pmap.c revision 1.22 1 /* $NetBSD: pmap.c,v 1.22 2003/07/03 13:18:42 scw Exp $ */
2
3 /*
4 * Copyright 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #include <sys/param.h>
70 #include <sys/malloc.h>
71 #include <sys/proc.h>
72 #include <sys/user.h>
73 #include <sys/queue.h>
74 #include <sys/systm.h>
75 #include <sys/pool.h>
76 #include <sys/device.h>
77
78 #include <uvm/uvm.h>
79
80 #include <machine/cpu.h>
81 #include <machine/pcb.h>
82 #include <machine/powerpc.h>
83
84 #include <powerpc/spr.h>
85 #include <machine/tlb.h>
86
87 /*
88 * kernmap is an array of PTEs large enough to map in
89 * 4GB. At 16KB/page it is 256K entries or 2MB.
90 */
91 #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1)
92 caddr_t kernmap;
93
94 #define MINCTX 2
95 #define NUMCTX 256
96 volatile struct pmap *ctxbusy[NUMCTX];
97
98 #define TLBF_USED 0x1
99 #define TLBF_REF 0x2
100 #define TLBF_LOCKED 0x4
101 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
102 typedef struct tlb_info_s {
103 char ti_flags;
104 char ti_ctx; /* TLB_PID assiciated with the entry */
105 u_int ti_va;
106 } tlb_info_t;
107
108 volatile tlb_info_t tlb_info[NTLB];
109 /* We'll use a modified FIFO replacement policy cause it's cheap */
110 volatile int tlbnext = TLB_NRESERVED;
111
112 u_long dtlb_miss_count = 0;
113 u_long itlb_miss_count = 0;
114 u_long ktlb_miss_count = 0;
115 u_long utlb_miss_count = 0;
116
117 /* Event counters */
118 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
119 NULL, "cpu", "tlbmiss");
120 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
121 NULL, "cpu", "tlbhit");
122 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
123 NULL, "cpu", "tlbflush");
124 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
125 NULL, "cpu", "tlbenter");
126
127 struct pmap kernel_pmap_;
128
129 int physmem;
130 static int npgs;
131 static u_int nextavail;
132 #ifndef MSGBUFADDR
133 extern paddr_t msgbuf_paddr;
134 #endif
135
136 static struct mem_region *mem, *avail;
137
138 /*
139 * This is a cache of referenced/modified bits.
140 * Bits herein are shifted by ATTRSHFT.
141 */
142 static char *pmap_attrib;
143
144 #define PV_WIRED 0x1
145 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
146 #define PV_CMPVA(va,pv) (!(((pv)->pv_va^(va))&(~PV_WIRED)))
147
148 struct pv_entry {
149 struct pv_entry *pv_next; /* Linked list of mappings */
150 vaddr_t pv_va; /* virtual address of mapping */
151 struct pmap *pv_pm;
152 };
153
154 struct pv_entry *pv_table;
155 static struct pool pv_pool;
156
157 static int pmap_initialized;
158
159 static int ctx_flush(int);
160
161 inline struct pv_entry *pa_to_pv(paddr_t);
162 static inline char *pa_to_attr(paddr_t);
163
164 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
165 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
166
167 static void pmap_pinit(pmap_t);
168 static void pmap_release(pmap_t);
169 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t);
170 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
171
172
173 inline struct pv_entry *
174 pa_to_pv(paddr_t pa)
175 {
176 int bank, pg;
177
178 bank = vm_physseg_find(atop(pa), &pg);
179 if (bank == -1)
180 return NULL;
181 return &vm_physmem[bank].pmseg.pvent[pg];
182 }
183
184 static inline char *
185 pa_to_attr(paddr_t pa)
186 {
187 int bank, pg;
188
189 bank = vm_physseg_find(atop(pa), &pg);
190 if (bank == -1)
191 return NULL;
192 return &vm_physmem[bank].pmseg.attrs[pg];
193 }
194
195 /*
196 * Insert PTE into page table.
