pmap.c revision 1.17 1 /* $NetBSD: pmap.c,v 1.17 2003/01/18 06:23:30 thorpej Exp $ */
2
3 /*
4 * Copyright 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #undef PPC_4XX_NOCACHE
70
71 #include <sys/param.h>
72 #include <sys/malloc.h>
73 #include <sys/proc.h>
74 #include <sys/user.h>
75 #include <sys/queue.h>
76 #include <sys/systm.h>
77 #include <sys/pool.h>
78 #include <sys/device.h>
79
80 #include <uvm/uvm.h>
81
82 #include <machine/cpu.h>
83 #include <machine/pcb.h>
84 #include <machine/powerpc.h>
85
86 #include <powerpc/spr.h>
87 #include <machine/tlb.h>
88
89 /*
90 * kernmap is an array of PTEs large enough to map in
91 * 4GB. At 16KB/page it is 256K entries or 2MB.
92 */
93 #define KERNMAP_SIZE ((0xffffffffU/NBPG)+1)
94 caddr_t kernmap;
95
96 #define MINCTX 2
97 #define NUMCTX 256
98 volatile struct pmap *ctxbusy[NUMCTX];
99
100 #define TLBF_USED 0x1
101 #define TLBF_REF 0x2
102 #define TLBF_LOCKED 0x4
103 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
104 typedef struct tlb_info_s {
105 char ti_flags;
106 char ti_ctx; /* TLB_PID assiciated with the entry */
107 u_int ti_va;
108 } tlb_info_t;
109
110 volatile tlb_info_t tlb_info[NTLB];
111 /* We'll use a modified FIFO replacement policy cause it's cheap */
112 volatile int tlbnext = TLB_NRESERVED;
113
114 u_long dtlb_miss_count = 0;
115 u_long itlb_miss_count = 0;
116 u_long ktlb_miss_count = 0;
117 u_long utlb_miss_count = 0;
118
119 /* Event counters */
120 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
121 NULL, "cpu", "tlbmiss");
122 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
123 NULL, "cpu", "tlbhit");
124 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
125 NULL, "cpu", "tlbflush");
126 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
127 NULL, "cpu", "tlbenter");
128
129 struct pmap kernel_pmap_;
130
131 int physmem;
132 static int npgs;
133 static u_int nextavail;
134 #ifndef MSGBUFADDR
135 extern paddr_t msgbuf_paddr;
136 #endif
137
138 static struct mem_region *mem, *avail;
139
140 /*
141 * This is a cache of referenced/modified bits.
142 * Bits herein are shifted by ATTRSHFT.
143 */
144 static char *pmap_attrib;
145
146 #define PV_WIRED 0x1
147 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
148 #define PV_CMPVA(va,pv) (!(((pv)->pv_va^(va))&(~PV_WIRED)))
149
150 struct pv_entry {
151 struct pv_entry *pv_next; /* Linked list of mappings */
152 vaddr_t pv_va; /* virtual address of mapping */
153 struct pmap *pv_pm;
154 };
155
156 struct pv_entry *pv_table;
157 static struct pool pv_pool;
158
159 static int pmap_initialized;
160
161 static int ctx_flush(int);
162
163 inline struct pv_entry *pa_to_pv(paddr_t);
164 static inline char *pa_to_attr(paddr_t);
165
166 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
167 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
168
169 static void pmap_pinit(pmap_t);
170 static void pmap_release(pmap_t);
171 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t);
172 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
173
174
175 inline struct pv_entry *
176 pa_to_pv(paddr_t pa)
177 {
178 int bank, pg;
179
180 bank = vm_physseg_find(atop(pa), &pg);
181 if (bank == -1)
182 return NULL;
183 return &vm_physmem[bank].pmseg.pvent[pg];
184 }
185
186 static inline char *
187 pa_to_attr(paddr_t pa)
188 {
189 int bank, pg;
190
191 bank = vm_physseg_find(atop(pa), &pg);
192 if (bank == -1)
193 return NULL;
194 return &vm_physmem[bank].pmseg.attrs[pg];
195 }
196
197 /*
198 * Insert PTE into page table.
199 */
200 int
201 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
202 {
203 int seg = STIDX(va);
204 int ptn = PTIDX(va);
205 paddr_t pa;
206
207 if (!pm->pm_ptbl[seg]) {
208 /* Don't allocate a page to clear a non-existent mapping. */
209 if (!pte) return (1);
210 /* Allocate a page XXXX this will sleep! */
211 pa = 0;
212 pm->pm_ptbl[seg] = (uint *)uvm_km_alloc1(kernel_map, NBPG, 1);
213 }
214 pm->pm_ptbl[seg][ptn] = pte;
215
216 /* Flush entry. */
217 ppc4xx_tlb_flush(va, pm->pm_ctx);
218 return (1);
219 }
220
221 /*
222 * Get a pointer to a PTE in a page table.
223 */
224 volatile u_int *
225 pte_find(struct pmap *pm, vaddr_t va)
226 {
227 int seg = STIDX(va);
228 int ptn = PTIDX(va);
229
230 if (pm->pm_ptbl[seg])
231 return (&pm->pm_ptbl[seg][ptn]);
232
233 return (NULL);
234 }
235
236 /*
237 * This is called during initppc, before the system is really initialized.
238 */
239 void
240 pmap_bootstrap(u_int kernelstart, u_int kernelend)
241 {
242 struct mem_region *mp, *mp1;
243 int cnt, i;
244 u_int s, e, sz;
245
246 /*
247 * Allocate the kernel page table at the end of
248 * kernel space so it's in the locked TTE.
249 */
250 kernmap = (caddr_t)kernelend;
251
252 /*
253 * Initialize kernel page table.
254 */
255 for (i = 0; i < STSZ; i++) {
256 pmap_kernel()->pm_ptbl[i] = 0;
257 }
258 ctxbusy[0] = ctxbusy[1] = pmap_kernel();
259
260 /*
261 * Announce page-size to the VM-system
262 */
263 uvmexp.pagesize = NBPG;
264 uvm_setpagesize();
265
266 /*
267 * Get memory.
268 */
269 mem_regions(&mem, &avail);
270 for (mp = mem; mp->size; mp++) {
271 physmem += btoc(mp->size);
272 printf("+%lx,",mp->size);
273 }
274 printf("\n");
275 ppc4xx_tlb_init();
276 /*
277 * Count the number of available entries.
