pmap.c revision 1.105 1 /* $NetBSD: pmap.c,v 1.105 2021/09/08 00:17:21 rin Exp $ */
2
3 /*
4 * Copyright 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.105 2021/09/08 00:17:21 rin Exp $");
71
72 #ifdef _KERNEL_OPT
73 #include "opt_ddb.h"
74 #include "opt_pmap.h"
75 #endif
76
77 #include <sys/param.h>
78 #include <sys/cpu.h>
79 #include <sys/device.h>
80 #include <sys/kmem.h>
81 #include <sys/pool.h>
82 #include <sys/proc.h>
83 #include <sys/queue.h>
84 #include <sys/systm.h>
85
86 #include <uvm/uvm.h>
87
88 #include <machine/powerpc.h>
89
90 #include <powerpc/pcb.h>
91
92 #include <powerpc/spr.h>
93 #include <powerpc/ibm4xx/spr.h>
94
95 #include <powerpc/ibm4xx/cpu.h>
96 #include <powerpc/ibm4xx/tlb.h>
97
98 /*
99 * kernmap is an array of PTEs large enough to map in
100 * 4GB. At 16KB/page it is 256K entries or 2MB.
101 */
102 #define KERNMAP_SIZE ((0xffffffffU / PAGE_SIZE) + 1)
103 void *kernmap;
104
105 #define MINCTX 2
106 #define NUMCTX 256
107
108 volatile struct pmap *ctxbusy[NUMCTX];
109
110 #define TLBF_USED 0x1
111 #define TLBF_REF 0x2
112 #define TLBF_LOCKED 0x4
113 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
114
115 typedef struct tlb_info_s {
116 char ti_flags;
117 char ti_ctx; /* TLB_PID assiciated with the entry */
118 u_int ti_va;
119 } tlb_info_t;
120
121 volatile tlb_info_t tlb_info[NTLB];
122 /* We'll use a modified FIFO replacement policy cause it's cheap */
123 volatile int tlbnext;
124
125 static int tlb_nreserved = 0;
126 static int pmap_bootstrap_done = 0;
127
128 /* Event counters */
129 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
130 NULL, "cpu", "tlbmiss");
131 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
132 NULL, "cpu", "tlbflush");
133 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
134 NULL, "cpu", "tlbenter");
135 EVCNT_ATTACH_STATIC(tlbmiss_ev);
136 EVCNT_ATTACH_STATIC(tlbflush_ev);
137 EVCNT_ATTACH_STATIC(tlbenter_ev);
138
139 struct pmap kernel_pmap_;
140 struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
141
142 static int npgs;
143 static u_int nextavail;
144 #ifndef MSGBUFADDR
145 extern paddr_t msgbuf_paddr;
146 #endif
147
148 static struct mem_region *mem, *avail;
149
150 /*
151 * This is a cache of referenced/modified bits.
152 * Bits herein are shifted by ATTRSHFT.
153 */
154 static char *pmap_attrib;
155
156 #define PV_WIRED 0x1
157 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
158 #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED)
159 #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED)
160 #define PV_VA(pv) ((pv)->pv_va & ~PV_WIRED)
161 #define PV_CMPVA(va,pv) (!(PV_VA(pv) ^ (va)))
162
163 struct pv_entry {
164 struct pv_entry *pv_next; /* Linked list of mappings */
165 struct pmap *pv_pm;
166 vaddr_t pv_va; /* virtual address of mapping */
167 };
168
169 /* Each index corresponds to TLB_SIZE_* value. */
170 static size_t tlbsize[] = {
171 1024, /* TLB_SIZE_1K */
172 4096, /* TLB_SIZE_4K */
173 16384, /* TLB_SIZE_16K */
174 65536, /* TLB_SIZE_64K */
175 262144, /* TLB_SIZE_256K */
176 1048576, /* TLB_SIZE_1M */
177 4194304, /* TLB_SIZE_4M */
178 16777216, /* TLB_SIZE_16M */
179 };
180
181 struct pv_entry *pv_table;
182 static struct pool pv_pool;
183
184 static int pmap_initialized;
185
186 static void ctx_flush(int);
187
188 struct pv_entry *pa_to_pv(paddr_t);
189 static inline char *pa_to_attr(paddr_t);
190
191 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
192 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
193
194 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
195 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
196
197 static inline void tlb_invalidate_entry(int);
198
199 static int ppc4xx_tlb_size_mask(size_t, int *, int *);
200
201
202 struct pv_entry *
203 pa_to_pv(paddr_t pa)
204 {
205 uvm_physseg_t bank;
206 psize_t pg;
207
208 bank = uvm_physseg_find(atop(pa), &pg);
209 if (bank == UVM_PHYSSEG_TYPE_INVALID)
210 return NULL;
211 return &uvm_physseg_get_pmseg(bank)->pvent[pg];
212 }
213
214 static inline char *
215 pa_to_attr(paddr_t pa)
216 {
217 uvm_physseg_t bank;
218 psize_t pg;
219
220 bank = uvm_physseg_find(atop(pa), &pg);
221 if (bank == UVM_PHYSSEG_TYPE_INVALID)
222 return NULL;
223 return &uvm_physseg_get_pmseg(bank)->attrs[pg];
224 }
225
226 /*
227 * Insert PTE into page table.
228 */
229 static inline int
230 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
231 {
232 int seg = STIDX(va), ptn = PTIDX(va);
233 u_int oldpte;
234
235 if (!pm->pm_ptbl[seg]) {
236 /* Don't allocate a page to clear a non-existent mapping. */
237 if (!pte)
238 return 0;
239
240 vaddr_t km = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
241 UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
242
243 if (__predict_false(km == 0))
244 return ENOMEM;
245
246 pm->pm_ptbl[seg] = (u_int *)km;
247 }
248 oldpte = pm->pm_ptbl[seg][ptn];
249 pm->pm_ptbl[seg][ptn] = pte;
250
251 /* Flush entry. */
252 ppc4xx_tlb_flush(va, pm->pm_ctx);
253 if (oldpte != pte) {
254 if (pte == 0)
255 pm->pm_stats.resident_count--;
256 else
257 pm->pm_stats.resident_count++;
258 }
259 return 0;
260 }
261
262 /*
263 * Get a pointer to a PTE in a page table.
264 */
265 volatile u_int *
266 pte_find(struct pmap *pm, vaddr_t va)
267 {
268 int seg = STIDX(va), ptn = PTIDX(va);
269
270 if (pm->pm_ptbl[seg])
271 return &pm->pm_ptbl[seg][ptn];
272
273 return NULL;
274 }
275
276 /*
277 * This is called during initppc, before the system is really initialized.