197 */
198 int
199 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
200 {
201 int seg = STIDX(va);
202 int ptn = PTIDX(va);
203 u_int oldpte;
204 paddr_t pa;
205
206 if (!pm->pm_ptbl[seg]) {
207 /* Don't allocate a page to clear a non-existent mapping. */
208 if (!pte) return (0);
209 /* Allocate a page XXXX this will sleep! */
210 pa = 0;
211 pm->pm_ptbl[seg] =
212 (uint *)uvm_km_alloc1(kernel_map, PAGE_SIZE, 1);
213 }
214 oldpte = pm->pm_ptbl[seg][ptn];
215 pm->pm_ptbl[seg][ptn] = pte;
216
217 /* Flush entry. */
218 ppc4xx_tlb_flush(va, pm->pm_ctx);
219 if (oldpte != pte) {
220 if (pte == 0)
221 pm->pm_stats.resident_count--;
222 else
223 pm->pm_stats.resident_count++;
224 }
225 return (1);
226 }
227
228 /*
229 * Get a pointer to a PTE in a page table.
230 */
231 volatile u_int *
232 pte_find(struct pmap *pm, vaddr_t va)
233 {
234 int seg = STIDX(va);
235 int ptn = PTIDX(va);
236
237 if (pm->pm_ptbl[seg])
238 return (&pm->pm_ptbl[seg][ptn]);
239
240 return (NULL);
241 }
242
243 /*
244 * This is called during initppc, before the system is really initialized.
245 */
246 void
247 pmap_bootstrap(u_int kernelstart, u_int kernelend)
248 {
249 struct mem_region *mp, *mp1;
250 int cnt, i;
251 u_int s, e, sz;
252
253 /*
254 * Allocate the kernel page table at the end of
255 * kernel space so it's in the locked TTE.
256 */
257 kernmap = (caddr_t)kernelend;
258
259 /*
260 * Initialize kernel page table.
261 */
262 for (i = 0; i < STSZ; i++) {
263 pmap_kernel()->pm_ptbl[i] = 0;
264 }
265 ctxbusy[0] = ctxbusy[1] = pmap_kernel();
266
267 /*
268 * Announce page-size to the VM-system
269 */
270 uvmexp.pagesize = NBPG;
271 uvm_setpagesize();
272
273 /*
274 * Get memory.
275 */
276 mem_regions(&mem, &avail);
277 for (mp = mem; mp->size; mp++) {
278 physmem += btoc(mp->size);
279 printf("+%lx,",mp->size);
280 }
281 printf("\n");
282 ppc4xx_tlb_init();
283 /*
284 * Count the number of available entries.
285 */
286 for (cnt = 0, mp = avail; mp->size; mp++)
287 cnt++;
288
289 /*
290 * Page align all regions.
291 * Non-page aligned memory isn't very interesting to us.
292 * Also, sort the entries for ascending addresses.
293 */
294 kernelstart &= ~PGOFSET;
295 kernelend = (kernelend + PGOFSET) & ~PGOFSET;
296 for (mp = avail; mp->size; mp++) {
297 s = mp->start;
298 e = mp->start + mp->size;
299 printf("%08x-%08x -> ",s,e);
300 /*
301 * Check whether this region holds all of the kernel.
302 */
303 if (s < kernelstart && e > kernelend) {
304 avail[cnt].start = kernelend;
305 avail[cnt++].size = e - kernelend;
306 e = kernelstart;
307 }
308 /*
309 * Look whether this regions starts within the kernel.
310 */
311 if (s >= kernelstart && s < kernelend) {
312 if (e <= kernelend)
313 goto empty;
314 s = kernelend;
315 }
316 /*
317 * Now look whether this region ends within the kernel.
