    simonb 		}
    342   1.1    simonb 		/*
    343   1.1    simonb 		 * Look whether this regions starts within the kernel.
    344   1.1    simonb 		 */
    345   1.1    simonb 		if (s >= kernelstart && s < kernelend) {
    346   1.1    simonb 			if (e <= kernelend)
    347   1.1    simonb 				goto empty;
    348   1.1    simonb 			s = kernelend;
    349   1.1    simonb 		}
    350   1.1    simonb 		/*
    351   1.1    simonb 		 * Now look whether this region ends within the kernel.
    352   1.1    simonb 		 */
    353   1.1    simonb 		if (e > kernelstart && e <= kernelend) {
    354   1.1    simonb 			if (s >= kernelstart)
    355   1.1    simonb 				goto empty;
    356   1.1    simonb 			e = kernelstart;
    357   1.1    simonb 		}
    358   1.1    simonb 		/*
    359   1.1    simonb 		 * Now page align the start and size of the region.
    360   1.1    simonb 		 */
    361   1.1    simonb 		s = round_page(s);
    362   1.1    simonb 		e = trunc_page(e);
    363   1.1    simonb 		if (e < s)
    364   1.1    simonb 			e = s;
    365   1.1    simonb 		sz = e - s;
    366  1.99       rin 		printf("%08x-%08x = %x\n", s, e, sz);
    367   1.1    simonb 		/*
    368   1.1    simonb 		 * Check whether some memory is left here.
    369   1.1    simonb 		 */
    370   1.1    simonb 		if (sz == 0) {
    371  1.99       rin  empty:
    372   1.3       wiz 			memmove(mp, mp + 1,
    373  1.99       rin 			    (cnt - (mp - avail)) * sizeof(*mp));
    374   1.1    simonb 			cnt--;
    375   1.1    simonb 			mp--;
    376   1.1    simonb 			continue;
    377   1.1    simonb 		}
    378   1.1    simonb 		/*
    379   1.1    simonb 		 * Do an insertion sort.
    380   1.1    simonb 		 */
    381   1.1    simonb 		npgs += btoc(sz);
    382   1.1    simonb 		for (mp1 = avail; mp1 < mp; mp1++)
    383   1.1    simonb 			if (s < mp1->start)
    384   1.1    simonb 				break;
    385   1.1    simonb 		if (mp1 < mp) {
    386   1.3       wiz 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
    387   1.1    simonb 			mp1->start = s;
    388   1.1    simonb 			mp1->size = sz;
    389   1.1    simonb 		} else {
    390   1.1    simonb 			mp->start = s;
    391   1.1    simonb 			mp->size = sz;
    392   1.1    simonb 		}
    393   1.1    simonb 	}
    394   1.1    simonb 
    395   1.1    simonb 	/*
    396   1.1    simonb 	 * We cannot do pmap_steal_memory here,
    397   1.1    simonb 	 * since we don't run with translation enabled yet.
    398   1.1    simonb 	 */
    399   1.1    simonb #ifndef MSGBUFADDR
    400   1.1    simonb 	/*
    401   1.1    simonb 	 * allow for msgbuf
    402   1.1    simonb 	 */
    403   1.1    simonb 	sz = round_page(MSGBUFSIZE);
    404   1.1    simonb 	mp = NULL;
    405   1.1    simonb 	for (mp1 = avail; mp1->size; mp1++)
    406   1.1    simonb 		if (mp1->size >= sz)
    407   1.1    simonb 			mp = mp1;
    408   1.1    simonb 	if (mp == NULL)
    409   1.1    simonb 		panic("not enough memory?");
    410   1.1    simonb 
    411   1.1    simonb 	npgs -= btoc(sz);
    412   1.1    simonb 	msgbuf_paddr = mp->start + mp->size - sz;
    413   1.1    simonb 	mp->size -= sz;
    414   1.1    simonb 	if (mp->size <= 0)
    415  1.99       rin 		memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof(*mp));
    416   1.1    simonb #endif
    417   1.1    simonb 
    418   1.1    simonb 	for (mp = avail; mp->size; mp++)
    419   1.1    simonb 		uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
    420  1.99       rin 		    atop(mp->start), atop(mp->start + mp->size),
    421  1.99       rin 		    VM_FREELIST_DEFAULT);
    422   1.1    simonb 
    423   1.1    simonb 	/*
    424   1.1    simonb 	 * Initialize kernel pmap and hardware.
    425   1.1    simonb 	 */
    426   1.1    simonb 	/* Setup TLB pid allocator so it knows we alreadu using PID 1 */
    427   1.1    simonb 	pmap_kernel()->pm_ctx = KERNEL_PID;
    428   1.1    simonb 	nextavail = avail->start;
    429   1.1    simonb 
    430  1.42     freza 	pmap_bootstrap_done = 1;
    431   1.1    simonb }
    432   1.1    simonb 
    433   1.1    simonb /*
    434   1.1    simonb  * Restrict given range to physical memory
    435   1.1    simonb  *
    436   1.1    simonb  * (Used by /dev/mem)
    437   1.1    simonb  */
    438   1.1    simonb void
    439   1.1    simonb pmap_real_memory(paddr_t *start, psize_t *size)
    440   1.1    simonb {
    441   1.1    simonb 	struct mem_region *mp;
    442   1.1    simonb 
    443   1.1    simonb 	for (mp = mem; mp->size; mp++) {
    444   1.1    simonb 		if (*start + *size > mp->start &&
    445   1.1    simonb 		    *start < mp->start + mp->size) {
    446   1.1    simonb 			if (*start < mp->start) {
    447   1.1    simonb 				*size -= mp->start - *start;
    448   1.1    simonb 				*start = mp->start;
    449   1.1    simonb 			}
    450   1.1    simonb 			if (*start + *size > mp->start + mp->size)
    451   1.1    simonb 				*size = mp->start + mp->size - *start;
    452   1.1    simonb 			return;
    453   1.1    simonb 		}
    454   1.1    simonb 	}
    455   1.1    simonb 	*size = 0;
    456   1.1    simonb }
    457   1.1    simonb 
    458   1.1    simonb /*
    459   1.1    simonb  * Initialize anything else for pmap handling.
    460   1.1    simonb  * Called during vm_init().
    461   1.1    simonb  */
    462   1.1    simonb void
    463   1.1    simonb pmap_init(void)
    464   1.1    simonb {
    465   1.1    simonb 	struct pv_entry *pv;
    466   1.1    simonb 	vsize_t sz;
    467   1.1    simonb 	vaddr_t addr;
    468  1.99       rin 	int bank, i, s;
    469   1.1    simonb 	char *attr;
    470   1.1    simonb 
    471   1.1    simonb 	sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
    472   1.1    simonb 	sz = round_page(sz);
    473  1.34      yamt 	addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
    474  1.99       rin 
    475   1.1    simonb 	s = splvm();
    476  1.99       rin 
    477   1.1    simonb 	pv = pv_table = (struct pv_entry *)addr;
    478   1.1    simonb 	for (i = npgs; --i >= 0;)
    479   1.1    simonb 		pv++->pv_pm = NULL;
    480   1.1    simonb 	pmap_attrib = (char *)pv;
    481   1.2       wiz 	memset(pv, 0, npgs);
    482   1.1    simonb 
    483   1.1    simonb 	pv = pv_table;
    484   1.1    simonb 	attr = pmap_attrib;
    485  1.99       rin 	for (bank = uvm_physseg_get_first(); uvm_physseg_valid_p(bank);
    486  1.75    cherry 	     bank = uvm_physseg_get_next(bank)) {
    487  1.75    cherry 		sz = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
    488  1.75    cherry 		uvm_physseg_get_pmseg(bank)->pvent = pv;
    489  1.75    cherry 		uvm_physseg_get_pmseg(bank)->attrs = attr;
    490   1.1    simonb 		pv += sz;
    491   1.1    simonb 		attr += sz;
    492   1.1    simonb 	}
    493   1.1    simonb 
    494   1.1    simonb 	pmap_initialized = 1;
    495  1.99       rin 
    496   1.1    simonb 	splx(s);
    497   1.1    simonb 
    498   1.1    simonb 	/* Setup a pool for additional pvlist structures */
    499  1.99       rin 	pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry",
    500  1.99       rin 	    NULL, IPL_VM);
    501  1.21   thorpej }
    502  1.21   thorpej 
    503  1.21   thorpej /*
    504  1.21   thorpej  * How much virtual space is available to the kernel?
    505  1.21   thorpej  */
    506  1.21   thorpej void
    507  1.21   thorpej pmap_virtual_space(vaddr_t *start, vaddr_t *end)
    508  1.21   thorpej {
    509  1.21   thorpej 
    510  1.21   thorpej 	*start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
    511  1.21   thorpej 	*end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
    512   1.1    simonb }
    513   1.1    simonb 
    514   1.5       eeh #ifdef PMAP_GROWKERNEL
    515   1.5       eeh /*
    516   1.5       eeh  * Preallocate kernel page tables to a specified VA.
    517   1.5       eeh  * This simply loops through the first TTE for each
    518  1.12    simonb  * page table from the beginning of the kernel pmap,
    519   1.5       eeh  * reads the entry, and if the result is
    520   1.5       eeh  * zero (either invalid entry or no page table) it stores
    521   1.5       eeh  * a zero there, populating page tables in the process.
    522   1.5       eeh  * This is not the most efficient technique but i don't
    523   1.5       eeh  * expect it to be called that often.