278 */
279 for (cnt = 0, mp = avail; mp->size; mp++)
280 cnt++;
281
282 /*
283 * Page align all regions.
284 * Non-page aligned memory isn't very interesting to us.
285 * Also, sort the entries for ascending addresses.
286 */
287 kernelstart &= ~PGOFSET;
288 kernelend = (kernelend + PGOFSET) & ~PGOFSET;
289 for (mp = avail; mp->size; mp++) {
290 s = mp->start;
291 e = mp->start + mp->size;
292 printf("%08x-%08x -> ",s,e);
293 /*
294 * Check whether this region holds all of the kernel.
295 */
296 if (s < kernelstart && e > kernelend) {
297 avail[cnt].start = kernelend;
298 avail[cnt++].size = e - kernelend;
299 e = kernelstart;
300 }
301 /*
302 * Look whether this regions starts within the kernel.
303 */
304 if (s >= kernelstart && s < kernelend) {
305 if (e <= kernelend)
306 goto empty;
307 s = kernelend;
308 }
309 /*
310 * Now look whether this region ends within the kernel.
311 */
312 if (e > kernelstart && e <= kernelend) {
313 if (s >= kernelstart)
314 goto empty;
315 e = kernelstart;
316 }
317 /*
318 * Now page align the start and size of the region.
319 */
320 s = round_page(s);
321 e = trunc_page(e);
322 if (e < s)
323 e = s;
324 sz = e - s;
325 printf("%08x-%08x = %x\n",s,e,sz);
326 /*
327 * Check whether some memory is left here.
328 */
329 if (sz == 0) {
330 empty:
331 memmove(mp, mp + 1,
332 (cnt - (mp - avail)) * sizeof *mp);
333 cnt--;
334 mp--;
335 continue;
336 }
337 /*
338 * Do an insertion sort.
339 */
340 npgs += btoc(sz);
341 for (mp1 = avail; mp1 < mp; mp1++)
342 if (s < mp1->start)
343 break;
344 if (mp1 < mp) {
345 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
346 mp1->start = s;
347 mp1->size = sz;
348 } else {
349 mp->start = s;
350 mp->size = sz;
351 }
352 }
353
354 /*
355 * We cannot do pmap_steal_memory here,
356 * since we don't run with translation enabled yet.
357 */
358 #ifndef MSGBUFADDR
359 /*
360 * allow for msgbuf
361 */
362 sz = round_page(MSGBUFSIZE);
363 mp = NULL;
364 for (mp1 = avail; mp1->size; mp1++)
365 if (mp1->size >= sz)
366 mp = mp1;
367 if (mp == NULL)
368 panic("not enough memory?");
369
370 npgs -= btoc(sz);
371 msgbuf_paddr = mp->start + mp->size - sz;
372 mp->size -= sz;
373 if (mp->size <= 0)
374 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
375 #endif
376
377 printf("Loading pages\n");
378 for (mp = avail; mp->size; mp++)
379 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
380 atop(mp->start), atop(mp->start + mp->size),
381 VM_FREELIST_DEFAULT);
382
383 /*
384 * Initialize kernel pmap and hardware.
385 */
386 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
387 pmap_kernel()->pm_ctx = KERNEL_PID;
388 nextavail = avail->start;
389
390
391 evcnt_attach_static(&tlbhit_ev);
392 evcnt_attach_static(&tlbmiss_ev);
393 evcnt_attach_static(&tlbflush_ev);
394 evcnt_attach_static(&tlbenter_ev);
395 printf("Done\n");
396 }
397
398 /*
399 * Restrict given range to physical memory
400 *
401 * (Used by /dev/mem)
402 */
403 void
404 pmap_real_memory(paddr_t *start, psize_t *size)
405 {
406 struct mem_region *mp;
407
408 for (mp = mem; mp->size; mp++) {
409 if (*start + *size > mp->start &&
410 *start < mp->start + mp->size) {
411 if (*start < mp->start) {
412 *size -= mp->start - *start;
413 *start = mp->start;
414 }
415 if (*start + *size > mp->start + mp->size)
416 *size = mp->start + mp->size - *start;
417 return;
418 }
419 }
420 *size = 0;
421 }
422
423 /*
424 * Initialize anything else for pmap handling.
425 * Called during vm_init().
426 */
427 void
428 pmap_init(void)
429 {
430 struct pv_entry *pv;
431 vsize_t sz;
432 vaddr_t addr;
433 int i, s;
434 int bank;
435 char *attr;
436
437 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
438 sz = round_page(sz);
439 addr = uvm_km_zalloc(kernel_map, sz);
440 s = splvm();
441 pv = pv_table = (struct pv_entry *)addr;
442 for (i = npgs; --i >= 0;)
443 pv++->pv_pm = NULL;
444 pmap_attrib = (char *)pv;
445 memset(pv, 0, npgs);
446
447 pv = pv_table;
448 attr = pmap_attrib;
449 for (bank = 0; bank < vm_nphysseg; bank++) {
450 sz = vm_physmem[bank].end - vm_physmem[bank].start;
451 vm_physmem[bank].pmseg.pvent = pv;
452 vm_physmem[bank].pmseg.attrs = attr;
453 pv += sz;
454 attr += sz;
455 }
456
457 pmap_initialized = 1;
458 splx(s);
459
460 /* Setup a pool for additional pvlist structures */
461 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL);
462 }
463
464 /*
465 * How much virtual space is available to the kernel?
466 */
467 void
468 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
469 {
470
471 #if 0
472 /*
473 * Reserve one segment for kernel virtual memory
474 */
475 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
476 *end = *start + SEGMENT_LENGTH;
477 #else
478 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
479 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
480 #endif
481 }
482
483 #ifdef PMAP_GROWKERNEL
484 /*
485 * Preallocate kernel page tables to a specified VA.
486 * This simply loops through the first TTE for each
487 * page table from the beginning of the kernel pmap,
488 * reads the entry, and if the result is
489 * zero (either invalid entry or no page table) it stores
490 * a zero there, populating page tables in the process.
491 * This is not the most efficient technique but i don't
492 * expect it to be called that often.