318 */
319 if (e > kernelstart && e <= kernelend) {
320 if (s >= kernelstart)
321 goto empty;
322 e = kernelstart;
323 }
324 /*
325 * Now page align the start and size of the region.
326 */
327 s = round_page(s);
328 e = trunc_page(e);
329 if (e < s)
330 e = s;
331 sz = e - s;
332 printf("%08x-%08x = %x\n",s,e,sz);
333 /*
334 * Check whether some memory is left here.
335 */
336 if (sz == 0) {
337 empty:
338 memmove(mp, mp + 1,
339 (cnt - (mp - avail)) * sizeof *mp);
340 cnt--;
341 mp--;
342 continue;
343 }
344 /*
345 * Do an insertion sort.
346 */
347 npgs += btoc(sz);
348 for (mp1 = avail; mp1 < mp; mp1++)
349 if (s < mp1->start)
350 break;
351 if (mp1 < mp) {
352 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
353 mp1->start = s;
354 mp1->size = sz;
355 } else {
356 mp->start = s;
357 mp->size = sz;
358 }
359 }
360
361 /*
362 * We cannot do pmap_steal_memory here,
363 * since we don't run with translation enabled yet.
364 */
365 #ifndef MSGBUFADDR
366 /*
367 * allow for msgbuf
368 */
369 sz = round_page(MSGBUFSIZE);
370 mp = NULL;
371 for (mp1 = avail; mp1->size; mp1++)
372 if (mp1->size >= sz)
373 mp = mp1;
374 if (mp == NULL)
375 panic("not enough memory?");
376
377 npgs -= btoc(sz);
378 msgbuf_paddr = mp->start + mp->size - sz;
379 mp->size -= sz;
380 if (mp->size <= 0)
381 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
382 #endif
383
384 printf("Loading pages\n");
385 for (mp = avail; mp->size; mp++)
386 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
387 atop(mp->start), atop(mp->start + mp->size),
388 VM_FREELIST_DEFAULT);
389
390 /*
391 * Initialize kernel pmap and hardware.
392 */
393 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
394 pmap_kernel()->pm_ctx = KERNEL_PID;
395 nextavail = avail->start;
396
397
398 evcnt_attach_static(&tlbhit_ev);
399 evcnt_attach_static(&tlbmiss_ev);
400 evcnt_attach_static(&tlbflush_ev);
401 evcnt_attach_static(&tlbenter_ev);
402 printf("Done\n");
403 }
404
405 /*
406 * Restrict given range to physical memory
407 *
408 * (Used by /dev/mem)
409 */
410 void
411 pmap_real_memory(paddr_t *start, psize_t *size)
412 {
413 struct mem_region *mp;
414
415 for (mp = mem; mp->size; mp++) {
416 if (*start + *size > mp->start &&
417 *start < mp->start + mp->size) {
418 if (*start < mp->start) {
419 *size -= mp->start - *start;
420 *start = mp->start;
421 }
422 if (*start + *size > mp->start + mp->size)
423 *size = mp->start + mp->size - *start;
424 return;
425 }
426 }
427 *size = 0;
428 }
429
430 /*
431 * Initialize anything else for pmap handling.
432 * Called during vm_init().
433 */
434 void
435 pmap_init(void)
436 {
437 struct pv_entry *pv;
438 vsize_t sz;
439 vaddr_t addr;
440 int i, s;
441 int bank;
442 char *attr;
443
444 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
445 sz = round_page(sz);
446 addr = uvm_km_zalloc(kernel_map, sz);
447 s = splvm();
448 pv = pv_table = (struct pv_entry *)addr;
449 for (i = npgs; --i >= 0;)
450 pv++->pv_pm = NULL;
451 pmap_attrib = (char *)pv;
452 memset(pv, 0, npgs);
453
454 pv = pv_table;
455 attr = pmap_attrib;
456 for (bank = 0; bank < vm_nphysseg; bank++) {
457 sz = vm_physmem[bank].end - vm_physmem[bank].start;
458 vm_physmem[bank].pmseg.pvent = pv;
459 vm_physmem[bank].pmseg.attrs = attr;
460 pv += sz;
461 attr += sz;
462 }
463
464 pmap_initialized = 1;
465 splx(s);
466
467 /* Setup a pool for additional pvlist structures */
468 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL);
469 }
470
471 /*
472 * How much virtual space is available to the kernel?
