pmap.c revision 1.1.2.1 1 /* $NetBSD: pmap.c,v 1.1.2.1 2001/08/03 04:12:13 lukem Exp $ */
2
3 /*
4 * Copyright 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #undef NOCACHE
70
71 #include <sys/param.h>
72 #include <sys/malloc.h>
73 #include <sys/proc.h>
74 #include <sys/user.h>
75 #include <sys/queue.h>
76 #include <sys/systm.h>
77 #include <sys/pool.h>
78 #include <sys/device.h>
79
80 #include <uvm/uvm.h>
81
82 #include <machine/pcb.h>
83 #include <machine/powerpc.h>
84
85 #include <powerpc/spr.h>
86 #include <powerpc/ibm4xx/tlb.h>
87
88
89 #define CACHE_LINE 32
90
91 /*
92 * kernmap is an array of PTEs large enough to map in
93 * 4GB. At 16KB/page it is 256K entries or 2MB.
94 */
95 #define KERNMAP_SIZE ((0xffffffffU/NBPG)+1)
96 caddr_t kernmap;
97
98 #define MINCTX 2
99 #define NUMCTX 256
100 volatile struct pmap *ctxbusy[NUMCTX];
101
102 #define TLBF_USED 0x1
103 #define TLBF_REF 0x2
104 #define TLBF_LOCKED 0x4
105 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
106 typedef struct tlb_info_s {
107 char ti_flags;
108 char ti_ctx; /* TLB_PID assiciated with the entry */
109 u_int ti_va;
110 } tlb_info_t;
111
112 volatile tlb_info_t tlb_info[NTLB];
113 /* We'll use a modified FIFO replacement policy cause it's cheap */
114 volatile int tlbnext = TLB_NRESERVED;
115
116 u_long dtlb_miss_count = 0;
117 u_long itlb_miss_count = 0;
118 u_long ktlb_miss_count = 0;
119 u_long utlb_miss_count = 0;
120
121 /* Event counters -- XXX type `INTR' so we can see them with vmstat -i */
122 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_INTR,
123 NULL, "cpu", "tlbmiss");
124 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_INTR,
125 NULL, "cpu", "tlbhit");
126 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_INTR,
127 NULL, "cpu", "tlbflush");
128 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_INTR,
129 NULL, "cpu", "tlbenter");
130
131 struct pmap kernel_pmap_;
132
133 int physmem;
134 static int npgs;
135 static u_int nextavail;
136 #ifndef MSGBUFADDR
137 extern paddr_t msgbuf_paddr;
138 #endif
139
140 static struct mem_region *mem, *avail;
141
142 /*
143 * This is a cache of referenced/modified bits.
144 * Bits herein are shifted by ATTRSHFT.
145 */
146 static char *pmap_attrib;
147
148 #define PV_WIRED 0x1
149 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
150 #define PV_CMPVA(va,pv) (!(((pv)->pv_va^(va))&(~PV_WIRED)))
151
152 struct pv_entry {
153 struct pv_entry *pv_next; /* Linked list of mappings */
154 vaddr_t pv_va; /* virtual address of mapping */
155 struct pmap *pv_pm;
156 };
157
158 struct pv_entry *pv_table;
159 static struct pool pv_pool;
160
161 static int pmap_initialized;
162
163 static int ctx_flush(int);
164
165 static inline void dcache_flush_page(vaddr_t);
166 static inline void icache_flush_page(vaddr_t);
167 static inline void dcache_flush(vaddr_t, vsize_t);
168 static inline void icache_flush(vaddr_t, vsize_t);
169
170 inline struct pv_entry *pa_to_pv(paddr_t);
171 static inline char *pa_to_attr(paddr_t);
172
173 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
174 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
175
176 static void pmap_pinit(pmap_t);
177 static void pmap_release(pmap_t);
178 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t);
179 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
180
181 /*
182 * These small routines may have to be replaced,
183 * if/when we support processors other that the 604.
184 */
185
186 static inline void
187 dcache_flush_page(vaddr_t va)
188 {
189 int i;
190
191 for (i = 0; i < NBPG; i += CACHE_LINE)
192 asm volatile("dcbf %0,%1" : : "r" (va), "r" (i));
193 asm volatile("sync;isync" : : );
194 }
195
196 static inline void
197 icache_flush_page(vaddr_t va)
198 {
199 int i;
200
201 for (i = 0; i < NBPG; i += CACHE_LINE)
202 asm volatile("icbi %0,%1" : : "r" (va), "r" (i));
203 asm volatile("sync;isync" : : );
204 }
205
206 static inline void
207 dcache_flush(vaddr_t va, vsize_t len)
208 {
209 int i;
210
211 if (len == 0)
212 return;
213
214 /* Make sure we flush all cache lines */
215 len += va & (CACHE_LINE-1);
216 for (i = 0; i < len; i += CACHE_LINE)
217 asm volatile("dcbf %0,%1" : : "r" (va), "r" (i));
218 asm volatile("sync;isync" : : );
219 }
220
221 static inline void
222 icache_flush(vaddr_t va, vsize_t len)
223 {
224 int i;
225
226 if (len == 0)
227 return;
228
229 /* Make sure we flush all cache lines */
230 len += va & (CACHE_LINE-1);
231 for (i = 0; i < len; i += CACHE_LINE)
232 asm volatile("icbi %0,%1" : : "r" (va), "r" (i));
233 asm volatile("sync;isync" : : );
234 }
235
236 inline struct pv_entry *
237 pa_to_pv(paddr_t pa)
238 {
239 int bank, pg;
240
241 bank = vm_physseg_find(atop(pa), &pg);
242 if (bank == -1)
243 return NULL;
244 return &vm_physmem[bank].pmseg.pvent[pg];
245 }
246
247 static inline char *
248 pa_to_attr(paddr_t pa)
249 {
250 int bank, pg;
251
252 bank = vm_physseg_find(atop(pa), &pg);
253 if (bank == -1)
254 return NULL;
255 return &vm_physmem[bank].pmseg.attrs[pg];
256 }
257
258 /*
259 * Insert PTE into page table.