    524   1.5       eeh  */
    525  1.53       dsl extern struct vm_page *vm_page_alloc1(void);
    526  1.53       dsl extern void vm_page_free1(struct vm_page *);
    527   1.5       eeh 
    528   1.5       eeh vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
    529   1.5       eeh 
    530  1.12    simonb vaddr_t
    531  1.30       chs pmap_growkernel(vaddr_t maxkvaddr)
    532   1.5       eeh {
    533  1.99       rin 	struct pmap *pm = pmap_kernel();
    534   1.5       eeh 	paddr_t pg;
    535  1.99       rin 	int seg, s;
    536  1.12    simonb 
    537   1.5       eeh 	s = splvm();
    538   1.5       eeh 
    539   1.5       eeh 	/* Align with the start of a page table */
    540  1.99       rin 	for (kbreak &= ~(PTMAP - 1); kbreak < maxkvaddr; kbreak += PTMAP) {
    541   1.5       eeh 		seg = STIDX(kbreak);
    542   1.5       eeh 
    543  1.30       chs 		if (pte_find(pm, kbreak))
    544  1.30       chs 			continue;
    545  1.12    simonb 
    546  1.99       rin 		if (uvm.page_init_done)
    547   1.5       eeh 			pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
    548  1.99       rin 		else if (!uvm_page_physget(&pg))
    549  1.99       rin 			panic("pmap_growkernel: no memory");
    550  1.32    simonb 		if (!pg)
    551  1.32    simonb 			panic("pmap_growkernel: no pages");
    552   1.5       eeh 		pmap_zero_page((paddr_t)pg);
    553   1.5       eeh 
    554   1.5       eeh 		/* XXX This is based on all phymem being addressable */
    555   1.5       eeh 		pm->pm_ptbl[seg] = (u_int *)pg;
    556   1.5       eeh 	}
    557  1.99       rin 
    558   1.5       eeh 	splx(s);
    559  1.99       rin 
    560  1.97       rin 	return kbreak;
    561   1.5       eeh }
    562   1.5       eeh 
    563   1.5       eeh /*
    564   1.5       eeh  *	vm_page_alloc1:
    565   1.5       eeh  *
    566   1.5       eeh  *	Allocate and return a memory cell with no associated object.
    567   1.5       eeh  */
    568   1.5       eeh struct vm_page *
    569  1.30       chs vm_page_alloc1(void)
    570   1.5       eeh {
    571  1.30       chs 	struct vm_page *pg;
    572  1.30       chs 
    573  1.30       chs 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    574   1.5       eeh 	if (pg) {
    575   1.5       eeh 		pg->wire_count = 1;	/* no mappings yet */
    576   1.5       eeh 		pg->flags &= ~PG_BUSY;	/* never busy */
    577   1.5       eeh 	}
    578   1.5       eeh 	return pg;
    579   1.5       eeh }
    580   1.5       eeh 
    581   1.5       eeh /*
    582   1.5       eeh  *	vm_page_free1:
    583   1.5       eeh  *
    584   1.5       eeh  *	Returns the given page to the free list,
    585   1.5       eeh  *	disassociating it with any VM object.
    586   1.5       eeh  *
    587   1.5       eeh  *	Object and page must be locked prior to entry.
    588   1.5       eeh  */
    589   1.5       eeh void
    590  1.36       scw vm_page_free1(struct vm_page *pg)
    591   1.5       eeh {
    592  1.99       rin 
    593  1.10       eeh #ifdef DIAGNOSTIC
    594  1.36       scw 	if (pg->flags != (PG_CLEAN|PG_FAKE)) {
    595  1.36       scw 		printf("Freeing invalid page %p\n", pg);
    596  1.99       rin 		printf("pa = %llx\n",
    597  1.99       rin 		    (unsigned long long)VM_PAGE_TO_PHYS(pg));
    598  1.10       eeh #ifdef DDB
    599   1.5       eeh 		Debugger();
    600  1.10       eeh #endif
    601   1.5       eeh 		return;
    602   1.5       eeh 	}
    603  1.10       eeh #endif
    604  1.36       scw 	pg->flags |= PG_BUSY;
    605  1.36       scw 	pg->wire_count = 0;
    606  1.36       scw 	uvm_pagefree(pg);
    607   1.5       eeh }
    608   1.5       eeh #endif
    609   1.5       eeh 
    610   1.1    simonb /*
    611   1.1    simonb  * Create and return a physical map.
    612   1.1    simonb  */
    613   1.1    simonb struct pmap *
    614   1.1    simonb pmap_create(void)
    615   1.1    simonb {
    616   1.1    simonb 	struct pmap *pm;
    617   1.1    simonb 
    618  1.72      para 	pm = kmem_alloc(sizeof(*pm), KM_SLEEP);
    619  1.99       rin 	memset(pm, 0, sizeof(*pm));
    620  1.30       chs 	pm->pm_refs = 1;
    621   1.1    simonb 	return pm;
    622   1.1    simonb }
    623   1.1    simonb 
    624   1.1    simonb /*
    625   1.1    simonb  * Add a reference to the given pmap.
    626   1.1    simonb  */
    627   1.1    simonb void
    628   1.1    simonb pmap_reference(struct pmap *pm)
    629   1.1    simonb {
    630   1.1    simonb 
    631   1.1    simonb 	pm->pm_refs++;
    632   1.1    simonb }
    633   1.1    simonb 
    634   1.1    simonb /*
    635   1.1    simonb  * Retire the given pmap from service.
    636   1.1    simonb  * Should only be called if the map contains no valid mappings.
    637   1.1    simonb  */
    638   1.1    simonb void
    639   1.1    simonb pmap_destroy(struct pmap *pm)
    640   1.1    simonb {
    641  1.30       chs 	int i;
    642   1.1    simonb 
    643  1.99       rin 	if (--pm->pm_refs > 0)
    644  1.30       chs 		return;
    645  1.30       chs 	KASSERT(pm->pm_stats.resident_count == 0);
    646  1.30       chs 	KASSERT(pm->pm_stats.wired_count == 0);
    647   1.1    simonb 	for (i = 0; i < STSZ; i++)
    648   1.1    simonb 		if (pm->pm_ptbl[i]) {
    649  1.19   thorpej 			uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
    650  1.34      yamt 			    PAGE_SIZE, UVM_KMF_WIRED);
    651   1.1    simonb 			pm->pm_ptbl[i] = NULL;
    652   1.1    simonb 		}
    653  1.30       chs 	if (pm->pm_ctx)
    654  1.30       chs 		ctx_free(pm);
    655  1.72      para 	kmem_free(pm, sizeof(*pm));
    656   1.1    simonb }
    657   1.1    simonb 
    658   1.1    simonb /*
    659   1.1    simonb  * Copy the range specified by src_addr/len
    660   1.1    simonb  * from the source map to the range dst_addr/len
    661   1.1    simonb  * in the destination map.
    662   1.1    simonb  *
    663   1.1    simonb  * This routine is only advisory and need not do anything.
    664   1.1    simonb  */
    665   1.1    simonb void
    666   1.1    simonb pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
    667   1.1    simonb 	  vsize_t len, vaddr_t src_addr)
    668   1.1    simonb {
    669   1.1    simonb }
    670   1.1    simonb 
    671   1.1    simonb /*
    672   1.1    simonb  * Require that all active physical maps contain no
    673   1.1    simonb  * incorrect entries NOW.
    674   1.1    simonb  */
    675   1.1    simonb void
    676   1.4     chris pmap_update(struct pmap *pmap)
    677   1.1    simonb {
    678   1.1    simonb }
    679   1.1    simonb 
    680   1.1    simonb /*
    681   1.1    simonb  * Fill the given physical page with zeroes.
    682   1.1    simonb  */
    683   1.1    simonb void
    684   1.1    simonb pmap_zero_page(paddr_t pa)
    685   1.1    simonb {
    686  1.99       rin 	int i;
    687   1.1    simonb 
    688   1.8   thorpej #ifdef PPC_4XX_NOCACHE
    689  1.47  christos 	memset((void *)pa, 0, PAGE_SIZE);
    690   1.1    simonb #else
    691   1.1    simonb 
    692  1.19   thorpej 	for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
    693  1.99       rin 		__asm volatile ("dcbz 0,%0" : : "r"(pa));
    694   1.1    simonb 		pa += CACHELINESIZE;
    695   1.1    simonb 	}
    696   1.1    simonb #endif
    697   1.1    simonb }
    698   1.1    simonb 
    699   1.1    simonb /*
    700   1.1    simonb  * Copy the given physical source page to its destination.
    701   1.1    simonb  */
    702   1.1    simonb void
    703   1.1    simonb pmap_copy_page(paddr_t src, paddr_t dst)
    704   1.1    simonb {
    705   1.1    simonb 
    706  1.47  christos 	memcpy((void *)dst, (void *)src, PAGE_SIZE);
    707  1.69      matt 	dcache_wbinv_page(dst);
    708   1.1    simonb }
    709   1.1    simonb 
    710   1.1    simonb /*
    711  1.49   hannken  * This returns != 0 on success.
    712   1.1    simonb  */
    713   1.1    simonb static inline int
    714  1.49   hannken pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
    715   1.1    simonb {
    716   1.1    simonb 	struct pv_entry *pv, *npv = NULL;
    717   1.1    simonb 	int s;
    718   1.1    simonb 
    719   1.1    simonb 	if (!pmap_initialized)
    720   1.1    simonb 		return 0;
    721   1.1    simonb 
    722   1.1    simonb 	s = splvm();
    723  1.99       rin 
    724   1.1    simonb 	pv = pa_to_pv(pa);
    725   1.1    simonb 	if (!pv->pv_pm) {
    726   1.1    simonb 		/*
    727   1.1    simonb 		 * No entries yet, use header as the first entry.
    728   1.1    simonb 		 */
    729   1.1    simonb 		pv->pv_va = va;
    730   1.1    simonb 		pv->pv_pm = pm;
    731   1.1    simonb 		pv->pv_next = NULL;
    732   1.1    simonb 	} else {
    733   1.1    simonb 		/*
    734   1.1    simonb 		 * There is at least one other VA mapping this page.
    735   1.1    simonb 		 * Place this entry after the header.
    736   1.1    simonb 		 */
    737  1.49   hannken 		npv = pool_get(&pv_pool, PR_NOWAIT);
    738  1.49   hannken 		if (npv == NULL) {
    739  1.49   hannken 			if ((flags & PMAP_CANFAIL) == 0)
    740  1.49   hannken 				panic("pmap_enter_pv: failed");
    741  1.49   hannken 			splx(s);
    742  1.49   hannken 			return 0;
    743  1.49   hannken 		}
    744   1.1    simonb 		npv->pv_va = va;
    745   1.1    simonb 		npv->pv_pm = pm;
    746   1.1    simonb 		npv->pv_next = pv->pv_next;
    747   1.1    simonb 		pv->pv_next = npv;
    748  1.33       chs 		pv = npv;
    749   1.1    simonb 	}
    750  1.49   hannken 	if (flags & PMAP_WIRED) {
    751  1.30       chs 		PV_WIRE(pv);
    752  1.33       chs 		pm->pm_stats.wired_count++;
    753  1.30       chs 	}
    754  1.99       rin 
    755   1.1    simonb 	splx(s);
    756  1.99       rin 
    757  1.97       rin 	return 1;
    758   1.1    simonb }
    759   1.1    simonb 
    760   1.1    simonb static void
    761   1.1    simonb pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
    762   1.1    simonb {
    763   1.1    simonb 	struct pv_entry *pv, *npv;
    764   1.1    simonb 
    765   1.1    simonb 	/*
    766   1.1    simonb 	 * Remove from the PV table.