473 */
474 void
475 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
476 {
477
478 #if 0
479 /*
480 * Reserve one segment for kernel virtual memory
481 */
482 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
483 *end = *start + SEGMENT_LENGTH;
484 #else
485 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
486 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
487 #endif
488 }
489
490 #ifdef PMAP_GROWKERNEL
491 /*
492 * Preallocate kernel page tables to a specified VA.
493 * This simply loops through the first TTE for each
494 * page table from the beginning of the kernel pmap,
495 * reads the entry, and if the result is
496 * zero (either invalid entry or no page table) it stores
497 * a zero there, populating page tables in the process.
498 * This is not the most efficient technique but i don't
499 * expect it to be called that often.
500 */
501 extern struct vm_page *vm_page_alloc1 __P((void));
502 extern void vm_page_free1 __P((struct vm_page *));
503
504 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
505
506 vaddr_t
507 pmap_growkernel(maxkvaddr)
508 vaddr_t maxkvaddr;
509 {
510 int s;
511 int seg;
512 paddr_t pg;
513 struct pmap *pm = pmap_kernel();
514
515 s = splvm();
516
517 /* Align with the start of a page table */
518 for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
519 kbreak += PTMAP) {
520 seg = STIDX(kbreak);
521
522 if (pte_find(pm, kbreak)) continue;
523
524 if (uvm.page_init_done) {
525 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
526 } else {
527 if (!uvm_page_physget(&pg))
528 panic("pmap_growkernel: no memory");
529 }
530 if (!pg) panic("pmap_growkernel: no pages");
531 pmap_zero_page((paddr_t)pg);
532
533 /* XXX This is based on all phymem being addressable */
534 pm->pm_ptbl[seg] = (u_int *)pg;
535 }
536 splx(s);
537 return (kbreak);
538 }
539
540 /*
541 * vm_page_alloc1:
542 *
543 * Allocate and return a memory cell with no associated object.
544 */
545 struct vm_page *
546 vm_page_alloc1()
547 {
548 struct vm_page *pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
549 if (pg) {
550 pg->wire_count = 1; /* no mappings yet */
551 pg->flags &= ~PG_BUSY; /* never busy */
552 }
553 return pg;
554 }
555
556 /*
557 * vm_page_free1:
558 *
559 * Returns the given page to the free list,
560 * disassociating it with any VM object.
561 *
562 * Object and page must be locked prior to entry.
563 */
564 void
565 vm_page_free1(mem)
566 struct vm_page *mem;
567 {
568 #ifdef DIAGNOSTIC
569 if (mem->flags != (PG_CLEAN|PG_FAKE)) {
570 printf("Freeing invalid page %p\n", mem);
571 printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(mem));
572 #ifdef DDB
573 Debugger();
574 #endif
575 return;
576 }
577 #endif
578 mem->flags |= PG_BUSY;
579 mem->wire_count = 0;
580 uvm_pagefree(mem);
581 }
582 #endif
583
584 /*
585 * Create and return a physical map.
586 */
587 struct pmap *
588 pmap_create(void)
589 {
590 struct pmap *pm;
591
592 pm = (struct pmap *)malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
593 memset((caddr_t)pm, 0, sizeof *pm);
594 pmap_pinit(pm);
595 return pm;
596 }
597
598 /*
599 * Initialize a preallocated and zeroed pmap structure.
600 */
601 void
602 pmap_pinit(struct pmap *pm)
603 {
604 int i;
605
606 /*
607 * Allocate some segment registers for this pmap.