493 */
494 extern struct vm_page *vm_page_alloc1 __P((void));
495 extern void vm_page_free1 __P((struct vm_page *));
496
497 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
498
499 vaddr_t
500 pmap_growkernel(maxkvaddr)
501 vaddr_t maxkvaddr;
502 {
503 int s;
504 int seg;
505 paddr_t pg;
506 struct pmap *pm = pmap_kernel();
507
508 s = splvm();
509
510 /* Align with the start of a page table */
511 for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
512 kbreak += PTMAP) {
513 seg = STIDX(kbreak);
514
515 if (pte_find(pm, kbreak)) continue;
516
517 if (uvm.page_init_done) {
518 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
519 } else {
520 if (!uvm_page_physget(&pg))
521 panic("pmap_growkernel: no memory");
522 }
523 if (!pg) panic("pmap_growkernel: no pages");
524 pmap_zero_page((paddr_t)pg);
525
526 /* XXX This is based on all phymem being addressable */
527 pm->pm_ptbl[seg] = (u_int *)pg;
528 }
529 splx(s);
530 return (kbreak);
531 }
532
533 /*
534 * vm_page_alloc1:
535 *
536 * Allocate and return a memory cell with no associated object.
537 */
538 struct vm_page *
539 vm_page_alloc1()
540 {
541 struct vm_page *pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
542 if (pg) {
543 pg->wire_count = 1; /* no mappings yet */
544 pg->flags &= ~PG_BUSY; /* never busy */
545 }
546 return pg;
547 }
548
549 /*
550 * vm_page_free1:
551 *
552 * Returns the given page to the free list,
553 * disassociating it with any VM object.
554 *
555 * Object and page must be locked prior to entry.
556 */
557 void
558 vm_page_free1(mem)
559 struct vm_page *mem;
560 {
561 #ifdef DIAGNOSTIC
562 if (mem->flags != (PG_CLEAN|PG_FAKE)) {
563 printf("Freeing invalid page %p\n", mem);
564 printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(mem));
565 #ifdef DDB
566 Debugger();
567 #endif
568 return;
569 }
570 #endif
571 mem->flags |= PG_BUSY;
572 mem->wire_count = 0;
573 uvm_pagefree(mem);
574 }
575 #endif
576
577 /*
578 * Create and return a physical map.
579 */
580 struct pmap *
581 pmap_create(void)
582 {
583 struct pmap *pm;
584
585 pm = (struct pmap *)malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
586 memset((caddr_t)pm, 0, sizeof *pm);
587 pmap_pinit(pm);
588 return pm;
589 }
590
591 /*
592 * Initialize a preallocated and zeroed pmap structure.
593 */
594 void
595 pmap_pinit(struct pmap *pm)
596 {
597 int i;
598
599 /*
600 * Allocate some segment registers for this pmap.
601 */
602 pm->pm_refs = 1;
603 for (i = 0; i < STSZ; i++)
604 pm->pm_ptbl[i] = NULL;
605 }
606
607 /*
608 * Add a reference to the given pmap.
609 */
610 void
611 pmap_reference(struct pmap *pm)
612 {
613
614 pm->pm_refs++;
615 }
616
617 /*
618 * Retire the given pmap from service.
619 * Should only be called if the map contains no valid mappings.
620 */
621 void
622 pmap_destroy(struct pmap *pm)
623 {
624
625 if (--pm->pm_refs == 0) {
626 pmap_release(pm);
627 free((caddr_t)pm, M_VMPMAP);
628 }
629 }
630
631 /*
632 * Release any resources held by the given physical map.
633 * Called when a pmap initialized by pmap_pinit is being released.
634 */
635 static void
636 pmap_release(struct pmap *pm)
637 {
638 int i;
639
640 for (i = 0; i < STSZ; i++)
641 if (pm->pm_ptbl[i]) {
642 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i], NBPG);
643 pm->pm_ptbl[i] = NULL;
644 }
645 if (pm->pm_ctx) ctx_free(pm);
646 }
647
648 /*
649 * Copy the range specified by src_addr/len
650 * from the source map to the range dst_addr/len
651 * in the destination map.
652 *
653 * This routine is only advisory and need not do anything.
654 */
655 void
656 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
657 vsize_t len, vaddr_t src_addr)
658 {
659 }
660
661 /*
662 * Require that all active physical maps contain no
663 * incorrect entries NOW.
664 */
665 void
666 pmap_update(struct pmap *pmap)
667 {
668 }
669
670 /*
671 * Garbage collects the physical map system for
672 * pages which are no longer used.
673 * Success need not be guaranteed -- that is, there
674 * may well be pages which are not referenced, but
675 * others may be collected.
676 * Called by the pageout daemon when pages are scarce.
677 */
678 void
679 pmap_collect(struct pmap *pm)
680 {
681 }
682
683 /*
684 * Fill the given physical page with zeroes.
685 */
686 void
687 pmap_zero_page(paddr_t pa)
688 {
689
690 #ifdef PPC_4XX_NOCACHE
691 memset((caddr_t)pa, 0, NBPG);
692 #else
693 int i;
694
695 for (i = NBPG/CACHELINESIZE; i > 0; i--) {
696 __asm __volatile ("dcbz 0,%0" :: "r"(pa));
697 pa += CACHELINESIZE;
698 }
699 #endif
700 }
701
702 /*
703 * Copy the given physical source page to its destination.
704 */
705 void
706 pmap_copy_page(paddr_t src, paddr_t dst)
707 {
708
709 memcpy((caddr_t)dst, (caddr_t)src, NBPG);
710 dcache_flush_page(dst);
711 }
712
713 /*
714 * This returns whether this is the first mapping of a page.
715 */
716 static inline int
717 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
718 {
719 struct pv_entry *pv, *npv = NULL;
720 int s;
721
722 if (!pmap_initialized)
723 return 0;
724
725 s = splvm();
726
727 pv = pa_to_pv(pa);
728 for (npv = pv; npv; npv = npv->pv_next)
729 if (npv->pv_va == va && npv->pv_pm == pm) {
730 printf("Duplicate pv: va %lx pm %p\n", va, pm);
731 #ifdef DDB
732 Debugger();
733 #endif
734 return (1);
735 }
736
737 if (!pv->pv_pm) {
738 /*
739 * No entries yet, use header as the first entry.
740 */
741 pv->pv_va = va;
742 pv->pv_pm = pm;
743 pv->pv_next = NULL;
744 } else {
745 /*
746 * There is at least one other VA mapping this page.
747 * Place this entry after the header.
748 */
749 npv = pool_get(&pv_pool, PR_WAITOK);
750 if (!npv) return (0);
751 npv->pv_va = va;
752 npv->pv_pm = pm;
753 npv->pv_next = pv->pv_next;
754 pv->pv_next = npv;
755 }
756 splx(s);
757 return (1);
758 }
759
760 static void
761 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
762 {
763 struct pv_entry *pv, *npv;
764
765 /*
766 * Remove from the PV table.