260 */
261 int
262 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
263 {
264 int seg = STIDX(va);
265 int ptn = PTIDX(va);
266 paddr_t pa;
267
268 if (!pm->pm_ptbl[seg]) {
269 /* Don't allocate a page to clear a non-existent mapping. */
270 if (!pte) return (1);
271 /* Allocate a page XXXX this will sleep! */
272 pa = 0;
273 pm->pm_ptbl[seg] = (uint *)uvm_km_alloc1(kernel_map, NBPG, 1);
274 }
275 pm->pm_ptbl[seg][ptn] = pte;
276
277 /* Flush entry. */
278 ppc4xx_tlb_flush(va, pm->pm_ctx);
279 return (1);
280 }
281
282 /*
283 * Get a pointer to a PTE in a page table.
284 */
285 volatile u_int *
286 pte_find(struct pmap *pm, vaddr_t va)
287 {
288 int seg = STIDX(va);
289 int ptn = PTIDX(va);
290
291 if (pm->pm_ptbl[seg])
292 return (&pm->pm_ptbl[seg][ptn]);
293
294 return (NULL);
295 }
296
297 /*
298 * This is called during initppc, before the system is really initialized.
299 */
300 void
301 pmap_bootstrap(u_int kernelstart, u_int kernelend)
302 {
303 struct mem_region *mp, *mp1;
304 int cnt, i;
305 u_int s, e, sz;
306
307 /*
308 * Allocate the kernel page table at the end of
309 * kernel space so it's in the locked TTE.
310 */
311 kernmap = (caddr_t)kernelend;
312 kernelend += KERNMAP_SIZE*sizeof(struct pte);
313
314 /*
315 * Initialize kernel page table.
316 */
317 memset(kernmap, 0, KERNMAP_SIZE*sizeof(struct pte));
318 for (i = 0; i < STSZ; i++) {
319 pmap_kernel()->pm_ptbl[i] = (u_int *)(kernmap + i*NBPG);
320 }
321 ctxbusy[0] = ctxbusy[1] = pmap_kernel();
322
323 /*
324 * Announce page-size to the VM-system
325 */
326 uvmexp.pagesize = NBPG;
327 uvm_setpagesize();
328
329 /*
330 * Get memory.
331 */
332 mem_regions(&mem, &avail);
333 for (mp = mem; mp->size; mp++) {
334 physmem += btoc(mp->size);
335 printf("+%lx,",mp->size);
336 }
337 printf("\n");
338 ppc4xx_tlb_init();
339 /*
340 * Count the number of available entries.
341 */
342 for (cnt = 0, mp = avail; mp->size; mp++)
343 cnt++;
344
345 /*
346 * Page align all regions.
347 * Non-page aligned memory isn't very interesting to us.
348 * Also, sort the entries for ascending addresses.
349 */
350 kernelstart &= ~PGOFSET;
351 kernelend = (kernelend + PGOFSET) & ~PGOFSET;
352 for (mp = avail; mp->size; mp++) {
353 s = mp->start;
354 e = mp->start + mp->size;
355 printf("%08x-%08x -> ",s,e);
356 /*
357 * Check whether this region holds all of the kernel.
358 */
359 if (s < kernelstart && e > kernelend) {
360 avail[cnt].start = kernelend;
361 avail[cnt++].size = e - kernelend;
362 e = kernelstart;
363 }
364 /*
365 * Look whether this regions starts within the kernel.
366 */
367 if (s >= kernelstart && s < kernelend) {
368 if (e <= kernelend)
369 goto empty;
370 s = kernelend;
371 }
372 /*
373 * Now look whether this region ends within the kernel.
374 */
375 if (e > kernelstart && e <= kernelend) {
376 if (s >= kernelstart)
377 goto empty;
378 e = kernelstart;
379 }
380 /*
381 * Now page align the start and size of the region.
382 */
383 s = round_page(s);
384 e = trunc_page(e);
385 if (e < s)
386 e = s;
387 sz = e - s;
388 printf("%08x-%08x = %x\n",s,e,sz);
389 /*
390 * Check whether some memory is left here.
391 */
392 if (sz == 0) {
393 empty:
394 memmove(mp, mp + 1,
395 (cnt - (mp - avail)) * sizeof *mp);
396 cnt--;
397 mp--;
398 continue;
399 }
400 /*
401 * Do an insertion sort.
402 */
403 npgs += btoc(sz);
404 for (mp1 = avail; mp1 < mp; mp1++)
405 if (s < mp1->start)
406 break;
407 if (mp1 < mp) {
408 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
409 mp1->start = s;
410 mp1->size = sz;
411 } else {
412 mp->start = s;
413 mp->size = sz;
414 }
415 }
416
417 /*
418 * We cannot do pmap_steal_memory here,
419 * since we don't run with translation enabled yet.
420 */
421 #ifndef MSGBUFADDR
422 /*
423 * allow for msgbuf
424 */
425 sz = round_page(MSGBUFSIZE);
426 mp = NULL;
427 for (mp1 = avail; mp1->size; mp1++)
428 if (mp1->size >= sz)
429 mp = mp1;
430 if (mp == NULL)
431 panic("not enough memory?");
432
433 npgs -= btoc(sz);
434 msgbuf_paddr = mp->start + mp->size - sz;
435 mp->size -= sz;
436 if (mp->size <= 0)
437 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
438 #endif
439
440 printf("Loading pages\n");
441 for (mp = avail; mp->size; mp++)
442 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
443 atop(mp->start), atop(mp->start + mp->size),
444 VM_FREELIST_DEFAULT);
445
446 /*
447 * Initialize kernel pmap and hardware.
448 */
449 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
450 pmap_kernel()->pm_ctx = KERNEL_PID;
451 nextavail = avail->start;
452
453
454 evcnt_attach_static(&tlbhit_ev);
455 evcnt_attach_static(&tlbmiss_ev);
456 evcnt_attach_static(&tlbflush_ev);
457 evcnt_attach_static(&tlbenter_ev);
458 printf("Done\n");
459 }
460
461 /*
462 * Restrict given range to physical memory
463 *
464 * (Used by /dev/mem)
465 */
466 void
467 pmap_real_memory(paddr_t *start, psize_t *size)
468 {
469 struct mem_region *mp;
470
471 for (mp = mem; mp->size; mp++) {
472 if (*start + *size > mp->start &&
473 *start < mp->start + mp->size) {
474 if (*start < mp->start) {
475 *size -= mp->start - *start;
476 *start = mp->start;
477 }
478 if (*start + *size > mp->start + mp->size)
479 *size = mp->start + mp->size - *start;
480 return;
481 }
482 }
483 *size = 0;
484 }
485
486 /*
487 * Initialize anything else for pmap handling.