278 */
279 void
280 pmap_bootstrap(u_int kernelstart, u_int kernelend)
281 {
282 struct mem_region *mp, *mp1;
283 int cnt, i;
284 u_int s, e, sz;
285
286 tlbnext = tlb_nreserved;
287
288 /*
289 * Allocate the kernel page table at the end of
290 * kernel space so it's in the locked TTE.
291 */
292 kernmap = (void *)kernelend;
293
294 /*
295 * Initialize kernel page table.
296 */
297 for (i = 0; i < STSZ; i++)
298 pmap_kernel()->pm_ptbl[i] = NULL;
299 ctxbusy[0] = ctxbusy[1] = pmap_kernel();
300
301 /*
302 * Announce page-size to the VM-system
303 */
304 uvmexp.pagesize = NBPG;
305 uvm_md_init();
306
307 /*
308 * Get memory.
309 */
310 mem_regions(&mem, &avail);
311 for (mp = mem; mp->size; mp++) {
312 physmem += btoc(mp->size);
313 printf("+%lx,", mp->size);
314 }
315 printf("\n");
316 ppc4xx_tlb_init();
317 /*
318 * Count the number of available entries.
319 */
320 for (cnt = 0, mp = avail; mp->size; mp++)
321 cnt++;
322
323 /*
324 * Page align all regions.
325 * Non-page aligned memory isn't very interesting to us.
326 * Also, sort the entries for ascending addresses.
327 */
328 kernelstart &= ~PGOFSET;
329 kernelend = (kernelend + PGOFSET) & ~PGOFSET;
330 for (mp = avail; mp->size; mp++) {
331 s = mp->start;
332 e = mp->start + mp->size;
333 printf("%08x-%08x -> ", s, e);
334 /*
335 * Check whether this region holds all of the kernel.
336 */
337 if (s < kernelstart && e > kernelend) {
338 avail[cnt].start = kernelend;
339 avail[cnt++].size = e - kernelend;
340 e = kernelstart;
341 }
342 /*
343 * Look whether this regions starts within the kernel.
344 */
345 if (s >= kernelstart && s < kernelend) {
346 if (e <= kernelend)
347 goto empty;
348 s = kernelend;
349 }
350 /*
351 * Now look whether this region ends within the kernel.
352 */
353 if (e > kernelstart && e <= kernelend) {
354 if (s >= kernelstart)
355 goto empty;
356 e = kernelstart;
357 }
358 /*
359 * Now page align the start and size of the region.
360 */
361 s = round_page(s);
362 e = trunc_page(e);
363 if (e < s)
364 e = s;
365 sz = e - s;
366 printf("%08x-%08x = %x\n", s, e, sz);
367 /*
368 * Check whether some memory is left here.
369 */
370 if (sz == 0) {
371 empty:
372 memmove(mp, mp + 1,
373 (cnt - (mp - avail)) * sizeof(*mp));
374 cnt--;
375 mp--;
376 continue;
377 }
378 /*
379 * Do an insertion sort.
380 */
381 npgs += btoc(sz);
382 for (mp1 = avail; mp1 < mp; mp1++)
383 if (s < mp1->start)
384 break;
385 if (mp1 < mp) {
386 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
387 mp1->start = s;
388 mp1->size = sz;
389 } else {
390 mp->start = s;
391 mp->size = sz;
392 }
393 }
394
395 /*
396 * We cannot do pmap_steal_memory here,
397 * since we don't run with translation enabled yet.
398 */
399 #ifndef MSGBUFADDR
400 /*
401 * allow for msgbuf
402 */
403 sz = round_page(MSGBUFSIZE);
404 mp = NULL;
405 for (mp1 = avail; mp1->size; mp1++)
406 if (mp1->size >= sz)
407 mp = mp1;
408 if (mp == NULL)
409 panic("not enough memory?");
410
411 npgs -= btoc(sz);
412 msgbuf_paddr = mp->start + mp->size - sz;
413 mp->size -= sz;
414 if (mp->size <= 0)
415 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof(*mp));
416 #endif
417
418 for (mp = avail; mp->size; mp++)
419 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
420 atop(mp->start), atop(mp->start + mp->size),
421 VM_FREELIST_DEFAULT);
422
423 /*
424 * Initialize kernel pmap and hardware.
425 */
426 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
427 pmap_kernel()->pm_ctx = KERNEL_PID;
428 nextavail = avail->start;
429
430 pmap_bootstrap_done = 1;
431 }
432
433 /*
434 * Restrict given range to physical memory
435 *
436 * (Used by /dev/mem)
437 */
438 void
439 pmap_real_memory(paddr_t *start, psize_t *size)
440 {
441 struct mem_region *mp;
442
443 for (mp = mem; mp->size; mp++) {
444 if (*start + *size > mp->start &&
445 *start < mp->start + mp->size) {
446 if (*start < mp->start) {
447 *size -= mp->start - *start;
448 *start = mp->start;
449 }
450 if (*start + *size > mp->start + mp->size)
451 *size = mp->start + mp->size - *start;
452 return;
453 }
454 }
455 *size = 0;
456 }
457
458 /*
459 * Initialize anything else for pmap handling.
460 * Called during vm_init().
461 */
462 void
463 pmap_init(void)
464 {
465 struct pv_entry *pv;
466 vsize_t sz;
467 vaddr_t addr;
468 int bank, i, s;
469 char *attr;
470
471 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
472 sz = round_page(sz);
473 addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
474
475 s = splvm();
476
477 pv = pv_table = (struct pv_entry *)addr;
478 for (i = npgs; --i >= 0;)
479 pv++->pv_pm = NULL;
480 pmap_attrib = (char *)pv;
481 memset(pv, 0, npgs);
482
483 pv = pv_table;
484 attr = pmap_attrib;
485 for (bank = uvm_physseg_get_first(); uvm_physseg_valid_p(bank);
486 bank = uvm_physseg_get_next(bank)) {
487 sz = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
488 uvm_physseg_get_pmseg(bank)->pvent = pv;
489 uvm_physseg_get_pmseg(bank)->attrs = attr;
490 pv += sz;
491 attr += sz;
492 }
493
494 pmap_initialized = 1;
495
496 splx(s);
497
498 /* Setup a pool for additional pvlist structures */
499 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry",
500 NULL, IPL_VM);
501 }
502
503 /*
504 * How much virtual space is available to the kernel?
505 */
506 void
507 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
508 {
509
510 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
511 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
512 }
513
514 #ifdef PMAP_GROWKERNEL
515 /*
516 * Preallocate kernel page tables to a specified VA.
517 * This simply loops through the first TTE for each
518 * page table from the beginning of the kernel pmap,
519 * reads the entry, and if the result is
520 * zero (either invalid entry or no page table) it stores
521 * a zero there, populating page tables in the process.
522 * This is not the most efficient technique but i don't
523 * expect it to be called that often.