    767   1.1    simonb 	 */
    768   1.1    simonb 	pv = pa_to_pv(pa);
    769  1.30       chs 	if (!pv)
    770  1.30       chs 		return;
    771   1.1    simonb 
    772   1.1    simonb 	/*
    773   1.1    simonb 	 * If it is the first entry on the list, it is actually
    774   1.1    simonb 	 * in the header and we must copy the following entry up
    775   1.1    simonb 	 * to the header.  Otherwise we must search the list for
    776   1.1    simonb 	 * the entry.  In either case we free the now unused entry.
    777   1.1    simonb 	 */
    778   1.1    simonb 	if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    779  1.99       rin 		if (PV_ISWIRED(pv))
    780  1.30       chs 			pm->pm_stats.wired_count--;
    781   1.1    simonb 		if ((npv = pv->pv_next)) {
    782   1.1    simonb 			*pv = *npv;
    783   1.1    simonb 			pool_put(&pv_pool, npv);
    784   1.1    simonb 		} else
    785   1.1    simonb 			pv->pv_pm = NULL;
    786   1.1    simonb 	} else {
    787   1.1    simonb 		for (; (npv = pv->pv_next) != NULL; pv = npv)
    788   1.1    simonb 			if (pm == npv->pv_pm && PV_CMPVA(va, npv))
    789   1.1    simonb 				break;
    790   1.1    simonb 		if (npv) {
    791   1.1    simonb 			pv->pv_next = npv->pv_next;
    792  1.30       chs 			if (PV_ISWIRED(npv)) {
    793  1.30       chs 				pm->pm_stats.wired_count--;
    794  1.30       chs 			}
    795   1.1    simonb 			pool_put(&pv_pool, npv);
    796   1.1    simonb 		}
    797   1.1    simonb 	}
    798   1.1    simonb }
    799   1.1    simonb 
    800   1.1    simonb /*
    801   1.1    simonb  * Insert physical page at pa into the given pmap at virtual address va.
    802   1.1    simonb  */
    803   1.1    simonb int
    804  1.55        he pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
    805   1.1    simonb {
    806   1.1    simonb 	u_int tte;
    807  1.57   thorpej 	bool managed;
    808  1.99       rin 	int s;
    809   1.1    simonb 
    810   1.1    simonb 	/*
    811   1.1    simonb 	 * Have to remove any existing mapping first.
    812   1.1    simonb 	 */
    813  1.19   thorpej 	pmap_remove(pm, va, va + PAGE_SIZE);
    814   1.1    simonb 
    815  1.30       chs 	if (flags & PMAP_WIRED)
    816  1.30       chs 		flags |= prot;
    817   1.1    simonb 
    818  1.57   thorpej 	managed = uvm_pageismanaged(pa);
    819   1.1    simonb 
    820   1.1    simonb 	/*
    821   1.1    simonb 	 * Generate TTE.
    822   1.1    simonb 	 */
    823  1.26       chs 	tte = TTE_PA(pa);
    824   1.1    simonb 	/* XXXX -- need to support multiple page sizes. */
    825   1.1    simonb 	tte |= TTE_SZ_16K;
    826  1.99       rin 
    827  1.99       rin #ifdef DIAGNOSTIC
    828  1.70      matt 	if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) ==
    829  1.99       rin 	    (PMAP_NOCACHE | PME_WRITETHROUG))
    830  1.13    provos 		panic("pmap_enter: uncached & writethrough");
    831   1.1    simonb #endif
    832  1.99       rin 
    833  1.99       rin 	if (flags & PMAP_NOCACHE) {
    834   1.1    simonb 		/* Must be I/O mapping */
    835   1.1    simonb 		tte |= TTE_I | TTE_G;
    836  1.99       rin 	}
    837   1.8   thorpej #ifdef PPC_4XX_NOCACHE
    838   1.1    simonb 	tte |= TTE_I;
    839   1.1    simonb #else
    840  1.99       rin 	else if (flags & PME_WRITETHROUG) {
    841   1.1    simonb 		/* Uncached and writethrough are not compatible */
    842   1.1    simonb 		tte |= TTE_W;
    843  1.99       rin 	}
    844   1.1    simonb #endif
    845  1.99       rin 
    846   1.1    simonb 	if (pm == pmap_kernel())
    847   1.1    simonb 		tte |= TTE_ZONE(ZONE_PRIV);
    848   1.1    simonb 	else
    849   1.1    simonb 		tte |= TTE_ZONE(ZONE_USER);
    850   1.1    simonb 
    851   1.1    simonb 	if (flags & VM_PROT_WRITE)
    852   1.1    simonb 		tte |= TTE_WR;
    853   1.1    simonb 
    854  1.26       chs 	if (flags & VM_PROT_EXECUTE)
    855  1.26       chs 		tte |= TTE_EX;
    856  1.26       chs 
    857   1.1    simonb 	/*
    858   1.1    simonb 	 * Now record mapping for later back-translation.
    859   1.1    simonb 	 */
    860   1.1    simonb 	if (pmap_initialized && managed) {
    861   1.1    simonb 		char *attr;
    862   1.1    simonb 
    863  1.49   hannken 		if (!pmap_enter_pv(pm, va, pa, flags)) {
    864   1.1    simonb 			/* Could not enter pv on a managed page */
    865  1.98       rin 			return ENOMEM;
    866   1.1    simonb 		}
    867   1.1    simonb 
    868   1.1    simonb 		/* Now set attributes. */
    869   1.1    simonb 		attr = pa_to_attr(pa);
    870   1.1    simonb #ifdef DIAGNOSTIC
    871   1.1    simonb 		if (!attr)
    872  1.13    provos 			panic("managed but no attr");
    873   1.1    simonb #endif
    874   1.1    simonb 		if (flags & VM_PROT_ALL)
    875  1.30       chs 			*attr |= PMAP_ATTR_REF;
    876   1.1    simonb 		if (flags & VM_PROT_WRITE)
    877  1.30       chs 			*attr |= PMAP_ATTR_CHG;
    878   1.1    simonb 	}
    879   1.1    simonb 
    880   1.1    simonb 	s = splvm();
    881   1.1    simonb 
    882   1.1    simonb 	/* Insert page into page table. */
    883  1.98       rin 	if (__predict_false(!pte_enter(pm, va, tte))) {
    884  1.98       rin 		if (__predict_false((flags & PMAP_CANFAIL) == 0))
    885  1.98       rin 			panic("%s: pte_enter", __func__);
    886  1.98       rin 		splx(s);
    887  1.98       rin 		return ENOMEM;
    888  1.98       rin 	}
    889   1.1    simonb 
    890   1.1    simonb 	/* If this is a real fault, enter it in the tlb */
    891   1.1    simonb 	if (tte && ((flags & PMAP_WIRED) == 0)) {
    892  1.71  kiyohara 		int s2 = splhigh();
    893   1.1    simonb 		ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
    894  1.71  kiyohara 		splx(s2);
    895   1.1    simonb 	}
    896  1.99       rin 
    897   1.1    simonb 	splx(s);
    898   1.6    simonb 
    899   1.6    simonb 	/* Flush the real memory from the instruction cache. */
    900   1.6    simonb 	if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
    901   1.6    simonb 		__syncicache((void *)pa, PAGE_SIZE);
    902   1.6    simonb 
    903   1.1    simonb 	return 0;
    904   1.1    simonb }
    905   1.1    simonb 
    906   1.1    simonb void
    907   1.1    simonb pmap_unwire(struct pmap *pm, vaddr_t va)
    908   1.1    simonb {
    909  1.33       chs 	struct pv_entry *pv;
    910   1.1    simonb 	paddr_t pa;
    911  1.30       chs 	int s;
    912   1.1    simonb 
    913  1.99       rin 	if (!pmap_extract(pm, va, &pa))
    914   1.1    simonb 		return;
    915   1.1    simonb 
    916   1.1    simonb 	pv = pa_to_pv(pa);
    917  1.30       chs 	if (!pv)
    918  1.30       chs 		return;
    919   1.1    simonb 
    920  1.30       chs 	s = splvm();
    921  1.99       rin 
    922  1.33       chs 	while (pv != NULL) {
    923  1.33       chs 		if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    924  1.33       chs 			if (PV_ISWIRED(pv)) {
    925  1.33       chs 				PV_UNWIRE(pv);
    926  1.30       chs 				pm->pm_stats.wired_count--;
    927  1.30       chs 			}
    928   1.1    simonb 			break;
    929   1.1    simonb 		}
    930  1.33       chs 		pv = pv->pv_next;
    931   1.1    simonb 	}
    932  1.99       rin 
    933   1.1    simonb 	splx(s);
    934   1.1    simonb }
    935   1.1    simonb 
    936   1.1    simonb void
    937  1.59    cegger pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
    938   1.1    simonb {
    939  1.99       rin 	struct pmap *pm = pmap_kernel();
    940  1.99       rin 	u_int tte;
    941   1.1    simonb 	int s;
    942   1.1    simonb 
    943   1.1    simonb 	/*
    944   1.1    simonb 	 * Generate TTE.
    945   1.1    simonb 	 *
    946   1.1    simonb 	 * XXXX
    947   1.1    simonb 	 *
    948   1.1    simonb 	 * Since the kernel does not handle execution privileges properly,
    949   1.1    simonb 	 * we will handle read and execute permissions together.