608 */
609 pm->pm_refs = 1;
610 for (i = 0; i < STSZ; i++)
611 pm->pm_ptbl[i] = NULL;
612 }
613
614 /*
615 * Add a reference to the given pmap.
616 */
617 void
618 pmap_reference(struct pmap *pm)
619 {
620
621 pm->pm_refs++;
622 }
623
624 /*
625 * Retire the given pmap from service.
626 * Should only be called if the map contains no valid mappings.
627 */
628 void
629 pmap_destroy(struct pmap *pm)
630 {
631
632 if (--pm->pm_refs == 0) {
633 pmap_release(pm);
634 free((caddr_t)pm, M_VMPMAP);
635 }
636 }
637
638 /*
639 * Release any resources held by the given physical map.
640 * Called when a pmap initialized by pmap_pinit is being released.
641 */
642 static void
643 pmap_release(struct pmap *pm)
644 {
645 int i;
646
647 for (i = 0; i < STSZ; i++)
648 if (pm->pm_ptbl[i]) {
649 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
650 PAGE_SIZE);
651 pm->pm_ptbl[i] = NULL;
652 }
653 if (pm->pm_ctx) ctx_free(pm);
654 }
655
656 /*
657 * Copy the range specified by src_addr/len
658 * from the source map to the range dst_addr/len
659 * in the destination map.
660 *
661 * This routine is only advisory and need not do anything.
662 */
663 void
664 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
665 vsize_t len, vaddr_t src_addr)
666 {
667 }
668
669 /*
670 * Require that all active physical maps contain no
671 * incorrect entries NOW.
672 */
673 void
674 pmap_update(struct pmap *pmap)
675 {
676 }
677
678 /*
679 * Garbage collects the physical map system for
680 * pages which are no longer used.
681 * Success need not be guaranteed -- that is, there
682 * may well be pages which are not referenced, but
683 * others may be collected.
684 * Called by the pageout daemon when pages are scarce.
685 */
686 void
687 pmap_collect(struct pmap *pm)
688 {
689 }
690
691 /*
692 * Fill the given physical page with zeroes.
693 */
694 void
695 pmap_zero_page(paddr_t pa)
696 {
697
698 #ifdef PPC_4XX_NOCACHE
699 memset((caddr_t)pa, 0, PAGE_SIZE);
700 #else
701 int i;
702
703 for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
704 __asm __volatile ("dcbz 0,%0" :: "r"(pa));
705 pa += CACHELINESIZE;
706 }
707 #endif
708 }
709
710 /*
711 * Copy the given physical source page to its destination.
712 */
713 void
714 pmap_copy_page(paddr_t src, paddr_t dst)
715 {
716
717 memcpy((caddr_t)dst, (caddr_t)src, PAGE_SIZE);
718 dcache_flush_page(dst);
719 }
720
721 /*
722 * This returns whether this is the first mapping of a page.
723 */
724 static inline int
725 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
726 {
727 struct pv_entry *pv, *npv = NULL;
728 int s;
729
730 if (!pmap_initialized)
731 return 0;
732
733 s = splvm();
734
735 pv = pa_to_pv(pa);
736 for (npv = pv; npv; npv = npv->pv_next)
737 if (npv->pv_va == va && npv->pv_pm == pm) {
738 printf("Duplicate pv: va %lx pm %p\n", va, pm);
739 #ifdef DDB
740 Debugger();
741 #endif
742 return (1);
743 }
744
745 if (!pv->pv_pm) {
746 /*
747 * No entries yet, use header as the first entry.
748 */
749 pv->pv_va = va;
750 pv->pv_pm = pm;
751 pv->pv_next = NULL;
752 } else {
753 /*
754 * There is at least one other VA mapping this page.
755 * Place this entry after the header.