767 */
768 pv = pa_to_pv(pa);
769 if (!pv) return;
770
771 /*
772 * If it is the first entry on the list, it is actually
773 * in the header and we must copy the following entry up
774 * to the header. Otherwise we must search the list for
775 * the entry. In either case we free the now unused entry.
776 */
777 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
778 if ((npv = pv->pv_next)) {
779 *pv = *npv;
780 pool_put(&pv_pool, npv);
781 } else
782 pv->pv_pm = NULL;
783 } else {
784 for (; (npv = pv->pv_next) != NULL; pv = npv)
785 if (pm == npv->pv_pm && PV_CMPVA(va, npv))
786 break;
787 if (npv) {
788 pv->pv_next = npv->pv_next;
789 pool_put(&pv_pool, npv);
790 }
791 }
792 }
793
794 /*
795 * Insert physical page at pa into the given pmap at virtual address va.
796 */
797 int
798 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
799 {
800 int s;
801 u_int tte;
802 int managed;
803
804 /*
805 * Have to remove any existing mapping first.
806 */
807 pmap_remove(pm, va, va + NBPG);
808
809 if (flags & PMAP_WIRED) flags |= prot;
810
811 /* If it has no protections don't bother w/the rest */
812 if (!(flags & VM_PROT_ALL))
813 return (0);
814
815 managed = 0;
816 if (vm_physseg_find(atop(pa), NULL) != -1)
817 managed = 1;
818
819 /*
820 * Generate TTE.
821 *
822 * XXXX
823 *
824 * Since the kernel does not handle execution privileges properly,
825 * we will handle read and execute permissions together.
826 */
827 tte = TTE_PA(pa) | TTE_EX;
828 /* XXXX -- need to support multiple page sizes. */
829 tte |= TTE_SZ_16K;
830 #ifdef DIAGNOSTIC
831 if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
832 (PME_NOCACHE | PME_WRITETHROUG))
833 panic("pmap_enter: uncached & writethrough");
834 #endif
835 if (flags & PME_NOCACHE)
836 /* Must be I/O mapping */
837 tte |= TTE_I | TTE_G;
838 #ifdef PPC_4XX_NOCACHE
839 tte |= TTE_I;
840 #else
841 else if (flags & PME_WRITETHROUG)
842 /* Uncached and writethrough are not compatible */
843 tte |= TTE_W;
844 #endif
845 if (pm == pmap_kernel())
846 tte |= TTE_ZONE(ZONE_PRIV);
847 else
848 tte |= TTE_ZONE(ZONE_USER);
849
850 if (flags & VM_PROT_WRITE)
851 tte |= TTE_WR;
852
853 /*
854 * Now record mapping for later back-translation.
855 */
856 if (pmap_initialized && managed) {
857 char *attr;
858
859 if (!pmap_enter_pv(pm, va, pa)) {
860 /* Could not enter pv on a managed page */
861 return 1;
862 }
863
864 /* Now set attributes. */
865 attr = pa_to_attr(pa);
866 #ifdef DIAGNOSTIC
867 if (!attr)
868 panic("managed but no attr");
869 #endif
870 if (flags & VM_PROT_ALL)
871 *attr |= PTE_HI_REF;
872 if (flags & VM_PROT_WRITE)
873 *attr |= PTE_HI_CHG;
874 }
875
876 s = splvm();
877 pm->pm_stats.resident_count++;
878
879 /* Insert page into page table. */
880 pte_enter(pm, va, tte);
881
882 /* If this is a real fault, enter it in the tlb */
883 if (tte && ((flags & PMAP_WIRED) == 0)) {
884 ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
885 }
886 splx(s);
887
888 /* Flush the real memory from the instruction cache. */
889 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
890 __syncicache((void *)pa, PAGE_SIZE);
891
892 return 0;
893 }
894
895 void
896 pmap_unwire(struct pmap *pm, vaddr_t va)
897 {
898 struct pv_entry *pv, *npv;
899 paddr_t pa;
900 int s = splvm();
901
902 if (pm == NULL) {
903 return;
904 }
905
906 if (!pmap_extract(pm, va, &pa)) {
907 return;
908 }
909
910 va |= PV_WIRED;
911
912 pv = pa_to_pv(pa);
913 if (!pv) return;
914
915 /*
916 * If it is the first entry on the list, it is actually
917 * in the header and we must copy the following entry up
918 * to the header. Otherwise we must search the list for
919 * the entry. In either case we free the now unused entry.
920 */
921 for (npv = pv; (npv = pv->pv_next) != NULL; pv = npv) {
922 if (pm == npv->pv_pm && PV_CMPVA(va, npv)) {
923 npv->pv_va &= ~PV_WIRED;
924 break;
925 }
926 }
927 splx(s);
928 }
929
930 void
931 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
932 {
933 int s;
934 u_int tte;
935 struct pmap *pm = pmap_kernel();
936
937 /*
938 * Have to remove any existing mapping first.
939 */
940
941 /*
942 * Generate TTE.
943 *
944 * XXXX
945 *
946 * Since the kernel does not handle execution privileges properly,
947 * we will handle read and execute permissions together.
948 */
949 tte = 0;
950 if (prot & VM_PROT_ALL) {
951
952 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
953 /* XXXX -- need to support multiple page sizes. */
954 tte |= TTE_SZ_16K;
955 #ifdef DIAGNOSTIC
956 if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
957 (PME_NOCACHE | PME_WRITETHROUG))
958 panic("pmap_kenter_pa: uncached & writethrough");
959 #endif
960 if (prot & PME_NOCACHE)
961 /* Must be I/O mapping */
962 tte |= TTE_I | TTE_G;
963 #ifdef PPC_4XX_NOCACHE
964 tte |= TTE_I;
965 #else
966 else if (prot & PME_WRITETHROUG)
967 /* Uncached and writethrough are not compatible */
968 tte |= TTE_W;
969 #endif
970 if (prot & VM_PROT_WRITE)
971 tte |= TTE_WR;
972 }
973
974 s = splvm();
975 pm->pm_stats.resident_count++;
976
977 /* Insert page into page table. */
978 pte_enter(pm, va, tte);
979 splx(s);
980 }
981
982 void
983 pmap_kremove(vaddr_t va, vsize_t len)
984 {
985
986 while (len > 0) {
987 pte_enter(pmap_kernel(), va, 0);
988 va += PAGE_SIZE;
989 len -= PAGE_SIZE;
990 }
991 }
992
993 /*
994 * Remove the given range of mapping entries.