    950   1.1    simonb 	 */
    951   1.1    simonb 	tte = 0;
    952   1.1    simonb 	if (prot & VM_PROT_ALL) {
    953   1.1    simonb 		tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
    954   1.1    simonb 		/* XXXX -- need to support multiple page sizes. */
    955   1.1    simonb 		tte |= TTE_SZ_16K;
    956  1.99       rin 
    957   1.1    simonb #ifdef DIAGNOSTIC
    958  1.70      matt 		if ((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) ==
    959  1.99       rin 		    (PMAP_NOCACHE | PME_WRITETHROUG))
    960  1.13    provos 			panic("pmap_kenter_pa: uncached & writethrough");
    961   1.1    simonb #endif
    962  1.99       rin 
    963  1.70      matt 		if (flags & PMAP_NOCACHE)
    964   1.1    simonb 			/* Must be I/O mapping */
    965   1.1    simonb 			tte |= TTE_I | TTE_G;
    966   1.8   thorpej #ifdef PPC_4XX_NOCACHE
    967   1.1    simonb 		tte |= TTE_I;
    968   1.1    simonb #else
    969  1.99       rin 		else if (prot & PME_WRITETHROUG) {
    970   1.1    simonb 			/* Uncached and writethrough are not compatible */
    971   1.1    simonb 			tte |= TTE_W;
    972  1.99       rin 		}
    973   1.1    simonb #endif
    974   1.1    simonb 		if (prot & VM_PROT_WRITE)
    975   1.1    simonb 			tte |= TTE_WR;
    976   1.1    simonb 	}
    977   1.1    simonb 
    978   1.1    simonb 	s = splvm();
    979   1.1    simonb 
    980   1.1    simonb 	/* Insert page into page table. */
    981  1.98       rin 	if (__predict_false(!pte_enter(pm, va, tte)))
    982  1.98       rin 		panic("%s: pte_enter", __func__);
    983  1.99       rin 
    984   1.1    simonb 	splx(s);
    985   1.1    simonb }
    986   1.1    simonb 
    987   1.1    simonb void
    988   1.1    simonb pmap_kremove(vaddr_t va, vsize_t len)
    989   1.1    simonb {
    990   1.1    simonb 
    991   1.1    simonb 	while (len > 0) {
    992  1.98       rin 		(void)pte_enter(pmap_kernel(), va, 0);	/* never fail */
    993   1.1    simonb 		va += PAGE_SIZE;
    994   1.1    simonb 		len -= PAGE_SIZE;
    995   1.1    simonb 	}
    996   1.1    simonb }
    997   1.1    simonb 
    998   1.1    simonb /*
    999   1.1    simonb  * Remove the given range of mapping entries.
   1000   1.1    simonb  */
   1001   1.1    simonb void
   1002   1.1    simonb pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
   1003   1.1    simonb {
   1004   1.1    simonb 	paddr_t pa;
   1005   1.1    simonb 	volatile u_int *ptp;
   1006  1.99       rin 	int s;
   1007   1.1    simonb 
   1008   1.1    simonb 	s = splvm();
   1009  1.99       rin 
   1010   1.1    simonb 	while (va < endva) {
   1011   1.1    simonb 		if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
   1012   1.1    simonb 			pa = TTE_PA(pa);
   1013   1.1    simonb 			pmap_remove_pv(pm, va, pa);
   1014   1.1    simonb 			*ptp = 0;
   1015   1.1    simonb 			ppc4xx_tlb_flush(va, pm->pm_ctx);
   1016   1.1    simonb 			pm->pm_stats.resident_count--;
   1017   1.1    simonb 		}
   1018  1.19   thorpej 		va += PAGE_SIZE;
   1019   1.1    simonb 	}
   1020   1.1    simonb 
   1021   1.1    simonb 	splx(s);
   1022   1.1    simonb }
   1023   1.1    simonb 
   1024   1.1    simonb /*
   1025   1.1    simonb  * Get the physical page address for the given pmap/virtual address.
   1026   1.1    simonb  */
   1027  1.45   thorpej bool
   1028   1.1    simonb pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
   1029   1.1    simonb {
   1030  1.99       rin 	int seg = STIDX(va), ptn = PTIDX(va);
   1031   1.1    simonb 	u_int pa = 0;
   1032  1.30       chs 	int s;
   1033   1.1    simonb 
   1034  1.30       chs 	s = splvm();
   1035  1.99       rin 
   1036  1.99       rin 	if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn]) && pap)
   1037   1.1    simonb 		*pap = TTE_PA(pa) | (va & PGOFSET);
   1038  1.99       rin 
   1039   1.1    simonb 	splx(s);
   1040  1.99       rin 
   1041  1.97       rin 	return pa != 0;
   1042   1.1    simonb }
   1043   1.1    simonb 
   1044   1.1    simonb /*
   1045   1.1    simonb  * Lower the protection on the specified range of this pmap.
   1046   1.1    simonb  *
   1047   1.1    simonb  * There are only two cases: either the protection is going to 0,
   1048   1.1    simonb  * or it is going to read-only.
   1049   1.1    simonb  */
   1050   1.1    simonb void
   1051   1.1    simonb pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   1052   1.1    simonb {
   1053   1.1    simonb 	volatile u_int *ptp;
   1054  1.26       chs 	int s, bic;
   1055   1.1    simonb 
   1056  1.26       chs 	if ((prot & VM_PROT_READ) == 0) {
   1057  1.26       chs 		pmap_remove(pm, sva, eva);
   1058  1.26       chs 		return;
   1059  1.26       chs 	}
   1060  1.26       chs 	bic = 0;
   1061  1.99       rin 	if ((prot & VM_PROT_WRITE) == 0)
   1062  1.26       chs 		bic |= TTE_WR;
   1063  1.99       rin 	if ((prot & VM_PROT_EXECUTE) == 0)
   1064  1.26       chs 		bic |= TTE_EX;
   1065  1.99       rin 	if (bic == 0)
   1066  1.26       chs 		return;
   1067  1.99       rin 
   1068  1.26       chs 	s = splvm();
   1069  1.99       rin 
   1070  1.26       chs 	while (sva < eva) {
   1071  1.26       chs 		if ((ptp = pte_find(pm, sva)) != NULL) {
   1072  1.26       chs 			*ptp &= ~bic;
   1073  1.26       chs 			ppc4xx_tlb_flush(sva, pm->pm_ctx);
   1074   1.1    simonb 		}
   1075  1.26       chs 		sva += PAGE_SIZE;
   1076   1.1    simonb 	}
   1077  1.99       rin 
   1078  1.26       chs 	splx(s);
   1079   1.1    simonb }
   1080   1.1    simonb 
   1081  1.45   thorpej bool
   1082  1.30       chs pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
   1083   1.1    simonb {
   1084  1.30       chs 	paddr_t pa;
   1085   1.1    simonb 	char *attr;
   1086  1.30       chs 	int s, rv;
   1087   1.1    simonb 
   1088   1.1    simonb 	/*
   1089   1.1    simonb 	 * First modify bits in cache.
   1090   1.1    simonb 	 */
   1091  1.30       chs 	pa = VM_PAGE_TO_PHYS(pg);
   1092   1.1    simonb 	attr = pa_to_attr(pa);
   1093   1.1    simonb 	if (attr == NULL)
   1094  1.46   thorpej 		return false;
   1095   1.1    simonb 
   1096  1.30       chs 	s = splvm();
   1097  1.99       rin 
   1098  1.99       rin 	rv = (*attr & mask) != 0;
   1099  1.11       eeh 	if (clear) {
   1100   1.1    simonb 		*attr &= ~mask;
   1101  1.99       rin 		pmap_page_protect(pg,
   1102  1.99       rin 		    mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
   1103  1.11       eeh 	}
   1104  1.99       rin 
   1105   1.1    simonb 	splx(s);
   1106  1.99       rin 
   1107   1.1    simonb 	return rv;
   1108   1.1    simonb }
   1109   1.1    simonb 
   1110   1.1    simonb 
   1111   1.1    simonb /*
   1112   1.1    simonb  * Lower the protection on the specified physical page.
   1113   1.1    simonb  *
   1114   1.1    simonb  * There are only two cases: either the protection is going to 0,
   1115   1.1    simonb  * or it is going to read-only.
   1116   1.1    simonb  */
   1117   1.1    simonb void
   1118   1.1    simonb pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   1119   1.1    simonb {
   1120  1.99       rin 	struct pv_entry *pvh, *pv, *npv;
   1121  1.99       rin 	struct pmap *pm;
   1122   1.1    simonb 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   1123   1.1    simonb 	vaddr_t va;
   1124   1.1    simonb 
   1125   1.1    simonb 	pvh = pa_to_pv(pa);
   1126   1.1    simonb 	if (pvh == NULL)
   1127   1.1    simonb 		return;
   1128   1.1    simonb 
   1129   1.1    simonb 	/* Handle extra pvs which may be deleted in the operation */
   1130   1.1    simonb 	for (pv = pvh->pv_next; pv; pv = npv) {
   1131   1.1    simonb 		npv = pv->pv_next;
   1132   1.1    simonb 
   1133   1.1    simonb 		pm = pv->pv_pm;
   1134  1.91       rin 		va = PV_VA(pv);
   1135  1.26       chs 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
   1136   1.1    simonb 	}
   1137  1.99       rin 
   1138   1.1    simonb 	/* Now check the head pv */
   1139   1.1    simonb 	if (pvh->pv_pm) {
   1140   1.1    simonb 		pv = pvh;
   1141   1.1    simonb 		pm = pv->pv_pm;
   1142  1.91       rin 		va = PV_VA(pv);
   1143  1.26       chs 		pmap_protect(pm, va, va + PAGE_SIZE, prot);
   1144   1.1    simonb 	}
   1145   1.1    simonb }
   1146   1.1    simonb 
   1147   1.1    simonb /*
   1148   1.1    simonb  * Activate the address space for the specified process.  If the process
   1149   1.1    simonb  * is the current process, load the new MMU context.
   1150   1.1    simonb  */
   1151   1.1    simonb void
   1152  1.17   thorpej pmap_activate(struct lwp *l)
   1153   1.1    simonb {
   1154   1.1    simonb #if 0
   1155  1.65     rmind 	struct pcb *pcb = lwp_getpcb(l);
   1156  1.17   thorpej 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   1157   1.1    simonb 
   1158   1.1    simonb 	/*
   1159  1.61     skrll 	 * XXX Normally performed in cpu_lwp_fork().
   1160   1.1    simonb 	 */
   1161  1.17   thorpej 	printf("pmap_activate(%p), pmap=%p\n",l,pmap);
   1162  1.25      matt 	pcb->pcb_pm = pmap;
   1163   1.1    simonb #endif
   1164   1.1    simonb }
   1165   1.1    simonb 
   1166   1.1    simonb /*
   1167   1.1    simonb  * Deactivate the specified process's address space.
   1168   1.1    simonb  */
   1169   1.1    simonb void
   1170  1.17   thorpej pmap_deactivate(struct lwp *l)
   1171   1.1    simonb {
   1172   1.1    simonb }
   1173   1.1    simonb 
   1174   1.1    simonb /*
   1175   1.1    simonb  * Synchronize caches corresponding to [addr, addr+len) in p.