488 * Called during vm_init().
489 */
490 void
491 pmap_init(void)
492 {
493 struct pv_entry *pv;
494 vsize_t sz;
495 vaddr_t addr;
496 int i, s;
497 int bank;
498 char *attr;
499
500 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
501 sz = round_page(sz);
502 addr = uvm_km_zalloc(kernel_map, sz);
503 s = splvm();
504 pv = pv_table = (struct pv_entry *)addr;
505 for (i = npgs; --i >= 0;)
506 pv++->pv_pm = NULL;
507 pmap_attrib = (char *)pv;
508 memset(pv, 0, npgs);
509
510 pv = pv_table;
511 attr = pmap_attrib;
512 for (bank = 0; bank < vm_nphysseg; bank++) {
513 sz = vm_physmem[bank].end - vm_physmem[bank].start;
514 vm_physmem[bank].pmseg.pvent = pv;
515 vm_physmem[bank].pmseg.attrs = attr;
516 pv += sz;
517 attr += sz;
518 }
519
520 pmap_initialized = 1;
521 splx(s);
522
523 /* Setup a pool for additional pvlist structures */
524 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", 0,
525 NULL, NULL, 0);
526 }
527
528 /*
529 * How much virtual space is available to the kernel?
530 */
531 void
532 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
533 {
534
535 #if 0
536 /*
537 * Reserve one segment for kernel virtual memory
538 */
539 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
540 *end = *start + SEGMENT_LENGTH;
541 #else
542 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
543 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
544 #endif
545 }
546
547 /*
548 * Create and return a physical map.
549 */
550 struct pmap *
551 pmap_create(void)
552 {
553 struct pmap *pm;
554
555 pm = (struct pmap *)malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
556 memset((caddr_t)pm, 0, sizeof *pm);
557 pmap_pinit(pm);
558 return pm;
559 }
560
561 /*
562 * Initialize a preallocated and zeroed pmap structure.
563 */
564 void
565 pmap_pinit(struct pmap *pm)
566 {
567 int i;
568
569 /*
570 * Allocate some segment registers for this pmap.
571 */
572 pm->pm_refs = 1;
573 for (i = 0; i < STSZ; i++)
574 pm->pm_ptbl[i] = NULL;
575 }
576
577 /*
578 * Add a reference to the given pmap.
579 */
580 void
581 pmap_reference(struct pmap *pm)
582 {
583
584 pm->pm_refs++;
585 }
586
587 /*
588 * Retire the given pmap from service.
589 * Should only be called if the map contains no valid mappings.
590 */
591 void
592 pmap_destroy(struct pmap *pm)
593 {
594
595 if (--pm->pm_refs == 0) {
596 pmap_release(pm);
597 free((caddr_t)pm, M_VMPMAP);
598 }
599 }
600
601 /*
602 * Release any resources held by the given physical map.
603 * Called when a pmap initialized by pmap_pinit is being released.
604 */
605 static void
606 pmap_release(struct pmap *pm)
607 {
608 int i;
609
610 for (i = 0; i < STSZ; i++)
611 if (pm->pm_ptbl[i]) {
612 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i], NBPG);
613 pm->pm_ptbl[i] = NULL;
614 }
615 if (pm->pm_ctx) ctx_free(pm);
616 }
617
618 /*
619 * Copy the range specified by src_addr/len
620 * from the source map to the range dst_addr/len
621 * in the destination map.
622 *
623 * This routine is only advisory and need not do anything.
624 */
625 void
626 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
627 vsize_t len, vaddr_t src_addr)
628 {
629 }
630
631 /*
632 * Require that all active physical maps contain no
633 * incorrect entries NOW.
634 */
635 void
636 pmap_update(void)
637 {
638 }
639
640 /*
641 * Garbage collects the physical map system for
642 * pages which are no longer used.
643 * Success need not be guaranteed -- that is, there
644 * may well be pages which are not referenced, but
645 * others may be collected.
646 * Called by the pageout daemon when pages are scarce.
647 */
648 void
649 pmap_collect(struct pmap *pm)
650 {
651 }
652
653 /*
654 * Fill the given physical page with zeroes.
655 */
656 void
657 pmap_zero_page(paddr_t pa)
658 {
659
660 #ifdef NOCACHE
661 memset((caddr_t)pa, 0, NBPG);
662 #else
663 int i;
664
665 for (i = NBPG/CACHELINESIZE; i > 0; i--) {
666 __asm __volatile ("dcbz 0,%0" :: "r"(pa));
667 pa += CACHELINESIZE;
668 }
669 #endif
670 }
671
672 /*
673 * Copy the given physical source page to its destination.
674 */
675 void
676 pmap_copy_page(paddr_t src, paddr_t dst)
677 {
678
679 memcpy((caddr_t)dst, (caddr_t)src, NBPG);
680 dcache_flush_page(dst);
681 }
682
683 /*
684 * This returns whether this is the first mapping of a page.
685 */
686 static inline int
687 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
688 {
689 struct pv_entry *pv, *npv = NULL;
690 int s;
691
692 if (!pmap_initialized)
693 return 0;
694
695 s = splvm();
696
697 pv = pa_to_pv(pa);
698 if (!pv->pv_pm) {
699 /*
700 * No entries yet, use header as the first entry.
701 */
702 pv->pv_va = va;
703 pv->pv_pm = pm;
704 pv->pv_next = NULL;
705 } else {
706 /*
707 * There is at least one other VA mapping this page.
708 * Place this entry after the header.
709 */
710 npv = pool_get(&pv_pool, PR_WAITOK);
711 if (!npv) return (0);
712 npv->pv_va = va;
713 npv->pv_pm = pm;
714 npv->pv_next = pv->pv_next;
715 pv->pv_next = npv;
716 }
717 splx(s);
718 return (1);
719 }
720
721 static void
722 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
723 {
724 struct pv_entry *pv, *npv;
725
726 /*
727 * Remove from the PV table.