524 */
525 extern struct vm_page *vm_page_alloc1(void);
526 extern void vm_page_free1(struct vm_page *);
527
528 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
529
530 vaddr_t
531 pmap_growkernel(vaddr_t maxkvaddr)
532 {
533 struct pmap *pm = pmap_kernel();
534 paddr_t pg;
535 int seg, s;
536
537 s = splvm();
538
539 /* Align with the start of a page table */
540 for (kbreak &= ~(PTMAP - 1); kbreak < maxkvaddr; kbreak += PTMAP) {
541 seg = STIDX(kbreak);
542
543 if (pte_find(pm, kbreak))
544 continue;
545
546 if (uvm.page_init_done)
547 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
548 else if (!uvm_page_physget(&pg))
549 panic("pmap_growkernel: no memory");
550 if (!pg)
551 panic("pmap_growkernel: no pages");
552 pmap_zero_page((paddr_t)pg);
553
554 /* XXX This is based on all phymem being addressable */
555 pm->pm_ptbl[seg] = (u_int *)pg;
556 }
557
558 splx(s);
559
560 return kbreak;
561 }
562
563 /*
564 * vm_page_alloc1:
565 *
566 * Allocate and return a memory cell with no associated object.
567 */
568 struct vm_page *
569 vm_page_alloc1(void)
570 {
571 struct vm_page *pg;
572
573 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
574 if (pg) {
575 pg->wire_count = 1; /* no mappings yet */
576 pg->flags &= ~PG_BUSY; /* never busy */
577 }
578 return pg;
579 }
580
581 /*
582 * vm_page_free1:
583 *
584 * Returns the given page to the free list,
585 * disassociating it with any VM object.
586 *
587 * Object and page must be locked prior to entry.
588 */
589 void
590 vm_page_free1(struct vm_page *pg)
591 {
592
593 KASSERTMSG(pg->flags == (PG_CLEAN | PG_FAKE),
594 "invalid page pg = %p, pa = %" PRIxPADDR,
595 pg, VM_PAGE_TO_PHYS(pg));
596
597 pg->flags |= PG_BUSY;
598 pg->wire_count = 0;
599 uvm_pagefree(pg);
600 }
601 #endif
602
603 /*
604 * Create and return a physical map.
605 */
606 struct pmap *
607 pmap_create(void)
608 {
609 struct pmap *pm;
610
611 pm = kmem_alloc(sizeof(*pm), KM_SLEEP);
612 memset(pm, 0, sizeof(*pm));
613 pm->pm_refs = 1;
614 return pm;
615 }
616
617 /*
618 * Add a reference to the given pmap.
619 */
620 void
621 pmap_reference(struct pmap *pm)
622 {
623
624 pm->pm_refs++;
625 }
626
627 /*
628 * Retire the given pmap from service.
629 * Should only be called if the map contains no valid mappings.
630 */
631 void
632 pmap_destroy(struct pmap *pm)
633 {
634 int i;
635
636 if (--pm->pm_refs > 0)
637 return;
638 KASSERT(pm->pm_stats.resident_count == 0);
639 KASSERT(pm->pm_stats.wired_count == 0);
640 for (i = 0; i < STSZ; i++)
641 if (pm->pm_ptbl[i]) {
642 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
643 PAGE_SIZE, UVM_KMF_WIRED);
644 pm->pm_ptbl[i] = NULL;
645 }
646 if (pm->pm_ctx)
647 ctx_free(pm);
648 kmem_free(pm, sizeof(*pm));
649 }
650
651 /*
652 * Copy the range specified by src_addr/len
653 * from the source map to the range dst_addr/len
654 * in the destination map.
655 *
656 * This routine is only advisory and need not do anything.
657 */
658 void
659 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
660 vsize_t len, vaddr_t src_addr)
661 {
662 }
663
664 /*
665 * Require that all active physical maps contain no
666 * incorrect entries NOW.
667 */
668 void
669 pmap_update(struct pmap *pmap)
670 {
671 }
672
673 /*
674 * Fill the given physical page with zeroes.
675 */
676 void
677 pmap_zero_page(paddr_t pa)
678 {
679 int i;
680
681 #ifdef PPC_4XX_NOCACHE
682 memset((void *)pa, 0, PAGE_SIZE);
683 #else
684
685 for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
686 __asm volatile ("dcbz 0,%0" : : "r"(pa));
687 pa += CACHELINESIZE;
688 }
689 #endif
690 }
691
692 /*
693 * Copy the given physical source page to its destination.
694 */
695 void
696 pmap_copy_page(paddr_t src, paddr_t dst)
697 {
698
699 memcpy((void *)dst, (void *)src, PAGE_SIZE);
700 dcache_wbinv_page(dst);
701 }
702
703 static inline int
704 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
705 {
706 struct pv_entry *pv, *npv;
707 int s;
708
709 KASSERT(pmap_initialized);
710
711 s = splvm();
712
713 pv = pa_to_pv(pa);
714 if (!pv->pv_pm) {
715 /*
716 * No entries yet, use header as the first entry.
717 */
718 pv->pv_va = va;
719 pv->pv_pm = pm;
720 pv->pv_next = NULL;
721 } else {
722 /*
723 * There is at least one other VA mapping this page.
724 * Place this entry after the header.
725 */
726 npv = pool_get(&pv_pool, PR_NOWAIT);
727 if (npv == NULL) {
728 if ((flags & PMAP_CANFAIL) == 0)
729 panic("pmap_enter_pv: failed");
730 splx(s);
731 return ENOMEM;
732 }
733 npv->pv_va = va;
734 npv->pv_pm = pm;
735 npv->pv_next = pv->pv_next;
736 pv->pv_next = npv;
737 pv = npv;
738 }
739 if (flags & PMAP_WIRED) {
740 PV_WIRE(pv);
741 pm->pm_stats.wired_count++;
742 }
743
744 splx(s);
745
746 return 0;
747 }
748
749 static void
750 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
751 {
752 struct pv_entry *pv, *npv;
753
754 /*
755 * Remove from the PV table.
756 */
757 pv = pa_to_pv(pa);
758 if (!pv)
759 return;
760
761 /*
762 * If it is the first entry on the list, it is actually
763 * in the header and we must copy the following entry up
764 * to the header. Otherwise we must search the list for
765 * the entry. In either case we free the now unused entry.
766 */
767 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
768 if (PV_ISWIRED(pv))
769 pm->pm_stats.wired_count--;
770 if ((npv = pv->pv_next)) {
771 *pv = *npv;
772 pool_put(&pv_pool, npv);
773 } else
774 pv->pv_pm = NULL;
775 } else {
776 for (; (npv = pv->pv_next) != NULL; pv = npv)
777 if (pm == npv->pv_pm && PV_CMPVA(va, npv))
778 break;
779 if (npv) {
780 pv->pv_next = npv->pv_next;
781 if (PV_ISWIRED(npv)) {
782 pm->pm_stats.wired_count--;
783 }
784 pool_put(&pv_pool, npv);
785 }
786 }
787 }
788
789 /*
790 * Insert physical page at pa into the given pmap at virtual address va.