   1176   1.1    simonb  */
   1177   1.1    simonb void
   1178   1.1    simonb pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   1179   1.1    simonb {
   1180  1.95       rin 	struct pmap *pm = p->p_vmspace->vm_map.pmap;
   1181  1.18   hannken 
   1182  1.94       rin 	if (__predict_true(p == curproc)) {
   1183  1.94       rin 		int msr, ctx, opid;
   1184   1.1    simonb 
   1185  1.94       rin 		/*
   1186  1.94       rin 		 * Take it easy! TLB miss handler takes care of us.
   1187  1.94       rin 		 */
   1188  1.94       rin 
   1189  1.94       rin 		/*
   1190  1.94       rin 	 	 * Need to turn off IMMU and switch to user context.
   1191  1.94       rin 		 * (icbi uses DMMU).
   1192  1.94       rin 		 */
   1193  1.94       rin 
   1194  1.94       rin 		if (!(ctx = pm->pm_ctx)) {
   1195  1.94       rin 			/* No context -- assign it one */
   1196  1.94       rin 			ctx_alloc(pm);
   1197  1.94       rin 			ctx = pm->pm_ctx;
   1198  1.94       rin 		}
   1199  1.94       rin 
   1200  1.99       rin 		__asm volatile (
   1201  1.99       rin 			"mfmsr	%0;"
   1202  1.99       rin 			"li	%1,0x20;"	/* Turn off IMMU */
   1203  1.99       rin 			"andc	%1,%0,%1;"
   1204  1.99       rin 			"ori	%1,%1,0x10;"	/* Turn on DMMU for sure */
   1205  1.99       rin 			"mtmsr	%1;"
   1206  1.94       rin 			"isync;"
   1207  1.99       rin 			"mfpid	%1;"
   1208  1.99       rin 			"mtpid	%2;"
   1209  1.94       rin 			"isync;"
   1210  1.94       rin 		"1:"
   1211  1.99       rin 			"dcbst	0,%3;"
   1212  1.99       rin 			"icbi	0,%3;"
   1213  1.99       rin 			"add	%3,%3,%5;"
   1214  1.99       rin 			"sub.	%4,%4,%5;"
   1215  1.99       rin 			"bge	1b;"
   1216  1.94       rin 			"sync;"
   1217  1.99       rin 			"mtpid	%1;"
   1218  1.99       rin 			"mtmsr	%0;"
   1219  1.94       rin 			"isync;"
   1220  1.99       rin 			: "=&r"(msr), "=&r"(opid)
   1221  1.99       rin 			: "r"(ctx), "r"(va), "r"(len), "r"(CACHELINESIZE));
   1222  1.94       rin 	} else {
   1223  1.94       rin 		paddr_t pa;
   1224  1.94       rin 		vaddr_t tva, eva;
   1225  1.94       rin 		int tlen;
   1226  1.94       rin 
   1227  1.94       rin 		/*
   1228  1.94       rin 		 * For p != curproc, we cannot rely upon TLB miss handler in
   1229  1.94       rin 		 * user context. Therefore, extract pa and operate againt it.
   1230  1.94       rin 		 *
   1231  1.94       rin 		 * Note that va below VM_MIN_KERNEL_ADDRESS is reserved for
   1232  1.94       rin 		 * direct mapping.
   1233  1.94       rin 		 */
   1234  1.94       rin 
   1235  1.94       rin 		for (tva = va; len > 0; tva = eva, len -= tlen) {
   1236  1.94       rin 			eva = uimin(tva + len, trunc_page(tva + PAGE_SIZE));
   1237  1.94       rin 			tlen = eva - tva;
   1238  1.94       rin 			if (!pmap_extract(pm, tva, &pa)) {
   1239  1.94       rin 				/* XXX should be already unmapped */
   1240  1.94       rin 				continue;
   1241  1.94       rin 			}
   1242  1.94       rin 			__syncicache((void *)pa, tlen);
   1243  1.94       rin 		}
   1244   1.1    simonb 	}
   1245   1.1    simonb }
   1246   1.1    simonb 
   1247  1.93       rin static inline void
   1248  1.93       rin tlb_invalidate_entry(int i)
   1249  1.93       rin {
   1250  1.93       rin #ifdef PMAP_TLBDEBUG
   1251  1.93       rin 	/*
   1252  1.93       rin 	 * Clear only TLBHI[V] bit so that we can track invalidated entry.
   1253  1.93       rin 	 */
   1254  1.93       rin 	register_t msr, pid, hi;
   1255  1.93       rin 
   1256  1.93       rin 	KASSERT(mfspr(SPR_PID) == KERNEL_PID);
   1257  1.93       rin 
   1258  1.99       rin 	__asm volatile (
   1259  1.93       rin 		"mfmsr	%0;"
   1260  1.93       rin 		"li	%1,0;"
   1261  1.93       rin 		"mtmsr	%1;"
   1262  1.93       rin 		"mfpid	%1;"
   1263  1.93       rin 		"tlbre	%2,%3,0;"
   1264  1.93       rin 		"andc	%2,%2,%4;"
   1265  1.93       rin 		"tlbwe	%2,%3,0;"
   1266  1.93       rin 		"mtpid	%1;"
   1267  1.93       rin 		"mtmsr	%0;"
   1268  1.93       rin 		"isync;"
   1269  1.99       rin 		: "=&r"(msr), "=&r"(pid), "=&r"(hi)
   1270  1.99       rin 		: "r"(i), "r"(TLB_VALID));
   1271  1.93       rin #else
   1272  1.93       rin 	/*
   1273  1.93       rin 	 * Just clear entire TLBHI register.
   1274  1.93       rin 	 */
   1275  1.99       rin 	__asm volatile (
   1276  1.93       rin 		"tlbwe %0,%1,0;"
   1277  1.93       rin 		"isync;"
   1278  1.99       rin 		: : "r"(0), "r"(i));
   1279  1.93       rin #endif
   1280  1.93       rin 
   1281  1.93       rin 	tlb_info[i].ti_ctx = 0;
   1282  1.93       rin 	tlb_info[i].ti_flags = 0;
   1283  1.93       rin }
   1284   1.1    simonb 
   1285   1.1    simonb /* This has to be done in real mode !!! */
   1286   1.1    simonb void
   1287   1.1    simonb ppc4xx_tlb_flush(vaddr_t va, int pid)
   1288   1.1    simonb {
   1289  1.99       rin 	u_long msr, i, found;
   1290   1.1    simonb 
   1291   1.1    simonb 	/* If there's no context then it can't be mapped. */
   1292  1.26       chs 	if (!pid)
   1293  1.26       chs 		return;
   1294   1.1    simonb 
   1295  1.99       rin 	__asm volatile (
   1296  1.99       rin 		"mfpid	%1;"		/* Save PID */
   1297  1.99       rin 		"mfmsr	%2;"		/* Save MSR */
   1298  1.99       rin 		"li	%0,0;"		/* Now clear MSR */
   1299  1.99       rin 		"mtmsr	%0;"
   1300  1.88       rin 		"isync;"
   1301  1.99       rin 		"mtpid	%4;"		/* Set PID */
   1302  1.88       rin 		"isync;"
   1303  1.99       rin 		"tlbsx.	%0,0,%3;"	/* Search TLB */
   1304  1.88       rin 		"isync;"
   1305  1.99       rin 		"mtpid	%1;"		/* Restore PID */
   1306  1.99       rin 		"mtmsr	%2;"		/* Restore MSR */
   1307  1.88       rin 		"isync;"
   1308  1.99       rin 		"li	%1,1;"
   1309  1.99       rin 		"beq	1f;"
   1310  1.99       rin 		"li	%1,0;"
   1311  1.99       rin 	"1:"
   1312  1.99       rin 		: "=&r"(i), "=&r"(found), "=&r"(msr)
   1313  1.99       rin 		: "r"(va), "r"(pid));
   1314  1.99       rin 
   1315   1.1    simonb 	if (found && !TLB_LOCKED(i)) {
   1316   1.1    simonb 		/* Now flush translation */
   1317  1.93       rin 		tlb_invalidate_entry(i);
   1318   1.1    simonb 		tlbnext = i;
   1319   1.1    simonb 		/* Successful flushes */
   1320   1.1    simonb 		tlbflush_ev.ev_count++;
   1321   1.1    simonb 	}
   1322   1.1    simonb }
   1323   1.1    simonb 
   1324   1.1    simonb void
   1325   1.1    simonb ppc4xx_tlb_flush_all(void)
   1326   1.1    simonb {
   1327   1.1    simonb 	u_long i;
   1328   1.1    simonb 
   1329   1.1    simonb 	for (i = 0; i < NTLB; i++)
   1330  1.93       rin 		if (!TLB_LOCKED(i))
   1331  1.93       rin 			tlb_invalidate_entry(i);
   1332   1.1    simonb 
   1333  1.99       rin 	__asm volatile ("isync");
   1334   1.1    simonb }
   1335   1.1    simonb 
   1336   1.1    simonb /* Find a TLB entry to evict. */
   1337   1.1    simonb static int
   1338   1.1    simonb ppc4xx_tlb_find_victim(void)
   1339   1.1    simonb {
   1340   1.1    simonb 	int flags;
   1341   1.1    simonb 
   1342   1.1    simonb 	for (;;) {
   1343   1.1    simonb 		if (++tlbnext >= NTLB)
   1344  1.42     freza 			tlbnext = tlb_nreserved;
   1345   1.1    simonb 		flags = tlb_info[tlbnext].ti_flags;
   1346  1.12    simonb 		if (!(flags & TLBF_USED) ||
   1347  1.99       rin 		    (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
   1348   1.1    simonb 			u_long va, stack = (u_long)&va;
   1349   1.1    simonb 
   1350  1.99       rin 			if (!((tlb_info[tlbnext].ti_va ^ stack) &
   1351  1.99       rin 				(~PGOFSET)) &&
   1352   1.1    simonb 			    (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
   1353  1.99       rin 			    (flags & TLBF_USED)) {
   1354   1.1    simonb 				/* Kernel stack page */
   1355  1.80       rin 				flags |= TLBF_REF;
   1356   1.1    simonb 				tlb_info[tlbnext].ti_flags = flags;
   1357   1.1    simonb 			} else {
   1358   1.1    simonb 				/* Found it! */
   1359  1.97       rin 				return tlbnext;
   1360   1.1    simonb 			}
   1361  1.99       rin 		} else
   1362   1.1    simonb 			tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
   1363   1.1    simonb 	}
   1364   1.1    simonb }
   1365   1.1    simonb 
   1366   1.1    simonb void
   1367   1.1    simonb ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
   1368   1.1    simonb {
   1369   1.1    simonb 	u_long th, tl, idx;
   1370  1.10       eeh 	paddr_t pa;
   1371  1.99       rin 	int msr, pid, sz;
   1372  1.10       eeh 