756 */
757 npv = pool_get(&pv_pool, PR_WAITOK);
758 if (!npv) return (0);
759 npv->pv_va = va;
760 npv->pv_pm = pm;
761 npv->pv_next = pv->pv_next;
762 pv->pv_next = npv;
763 }
764 splx(s);
765 return (1);
766 }
767
768 static void
769 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
770 {
771 struct pv_entry *pv, *npv;
772
773 /*
774 * Remove from the PV table.
775 */
776 pv = pa_to_pv(pa);
777 if (!pv) return;
778
779 /*
780 * If it is the first entry on the list, it is actually
781 * in the header and we must copy the following entry up
782 * to the header. Otherwise we must search the list for
783 * the entry. In either case we free the now unused entry.
784 */
785 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
786 if ((npv = pv->pv_next)) {
787 *pv = *npv;
788 pool_put(&pv_pool, npv);
789 } else
790 pv->pv_pm = NULL;
791 } else {
792 for (; (npv = pv->pv_next) != NULL; pv = npv)
793 if (pm == npv->pv_pm && PV_CMPVA(va, npv))
794 break;
795 if (npv) {
796 pv->pv_next = npv->pv_next;
797 pool_put(&pv_pool, npv);
798 }
799 }
800 }
801
802 /*
803 * Insert physical page at pa into the given pmap at virtual address va.
804 */
805 int
806 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
807 {
808 int s;
809 u_int tte;
810 int managed;
811
812 /*
813 * Have to remove any existing mapping first.
814 */
815 pmap_remove(pm, va, va + PAGE_SIZE);
816
817 if (flags & PMAP_WIRED) flags |= prot;
818
819 /* If it has no protections don't bother w/the rest */
820 if (!(flags & VM_PROT_ALL))
821 return (0);
822
823 managed = 0;
824 if (vm_physseg_find(atop(pa), NULL) != -1)
825 managed = 1;
826
827 /*
828 * Generate TTE.
829 *
830 * XXXX
831 *
832 * Since the kernel does not handle execution privileges properly,
833 * we will handle read and execute permissions together.
834 */
835 tte = TTE_PA(pa) | TTE_EX;
836 /* XXXX -- need to support multiple page sizes. */
837 tte |= TTE_SZ_16K;
838 #ifdef DIAGNOSTIC
839 if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
840 (PME_NOCACHE | PME_WRITETHROUG))
841 panic("pmap_enter: uncached & writethrough");
842 #endif
843 if (flags & PME_NOCACHE)
844 /* Must be I/O mapping */
845 tte |= TTE_I | TTE_G;
846 #ifdef PPC_4XX_NOCACHE
847 tte |= TTE_I;
848 #else
849 else if (flags & PME_WRITETHROUG)
850 /* Uncached and writethrough are not compatible */
851 tte |= TTE_W;
852 #endif
853 if (pm == pmap_kernel())
854 tte |= TTE_ZONE(ZONE_PRIV);
855 else
856 tte |= TTE_ZONE(ZONE_USER);
857
858 if (flags & VM_PROT_WRITE)
859 tte |= TTE_WR;
860
861 /*
862 * Now record mapping for later back-translation.