995 */
996 void
997 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
998 {
999 int s;
1000 paddr_t pa;
1001 volatile u_int *ptp;
1002
1003 s = splvm();
1004 while (va < endva) {
1005
1006 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
1007 pa = TTE_PA(pa);
1008 pmap_remove_pv(pm, va, pa);
1009 *ptp = 0;
1010 ppc4xx_tlb_flush(va, pm->pm_ctx);
1011 pm->pm_stats.resident_count--;
1012 }
1013 va += NBPG;
1014 }
1015
1016 splx(s);
1017 }
1018
1019 /*
1020 * Get the physical page address for the given pmap/virtual address.
1021 */
1022 boolean_t
1023 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1024 {
1025 int seg = STIDX(va);
1026 int ptn = PTIDX(va);
1027 u_int pa = 0;
1028 int s = splvm();
1029
1030 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
1031 *pap = TTE_PA(pa) | (va & PGOFSET);
1032 }
1033 splx(s);
1034 return (pa != 0);
1035 }
1036
1037 /*
1038 * Lower the protection on the specified range of this pmap.
1039 *
1040 * There are only two cases: either the protection is going to 0,
1041 * or it is going to read-only.
1042 */
1043 void
1044 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1045 {
1046 volatile u_int *ptp;
1047 int s;
1048
1049 if (prot & VM_PROT_READ) {
1050 s = splvm();
1051 while (sva < eva) {
1052 if ((ptp = pte_find(pm, sva)) != NULL) {
1053 *ptp &= ~TTE_WR;
1054 ppc4xx_tlb_flush(sva, pm->pm_ctx);
1055 }
1056 sva += NBPG;
1057 }
1058 splx(s);
1059 return;
1060 }
1061 pmap_remove(pm, sva, eva);
1062 }
1063
1064 boolean_t
1065 check_attr(struct vm_page *pg, u_int mask, int clear)
1066 {
1067 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1068 int s;
1069 char *attr;
1070 int rv;
1071
1072 /*
1073 * First modify bits in cache.
1074 */
1075 s = splvm();
1076 attr = pa_to_attr(pa);
1077 if (attr == NULL)
1078 return FALSE;
1079
1080 rv = ((*attr & mask) != 0);
1081 if (clear) {
1082 *attr &= ~mask;
1083 pmap_page_protect(pg, (mask == PTE_HI_CHG) ? VM_PROT_READ : 0);
1084 }
1085 splx(s);
1086 return rv;
1087 }
1088
1089
1090 /*
1091 * Lower the protection on the specified physical page.
1092 *
1093 * There are only two cases: either the protection is going to 0,
1094 * or it is going to read-only.
1095 */
1096 void
1097 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1098 {
1099 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1100 vaddr_t va;
1101 struct pv_entry *pvh, *pv, *npv;
1102 struct pmap *pm;
1103
1104 pvh = pa_to_pv(pa);
1105 if (pvh == NULL)
1106 return;
1107
1108 /* Handle extra pvs which may be deleted in the operation */
1109 for (pv = pvh->pv_next; pv; pv = npv) {
1110 npv = pv->pv_next;
1111
1112 pm = pv->pv_pm;
1113 va = pv->pv_va;
1114 pmap_protect(pm, va, va+NBPG, prot);
1115 }
1116 /* Now check the head pv */
1117 if (pvh->pv_pm) {
1118 pv = pvh;
1119 pm = pv->pv_pm;
1120 va = pv->pv_va;
1121 pmap_protect(pm, va, va+NBPG, prot);
1122 }
1123 }
1124
1125 /*
1126 * Activate the address space for the specified process. If the process
1127 * is the current process, load the new MMU context.
1128 */
1129 void
1130 pmap_activate(struct lwp *l)
1131 {
1132 #if 0
1133 struct pcb *pcb = &l->l_proc->p_addr->u_pcb;
1134 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1135
1136 /*
1137 * XXX Normally performed in cpu_fork().
1138 */
1139 printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1140 if (pcb->pcb_pm != pmap) {
1141 pcb->pcb_pm = pmap;
1142 (void) pmap_extract(pmap_kernel(), (vaddr_t)pcb->pcb_pm,
1143 (paddr_t *)&pcb->pcb_pmreal);
1144 }
1145
1146 if (l == curlwp) {
1147 /* Store pointer to new current pmap. */
1148 curpm = pcb->pcb_pmreal;
1149 }
1150 #endif
1151 }
1152
1153 /*
1154 * Deactivate the specified process's address space.
1155 */
1156 void
1157 pmap_deactivate(struct lwp *l)
1158 {
1159 }
1160
1161 /*
1162 * Synchronize caches corresponding to [addr, addr+len) in p.
1163 */
1164 void
1165 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1166 {
1167 struct pmap *pm = p->p_vmspace->vm_map.pmap;
1168 int msr, ctx, opid;
1169
1170
1171 /*
1172 * Need to turn off IMMU and switch to user context.
1173 * (icbi uses DMMU).