728 */
729 pv = pa_to_pv(pa);
730 if (!pv) return;
731
732 /*
733 * If it is the first entry on the list, it is actually
734 * in the header and we must copy the following entry up
735 * to the header. Otherwise we must search the list for
736 * the entry. In either case we free the now unused entry.
737 */
738 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
739 if ((npv = pv->pv_next)) {
740 *pv = *npv;
741 pool_put(&pv_pool, npv);
742 } else
743 pv->pv_pm = NULL;
744 } else {
745 for (; (npv = pv->pv_next) != NULL; pv = npv)
746 if (pm == npv->pv_pm && PV_CMPVA(va, npv))
747 break;
748 if (npv) {
749 pv->pv_next = npv->pv_next;
750 pool_put(&pv_pool, npv);
751 }
752 }
753 }
754
755 /*
756 * Insert physical page at pa into the given pmap at virtual address va.
757 */
758 int
759 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
760 {
761 int s;
762 u_int tte;
763 int managed;
764
765 /*
766 * Have to remove any existing mapping first.
767 */
768 pmap_remove(pm, va, va + NBPG);
769
770 if (flags & PMAP_WIRED) flags |= prot;
771
772 /* If it has no protections don't bother w/the rest */
773 if (!(flags & VM_PROT_ALL))
774 return (0);
775
776 managed = 0;
777 if (vm_physseg_find(atop(pa), NULL) != -1)
778 managed = 1;
779
780 /*
781 * Generate TTE.
782 *
783 * XXXX
784 *
785 * Since the kernel does not handle execution privileges properly,
786 * we will handle read and execute permissions together.
787 */
788 tte = TTE_PA(pa) | TTE_EX;
789 /* XXXX -- need to support multiple page sizes. */
790 tte |= TTE_SZ_16K;
791 #ifdef DIAGNOSTIC
792 if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
793 (PME_NOCACHE | PME_WRITETHROUG))
794 panic("pmap_enter: uncached & writethrough\n");
795 #endif
796 if (flags & PME_NOCACHE)
797 /* Must be I/O mapping */
798 tte |= TTE_I | TTE_G;
799 #ifdef NOCACHE
800 tte |= TTE_I;
801 #else
802 else if (flags & PME_WRITETHROUG)
803 /* Uncached and writethrough are not compatible */
804 tte |= TTE_W;
805 #endif
806 if (pm == pmap_kernel())
807 tte |= TTE_ZONE(ZONE_PRIV);
808 else
809 tte |= TTE_ZONE(ZONE_USER);
810
811 if (flags & VM_PROT_WRITE)
812 tte |= TTE_WR;
813
814 /*
815 * Now record mapping for later back-translation.
816 */
817 if (pmap_initialized && managed) {
818 char *attr;
819
820 if (!pmap_enter_pv(pm, va, pa)) {
821 /* Could not enter pv on a managed page */
822 return 1;
823 }
824
825 /* Now set attributes. */
826 attr = pa_to_attr(pa);
827 #ifdef DIAGNOSTIC
828 if (!attr)
829 panic("managed but no attr\n");
830 #endif
831 if (flags & VM_PROT_ALL)
832 *attr |= PTE_HI_REF;
833 if (flags & VM_PROT_WRITE)
834 *attr |= PTE_HI_CHG;
835 }
836
837 s = splvm();
838 pm->pm_stats.resident_count++;
839
840 /* Insert page into page table. */
841 pte_enter(pm, va, tte);
842
843 /* If this is a real fault, enter it in the tlb */
844 if (tte && ((flags & PMAP_WIRED) == 0)) {
845 ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
846 }
847 splx(s);
848 return 0;
849 }
850
851 void
852 pmap_unwire(struct pmap *pm, vaddr_t va)
853 {
854 struct pv_entry *pv, *npv;
855 paddr_t pa;
856 int s = splvm();
857
858 if (pm == NULL) {
859 return;
860 }
861
862 if (!pmap_extract(pm, va, &pa)) {
863 return;
864 }
865
866 va |= PV_WIRED;
867
868 pv = pa_to_pv(pa);
869 if (!pv) return;
870
871 /*
872 * If it is the first entry on the list, it is actually
873 * in the header and we must copy the following entry up
874 * to the header. Otherwise we must search the list for
875 * the entry. In either case we free the now unused entry.
876 */
877 for (npv = pv; (npv = pv->pv_next) != NULL; pv = npv) {
878 if (pm == npv->pv_pm && PV_CMPVA(va, npv)) {
879 npv->pv_va &= ~PV_WIRED;
880 break;
881 }
882 }
883 splx(s);
884 }
885
886 void
887 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
888 {
889 int s;
890 u_int tte;
891 struct pmap *pm = pmap_kernel();
892
893 /*
894 * Have to remove any existing mapping first.
895 */
896
897 /*
898 * Generate TTE.
899 *
900 * XXXX
901 *
902 * Since the kernel does not handle execution privileges properly,
903 * we will handle read and execute permissions together.
904 */
905 tte = 0;
906 if (prot & VM_PROT_ALL) {
907
908 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
909 /* XXXX -- need to support multiple page sizes. */
910 tte |= TTE_SZ_16K;
911 #ifdef DIAGNOSTIC
912 if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
913 (PME_NOCACHE | PME_WRITETHROUG))
914 panic("pmap_kenter_pa: uncached & writethrough\n");
915 #endif
916 if (prot & PME_NOCACHE)
917 /* Must be I/O mapping */
918 tte |= TTE_I | TTE_G;
919 #ifdef NOCACHE
920 tte |= TTE_I;
921 #else
922 else if (prot & PME_WRITETHROUG)
923 /* Uncached and writethrough are not compatible */
924 tte |= TTE_W;
925 #endif
926 if (prot & VM_PROT_WRITE)
927 tte |= TTE_WR;
928 }
929
930 s = splvm();
931 pm->pm_stats.resident_count++;
932
933 /* Insert page into page table. */
934 pte_enter(pm, va, tte);
935 splx(s);
936 }
937
938 void
939 pmap_kremove(vaddr_t va, vsize_t len)
940 {
941
942 while (len > 0) {
943 pte_enter(pmap_kernel(), va, 0);
944 va += PAGE_SIZE;
945 len -= PAGE_SIZE;
946 }
947 }
948
949 /*
950 * Remove the given range of mapping entries.