791 */
792 int
793 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
794 {
795 u_int tte;
796 bool managed;
797 int s;
798
799 /*
800 * Have to remove any existing mapping first.
801 */
802 pmap_remove(pm, va, va + PAGE_SIZE);
803
804 if (flags & PMAP_WIRED)
805 flags |= prot;
806
807 managed = uvm_pageismanaged(pa);
808
809 /*
810 * Generate TTE.
811 */
812 tte = TTE_PA(pa);
813 /* XXXX -- need to support multiple page sizes. */
814 tte |= TTE_SZ_16K;
815
816 KASSERT((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) !=
817 (PMAP_NOCACHE | PME_WRITETHROUG));
818
819 if (flags & PMAP_NOCACHE) {
820 /* Must be I/O mapping */
821 tte |= TTE_I | TTE_G;
822 }
823 #ifdef PPC_4XX_NOCACHE
824 tte |= TTE_I;
825 #else
826 else if (flags & PME_WRITETHROUG) {
827 /* Uncached and writethrough are not compatible */
828 tte |= TTE_W;
829 }
830 #endif
831
832 if (pm == pmap_kernel())
833 tte |= TTE_ZONE(ZONE_PRIV);
834 else
835 tte |= TTE_ZONE(ZONE_USER);
836
837 if (flags & VM_PROT_WRITE)
838 tte |= TTE_WR;
839
840 if (flags & VM_PROT_EXECUTE)
841 tte |= TTE_EX;
842
843 /*
844 * Now record mapping for later back-translation.
845 */
846 if (pmap_initialized && managed) {
847 char *attr;
848
849 if (pmap_enter_pv(pm, va, pa, flags)) {
850 /* Could not enter pv on a managed page */
851 return ENOMEM;
852 }
853
854 /* Now set attributes. */
855 attr = pa_to_attr(pa);
856 KASSERT(attr);
857 if (flags & VM_PROT_ALL)
858 *attr |= PMAP_ATTR_REF;
859 if (flags & VM_PROT_WRITE)
860 *attr |= PMAP_ATTR_CHG;
861 }
862
863 s = splvm();
864
865 /* Insert page into page table. */
866 if (__predict_false(pte_enter(pm, va, tte))) {
867 if (__predict_false((flags & PMAP_CANFAIL) == 0))
868 panic("%s: pte_enter", __func__);
869 splx(s);
870 return ENOMEM;
871 }
872
873 /* If this is a real fault, enter it in the tlb */
874 if (tte && ((flags & PMAP_WIRED) == 0)) {
875 int s2 = splhigh();
876 ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
877 splx(s2);
878 }
879
880 splx(s);
881
882 /* Flush the real memory from the instruction cache. */
883 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
884 __syncicache((void *)pa, PAGE_SIZE);
885
886 return 0;
887 }
888
889 void
890 pmap_unwire(struct pmap *pm, vaddr_t va)
891 {
892 struct pv_entry *pv;
893 paddr_t pa;
894 int s;
895
896 if (!pmap_extract(pm, va, &pa))
897 return;
898
899 pv = pa_to_pv(pa);
900 if (!pv)
901 return;
902
903 s = splvm();
904
905 while (pv != NULL) {
906 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
907 if (PV_ISWIRED(pv)) {
908 PV_UNWIRE(pv);
909 pm->pm_stats.wired_count--;
910 }
911 break;
912 }
913 pv = pv->pv_next;
914 }
915
916 splx(s);
917 }
918
919 void
920 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
921 {
922 struct pmap *pm = pmap_kernel();
923 u_int tte;
924 int s;
925
926 /*
927 * Generate TTE.
928 *
929 * XXXX
930 *
931 * Since the kernel does not handle execution privileges properly,
932 * we will handle read and execute permissions together.
933 */
934 tte = 0;
935 if (prot & VM_PROT_ALL) {
936 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
937 /* XXXX -- need to support multiple page sizes. */
938 tte |= TTE_SZ_16K;
939
940 KASSERT((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) !=
941 (PMAP_NOCACHE | PME_WRITETHROUG));
942
943 if (flags & PMAP_NOCACHE)
944 /* Must be I/O mapping */
945 tte |= TTE_I | TTE_G;
946 #ifdef PPC_4XX_NOCACHE
947 tte |= TTE_I;
948 #else
949 else if (prot & PME_WRITETHROUG) {
950 /* Uncached and writethrough are not compatible */
951 tte |= TTE_W;
952 }
953 #endif
954 if (prot & VM_PROT_WRITE)
955 tte |= TTE_WR;
956 }
957
958 s = splvm();
959
960 /* Insert page into page table. */
961 if (__predict_false(pte_enter(pm, va, tte)))
962 panic("%s: pte_enter", __func__);
963
964 splx(s);
965 }
966
967 void
968 pmap_kremove(vaddr_t va, vsize_t len)
969 {
970
971 while (len > 0) {
972 (void)pte_enter(pmap_kernel(), va, 0); /* never fail */
973 va += PAGE_SIZE;
974 len -= PAGE_SIZE;
975 }
976 }
977
978 /*
979 * Remove the given range of mapping entries.
980 */
981 void
982 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
983 {
984 paddr_t pa;
985 volatile u_int *ptp;
986 int s;
987
988 s = splvm();
989
990 while (va < endva) {
991 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
992 pa = TTE_PA(pa);
993 pmap_remove_pv(pm, va, pa);
994 *ptp = 0;
995 ppc4xx_tlb_flush(va, pm->pm_ctx);
996 pm->pm_stats.resident_count--;
997 }
998 va += PAGE_SIZE;
999 }
1000
1001 splx(s);
1002 }
1003
1004 /*
1005 * Get the physical page address for the given pmap/virtual address.
1006 */
1007 bool
1008 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1009 {
1010 int seg = STIDX(va), ptn = PTIDX(va);
1011 u_int pa = 0;
1012 int s;
1013
1014 s = splvm();
1015
1016 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn]) && pap)
1017 *pap = TTE_PA(pa) | (va & PGOFSET);
1018
1019 splx(s);
1020
1021 return pa != 0;
1022 }
1023
1024 /*
1025 * Lower the protection on the specified range of this pmap.
1026 *
1027 * There are only two cases: either the protection is going to 0,
1028 * or it is going to read-only.