   1373   1.1    simonb 	tlbenter_ev.ev_count++;
   1374   1.1    simonb 
   1375  1.10       eeh 	sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
   1376  1.10       eeh 	pa = (pte & TTE_RPN_MASK(sz));
   1377  1.10       eeh 	th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
   1378  1.10       eeh 	tl = (pte & ~TLB_RPN_MASK) | pa;
   1379  1.10       eeh 	tl |= ppc4xx_tlbflags(va, pa);
   1380   1.1    simonb 
   1381   1.1    simonb 	idx = ppc4xx_tlb_find_victim();
   1382   1.1    simonb 
   1383   1.1    simonb #ifdef DIAGNOSTIC
   1384  1.81       rin 	if ((idx < tlb_nreserved) || (idx >= NTLB) || (idx & 63) == 0) {
   1385  1.31    simonb 		panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
   1386   1.1    simonb 	}
   1387   1.1    simonb #endif
   1388  1.12    simonb 
   1389   1.1    simonb 	tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
   1390   1.1    simonb 	tlb_info[idx].ti_ctx = ctx;
   1391   1.1    simonb 	tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
   1392   1.1    simonb 
   1393  1.99       rin 	__asm volatile (
   1394  1.99       rin 		"mfmsr	%0;"			/* Save MSR */
   1395  1.99       rin 		"li	%1,0;"
   1396  1.99       rin 		"mtmsr	%1;"			/* Clear MSR */
   1397  1.88       rin 		"isync;"
   1398  1.99       rin 		"tlbwe	%1,%3,0;"		/* Invalidate old entry. */
   1399  1.99       rin 		"mfpid	%1;"			/* Save old PID */
   1400  1.99       rin 		"mtpid	%2;"			/* Load translation ctx */
   1401  1.88       rin 		"isync;"
   1402  1.99       rin 		"tlbwe	%4,%3,1;"		/* Set TLB */
   1403  1.99       rin 		"tlbwe	%5,%3,0;"
   1404  1.88       rin 		"isync;"
   1405  1.99       rin 		"mtpid	%1;"			/* Restore PID */
   1406  1.99       rin 		"mtmsr	%0;"			/* and MSR */
   1407  1.88       rin 		"isync;"
   1408  1.99       rin 		: "=&r"(msr), "=&r"(pid)
   1409  1.99       rin 		: "r"(ctx), "r"(idx), "r"(tl), "r"(th));
   1410   1.1    simonb }
   1411   1.1    simonb 
   1412   1.1    simonb void
   1413   1.1    simonb ppc4xx_tlb_init(void)
   1414   1.1    simonb {
   1415   1.1    simonb 	int i;
   1416   1.1    simonb 
   1417   1.1    simonb 	/* Mark reserved TLB entries */
   1418  1.42     freza 	for (i = 0; i < tlb_nreserved; i++) {
   1419   1.1    simonb 		tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
   1420   1.1    simonb 		tlb_info[i].ti_ctx = KERNEL_PID;
   1421   1.1    simonb 	}
   1422   1.1    simonb 
   1423   1.1    simonb 	/* Setup security zones */
   1424   1.1    simonb 	/* Z0 - accessible by kernel only if TLB entry permissions allow
   1425   1.1    simonb 	 * Z1,Z2 - access is controlled by TLB entry permissions
   1426   1.1    simonb 	 * Z3 - full access regardless of TLB entry permissions
   1427   1.1    simonb 	 */
   1428   1.1    simonb 
   1429  1.99       rin 	__asm volatile (
   1430  1.99       rin 		"mtspr	%0,%1;"
   1431  1.88       rin 		"isync;"
   1432  1.99       rin 		: : "K"(SPR_ZPR), "r"(0x1b000000));
   1433   1.1    simonb }
   1434   1.1    simonb 
   1435  1.42     freza /*
   1436  1.42     freza  * ppc4xx_tlb_size_mask:
   1437  1.42     freza  *
   1438  1.42     freza  * 	Roundup size to supported page size, return TLBHI mask and real size.
   1439  1.42     freza  */
   1440  1.42     freza static int
   1441  1.42     freza ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
   1442  1.42     freza {
   1443  1.99       rin 	int i;
   1444  1.42     freza 
   1445  1.42     freza 	for (i = 0; i < __arraycount(tlbsize); i++)
   1446  1.42     freza 		if (size <= tlbsize[i]) {
   1447  1.42     freza 			*mask = (i << TLB_SIZE_SHFT);
   1448  1.42     freza 			*rsiz = tlbsize[i];
   1449  1.97       rin 			return 0;
   1450  1.42     freza 		}
   1451  1.97       rin 	return EINVAL;
   1452  1.42     freza }
   1453  1.42     freza 
   1454  1.42     freza /*
   1455  1.42     freza  * ppc4xx_tlb_mapiodev:
   1456  1.42     freza  *
   1457  1.42     freza  * 	Lookup virtual address of mapping previously entered via
   1458  1.42     freza  * 	ppc4xx_tlb_reserve. Search TLB directly so that we don't
   1459  1.42     freza  * 	need to waste extra storage for reserved mappings. Note
   1460  1.42     freza  * 	that reading TLBHI also sets PID, but all reserved mappings
   1461  1.42     freza  * 	use KERNEL_PID, so the side effect is nil.
   1462  1.42     freza  */
   1463  1.42     freza void *
   1464  1.42     freza ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
   1465  1.42     freza {
   1466  1.99       rin 	paddr_t pa;
   1467  1.99       rin 	vaddr_t va;
   1468  1.99       rin 	u_int lo, hi, sz;
   1469  1.99       rin 	int i;
   1470  1.42     freza 
   1471  1.42     freza 	/* tlb_nreserved is only allowed to grow, so this is safe. */
   1472  1.42     freza 	for (i = 0; i < tlb_nreserved; i++) {
   1473  1.42     freza 		__asm volatile (
   1474  1.99       rin 		    "tlbre	%0,%2,1;" 	/* TLBLO */
   1475  1.99       rin 		    "tlbre	%1,%2,0;" 	/* TLBHI */
   1476  1.99       rin 		    : "=&r"(lo), "=&r"(hi)
   1477  1.99       rin 		    : "r"(i));
   1478  1.42     freza 
   1479  1.42     freza 		KASSERT(hi & TLB_VALID);
   1480  1.42     freza 		KASSERT(mfspr(SPR_PID) == KERNEL_PID);
   1481  1.42     freza 
   1482  1.42     freza 		pa = (lo & TLB_RPN_MASK);
   1483  1.42     freza 		if (base < pa)
   1484  1.42     freza 			continue;
   1485  1.42     freza 
   1486  1.42     freza 		sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
   1487  1.99       rin 		if (base + len > pa + sz)
   1488  1.42     freza 			continue;
   1489  1.42     freza 
   1490  1.42     freza 		va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); 	/* sz = 2^n */
   1491  1.97       rin 		return (void *)va;
   1492  1.42     freza 	}
   1493  1.42     freza 
   1494  1.97       rin 	return NULL;
   1495  1.42     freza }
   1496  1.42     freza 
   1497  1.42     freza /*
   1498  1.42     freza  * ppc4xx_tlb_reserve:
   1499  1.42     freza  *
   1500  1.42     freza  * 	Map physical range to kernel virtual chunk via reserved TLB entry.
   1501  1.42     freza  */
   1502  1.42     freza void
   1503  1.42     freza ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
   1504  1.42     freza {
   1505  1.99       rin 	u_int lo, hi;
   1506  1.99       rin 	int szmask, rsize;
   1507  1.42     freza 
   1508  1.42     freza 	/* Called before pmap_bootstrap(), va outside kernel space. */
   1509  1.42     freza 	KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
   1510  1.99       rin 	KASSERT(!pmap_bootstrap_done);
   1511  1.42     freza 	KASSERT(tlb_nreserved < NTLB);
   1512  1.42     freza 
   1513  1.42     freza 	/* Resolve size. */
   1514  1.42     freza 	if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
   1515  1.42     freza 		panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
   1516  1.42     freza 		    size, tlb_nreserved);
   1517  1.42     freza 
   1518  1.42     freza 	/* Real size will be power of two >= 1024, so this is OK. */
   1519  1.42     freza 	pa &= ~(rsize - 1); 	/* RPN */
   1520  1.42     freza 	va &= ~(rsize - 1); 	/* EPN */
   1521  1.42     freza 
   1522  1.42     freza 	lo = pa | TLB_WR | flags;
   1523  1.43  kiyohara 	hi = va | TLB_VALID | szmask;
   1524  1.42     freza 
   1525  1.42     freza #ifdef PPC_4XX_NOCACHE
   1526  1.42     freza 	lo |= TLB_I;
   1527  1.42     freza #endif
   1528  1.42     freza 
   1529  1.42     freza 	__asm volatile(
   1530  1.99       rin 		"tlbwe	%1,%0,1;"	/* write TLBLO */
   1531  1.99       rin 		"tlbwe	%2,%0,0;"	/* write TLBHI */
   1532  1.99       rin 		"isync;"
   1533  1.99       rin 		: : "r"(tlb_nreserved), "r"(lo), "r"(hi));
   1534  1.42     freza 
   1535  1.42     freza 	tlb_nreserved++;
   1536  1.42     freza }
   1537   1.1    simonb 
   1538   1.1    simonb /*
   1539   1.1    simonb  * We should pass the ctx in from trap code.
   1540   1.1    simonb  */
   1541   1.1    simonb int
   1542   1.1    simonb pmap_tlbmiss(vaddr_t va, int ctx)
   1543   1.1    simonb {
   1544   1.1    simonb 	volatile u_int *pte;
   1545   1.1    simonb 	u_long tte;
   1546   1.1    simonb 
   1547   1.1    simonb 	tlbmiss_ev.ev_count++;
   1548   1.1    simonb 
   1549   1.1    simonb 	/*
   1550  1.44     freza 	 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
   1551  1.44     freza 	 * Physical RAM is expected to live in this range, care must be taken
   1552  1.44     freza 	 * to not clobber 0 upto ${physmem} with device mappings in machdep
   1553  1.44     freza 	 * code.