951 */
952 void
953 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
954 {
955 int s;
956 paddr_t pa;
957 volatile u_int *ptp;
958
959 s = splvm();
960 while (va < endva) {
961
962 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
963 pa = TTE_PA(pa);
964 pmap_remove_pv(pm, va, pa);
965 *ptp = 0;
966 ppc4xx_tlb_flush(va, pm->pm_ctx);
967 pm->pm_stats.resident_count--;
968 }
969 va += NBPG;
970 }
971
972 splx(s);
973 }
974
975 /*
976 * Get the physical page address for the given pmap/virtual address.
977 */
978 boolean_t
979 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
980 {
981 int seg = STIDX(va);
982 int ptn = PTIDX(va);
983 u_int pa = 0;
984 int s = splvm();
985
986 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
987 *pap = TTE_PA(pa) | (va & PGOFSET);
988 }
989 splx(s);
990 return (pa != 0);
991 }
992
993 /*
994 * Lower the protection on the specified range of this pmap.
995 *
996 * There are only two cases: either the protection is going to 0,
997 * or it is going to read-only.
998 */
999 void
1000 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1001 {
1002 volatile u_int *ptp;
1003 int s;
1004
1005 if (prot & VM_PROT_READ) {
1006 s = splvm();
1007 while (sva < eva) {
1008 if ((ptp = pte_find(pm, sva)) != NULL) {
1009 *ptp &= ~TTE_WR;
1010 ppc4xx_tlb_flush(sva, pm->pm_ctx);
1011 }
1012 sva += NBPG;
1013 }
1014 splx(s);
1015 return;
1016 }
1017 pmap_remove(pm, sva, eva);
1018 }
1019
1020 boolean_t
1021 check_attr(struct vm_page *pg, u_int mask, int clear)
1022 {
1023 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1024 int s;
1025 char *attr;
1026 int rv;
1027
1028 /*
1029 * First modify bits in cache.
1030 */
1031 s = splvm();
1032 attr = pa_to_attr(pa);
1033 if (attr == NULL)
1034 return FALSE;
1035
1036 rv = ((*attr & mask) != 0);
1037 if (clear)
1038 *attr &= ~mask;
1039
1040 splx(s);
1041 return rv;
1042 }
1043
1044
1045 /*
1046 * Lower the protection on the specified physical page.
1047 *
1048 * There are only two cases: either the protection is going to 0,
1049 * or it is going to read-only.
1050 */
1051 void
1052 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1053 {
1054 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1055 vaddr_t va;
1056 struct pv_entry *pvh, *pv, *npv;
1057 struct pmap *pm;
1058
1059 pvh = pa_to_pv(pa);
1060 if (pvh == NULL)
1061 return;
1062
1063 /* Handle extra pvs which may be deleted in the operation */
1064 for (pv = pvh->pv_next; pv; pv = npv) {
1065 npv = pv->pv_next;
1066
1067 pm = pv->pv_pm;
1068 va = pv->pv_va;
1069 pmap_protect(pm, va, va+NBPG, prot);
1070 }
1071 /* Now check the head pv */
1072 if (pvh->pv_pm) {
1073 pv = pvh;
1074 pm = pv->pv_pm;
1075 va = pv->pv_va;
1076 pmap_protect(pm, va, va+NBPG, prot);
1077 }
1078 }
1079
1080 /*
1081 * Activate the address space for the specified process. If the process
1082 * is the current process, load the new MMU context.
1083 */
1084 void
1085 pmap_activate(struct proc *p)
1086 {
1087 #if 0
1088 struct pcb *pcb = &p->p_addr->u_pcb;
1089 pmap_t pmap = p->p_vmspace->vm_map.pmap;
1090
1091 /*
1092 * XXX Normally performed in cpu_fork().
1093 */
1094 printf("pmap_activate(%p), pmap=%p\n",p,pmap);
1095 if (pcb->pcb_pm != pmap) {
1096 pcb->pcb_pm = pmap;
1097 (void) pmap_extract(pmap_kernel(), (vaddr_t)pcb->pcb_pm,
1098 (paddr_t *)&pcb->pcb_pmreal);
1099 }
1100
1101 if (p == curproc) {
1102 /* Store pointer to new current pmap. */
1103 curpm = pcb->pcb_pmreal;
1104 }
1105 #endif
1106 }
1107
1108 /*
1109 * Deactivate the specified process's address space.
1110 */
1111 void
1112 pmap_deactivate(struct proc *p)
1113 {
1114 }
1115
1116 /*
1117 * Synchronize caches corresponding to [addr, addr+len) in p.
1118 */
1119 void
1120 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1121 {
1122 struct pmap *pm = p->p_vmspace->vm_map.pmap;
1123 int msr, ctx, opid;
1124
1125
1126 /*
1127 * Need to turn off IMMU and switch to user context.
1128 * (icbi uses DMMU).