1029 */
1030 void
1031 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1032 {
1033 volatile u_int *ptp;
1034 int s, bic;
1035
1036 if ((prot & VM_PROT_READ) == 0) {
1037 pmap_remove(pm, sva, eva);
1038 return;
1039 }
1040 bic = 0;
1041 if ((prot & VM_PROT_WRITE) == 0)
1042 bic |= TTE_WR;
1043 if ((prot & VM_PROT_EXECUTE) == 0)
1044 bic |= TTE_EX;
1045 if (bic == 0)
1046 return;
1047
1048 s = splvm();
1049
1050 while (sva < eva) {
1051 if ((ptp = pte_find(pm, sva)) != NULL) {
1052 *ptp &= ~bic;
1053 ppc4xx_tlb_flush(sva, pm->pm_ctx);
1054 }
1055 sva += PAGE_SIZE;
1056 }
1057
1058 splx(s);
1059 }
1060
1061 bool
1062 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
1063 {
1064 paddr_t pa;
1065 char *attr;
1066 int s, rv;
1067
1068 /*
1069 * First modify bits in cache.
1070 */
1071 pa = VM_PAGE_TO_PHYS(pg);
1072 attr = pa_to_attr(pa);
1073 if (attr == NULL)
1074 return false;
1075
1076 s = splvm();
1077
1078 rv = (*attr & mask) != 0;
1079 if (clear) {
1080 *attr &= ~mask;
1081 pmap_page_protect(pg,
1082 mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
1083 }
1084
1085 splx(s);
1086
1087 return rv;
1088 }
1089
1090
1091 /*
1092 * Lower the protection on the specified physical page.
1093 *
1094 * There are only two cases: either the protection is going to 0,
1095 * or it is going to read-only.
1096 */
1097 void
1098 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1099 {
1100 struct pv_entry *pvh, *pv, *npv;
1101 struct pmap *pm;
1102 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1103 vaddr_t va;
1104
1105 pvh = pa_to_pv(pa);
1106 if (pvh == NULL)
1107 return;
1108
1109 /* Handle extra pvs which may be deleted in the operation */
1110 for (pv = pvh->pv_next; pv; pv = npv) {
1111 npv = pv->pv_next;
1112
1113 pm = pv->pv_pm;
1114 va = PV_VA(pv);
1115 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1116 }
1117
1118 /* Now check the head pv */
1119 if (pvh->pv_pm) {
1120 pv = pvh;
1121 pm = pv->pv_pm;
1122 va = PV_VA(pv);
1123 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1124 }
1125 }
1126
1127 /*
1128 * Activate the address space for the specified process. If the process
1129 * is the current process, load the new MMU context.
1130 */
1131 void
1132 pmap_activate(struct lwp *l)
1133 {
1134 #if 0
1135 struct pcb *pcb = lwp_getpcb(l);
1136 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1137
1138 /*
1139 * XXX Normally performed in cpu_lwp_fork().
1140 */
1141 printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1142 pcb->pcb_pm = pmap;
1143 #endif
1144 }
1145
1146 /*
1147 * Deactivate the specified process's address space.
1148 */
1149 void
1150 pmap_deactivate(struct lwp *l)
1151 {
1152 }
1153
1154 /*
1155 * Synchronize caches corresponding to [addr, addr+len) in p.
1156 */
1157 void
1158 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1159 {
1160 struct pmap *pm = p->p_vmspace->vm_map.pmap;
1161
1162 if (__predict_true(p == curproc)) {
1163 int msr, ctx, opid;
1164
1165 /*
1166 * Take it easy! TLB miss handler takes care of us.
1167 */
1168
1169 /*
1170 * Need to turn off IMMU and switch to user context.
1171 * (icbi uses DMMU).
1172 */
1173
1174 if (!(ctx = pm->pm_ctx)) {
1175 /* No context -- assign it one */
1176 ctx_alloc(pm);
1177 ctx = pm->pm_ctx;
1178 }
1179
1180 __asm volatile (
1181 "mfmsr %0;"
1182 "li %1,0x20;" /* Turn off IMMU */
1183 "andc %1,%0,%1;"
1184 "ori %1,%1,0x10;" /* Turn on DMMU for sure */
1185 "mtmsr %1;"
1186 "isync;"
1187 "mfpid %1;"
1188 "mtpid %2;"
1189 "isync;"
1190 "1:"
1191 "dcbst 0,%3;"
1192 "icbi 0,%3;"
1193 "add %3,%3,%5;"
1194 "sub. %4,%4,%5;"
1195 "bge 1b;"
1196 "sync;"
1197 "mtpid %1;"
1198 "mtmsr %0;"
1199 "isync;"
1200 : "=&r"(msr), "=&r"(opid)
1201 : "r"(ctx), "r"(va), "r"(len), "r"(CACHELINESIZE));
1202 } else {
1203 paddr_t pa;
1204 vaddr_t tva, eva;
1205 int tlen;
1206
1207 /*
1208 * For p != curproc, we cannot rely upon TLB miss handler in
1209 * user context. Therefore, extract pa and operate againt it.
1210 *
1211 * Note that va below VM_MIN_KERNEL_ADDRESS is reserved for
1212 * direct mapping.
1213 */
1214
1215 for (tva = va; len > 0; tva = eva, len -= tlen) {
1216 eva = uimin(tva + len, trunc_page(tva + PAGE_SIZE));
1217 tlen = eva - tva;
1218 if (!pmap_extract(pm, tva, &pa)) {
1219 /* XXX should be already unmapped */
1220 continue;
1221 }
1222 __syncicache((void *)pa, tlen);
1223 }
1224 }
1225 }
1226
1227 static inline void
1228 tlb_invalidate_entry(int i)
1229 {
1230 #ifdef PMAP_TLBDEBUG
1231 /*
1232 * Clear only TLBHI[V] bit so that we can track invalidated entry.
1233 */
1234 register_t msr, pid, hi;
1235
1236 KASSERT(mfspr(SPR_PID) == KERNEL_PID);
1237
1238 __asm volatile (
1239 "mfmsr %0;"
1240 "li %1,0;"
1241 "mtmsr %1;"
1242 "mfpid %1;"
1243 "tlbre %2,%3,0;"
1244 "andc %2,%2,%4;"
1245 "tlbwe %2,%3,0;"
1246 "mtpid %1;"
1247 "mtmsr %0;"
1248 "isync;"
1249 : "=&r"(msr), "=&r"(pid), "=&r"(hi)
1250 : "r"(i), "r"(TLB_VALID));
1251 #else
1252 /*
1253 * Just clear entire TLBHI register.