1174 */
1175 if (!(ctx = pm->pm_ctx)) {
1176 /* No context -- assign it one */
1177 ctx_alloc(pm);
1178 ctx = pm->pm_ctx;
1179 }
1180 __asm __volatile("mfmsr %0;"
1181 "li %1, 0x20;"
1182 "andc %1,%0,%1;"
1183 "mtmsr %1;"
1184 "sync;isync;"
1185 "mfpid %1;"
1186 "mtpid %2;"
1187 "sync; isync;"
1188 "1:"
1189 "dcbf 0,%3;"
1190 "icbi 0,%3;"
1191 "addi %3,%3,32;"
1192 "addic. %4,%4,-32;"
1193 "bge 1b;"
1194 "mtpid %1;"
1195 "mtmsr %0;"
1196 "sync; isync"
1197 : "=&r" (msr), "=&r" (opid)
1198 : "r" (ctx), "r" (va), "r" (len));
1199 }
1200
1201
1202 /* This has to be done in real mode !!! */
1203 void
1204 ppc4xx_tlb_flush(vaddr_t va, int pid)
1205 {
1206 u_long i, found;
1207 u_long msr;
1208
1209 /* If there's no context then it can't be mapped. */
1210 if (!pid) return;
1211
1212 asm("mfpid %1;" /* Save PID */
1213 "mfmsr %2;" /* Save MSR */
1214 "li %0,0;" /* Now clear MSR */
1215 "mtmsr %0;"
1216 "mtpid %4;" /* Set PID */
1217 "sync;"
1218 "tlbsx. %0,0,%3;" /* Search TLB */
1219 "sync;"
1220 "mtpid %1;" /* Restore PID */
1221 "mtmsr %2;" /* Restore MSR */
1222 "sync;isync;"
1223 "li %1,1;"
1224 "beq 1f;"
1225 "li %1,0;"
1226 "1:"
1227 : "=&r" (i), "=&r" (found), "=&r" (msr)
1228 : "r" (va), "r" (pid));
1229 if (found && !TLB_LOCKED(i)) {
1230
1231 /* Now flush translation */
1232 asm volatile(
1233 "tlbwe %0,%1,0;"
1234 "sync;isync;"
1235 : : "r" (0), "r" (i));
1236
1237 tlb_info[i].ti_ctx = 0;
1238 tlb_info[i].ti_flags = 0;
1239 tlbnext = i;
1240 /* Successful flushes */
1241 tlbflush_ev.ev_count++;
1242 }
1243 }
1244
1245 void
1246 ppc4xx_tlb_flush_all(void)
1247 {
1248 u_long i;
1249
1250 for (i = 0; i < NTLB; i++)
1251 if (!TLB_LOCKED(i)) {
1252 asm volatile(
1253 "tlbwe %0,%1,0;"
1254 "sync;isync;"
1255 : : "r" (0), "r" (i));
1256 tlb_info[i].ti_ctx = 0;
1257 tlb_info[i].ti_flags = 0;
1258 }
1259
1260 asm volatile("sync;isync");
1261 }
1262
1263 /* Find a TLB entry to evict. */
1264 static int
1265 ppc4xx_tlb_find_victim(void)
1266 {
1267 int flags;
1268
1269 for (;;) {
1270 if (++tlbnext >= NTLB)
1271 tlbnext = TLB_NRESERVED;
1272 flags = tlb_info[tlbnext].ti_flags;
1273 if (!(flags & TLBF_USED) ||
1274 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1275 u_long va, stack = (u_long)&va;
1276
1277 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1278 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1279 (flags & TLBF_USED)) {
1280 /* Kernel stack page */
1281 flags |= TLBF_USED;
1282 tlb_info[tlbnext].ti_flags = flags;
1283 } else {
1284 /* Found it! */
1285 return (tlbnext);
1286 }
1287 } else {
1288 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1289 }
1290 }
1291 }
1292
1293 void
1294 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1295 {
1296 u_long th, tl, idx;
1297 tlbpid_t pid;
1298 u_short msr;
1299 paddr_t pa;
1300 int s, sz;
1301
1302 tlbenter_ev.ev_count++;
1303
1304 sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1305 pa = (pte & TTE_RPN_MASK(sz));
1306 th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1307 tl = (pte & ~TLB_RPN_MASK) | pa;
1308 tl |= ppc4xx_tlbflags(va, pa);
1309
1310 s = splhigh();
1311 idx = ppc4xx_tlb_find_victim();
1312
1313 #ifdef DIAGNOSTIC
1314 if ((idx < TLB_NRESERVED) || (idx >= NTLB)) {
1315 panic("ppc4xx_tlb_enter: repacing entry %ld", idx);
1316 }
1317 #endif
1318
1319 tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1320 tlb_info[idx].ti_ctx = ctx;
1321 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1322
1323 asm volatile(
1324 "mfmsr %0;" /* Save MSR */
1325 "li %1,0;"
1326 "tlbwe %1,%3,0;" /* Invalidate old entry. */
1327 "mtmsr %1;" /* Clear MSR */
1328 "mfpid %1;" /* Save old PID */
1329 "mtpid %2;" /* Load translation ctx */
1330 "sync; isync;"
1331 #ifdef DEBUG
1332 "andi. %3,%3,63;"
1333 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */
1334 #endif
1335 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1336 "sync; isync;"
1337 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1338 "sync; isync;"
1339 : "=&r" (msr), "=&r" (pid)
1340 : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1341 splx(s);
1342 }
1343
1344 void
1345 ppc4xx_tlb_unpin(int i)
1346 {
1347
1348 if (i == -1)
1349 for (i = 0; i < TLB_NRESERVED; i++)
1350 tlb_info[i].ti_flags &= ~TLBF_LOCKED;
1351 else
1352 tlb_info[i].ti_flags &= ~TLBF_LOCKED;
1353 }
1354
1355 void
1356 ppc4xx_tlb_init(void)
1357 {
1358 int i;
1359
1360 /* Mark reserved TLB entries */
1361 for (i = 0; i < TLB_NRESERVED; i++) {
1362 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1363 tlb_info[i].ti_ctx = KERNEL_PID;
1364 }
1365
1366 /* Setup security zones */
1367 /* Z0 - accessible by kernel only if TLB entry permissions allow
1368 * Z1,Z2 - access is controlled by TLB entry permissions
1369 * Z3 - full access regardless of TLB entry permissions
1370 */
1371
1372 asm volatile(
1373 "mtspr %0,%1;"
1374 "sync;"
1375 :: "K"(SPR_ZPR), "r" (0x1b000000));
1376 }
1377
1378
1379 /*
1380 * We should pass the ctx in from trap code.
1381 */
1382 int
1383 pmap_tlbmiss(vaddr_t va, int ctx)
1384 {
1385 volatile u_int *pte;
1386 u_long tte;
1387
1388 tlbmiss_ev.ev_count++;
1389
1390 /*
1391 * XXXX We will reserve 0-0x80000000 for va==pa mappings.
1392 */
1393 if (ctx != KERNEL_PID || (va & 0x80000000)) {
1394 pte = pte_find((struct pmap *)ctxbusy[ctx], va);
1395 if (pte == NULL) {
1396 /* Map unmanaged addresses directly for kernel access */
1397 return 1;
1398 }
1399 tte = *pte;
1400 if (tte == 0) {
1401 return 1;
1402 }
1403 } else {
1404 /* Create a 16MB writable mapping. */
1405 #ifdef PPC_4XX_NOCACHE
1406 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I | TTE_WR;
1407 #else
1408 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1409 #endif
1410 }
1411 tlbhit_ev.ev_count++;
1412 ppc4xx_tlb_enter(ctx, va, tte);
1413
1414 return 0;
1415 }
1416
1417 /*
1418 * Flush all the entries matching a context from the TLB.