   1554   1.1    simonb 	 */
   1555  1.63  uebayasi 	if (ctx != KERNEL_PID ||
   1556  1.63  uebayasi 	    (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) {
   1557  1.36       scw 		pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
   1558   1.1    simonb 		if (pte == NULL) {
   1559  1.99       rin 			/*
   1560  1.99       rin 			 * Map unmanaged addresses directly for
   1561  1.99       rin 			 * kernel access
   1562  1.99       rin 			 */
   1563   1.1    simonb 			return 1;
   1564   1.1    simonb 		}
   1565   1.1    simonb 		tte = *pte;
   1566  1.99       rin 		if (tte == 0)
   1567   1.1    simonb 			return 1;
   1568   1.1    simonb 	} else {
   1569  1.16       wiz 		/* Create a 16MB writable mapping. */
   1570  1.99       rin 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
   1571   1.8   thorpej #ifdef PPC_4XX_NOCACHE
   1572  1.99       rin 		tte |= TTE_I;
   1573   1.1    simonb #endif
   1574   1.1    simonb 	}
   1575   1.1    simonb 	ppc4xx_tlb_enter(ctx, va, tte);
   1576   1.1    simonb 
   1577   1.1    simonb 	return 0;
   1578   1.1    simonb }
   1579   1.1    simonb 
   1580   1.1    simonb /*
   1581   1.1    simonb  * Flush all the entries matching a context from the TLB.
   1582   1.1    simonb  */
   1583   1.1    simonb static int
   1584   1.1    simonb ctx_flush(int cnum)
   1585   1.1    simonb {
   1586   1.1    simonb 	int i;
   1587   1.1    simonb 
   1588   1.1    simonb 	/* We gotta steal this context */
   1589  1.42     freza 	for (i = tlb_nreserved; i < NTLB; i++) {
   1590   1.1    simonb 		if (tlb_info[i].ti_ctx == cnum) {
   1591   1.1    simonb 			/* Can't steal ctx if it has a locked entry. */
   1592   1.1    simonb 			if (TLB_LOCKED(i)) {
   1593   1.1    simonb #ifdef DIAGNOSTIC
   1594   1.1    simonb 				printf("ctx_flush: can't invalidate "
   1595  1.99       rin 				    "locked mapping %d for context %d\n",
   1596  1.99       rin 				    i, cnum);
   1597  1.10       eeh #ifdef DDB
   1598   1.1    simonb 				Debugger();
   1599   1.1    simonb #endif
   1600  1.10       eeh #endif
   1601  1.97       rin 				return 1;
   1602   1.1    simonb 			}
   1603   1.1    simonb #ifdef DIAGNOSTIC
   1604  1.42     freza 			if (i < tlb_nreserved)
   1605  1.13    provos 				panic("TLB entry %d not locked", i);
   1606   1.1    simonb #endif
   1607  1.93       rin 			/*
   1608  1.93       rin 			 * Invalidate particular TLB entry regardless of
   1609  1.93       rin 			 * locked status
   1610  1.93       rin 			 */
   1611  1.93       rin 			tlb_invalidate_entry(i);
   1612   1.1    simonb 		}
   1613   1.1    simonb 	}
   1614  1.97       rin 	return 0;
   1615   1.1    simonb }
   1616   1.1    simonb 
   1617   1.1    simonb /*
   1618   1.1    simonb  * Allocate a context.  If necessary, steal one from someone else.
   1619   1.1    simonb  *
   1620   1.1    simonb  * The new context is flushed from the TLB before returning.
   1621   1.1    simonb  */
   1622   1.1    simonb int
   1623   1.1    simonb ctx_alloc(struct pmap *pm)
   1624   1.1    simonb {
   1625   1.1    simonb 	static int next = MINCTX;
   1626  1.99       rin 	int cnum, s;
   1627   1.1    simonb 
   1628   1.1    simonb 	if (pm == pmap_kernel()) {
   1629   1.1    simonb #ifdef DIAGNOSTIC
   1630   1.1    simonb 		printf("ctx_alloc: kernel pmap!\n");
   1631   1.1    simonb #endif
   1632  1.97       rin 		return 0;
   1633   1.1    simonb 	}
   1634  1.99       rin 
   1635   1.1    simonb 	s = splvm();
   1636   1.1    simonb 
   1637   1.1    simonb 	/* Find a likely context. */
   1638   1.1    simonb 	cnum = next;
   1639   1.1    simonb 	do {
   1640  1.99       rin 		if (++cnum >= NUMCTX)
   1641   1.1    simonb 			cnum = MINCTX;
   1642   1.1    simonb 	} while (ctxbusy[cnum] != NULL && cnum != next);
   1643   1.1    simonb 
   1644   1.1    simonb 	/* Now clean it out */
   1645   1.1    simonb oops:
   1646   1.1    simonb 	if (cnum < MINCTX)
   1647   1.1    simonb 		cnum = MINCTX; /* Never steal ctx 0 or 1 */
   1648   1.1    simonb 	if (ctx_flush(cnum)) {
   1649   1.1    simonb 		/* oops -- something's wired. */
   1650  1.99       rin 		if (++cnum >= NUMCTX)
   1651   1.1    simonb 			cnum = MINCTX;
   1652   1.1    simonb 		goto oops;
   1653   1.1    simonb 	}
   1654   1.1    simonb 
   1655   1.1    simonb 	if (ctxbusy[cnum]) {
   1656   1.1    simonb #ifdef DEBUG
   1657   1.1    simonb 		/* We should identify this pmap and clear it */
   1658   1.1    simonb 		printf("Warning: stealing context %d\n", cnum);
   1659   1.1    simonb #endif
   1660   1.1    simonb 		ctxbusy[cnum]->pm_ctx = 0;
   1661   1.1    simonb 	}
   1662   1.1    simonb 	ctxbusy[cnum] = pm;
   1663   1.1    simonb 	next = cnum;
   1664  1.99       rin 
   1665   1.1    simonb 	splx(s);
   1666  1.99       rin 
   1667   1.1    simonb 	pm->pm_ctx = cnum;
   1668   1.1    simonb 
   1669   1.1    simonb 	return cnum;
   1670   1.1    simonb }
   1671   1.1    simonb 
   1672   1.1    simonb /*
   1673   1.1    simonb  * Give away a context.
   1674   1.1    simonb  */
   1675   1.1    simonb void
   1676   1.1    simonb ctx_free(struct pmap *pm)
   1677   1.1    simonb {
   1678   1.1    simonb 	int oldctx;
   1679   1.1    simonb 
   1680   1.1    simonb 	oldctx = pm->pm_ctx;
   1681   1.1    simonb 
   1682   1.1    simonb 	if (oldctx == 0)
   1683   1.1    simonb 		panic("ctx_free: freeing kernel context");
   1684  1.99       rin 
   1685   1.1    simonb #ifdef DIAGNOSTIC
   1686   1.1    simonb 	if (ctxbusy[oldctx] == 0)
   1687   1.1    simonb 		printf("ctx_free: freeing free context %d\n", oldctx);
   1688   1.1    simonb 	if (ctxbusy[oldctx] != pm) {
   1689   1.1    simonb 		printf("ctx_free: freeing someone esle's context\n "
   1690  1.99       rin 		   "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
   1691  1.99       rin 		   oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
   1692  1.10       eeh #ifdef DDB
   1693   1.1    simonb 		Debugger();
   1694  1.10       eeh #endif
   1695   1.1    simonb 	}
   1696   1.1    simonb #endif
   1697  1.99       rin 
   1698   1.1    simonb 	/* We should verify it has not been stolen and reallocated... */
   1699   1.1    simonb 	ctxbusy[oldctx] = NULL;
   1700   1.1    simonb 	ctx_flush(oldctx);
   1701   1.1    simonb }
   1702   1.5       eeh 
   1703   1.1    simonb #ifdef DEBUG
   1704   1.1    simonb /*
   1705   1.1    simonb  * Test ref/modify handling.