1254 */
1255 __asm volatile (
1256 "tlbwe %0,%1,0;"
1257 "isync;"
1258 : : "r"(0), "r"(i));
1259 #endif
1260
1261 tlb_info[i].ti_ctx = 0;
1262 tlb_info[i].ti_flags = 0;
1263 }
1264
1265 /* This has to be done in real mode !!! */
1266 void
1267 ppc4xx_tlb_flush(vaddr_t va, int pid)
1268 {
1269 u_long msr, i, found;
1270
1271 /* If there's no context then it can't be mapped. */
1272 if (!pid)
1273 return;
1274
1275 __asm volatile (
1276 "mfpid %1;" /* Save PID */
1277 "mfmsr %2;" /* Save MSR */
1278 "li %0,0;" /* Now clear MSR */
1279 "mtmsr %0;"
1280 "isync;"
1281 "mtpid %4;" /* Set PID */
1282 "isync;"
1283 "tlbsx. %0,0,%3;" /* Search TLB */
1284 "isync;"
1285 "mtpid %1;" /* Restore PID */
1286 "mtmsr %2;" /* Restore MSR */
1287 "isync;"
1288 "li %1,1;"
1289 "beq 1f;"
1290 "li %1,0;"
1291 "1:"
1292 : "=&r"(i), "=&r"(found), "=&r"(msr)
1293 : "r"(va), "r"(pid));
1294
1295 if (found && !TLB_LOCKED(i)) {
1296 /* Now flush translation */
1297 tlb_invalidate_entry(i);
1298 tlbnext = i;
1299 /* Successful flushes */
1300 tlbflush_ev.ev_count++;
1301 }
1302 }
1303
1304 void
1305 ppc4xx_tlb_flush_all(void)
1306 {
1307 u_long i;
1308
1309 for (i = 0; i < NTLB; i++)
1310 if (!TLB_LOCKED(i))
1311 tlb_invalidate_entry(i);
1312
1313 __asm volatile ("isync");
1314 }
1315
1316 /* Find a TLB entry to evict. */
1317 static int
1318 ppc4xx_tlb_find_victim(void)
1319 {
1320 int flags;
1321
1322 for (;;) {
1323 if (++tlbnext >= NTLB)
1324 tlbnext = tlb_nreserved;
1325 flags = tlb_info[tlbnext].ti_flags;
1326 if (!(flags & TLBF_USED) ||
1327 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1328 u_long va, stack = (u_long)&va;
1329
1330 if (!((tlb_info[tlbnext].ti_va ^ stack) &
1331 (~PGOFSET)) &&
1332 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1333 (flags & TLBF_USED)) {
1334 /* Kernel stack page */
1335 flags |= TLBF_REF;
1336 tlb_info[tlbnext].ti_flags = flags;
1337 } else {
1338 /* Found it! */
1339 return tlbnext;
1340 }
1341 } else
1342 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1343 }
1344 }
1345
1346 void
1347 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1348 {
1349 u_long th, tl, idx;
1350 paddr_t pa;
1351 int msr, pid, sz;
1352
1353 tlbenter_ev.ev_count++;
1354
1355 sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1356 pa = (pte & TTE_RPN_MASK(sz));
1357 th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1358 tl = (pte & ~TLB_RPN_MASK) | pa;
1359 tl |= ppc4xx_tlbflags(va, pa);
1360
1361 idx = ppc4xx_tlb_find_victim();
1362
1363 KASSERTMSG(idx >= tlb_nreserved && idx < NTLB,
1364 "invalid entry %ld", idx);
1365
1366 tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1367 tlb_info[idx].ti_ctx = ctx;
1368 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1369
1370 __asm volatile (
1371 "mfmsr %0;" /* Save MSR */
1372 "li %1,0;"
1373 "mtmsr %1;" /* Clear MSR */
1374 "isync;"
1375 "tlbwe %1,%3,0;" /* Invalidate old entry. */
1376 "mfpid %1;" /* Save old PID */
1377 "mtpid %2;" /* Load translation ctx */
1378 "isync;"
1379 "tlbwe %4,%3,1;" /* Set TLB */
1380 "tlbwe %5,%3,0;"
1381 "isync;"
1382 "mtpid %1;" /* Restore PID */
1383 "mtmsr %0;" /* and MSR */
1384 "isync;"
1385 : "=&r"(msr), "=&r"(pid)
1386 : "r"(ctx), "r"(idx), "r"(tl), "r"(th));
1387 }
1388
1389 void
1390 ppc4xx_tlb_init(void)
1391 {
1392 int i;
1393
1394 /* Mark reserved TLB entries */
1395 for (i = 0; i < tlb_nreserved; i++) {
1396 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1397 tlb_info[i].ti_ctx = KERNEL_PID;
1398 }
1399
1400 /* Setup security zones */
1401 /* Z0 - accessible by kernel only if TLB entry permissions allow
1402 * Z1,Z2 - access is controlled by TLB entry permissions
1403 * Z3 - full access regardless of TLB entry permissions
1404 */
1405
1406 __asm volatile (
1407 "mtspr %0,%1;"
1408 "isync;"
1409 : : "K"(SPR_ZPR), "r"(0x1b000000));
1410 }
1411
1412 /*
1413 * ppc4xx_tlb_size_mask:
1414 *
1415 * Roundup size to supported page size, return TLBHI mask and real size.
1416 */
1417 static int
1418 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
1419 {
1420 int i;
1421
1422 for (i = 0; i < __arraycount(tlbsize); i++)
1423 if (size <= tlbsize[i]) {
1424 *mask = (i << TLB_SIZE_SHFT);
1425 *rsiz = tlbsize[i];
1426 return 0;
1427 }
1428 return EINVAL;
1429 }
1430
1431 /*
1432 * ppc4xx_tlb_mapiodev:
1433 *
1434 * Lookup virtual address of mapping previously entered via
1435 * ppc4xx_tlb_reserve. Search TLB directly so that we don't
1436 * need to waste extra storage for reserved mappings. Note
1437 * that reading TLBHI also sets PID, but all reserved mappings
1438 * use KERNEL_PID, so the side effect is nil.
1439 */
1440 void *
1441 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
1442 {
1443 paddr_t pa;
1444 vaddr_t va;
1445 u_int lo, hi, sz;
1446 int i;
1447
1448 /* tlb_nreserved is only allowed to grow, so this is safe. */
1449 for (i = 0; i < tlb_nreserved; i++) {
1450 __asm volatile (
1451 "tlbre %0,%2,1;" /* TLBLO */
1452 "tlbre %1,%2,0;" /* TLBHI */
1453 : "=&r"(lo), "=&r"(hi)
1454 : "r"(i));
1455
1456 KASSERT(hi & TLB_VALID);
1457 KASSERT(mfspr(SPR_PID) == KERNEL_PID);
1458
1459 pa = (lo & TLB_RPN_MASK);
1460 if (base < pa)
1461 continue;
1462
1463 sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
1464 if (base + len > pa + sz)
1465 continue;
1466
1467 va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); /* sz = 2^n */
1468 return (void *)va;
1469 }
1470
1471 return NULL;
1472 }
1473
1474 /*
1475 * ppc4xx_tlb_reserve:
1476 *
1477 * Map physical range to kernel virtual chunk via reserved TLB entry.