1419 */
1420 static int
1421 ctx_flush(int cnum)
1422 {
1423 int i;
1424
1425 /* We gotta steal this context */
1426 for (i = TLB_NRESERVED; i < NTLB; i++) {
1427 if (tlb_info[i].ti_ctx == cnum) {
1428 /* Can't steal ctx if it has a locked entry. */
1429 if (TLB_LOCKED(i)) {
1430 #ifdef DIAGNOSTIC
1431 printf("ctx_flush: can't invalidate "
1432 "locked mapping %d "
1433 "for context %d\n", i, cnum);
1434 #ifdef DDB
1435 Debugger();
1436 #endif
1437 #endif
1438 return (1);
1439 }
1440 #ifdef DIAGNOSTIC
1441 if (i < TLB_NRESERVED)
1442 panic("TLB entry %d not locked", i);
1443 #endif
1444 /* Invalidate particular TLB entry regardless of locked status */
1445 asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1446 tlb_info[i].ti_flags = 0;
1447 }
1448 }
1449 return (0);
1450 }
1451
1452 /*
1453 * Allocate a context. If necessary, steal one from someone else.
1454 *
1455 * The new context is flushed from the TLB before returning.
1456 */
1457 int
1458 ctx_alloc(struct pmap *pm)
1459 {
1460 int s, cnum;
1461 static int next = MINCTX;
1462
1463 if (pm == pmap_kernel()) {
1464 #ifdef DIAGNOSTIC
1465 printf("ctx_alloc: kernel pmap!\n");
1466 #endif
1467 return (0);
1468 }
1469 s = splvm();
1470
1471 /* Find a likely context. */
1472 cnum = next;
1473 do {
1474 if ((++cnum) > NUMCTX)
1475 cnum = MINCTX;
1476 } while (ctxbusy[cnum] != NULL && cnum != next);
1477
1478 /* Now clean it out */
1479 oops:
1480 if (cnum < MINCTX)
1481 cnum = MINCTX; /* Never steal ctx 0 or 1 */
1482 if (ctx_flush(cnum)) {
1483 /* oops -- something's wired. */
1484 if ((++cnum) > NUMCTX)
1485 cnum = MINCTX;
1486 goto oops;
1487 }
1488
1489 if (ctxbusy[cnum]) {
1490 #ifdef DEBUG
1491 /* We should identify this pmap and clear it */
1492 printf("Warning: stealing context %d\n", cnum);
1493 #endif
1494 ctxbusy[cnum]->pm_ctx = 0;
1495 }
1496 ctxbusy[cnum] = pm;
1497 next = cnum;
1498 splx(s);
1499 pm->pm_ctx = cnum;
1500
1501 return cnum;
1502 }
1503
1504 /*
1505 * Give away a context.
1506 */
1507 void
1508 ctx_free(struct pmap *pm)
1509 {
1510 int oldctx;
1511
1512 oldctx = pm->pm_ctx;
1513
1514 if (oldctx == 0)
1515 panic("ctx_free: freeing kernel context");
1516 #ifdef DIAGNOSTIC
1517 if (ctxbusy[oldctx] == 0)
1518 printf("ctx_free: freeing free context %d\n", oldctx);
1519 if (ctxbusy[oldctx] != pm) {
1520 printf("ctx_free: freeing someone esle's context\n "
1521 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1522 oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1523 #ifdef DDB
1524 Debugger();
1525 #endif
1526 }
1527 #endif
1528 /* We should verify it has not been stolen and reallocated... */
1529 ctxbusy[oldctx] = NULL;
1530 ctx_flush(oldctx);
1531 }
1532
1533
1534 #ifdef DEBUG
1535 /*
1536 * Test ref/modify handling.
1537 */
1538 void pmap_testout __P((void));
1539 void
1540 pmap_testout()
1541 {
1542 vaddr_t va;
1543 volatile int *loc;
1544 int val = 0;
1545 paddr_t pa;
1546 struct vm_page *pg;
1547 int ref, mod;
1548
1549 /* Allocate a page */
1550 va = (vaddr_t)uvm_km_alloc1(kernel_map, NBPG, 1);
1551 loc = (int*)va;
1552
1553 pmap_extract(pmap_kernel(), va, &pa);
1554 pg = PHYS_TO_VM_PAGE(pa);
1555 pmap_unwire(pmap_kernel(), va);
1556
1557 pmap_remove(pmap_kernel(), va, va+1);
1558 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1559 pmap_update(pmap_kernel());
1560
1561 /* Now clear reference and modify */
1562 ref = pmap_clear_reference(pg);
1563 mod = pmap_clear_modify(pg);
1564 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1565 (void *)(u_long)va, (long)pa,
1566 ref, mod);
1567
1568 /* Check it's properly cleared */
1569 ref = pmap_is_referenced(pg);
1570 mod = pmap_is_modified(pg);
1571 printf("Checking cleared page: ref %d, mod %d\n",
1572 ref, mod);
1573
1574 /* Reference page */
1575 val = *loc;
1576
1577 ref = pmap_is_referenced(pg);
1578 mod = pmap_is_modified(pg);
1579 printf("Referenced page: ref %d, mod %d val %x\n",
1580 ref, mod, val);
1581
1582 /* Now clear reference and modify */
1583 ref = pmap_clear_reference(pg);
1584 mod = pmap_clear_modify(pg);
1585 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1586 (void *)(u_long)va, (long)pa,
1587 ref, mod);
1588
1589 /* Modify page */
1590 *loc = 1;
1591
1592 ref = pmap_is_referenced(pg);
1593 mod = pmap_is_modified(pg);
1594 printf("Modified page: ref %d, mod %d\n",
1595 ref, mod);
1596
1597 /* Now clear reference and modify */
1598 ref = pmap_clear_reference(pg);
1599 mod = pmap_clear_modify(pg);
1600 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1601 (void *)(u_long)va, (long)pa,
1602 ref, mod);
1603
1604 /* Check it's properly cleared */
1605 ref = pmap_is_referenced(pg);
1606 mod = pmap_is_modified(pg);
1607 printf("Checking cleared page: ref %d, mod %d\n",
1608 ref, mod);
1609
1610 /* Modify page */
1611 *loc = 1;
1612
1613 ref = pmap_is_referenced(pg);
1614 mod = pmap_is_modified(pg);
1615 printf("Modified page: ref %d, mod %d\n",
1616 ref, mod);
1617
1618 /* Check pmap_protect() */
1619 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1620 pmap_update(pmap_kernel());
1621 ref = pmap_is_referenced(pg);
1622 mod = pmap_is_modified(pg);
1623 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1624 ref, mod);
1625
1626 /* Now clear reference and modify */