1129 */
1130 if (!(ctx = pm->pm_ctx)) {
1131 /* No context -- assign it one */
1132 ctx_alloc(pm);
1133 ctx = pm->pm_ctx;
1134 }
1135 __asm __volatile("mfmsr %0;"
1136 "li %1, 0x20;"
1137 "andc %1,%0,%1;"
1138 "mtmsr %1;"
1139 "sync;isync;"
1140 "mfpid %1;"
1141 "mtpid %2;"
1142 "sync; isync;"
1143 "1:"
1144 "dcbf 0,%3;"
1145 "icbi 0,%3;"
1146 "addi %3,%3,32;"
1147 "addic. %4,%4,-32;"
1148 "bge 1b;"
1149 "mtpid %1;"
1150 "mtmsr %0;"
1151 "sync; isync"
1152 : "=&r" (msr), "=&r" (opid)
1153 : "r" (ctx), "r" (va), "r" (len));
1154 }
1155
1156
1157 /* This has to be done in real mode !!! */
1158 void
1159 ppc4xx_tlb_flush(vaddr_t va, int pid)
1160 {
1161 u_long i, found;
1162 u_long msr;
1163
1164 /* If there's no context then it can't be mapped. */
1165 if (!pid) return;
1166
1167 asm("mfpid %1;" /* Save PID */
1168 "mfmsr %2;" /* Save MSR */
1169 "li %0,0;" /* Now clear MSR */
1170 "mtmsr %0;"
1171 "mtpid %4;" /* Set PID */
1172 "sync;"
1173 "tlbsx. %0,0,%3;" /* Search TLB */
1174 "sync;"
1175 "mtpid %1;" /* Restore PID */
1176 "mtmsr %2;" /* Restore MSR */
1177 "sync;isync;"
1178 "li %1,1;"
1179 "beq 1f;"
1180 "li %1,0;"
1181 "1:"
1182 : "=&r" (i), "=&r" (found), "=&r" (msr)
1183 : "r" (va), "r" (pid));
1184 if (found && !TLB_LOCKED(i)) {
1185
1186 /* Now flush translation */
1187 asm volatile(
1188 "tlbwe %0,%1,0;"
1189 "sync;isync;"
1190 : : "r" (0), "r" (i));
1191
1192 tlb_info[i].ti_ctx = 0;
1193 tlb_info[i].ti_flags = 0;
1194 tlbnext = i;
1195 /* Successful flushes */
1196 tlbflush_ev.ev_count++;
1197 }
1198 }
1199
1200 void
1201 ppc4xx_tlb_flush_all(void)
1202 {
1203 u_long i;
1204
1205 for (i = 0; i < NTLB; i++)
1206 if (!TLB_LOCKED(i)) {
1207 asm volatile(
1208 "tlbwe %0,%1,0;"
1209 "sync;isync;"
1210 : : "r" (0), "r" (i));
1211 tlb_info[i].ti_ctx = 0;
1212 tlb_info[i].ti_flags = 0;
1213 }
1214
1215 asm volatile("sync;isync");
1216 }
1217
1218 /* Find a TLB entry to evict. */
1219 static int
1220 ppc4xx_tlb_find_victim(void)
1221 {
1222 int flags;
1223
1224 for (;;) {
1225 if (++tlbnext >= NTLB)
1226 tlbnext = TLB_NRESERVED;
1227 flags = tlb_info[tlbnext].ti_flags;
1228 if (!(flags & TLBF_USED) ||
1229 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1230 u_long va, stack = (u_long)&va;
1231
1232 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1233 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1234 (flags & TLBF_USED)) {
1235 /* Kernel stack page */
1236 flags |= TLBF_USED;
1237 tlb_info[tlbnext].ti_flags = flags;
1238 } else {
1239 /* Found it! */
1240 return (tlbnext);
1241 }
1242 } else {
1243 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1244 }
1245 }
1246 }
1247
1248 void
1249 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1250 {
1251 u_long th, tl, idx;
1252 tlbpid_t pid;
1253 u_short msr;
1254 int s;
1255
1256 tlbenter_ev.ev_count++;
1257
1258 th = (va & TLB_EPN_MASK) |
1259 (((pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT) << TLB_SIZE_SHFT) |
1260 TLB_VALID;
1261 tl = pte;
1262
1263 s = splhigh();
1264 idx = ppc4xx_tlb_find_victim();
1265
1266 #ifdef DIAGNOSTIC
1267 if ((idx < TLB_NRESERVED) || (idx >= NTLB)) {
1268 panic("ppc4xx_tlb_enter: repacing entry %ld\n", idx);
1269 }
1270 #endif
1271
1272 tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1273 tlb_info[idx].ti_ctx = ctx;
1274 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1275
1276 asm volatile(
1277 "mfmsr %0;" /* Save MSR */
1278 "li %1,0;"
1279 "tlbwe %1,%3,0;" /* Invalidate old entry. */
1280 "mtmsr %1;" /* Clear MSR */
1281 "mfpid %1;" /* Save old PID */
1282 "mtpid %2;" /* Load translation ctx */
1283 "sync; isync;"
1284 #ifdef DEBUG
1285 "andi. %3,%3,63;"
1286 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */
1287 #endif
1288 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1289 "sync; isync;"
1290 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1291 "sync; isync;"
1292 : "=&r" (msr), "=&r" (pid)
1293 : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1294 splx(s);
1295 }
1296
1297 void
1298 ppc4xx_tlb_unpin(int i)
1299 {
1300
1301 if (i == -1)
1302 for (i = 0; i < TLB_NRESERVED; i++)
1303 tlb_info[i].ti_flags &= ~TLBF_LOCKED;
1304 else
1305 tlb_info[i].ti_flags &= ~TLBF_LOCKED;
1306 }
1307
1308 void
1309 ppc4xx_tlb_init(void)
1310 {
1311 int i;
1312
1313 /* Mark reserved TLB entries */
1314 for (i = 0; i < TLB_NRESERVED; i++) {
1315 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1316 tlb_info[i].ti_ctx = KERNEL_PID;
1317 }
1318
1319 /* Setup security zones */
1320 /* Z0 - accessible by kernel only if TLB entry permissions allow
1321 * Z1,Z2 - access is controlled by TLB entry permissions
1322 * Z3 - full access regardless of TLB entry permissions
1323 */
1324
1325 asm volatile(
1326 "mtspr %0,%1;"
1327 "sync;"
1328 :: "K"(SPR_ZPR), "r" (0x1b000000));
1329 }
1330
1331
1332 /*
1333 * We should pass the ctx in from trap code.
1334 */
1335 int
1336 pmap_tlbmiss(vaddr_t va, int ctx)
1337 {
1338 volatile u_int *pte;
1339 u_long tte;
1340
1341 tlbmiss_ev.ev_count++;
1342
1343 /*
1344 * XXXX We will reserve 0-0x80000000 for va==pa mappings.
1345 */
1346 if (ctx != KERNEL_PID || (va & 0x80000000)) {
1347 pte = pte_find((struct pmap *)ctxbusy[ctx], va);
1348 if (pte == NULL) {
1349 /* Map unmanaged addresses directly for kernel access */
1350 return 1;
1351 }
1352 tte = *pte;
1353 if (tte == 0) {
1354 return 1;
1355 }
1356 } else {
1357 /* Create a 16MB writeable mapping. */
1358 #ifdef NOCACHE
1359 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I | TTE_WR;
1360 #else
1361 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1362 #endif
1363 }
1364 tlbhit_ev.ev_count++;
1365 ppc4xx_tlb_enter(ctx, va, tte);
1366
1367 return 0;
1368 }
1369
1370 /*
1371 * Flush all the entries matching a context from the TLB.