   1706   1.1    simonb  */
   1707  1.53       dsl void pmap_testout(void);
   1708   1.1    simonb void
   1709  1.54    cegger pmap_testout(void)
   1710   1.1    simonb {
   1711  1.99       rin 	struct vm_page *pg;
   1712   1.1    simonb 	vaddr_t va;
   1713  1.99       rin 	paddr_t pa;
   1714   1.1    simonb 	volatile int *loc;
   1715  1.99       rin 	int ref, mod, val = 0;
   1716   1.1    simonb 
   1717   1.1    simonb 	/* Allocate a page */
   1718  1.34      yamt 	va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1719  1.34      yamt 	    UVM_KMF_WIRED | UVM_KMF_ZERO);
   1720  1.99       rin 	loc = (int *)va;
   1721   1.1    simonb 
   1722   1.1    simonb 	pmap_extract(pmap_kernel(), va, &pa);
   1723   1.1    simonb 	pg = PHYS_TO_VM_PAGE(pa);
   1724   1.1    simonb 	pmap_unwire(pmap_kernel(), va);
   1725   1.1    simonb 
   1726  1.34      yamt 	pmap_kremove(va, PAGE_SIZE);
   1727   1.1    simonb 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1728   1.4     chris 	pmap_update(pmap_kernel());
   1729   1.1    simonb 
   1730   1.1    simonb 	/* Now clear reference and modify */
   1731   1.1    simonb 	ref = pmap_clear_reference(pg);
   1732   1.1    simonb 	mod = pmap_clear_modify(pg);
   1733   1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1734  1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1735   1.1    simonb 
   1736   1.1    simonb 	/* Check it's properly cleared */
   1737   1.1    simonb 	ref = pmap_is_referenced(pg);
   1738   1.1    simonb 	mod = pmap_is_modified(pg);
   1739  1.99       rin 	printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
   1740   1.1    simonb 
   1741   1.1    simonb 	/* Reference page */
   1742   1.1    simonb 	val = *loc;
   1743   1.1    simonb 
   1744   1.1    simonb 	ref = pmap_is_referenced(pg);
   1745   1.1    simonb 	mod = pmap_is_modified(pg);
   1746  1.99       rin 	printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
   1747   1.1    simonb 
   1748   1.1    simonb 	/* Now clear reference and modify */
   1749   1.1    simonb 	ref = pmap_clear_reference(pg);
   1750   1.1    simonb 	mod = pmap_clear_modify(pg);
   1751   1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1752  1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1753  1.12    simonb 
   1754   1.1    simonb 	/* Modify page */
   1755   1.1    simonb 	*loc = 1;
   1756   1.1    simonb 
   1757   1.1    simonb 	ref = pmap_is_referenced(pg);
   1758   1.1    simonb 	mod = pmap_is_modified(pg);
   1759  1.99       rin 	printf("Modified page: ref %d, mod %d\n", ref, mod);
   1760   1.1    simonb 
   1761   1.1    simonb 	/* Now clear reference and modify */
   1762   1.1    simonb 	ref = pmap_clear_reference(pg);
   1763   1.1    simonb 	mod = pmap_clear_modify(pg);
   1764   1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1765  1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1766   1.1    simonb 
   1767   1.1    simonb 	/* Check it's properly cleared */
   1768   1.1    simonb 	ref = pmap_is_referenced(pg);
   1769   1.1    simonb 	mod = pmap_is_modified(pg);
   1770  1.99       rin 	printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
   1771   1.1    simonb 
   1772   1.1    simonb 	/* Modify page */
   1773   1.1    simonb 	*loc = 1;
   1774   1.1    simonb 
   1775   1.1    simonb 	ref = pmap_is_referenced(pg);
   1776   1.1    simonb 	mod = pmap_is_modified(pg);
   1777  1.99       rin 	printf("Modified page: ref %d, mod %d\n", ref, mod);
   1778   1.1    simonb 
   1779   1.1    simonb 	/* Check pmap_protect() */
   1780   1.1    simonb 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
   1781   1.4     chris 	pmap_update(pmap_kernel());
   1782   1.1    simonb 	ref = pmap_is_referenced(pg);
   1783   1.1    simonb 	mod = pmap_is_modified(pg);
   1784  1.99       rin 	printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n", ref, mod);
   1785   1.1    simonb 
   1786   1.1    simonb 	/* Now clear reference and modify */
   1787   1.1    simonb 	ref = pmap_clear_reference(pg);
   1788   1.1    simonb 	mod = pmap_clear_modify(pg);
   1789   1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1790  1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1791   1.1    simonb 
   1792   1.1    simonb 	/* Reference page */
   1793   1.1    simonb 	val = *loc;
   1794   1.1    simonb 
   1795   1.1    simonb 	ref = pmap_is_referenced(pg);
   1796   1.1    simonb 	mod = pmap_is_modified(pg);
   1797  1.99       rin 	printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
   1798   1.1    simonb 
   1799   1.1    simonb 	/* Now clear reference and modify */
   1800   1.1    simonb 	ref = pmap_clear_reference(pg);
   1801   1.1    simonb 	mod = pmap_clear_modify(pg);
   1802   1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1803  1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1804  1.12    simonb 
   1805   1.1    simonb 	/* Modify page */
   1806   1.1    simonb #if 0
   1807   1.1    simonb 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1808   1.4     chris 	pmap_update(pmap_kernel());
   1809   1.1    simonb #endif
   1810   1.1    simonb 	*loc = 1;
   1811   1.1    simonb 
   1812   1.1    simonb 	ref = pmap_is_referenced(pg);
   1813   1.1    simonb 	mod = pmap_is_modified(pg);
   1814  1.99       rin 	printf("Modified page: ref %d, mod %d\n", ref, mod);
   1815   1.1    simonb 
   1816   1.1    simonb 	/* Check pmap_protect() */
   1817   1.1    simonb 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
   1818   1.4     chris 	pmap_update(pmap_kernel());
   1819   1.1    simonb 	ref = pmap_is_referenced(pg);
   1820   1.1    simonb 	mod = pmap_is_modified(pg);
   1821  1.99       rin 	printf("pmap_protect(): ref %d, mod %d\n", ref, mod);
   1822   1.1    simonb 
   1823   1.1    simonb 	/* Now clear reference and modify */
   1824   1.1    simonb 	ref = pmap_clear_reference(pg);
   1825   1.1    simonb 	mod = pmap_clear_modify(pg);
   1826   1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1827  1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1828   1.1    simonb 
   1829   1.1    simonb 	/* Reference page */
   1830   1.1    simonb 	val = *loc;
   1831   1.1    simonb 
   1832   1.1    simonb 	ref = pmap_is_referenced(pg);
   1833   1.1    simonb 	mod = pmap_is_modified(pg);
   1834  1.99       rin 	printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
   1835   1.1    simonb 
   1836   1.1    simonb 	/* Now clear reference and modify */
   1837   1.1    simonb 	ref = pmap_clear_reference(pg);
   1838   1.1    simonb 	mod = pmap_clear_modify(pg);
   1839   1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1840  1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1841  1.12    simonb 
   1842   1.1    simonb 	/* Modify page */
   1843   1.1    simonb #if 0
   1844   1.1    simonb 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1845   1.4     chris 	pmap_update(pmap_kernel());
   1846   1.1    simonb #endif
   1847   1.1    simonb 	*loc = 1;
   1848   1.1    simonb 
   1849   1.1    simonb 	ref = pmap_is_referenced(pg);
   1850   1.1    simonb 	mod = pmap_is_modified(pg);
   1851  1.99       rin 	printf("Modified page: ref %d, mod %d\n", ref, mod);
   1852   1.1    simonb 
   1853   1.1    simonb 	/* Check pmap_pag_protect() */
   1854   1.1    simonb 	pmap_page_protect(pg, VM_PROT_READ);
   1855   1.1    simonb 	ref = pmap_is_referenced(pg);
   1856   1.1    simonb 	mod = pmap_is_modified(pg);
   1857  1.99       rin 	printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n", ref, mod);
   1858   1.1    simonb 
   1859   1.1    simonb 	/* Now clear reference and modify */
   1860   1.1    simonb 	ref = pmap_clear_reference(pg);
   1861   1.1    simonb 	mod = pmap_clear_modify(pg);
   1862   1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1863  1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1864   1.1    simonb 
   1865   1.1    simonb 	/* Reference page */
   1866   1.1    simonb 	val = *loc;
   1867   1.1    simonb 
   1868   1.1    simonb 	ref = pmap_is_referenced(pg);
   1869   1.1    simonb 	mod = pmap_is_modified(pg);
   1870  1.99       rin 	printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
   1871   1.1    simonb 
   1872   1.1    simonb 	/* Now clear reference and modify */
   1873   1.1    simonb 	ref = pmap_clear_reference(pg);
   1874   1.1    simonb 	mod = pmap_clear_modify(pg);
   1875   1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1876  1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1877  1.12    simonb 
   1878   1.1    simonb 	/* Modify page */
   1879   1.1    simonb #if 0
   1880   1.1    simonb 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1881   1.4     chris 	pmap_update(pmap_kernel());
   1882   1.1    simonb #endif
   1883   1.1    simonb 	*loc = 1;
   1884   1.1    simonb 
   1885   1.1    simonb 	ref = pmap_is_referenced(pg);
   1886   1.1    simonb 	mod = pmap_is_modified(pg);
   1887  1.99       rin 	printf("Modified page: ref %d, mod %d\n", ref, mod);
   1888   1.1    simonb 
   1889   1.1    simonb 	/* Check pmap_pag_protect() */
   1890   1.1    simonb 	pmap_page_protect(pg, VM_PROT_NONE);
   1891   1.1    simonb 	ref = pmap_is_referenced(pg);
   1892   1.1    simonb 	mod = pmap_is_modified(pg);
   1893  1.99       rin 	printf("pmap_page_protect(): ref %d, mod %d\n", ref, mod);
   1894   1.1    simonb 
   1895   1.1    simonb 	/* Now clear reference and modify */
   1896   1.1    simonb 	ref = pmap_clear_reference(pg);
   1897   1.1    simonb 	mod = pmap_clear_modify(pg);
   1898   1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1899  1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1900   1.1    simonb 
   1901   1.1    simonb 
   1902   1.1    simonb 	/* Reference page */
   1903   1.1    simonb 	val = *loc;
   1904   1.1    simonb 
   1905   1.1    simonb 	ref = pmap_is_referenced(pg);
   1906   1.1    simonb 	mod = pmap_is_modified(pg);
   1907  1.99       rin 	printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
   1908   1.1    simonb 
   1909   1.1    simonb 	/* Now clear reference and modify */
   1910   1.1    simonb 	ref = pmap_clear_reference(pg);
   1911   1.1    simonb 	mod = pmap_clear_modify(pg);
   1912   1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1913  1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1914  1.12    simonb 
   1915   1.1    simonb 	/* Modify page */
   1916   1.1    simonb #if 0
   1917   1.1    simonb 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1918   1.4     chris 	pmap_update(pmap_kernel());
   1919   1.1    simonb #endif
   1920   1.1    simonb 	*loc = 1;
   1921   1.1    simonb 
   1922   1.1    simonb 	ref = pmap_is_referenced(pg);
   1923   1.1    simonb 	mod = pmap_is_modified(pg);
   1924  1.99       rin 	printf("Modified page: ref %d, mod %d\n", ref, mod);
   1925   1.1    simonb 
   1926   1.1    simonb 	/* Unmap page */
   1927   1.1    simonb 	pmap_remove(pmap_kernel(), va, va+1);
   1928   1.4     chris 	pmap_update(pmap_kernel());
   1929   1.1    simonb 	ref = pmap_is_referenced(pg);
   1930   1.1    simonb 	mod = pmap_is_modified(pg);
   1931   1.1    simonb 	printf("Unmapped page: ref %d, mod %d\n", ref, mod);
   1932   1.1    simonb 
   1933   1.1    simonb 	/* Now clear reference and modify */
   1934   1.1    simonb 	ref = pmap_clear_reference(pg);
   1935   1.1    simonb 	mod = pmap_clear_modify(pg);
   1936   1.1    simonb 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1937  1.99       rin 	    (void *)(u_long)va, (long)pa, ref, mod);
   1938   1.1    simonb 
   1939   1.1    simonb 	/* Check it's properly cleared */
   1940   1.1    simonb 	ref = pmap_is_referenced(pg);
   1941   1.1    simonb 	mod = pmap_is_modified(pg);
   1942  1.99       rin 	printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
   1943   1.1    simonb 
   1944  1.34      yamt 	pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
   1945  1.59    cegger 	pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
   1946  1.34      yamt 	uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
   1947   1.1    simonb }
   1948   1.1    simonb #endif
   1949