1627 ref = pmap_clear_reference(pg);
1628 mod = pmap_clear_modify(pg);
1629 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1630 (void *)(u_long)va, (long)pa,
1631 ref, mod);
1632
1633 /* Reference page */
1634 val = *loc;
1635
1636 ref = pmap_is_referenced(pg);
1637 mod = pmap_is_modified(pg);
1638 printf("Referenced page: ref %d, mod %d val %x\n",
1639 ref, mod, val);
1640
1641 /* Now clear reference and modify */
1642 ref = pmap_clear_reference(pg);
1643 mod = pmap_clear_modify(pg);
1644 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1645 (void *)(u_long)va, (long)pa,
1646 ref, mod);
1647
1648 /* Modify page */
1649 #if 0
1650 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1651 pmap_update(pmap_kernel());
1652 #endif
1653 *loc = 1;
1654
1655 ref = pmap_is_referenced(pg);
1656 mod = pmap_is_modified(pg);
1657 printf("Modified page: ref %d, mod %d\n",
1658 ref, mod);
1659
1660 /* Check pmap_protect() */
1661 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1662 pmap_update(pmap_kernel());
1663 ref = pmap_is_referenced(pg);
1664 mod = pmap_is_modified(pg);
1665 printf("pmap_protect(): ref %d, mod %d\n",
1666 ref, mod);
1667
1668 /* Now clear reference and modify */
1669 ref = pmap_clear_reference(pg);
1670 mod = pmap_clear_modify(pg);
1671 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1672 (void *)(u_long)va, (long)pa,
1673 ref, mod);
1674
1675 /* Reference page */
1676 val = *loc;
1677
1678 ref = pmap_is_referenced(pg);
1679 mod = pmap_is_modified(pg);
1680 printf("Referenced page: ref %d, mod %d val %x\n",
1681 ref, mod, val);
1682
1683 /* Now clear reference and modify */
1684 ref = pmap_clear_reference(pg);
1685 mod = pmap_clear_modify(pg);
1686 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1687 (void *)(u_long)va, (long)pa,
1688 ref, mod);
1689
1690 /* Modify page */
1691 #if 0
1692 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1693 pmap_update(pmap_kernel());
1694 #endif
1695 *loc = 1;
1696
1697 ref = pmap_is_referenced(pg);
1698 mod = pmap_is_modified(pg);
1699 printf("Modified page: ref %d, mod %d\n",
1700 ref, mod);
1701
1702 /* Check pmap_pag_protect() */
1703 pmap_page_protect(pg, VM_PROT_READ);
1704 ref = pmap_is_referenced(pg);
1705 mod = pmap_is_modified(pg);
1706 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1707 ref, mod);
1708
1709 /* Now clear reference and modify */
1710 ref = pmap_clear_reference(pg);
1711 mod = pmap_clear_modify(pg);
1712 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1713 (void *)(u_long)va, (long)pa,
1714 ref, mod);
1715
1716 /* Reference page */
1717 val = *loc;
1718
1719 ref = pmap_is_referenced(pg);
1720 mod = pmap_is_modified(pg);
1721 printf("Referenced page: ref %d, mod %d val %x\n",
1722 ref, mod, val);
1723
1724 /* Now clear reference and modify */
1725 ref = pmap_clear_reference(pg);
1726 mod = pmap_clear_modify(pg);
1727 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1728 (void *)(u_long)va, (long)pa,
1729 ref, mod);
1730
1731 /* Modify page */
1732 #if 0
1733 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1734 pmap_update(pmap_kernel());
1735 #endif
1736 *loc = 1;
1737
1738 ref = pmap_is_referenced(pg);
1739 mod = pmap_is_modified(pg);
1740 printf("Modified page: ref %d, mod %d\n",
1741 ref, mod);
1742
1743 /* Check pmap_pag_protect() */
1744 pmap_page_protect(pg, VM_PROT_NONE);
1745 ref = pmap_is_referenced(pg);
1746 mod = pmap_is_modified(pg);
1747 printf("pmap_page_protect(): ref %d, mod %d\n",
1748 ref, mod);
1749
1750 /* Now clear reference and modify */
1751 ref = pmap_clear_reference(pg);
1752 mod = pmap_clear_modify(pg);
1753 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1754 (void *)(u_long)va, (long)pa,
1755 ref, mod);
1756
1757
1758 /* Reference page */
1759 val = *loc;
1760
1761 ref = pmap_is_referenced(pg);
1762 mod = pmap_is_modified(pg);
1763 printf("Referenced page: ref %d, mod %d val %x\n",
1764 ref, mod, val);
1765
1766 /* Now clear reference and modify */
1767 ref = pmap_clear_reference(pg);
1768 mod = pmap_clear_modify(pg);
1769 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1770 (void *)(u_long)va, (long)pa,
1771 ref, mod);
1772
1773 /* Modify page */
1774 #if 0
1775 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1776 pmap_update(pmap_kernel());
1777 #endif
1778 *loc = 1;
1779
1780 ref = pmap_is_referenced(pg);
1781 mod = pmap_is_modified(pg);
1782 printf("Modified page: ref %d, mod %d\n",
1783 ref, mod);
1784
1785 /* Unmap page */
1786 pmap_remove(pmap_kernel(), va, va+1);
1787 pmap_update(pmap_kernel());
1788 ref = pmap_is_referenced(pg);
1789 mod = pmap_is_modified(pg);
1790 printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1791
1792 /* Now clear reference and modify */
1793 ref = pmap_clear_reference(pg);
1794 mod = pmap_clear_modify(pg);
1795 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1796 (void *)(u_long)va, (long)pa, ref, mod);
1797
1798 /* Check it's properly cleared */
1799 ref = pmap_is_referenced(pg);
1800 mod = pmap_is_modified(pg);
1801 printf("Checking cleared page: ref %d, mod %d\n",
1802 ref, mod);
1803
1804 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL,
1805 VM_PROT_ALL|PMAP_WIRED);
1806 uvm_km_free(kernel_map, (vaddr_t)va, NBPG);
1807 }
1808 #endif
1809