1372 */
1373 static int
1374 ctx_flush(int cnum)
1375 {
1376 int i;
1377
1378 /* We gotta steal this context */
1379 for (i = TLB_NRESERVED; i < NTLB; i++) {
1380 if (tlb_info[i].ti_ctx == cnum) {
1381 /* Can't steal ctx if it has a locked entry. */
1382 if (TLB_LOCKED(i)) {
1383 #ifdef DIAGNOSTIC
1384 printf("ctx_flush: can't invalidate "
1385 "locked mapping %d "
1386 "for context %d\n", i, cnum);
1387 Debugger();
1388 #endif
1389 return (1);
1390 }
1391 #ifdef DIAGNOSTIC
1392 if (i < TLB_NRESERVED)
1393 panic("TLB entry %d not locked\n", i);
1394 #endif
1395 /* Invalidate particular TLB entry regardless of locked status */
1396 asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1397 tlb_info[i].ti_flags = 0;
1398 }
1399 }
1400 return (0);
1401 }
1402
1403 /*
1404 * Allocate a context. If necessary, steal one from someone else.
1405 *
1406 * The new context is flushed from the TLB before returning.
1407 */
1408 int
1409 ctx_alloc(struct pmap *pm)
1410 {
1411 int s, cnum;
1412 static int next = MINCTX;
1413
1414 if (pm == pmap_kernel()) {
1415 #ifdef DIAGNOSTIC
1416 printf("ctx_alloc: kernel pmap!\n");
1417 #endif
1418 return (0);
1419 }
1420 s = splvm();
1421
1422 /* Find a likely context. */
1423 cnum = next;
1424 do {
1425 if ((++cnum) > NUMCTX)
1426 cnum = MINCTX;
1427 } while (ctxbusy[cnum] != NULL && cnum != next);
1428
1429 /* Now clean it out */
1430 oops:
1431 if (cnum < MINCTX)
1432 cnum = MINCTX; /* Never steal ctx 0 or 1 */
1433 if (ctx_flush(cnum)) {
1434 /* oops -- something's wired. */
1435 if ((++cnum) > NUMCTX)
1436 cnum = MINCTX;
1437 goto oops;
1438 }
1439
1440 if (ctxbusy[cnum]) {
1441 #ifdef DEBUG
1442 /* We should identify this pmap and clear it */
1443 printf("Warning: stealing context %d\n", cnum);
1444 #endif
1445 ctxbusy[cnum]->pm_ctx = 0;
1446 }
1447 ctxbusy[cnum] = pm;
1448 next = cnum;
1449 splx(s);
1450 pm->pm_ctx = cnum;
1451
1452 return cnum;
1453 }
1454
1455 /*
1456 * Give away a context.
1457 */
1458 void
1459 ctx_free(struct pmap *pm)
1460 {
1461 int oldctx;
1462
1463 oldctx = pm->pm_ctx;
1464
1465 if (oldctx == 0)
1466 panic("ctx_free: freeing kernel context");
1467 #ifdef DIAGNOSTIC
1468 if (ctxbusy[oldctx] == 0)
1469 printf("ctx_free: freeing free context %d\n", oldctx);
1470 if (ctxbusy[oldctx] != pm) {
1471 printf("ctx_free: freeing someone esle's context\n "
1472 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1473 oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1474 Debugger();
1475 }
1476 #endif
1477 /* We should verify it has not been stolen and reallocated... */
1478 ctxbusy[oldctx] = NULL;
1479 ctx_flush(oldctx);
1480 }
1481
1482 #ifdef DEBUG
1483 /*
1484 * Test ref/modify handling.
1485 */
1486 void pmap_testout __P((void));
1487 void
1488 pmap_testout()
1489 {
1490 vaddr_t va;
1491 volatile int *loc;
1492 int val = 0;
1493 paddr_t pa;
1494 struct vm_page *pg;
1495 int ref, mod;
1496
1497 /* Allocate a page */
1498 va = (vaddr_t)uvm_km_alloc1(kernel_map, NBPG, 1);
1499 loc = (int*)va;
1500
1501 pmap_extract(pmap_kernel(), va, &pa);
1502 pg = PHYS_TO_VM_PAGE(pa);
1503 pmap_unwire(pmap_kernel(), va);
1504
1505 pmap_remove(pmap_kernel(), va, va+1);
1506 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1507 pmap_update();
1508
1509 /* Now clear reference and modify */
1510 ref = pmap_clear_reference(pg);
1511 mod = pmap_clear_modify(pg);
1512 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1513 (void *)(u_long)va, (long)pa,
1514 ref, mod);
1515
1516 /* Check it's properly cleared */
1517 ref = pmap_is_referenced(pg);
1518 mod = pmap_is_modified(pg);
1519 printf("Checking cleared page: ref %d, mod %d\n",
1520 ref, mod);
1521
1522 /* Reference page */
1523 val = *loc;
1524
1525 ref = pmap_is_referenced(pg);
1526 mod = pmap_is_modified(pg);
1527 printf("Referenced page: ref %d, mod %d val %x\n",
1528 ref, mod, val);
1529
1530 /* Now clear reference and modify */
1531 ref = pmap_clear_reference(pg);
1532 mod = pmap_clear_modify(pg);
1533 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1534 (void *)(u_long)va, (long)pa,
1535 ref, mod);
1536
1537 /* Modify page */
1538 *loc = 1;
1539
1540 ref = pmap_is_referenced(pg);
1541 mod = pmap_is_modified(pg);
1542 printf("Modified page: ref %d, mod %d\n",
1543 ref, mod);
1544
1545 /* Now clear reference and modify */
1546 ref = pmap_clear_reference(pg);
1547 mod = pmap_clear_modify(pg);
1548 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1549 (void *)(u_long)va, (long)pa,
1550 ref, mod);
1551
1552 /* Check it's properly cleared */
1553 ref = pmap_is_referenced(pg);
1554 mod = pmap_is_modified(pg);
1555 printf("Checking cleared page: ref %d, mod %d\n",
1556 ref, mod);
1557
1558 /* Modify page */
1559 *loc = 1;
1560
1561 ref = pmap_is_referenced(pg);
1562 mod = pmap_is_modified(pg);
1563 printf("Modified page: ref %d, mod %d\n",
1564 ref, mod);
1565
1566 /* Check pmap_protect() */
1567 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1568 pmap_update();
1569 ref = pmap_is_referenced(pg);
1570 mod = pmap_is_modified(pg);
1571 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1572 ref, mod);
1573
1574 /* Now clear reference and modify */