1478 */
1479 void
1480 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
1481 {
1482 u_int lo, hi;
1483 int szmask, rsize;
1484
1485 /* Called before pmap_bootstrap(), va outside kernel space. */
1486 KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
1487 KASSERT(!pmap_bootstrap_done);
1488 KASSERT(tlb_nreserved < NTLB);
1489
1490 /* Resolve size. */
1491 if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
1492 panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
1493 size, tlb_nreserved);
1494
1495 /* Real size will be power of two >= 1024, so this is OK. */
1496 pa &= ~(rsize - 1); /* RPN */
1497 va &= ~(rsize - 1); /* EPN */
1498
1499 lo = pa | TLB_WR | flags;
1500 hi = va | TLB_VALID | szmask;
1501
1502 #ifdef PPC_4XX_NOCACHE
1503 lo |= TLB_I;
1504 #endif
1505
1506 __asm volatile(
1507 "tlbwe %1,%0,1;" /* write TLBLO */
1508 "tlbwe %2,%0,0;" /* write TLBHI */
1509 "isync;"
1510 : : "r"(tlb_nreserved), "r"(lo), "r"(hi));
1511
1512 tlb_nreserved++;
1513 }
1514
1515 /*
1516 * We should pass the ctx in from trap code.
1517 */
1518 int
1519 pmap_tlbmiss(vaddr_t va, int ctx)
1520 {
1521 volatile u_int *pte;
1522 u_long tte;
1523
1524 tlbmiss_ev.ev_count++;
1525
1526 /*
1527 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
1528 * Physical RAM is expected to live in this range, care must be taken
1529 * to not clobber 0 upto ${physmem} with device mappings in machdep
1530 * code.
1531 */
1532 if (ctx != KERNEL_PID ||
1533 (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) {
1534 pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
1535 if (pte == NULL) {
1536 /*
1537 * Map unmanaged addresses directly for
1538 * kernel access
1539 */
1540 return 1;
1541 }
1542 tte = *pte;
1543 if (tte == 0)
1544 return 1;
1545 } else {
1546 /* Create a 16MB writable mapping. */
1547 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1548 #ifdef PPC_4XX_NOCACHE
1549 tte |= TTE_I;
1550 #endif
1551 }
1552 ppc4xx_tlb_enter(ctx, va, tte);
1553
1554 return 0;
1555 }
1556
1557 /*
1558 * Flush all the entries matching a context from the TLB.
1559 */
1560 static void
1561 ctx_flush(int cnum)
1562 {
1563 int i;
1564
1565 /* We gotta steal this context */
1566 for (i = tlb_nreserved; i < NTLB; i++) {
1567 if (tlb_info[i].ti_ctx == cnum) {
1568 /* Can't steal ctx if it has locked/reserved entry. */
1569 KASSERTMSG(!TLB_LOCKED(i) && i >= tlb_nreserved,
1570 "locked/reserved entry %d for ctx %d",
1571 i, cnum);
1572 /*
1573 * Invalidate particular TLB entry regardless of
1574 * locked status
1575 */
1576 tlb_invalidate_entry(i);
1577 }
1578 }
1579 }
1580
1581 /*
1582 * Allocate a context. If necessary, steal one from someone else.
1583 *
1584 * The new context is flushed from the TLB before returning.
1585 */
1586 int
1587 ctx_alloc(struct pmap *pm)
1588 {
1589 static int next = MINCTX;
1590 int cnum, s;
1591
1592 KASSERT(pm != pmap_kernel());
1593
1594 s = splvm();
1595
1596 /* Find a likely context. */
1597 cnum = next;
1598 do {
1599 if (++cnum >= NUMCTX)
1600 cnum = MINCTX;
1601 } while (ctxbusy[cnum] != NULL && cnum != next);
1602
1603 /* Now clean it out */
1604 if (cnum < MINCTX)
1605 cnum = MINCTX; /* Never steal ctx 0 or 1 */
1606 ctx_flush(cnum);
1607
1608 if (ctxbusy[cnum]) {
1609 #ifdef DEBUG
1610 /* We should identify this pmap and clear it */
1611 printf("Warning: stealing context %d\n", cnum);
1612 #endif
1613 ctxbusy[cnum]->pm_ctx = 0;
1614 }
1615 ctxbusy[cnum] = pm;
1616 next = cnum;
1617
1618 splx(s);
1619
1620 pm->pm_ctx = cnum;
1621
1622 return cnum;
1623 }
1624
1625 /*
1626 * Give away a context.
1627 */
1628 void
1629 ctx_free(struct pmap *pm)
1630 {
1631 int oldctx;
1632
1633 oldctx = pm->pm_ctx;
1634
1635 if (oldctx == 0)
1636 panic("ctx_free: freeing kernel context");
1637
1638 KASSERTMSG(ctxbusy[oldctx] == pm,
1639 "ctxbusy[%d] = %p, pm->pm_ctx = %p",
1640 oldctx, ctxbusy[oldctx], pm);
1641
1642 /* We should verify it has not been stolen and reallocated... */
1643 ctxbusy[oldctx] = NULL;
1644 ctx_flush(oldctx);
1645 }
1646
1647 #ifdef DEBUG
1648 /*
1649 * Test ref/modify handling.