1575 ref = pmap_clear_reference(pg);
1576 mod = pmap_clear_modify(pg);
1577 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1578 (void *)(u_long)va, (long)pa,
1579 ref, mod);
1580
1581 /* Reference page */
1582 val = *loc;
1583
1584 ref = pmap_is_referenced(pg);
1585 mod = pmap_is_modified(pg);
1586 printf("Referenced page: ref %d, mod %d val %x\n",
1587 ref, mod, val);
1588
1589 /* Now clear reference and modify */
1590 ref = pmap_clear_reference(pg);
1591 mod = pmap_clear_modify(pg);
1592 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1593 (void *)(u_long)va, (long)pa,
1594 ref, mod);
1595
1596 /* Modify page */
1597 #if 0
1598 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1599 pmap_update();
1600 #endif
1601 *loc = 1;
1602
1603 ref = pmap_is_referenced(pg);
1604 mod = pmap_is_modified(pg);
1605 printf("Modified page: ref %d, mod %d\n",
1606 ref, mod);
1607
1608 /* Check pmap_protect() */
1609 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1610 pmap_update();
1611 ref = pmap_is_referenced(pg);
1612 mod = pmap_is_modified(pg);
1613 printf("pmap_protect(): ref %d, mod %d\n",
1614 ref, mod);
1615
1616 /* Now clear reference and modify */
1617 ref = pmap_clear_reference(pg);
1618 mod = pmap_clear_modify(pg);
1619 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1620 (void *)(u_long)va, (long)pa,
1621 ref, mod);
1622
1623 /* Reference page */
1624 val = *loc;
1625
1626 ref = pmap_is_referenced(pg);
1627 mod = pmap_is_modified(pg);
1628 printf("Referenced page: ref %d, mod %d val %x\n",
1629 ref, mod, val);
1630
1631 /* Now clear reference and modify */
1632 ref = pmap_clear_reference(pg);
1633 mod = pmap_clear_modify(pg);
1634 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1635 (void *)(u_long)va, (long)pa,
1636 ref, mod);
1637
1638 /* Modify page */
1639 #if 0
1640 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1641 pmap_update();
1642 #endif
1643 *loc = 1;
1644
1645 ref = pmap_is_referenced(pg);
1646 mod = pmap_is_modified(pg);
1647 printf("Modified page: ref %d, mod %d\n",
1648 ref, mod);
1649
1650 /* Check pmap_pag_protect() */
1651 pmap_page_protect(pg, VM_PROT_READ);
1652 ref = pmap_is_referenced(pg);
1653 mod = pmap_is_modified(pg);
1654 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1655 ref, mod);
1656
1657 /* Now clear reference and modify */
1658 ref = pmap_clear_reference(pg);
1659 mod = pmap_clear_modify(pg);
1660 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1661 (void *)(u_long)va, (long)pa,
1662 ref, mod);
1663
1664 /* Reference page */
1665 val = *loc;
1666
1667 ref = pmap_is_referenced(pg);
1668 mod = pmap_is_modified(pg);
1669 printf("Referenced page: ref %d, mod %d val %x\n",
1670 ref, mod, val);
1671
1672 /* Now clear reference and modify */
1673 ref = pmap_clear_reference(pg);
1674 mod = pmap_clear_modify(pg);
1675 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1676 (void *)(u_long)va, (long)pa,
1677 ref, mod);
1678
1679 /* Modify page */
1680 #if 0
1681 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1682 pmap_update();
1683 #endif
1684 *loc = 1;
1685
1686 ref = pmap_is_referenced(pg);
1687 mod = pmap_is_modified(pg);
1688 printf("Modified page: ref %d, mod %d\n",
1689 ref, mod);
1690
1691 /* Check pmap_pag_protect() */
1692 pmap_page_protect(pg, VM_PROT_NONE);
1693 ref = pmap_is_referenced(pg);
1694 mod = pmap_is_modified(pg);
1695 printf("pmap_page_protect(): ref %d, mod %d\n",
1696 ref, mod);
1697
1698 /* Now clear reference and modify */
1699 ref = pmap_clear_reference(pg);
1700 mod = pmap_clear_modify(pg);
1701 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1702 (void *)(u_long)va, (long)pa,
1703 ref, mod);
1704
1705
1706 /* Reference page */
1707 val = *loc;
1708
1709 ref = pmap_is_referenced(pg);
1710 mod = pmap_is_modified(pg);
1711 printf("Referenced page: ref %d, mod %d val %x\n",
1712 ref, mod, val);
1713
1714 /* Now clear reference and modify */
1715 ref = pmap_clear_reference(pg);
1716 mod = pmap_clear_modify(pg);
1717 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1718 (void *)(u_long)va, (long)pa,
1719 ref, mod);
1720
1721 /* Modify page */
1722 #if 0
1723 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1724 pmap_update();
1725 #endif
1726 *loc = 1;
1727
1728 ref = pmap_is_referenced(pg);
1729 mod = pmap_is_modified(pg);
1730 printf("Modified page: ref %d, mod %d\n",
1731 ref, mod);
1732
1733 /* Unmap page */
1734 pmap_remove(pmap_kernel(), va, va+1);
1735 pmap_update();
1736 ref = pmap_is_referenced(pg);
1737 mod = pmap_is_modified(pg);
1738 printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1739
1740 /* Now clear reference and modify */
1741 ref = pmap_clear_reference(pg);
1742 mod = pmap_clear_modify(pg);
1743 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1744 (void *)(u_long)va, (long)pa, ref, mod);
1745
1746 /* Check it's properly cleared */
1747 ref = pmap_is_referenced(pg);
1748 mod = pmap_is_modified(pg);
1749 printf("Checking cleared page: ref %d, mod %d\n",
1750 ref, mod);
1751
1752 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL,
1753 VM_PROT_ALL|PMAP_WIRED);
1754 uvm_km_free(kernel_map, (vaddr_t)va, NBPG);
1755 }
1756 #endif
1757