1650 */
1651 void pmap_testout(void);
1652 void
1653 pmap_testout(void)
1654 {
1655 struct vm_page *pg;
1656 vaddr_t va;
1657 paddr_t pa;
1658 volatile int *loc;
1659 int ref, mod, val = 0;
1660
1661 /* Allocate a page */
1662 va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1663 UVM_KMF_WIRED | UVM_KMF_ZERO);
1664 loc = (int *)va;
1665
1666 pmap_extract(pmap_kernel(), va, &pa);
1667 pg = PHYS_TO_VM_PAGE(pa);
1668 pmap_unwire(pmap_kernel(), va);
1669
1670 pmap_kremove(va, PAGE_SIZE);
1671 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1672 pmap_update(pmap_kernel());
1673
1674 /* Now clear reference and modify */
1675 ref = pmap_clear_reference(pg);
1676 mod = pmap_clear_modify(pg);
1677 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1678 (void *)(u_long)va, (long)pa, ref, mod);
1679
1680 /* Check it's properly cleared */
1681 ref = pmap_is_referenced(pg);
1682 mod = pmap_is_modified(pg);
1683 printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
1684
1685 /* Reference page */
1686 val = *loc;
1687
1688 ref = pmap_is_referenced(pg);
1689 mod = pmap_is_modified(pg);
1690 printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
1691
1692 /* Now clear reference and modify */
1693 ref = pmap_clear_reference(pg);
1694 mod = pmap_clear_modify(pg);
1695 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1696 (void *)(u_long)va, (long)pa, ref, mod);
1697
1698 /* Modify page */
1699 *loc = 1;
1700
1701 ref = pmap_is_referenced(pg);
1702 mod = pmap_is_modified(pg);
1703 printf("Modified page: ref %d, mod %d\n", ref, mod);
1704
1705 /* Now clear reference and modify */
1706 ref = pmap_clear_reference(pg);
1707 mod = pmap_clear_modify(pg);
1708 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1709 (void *)(u_long)va, (long)pa, ref, mod);
1710
1711 /* Check it's properly cleared */
1712 ref = pmap_is_referenced(pg);
1713 mod = pmap_is_modified(pg);
1714 printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
1715
1716 /* Modify page */
1717 *loc = 1;
1718
1719 ref = pmap_is_referenced(pg);
1720 mod = pmap_is_modified(pg);
1721 printf("Modified page: ref %d, mod %d\n", ref, mod);
1722
1723 /* Check pmap_protect() */
1724 pmap_protect(pmap_kernel(), va, va + PAGE_SIZE, VM_PROT_READ);
1725 pmap_update(pmap_kernel());
1726 ref = pmap_is_referenced(pg);
1727 mod = pmap_is_modified(pg);
1728 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n", ref, mod);
1729
1730 /* Now clear reference and modify */
1731 ref = pmap_clear_reference(pg);
1732 mod = pmap_clear_modify(pg);
1733 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1734 (void *)(u_long)va, (long)pa, ref, mod);
1735
1736 /* Reference page */
1737 val = *loc;
1738
1739 ref = pmap_is_referenced(pg);
1740 mod = pmap_is_modified(pg);
1741 printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
1742
1743 /* Now clear reference and modify */
1744 ref = pmap_clear_reference(pg);
1745 mod = pmap_clear_modify(pg);
1746 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1747 (void *)(u_long)va, (long)pa, ref, mod);
1748
1749 /* Modify page */
1750 #if 0
1751 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1752 pmap_update(pmap_kernel());
1753 #endif
1754 *loc = 1;
1755
1756 ref = pmap_is_referenced(pg);
1757 mod = pmap_is_modified(pg);
1758 printf("Modified page: ref %d, mod %d\n", ref, mod);
1759
1760 /* Check pmap_protect() */
1761 pmap_protect(pmap_kernel(), va, va + PAGE_SIZE, VM_PROT_NONE);
1762 pmap_update(pmap_kernel());
1763 ref = pmap_is_referenced(pg);
1764 mod = pmap_is_modified(pg);
1765 printf("pmap_protect(): ref %d, mod %d\n", ref, mod);
1766
1767 /* Now clear reference and modify */
1768 ref = pmap_clear_reference(pg);
1769 mod = pmap_clear_modify(pg);
1770 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1771 (void *)(u_long)va, (long)pa, ref, mod);
1772
1773 /* Reference page */
1774 val = *loc;
1775
1776 ref = pmap_is_referenced(pg);
1777 mod = pmap_is_modified(pg);
1778 printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
1779
1780 /* Now clear reference and modify */
1781 ref = pmap_clear_reference(pg);
1782 mod = pmap_clear_modify(pg);
1783 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1784 (void *)(u_long)va, (long)pa, ref, mod);
1785
1786 /* Modify page */
1787 #if 0
1788 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1789 pmap_update(pmap_kernel());
1790 #endif
1791 *loc = 1;
1792
1793 ref = pmap_is_referenced(pg);
1794 mod = pmap_is_modified(pg);
1795 printf("Modified page: ref %d, mod %d\n", ref, mod);
1796
1797 /* Check pmap_pag_protect() */
1798 pmap_page_protect(pg, VM_PROT_READ);
1799 ref = pmap_is_referenced(pg);
1800 mod = pmap_is_modified(pg);
1801 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n", ref, mod);
1802
1803 /* Now clear reference and modify */
1804 ref = pmap_clear_reference(pg);
1805 mod = pmap_clear_modify(pg);
1806 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1807 (void *)(u_long)va, (long)pa, ref, mod);
1808
1809 /* Reference page */
1810 val = *loc;
1811
1812 ref = pmap_is_referenced(pg);
1813 mod = pmap_is_modified(pg);
1814 printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
1815
1816 /* Now clear reference and modify */
1817 ref = pmap_clear_reference(pg);
1818 mod = pmap_clear_modify(pg);
1819 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1820 (void *)(u_long)va, (long)pa, ref, mod);
1821
1822 /* Modify page */
1823 #if 0
1824 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1825 pmap_update(pmap_kernel());
1826 #endif
1827 *loc = 1;
1828
1829 ref = pmap_is_referenced(pg);
1830 mod = pmap_is_modified(pg);
1831 printf("Modified page: ref %d, mod %d\n", ref, mod);
1832
1833 /* Check pmap_pag_protect() */
1834 pmap_page_protect(pg, VM_PROT_NONE);
1835 ref = pmap_is_referenced(pg);
1836 mod = pmap_is_modified(pg);
1837 printf("pmap_page_protect(): ref %d, mod %d\n", ref, mod);
1838
1839 /* Now clear reference and modify */
1840 ref = pmap_clear_reference(pg);
1841 mod = pmap_clear_modify(pg);
1842 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1843 (void *)(u_long)va, (long)pa, ref, mod);
1844
1845
1846 /* Reference page */
1847 val = *loc;
1848
1849 ref = pmap_is_referenced(pg);
1850 mod = pmap_is_modified(pg);
1851 printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
1852
1853 /* Now clear reference and modify */
1854 ref = pmap_clear_reference(pg);
1855 mod = pmap_clear_modify(pg);
1856 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1857 (void *)(u_long)va, (long)pa, ref, mod);
1858
1859 /* Modify page */
1860 #if 0
1861 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1862 pmap_update(pmap_kernel());
1863 #endif
1864 *loc = 1;
1865
1866 ref = pmap_is_referenced(pg);
1867 mod = pmap_is_modified(pg);
1868 printf("Modified page: ref %d, mod %d\n", ref, mod);
1869
1870 /* Unmap page */
1871 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
1872 pmap_update(pmap_kernel());
1873 ref = pmap_is_referenced(pg);
1874 mod = pmap_is_modified(pg);
1875 printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1876
1877 /* Now clear reference and modify */
1878 ref = pmap_clear_reference(pg);
1879 mod = pmap_clear_modify(pg);
1880 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1881 (void *)(u_long)va, (long)pa, ref, mod);
1882
1883 /* Check it's properly cleared */
1884 ref = pmap_is_referenced(pg);
1885 mod = pmap_is_modified(pg);
1886 printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
1887
1888 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
1889 pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
1890 uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
1891 }
1892 #endif
1893