863 */
864 if (pmap_initialized && managed) {
865 char *attr;
866
867 if (!pmap_enter_pv(pm, va, pa)) {
868 /* Could not enter pv on a managed page */
869 return 1;
870 }
871
872 /* Now set attributes. */
873 attr = pa_to_attr(pa);
874 #ifdef DIAGNOSTIC
875 if (!attr)
876 panic("managed but no attr");
877 #endif
878 if (flags & VM_PROT_ALL)
879 *attr |= PTE_HI_REF;
880 if (flags & VM_PROT_WRITE)
881 *attr |= PTE_HI_CHG;
882 }
883
884 s = splvm();
885
886 /* Insert page into page table. */
887 pte_enter(pm, va, tte);
888
889 /* If this is a real fault, enter it in the tlb */
890 if (tte && ((flags & PMAP_WIRED) == 0)) {
891 ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
892 }
893 splx(s);
894
895 /* Flush the real memory from the instruction cache. */
896 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
897 __syncicache((void *)pa, PAGE_SIZE);
898
899 return 0;
900 }
901
902 void
903 pmap_unwire(struct pmap *pm, vaddr_t va)
904 {
905 struct pv_entry *pv, *npv;
906 paddr_t pa;
907 int s = splvm();
908
909 if (pm == NULL) {
910 return;
911 }
912
913 if (!pmap_extract(pm, va, &pa)) {
914 return;
915 }
916
917 va |= PV_WIRED;
918
919 pv = pa_to_pv(pa);
920 if (!pv) return;
921
922 /*
923 * If it is the first entry on the list, it is actually
924 * in the header and we must copy the following entry up
925 * to the header. Otherwise we must search the list for
926 * the entry. In either case we free the now unused entry.
927 */
928 for (npv = pv; (npv = pv->pv_next) != NULL; pv = npv) {
929 if (pm == npv->pv_pm && PV_CMPVA(va, npv)) {
930 npv->pv_va &= ~PV_WIRED;
931 break;
932 }
933 }
934 splx(s);
935 }
936
937 void
938 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
939 {
940 int s;
941 u_int tte;
942 struct pmap *pm = pmap_kernel();
943
944 /*
945 * Have to remove any existing mapping first.
946 */
947
948 /*
949 * Generate TTE.
950 *
951 * XXXX
952 *
953 * Since the kernel does not handle execution privileges properly,
954 * we will handle read and execute permissions together.
955 */
956 tte = 0;
957 if (prot & VM_PROT_ALL) {
958
959 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
960 /* XXXX -- need to support multiple page sizes. */
961 tte |= TTE_SZ_16K;
962 #ifdef DIAGNOSTIC
963 if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
964 (PME_NOCACHE | PME_WRITETHROUG))
965 panic("pmap_kenter_pa: uncached & writethrough");
966 #endif
967 if (prot & PME_NOCACHE)
968 /* Must be I/O mapping */
969 tte |= TTE_I | TTE_G;
970 #ifdef PPC_4XX_NOCACHE
971 tte |= TTE_I;
972 #else
973 else if (prot & PME_WRITETHROUG)
974 /* Uncached and writethrough are not compatible */
975 tte |= TTE_W;
976 #endif
977 if (prot & VM_PROT_WRITE)
978 tte |= TTE_WR;
979 }
980
981 s = splvm();
982
983 /* Insert page into page table. */
984 pte_enter(pm, va, tte);
985 splx(s);
986 }
987
988 void
989 pmap_kremove(vaddr_t va, vsize_t len)
990 {
991
992 while (len > 0) {
993 pte_enter(pmap_kernel(), va, 0);
994 va += PAGE_SIZE;
995 len -= PAGE_SIZE;
996 }
997 }
998
999 /*
1000 * Remove the given range of mapping entries.
1001 */
1002 void
1003 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
1004 {
1005 int s;
1006 paddr_t pa;
1007 volatile u_int *ptp;
1008
1009 s = splvm();
1010 while (va < endva) {
1011
1012 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
1013 pa = TTE_PA(pa);
1014 pmap_remove_pv(pm, va, pa);
1015 *ptp = 0;
1016 ppc4xx_tlb_flush(va, pm->pm_ctx);
1017 pm->pm_stats.resident_count--;
1018 }
1019 va += PAGE_SIZE;
1020 }
1021
1022 splx(s);
1023 }
1024
1025 /*
1026 * Get the physical page address for the given pmap/virtual address.
1027 */
1028 boolean_t
1029 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1030 {
1031 int seg = STIDX(va);
1032 int ptn = PTIDX(va);
1033 u_int pa = 0;
1034 int s = splvm();
1035
1036 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
1037 *pap = TTE_PA(pa) | (va & PGOFSET);
1038 }
1039 splx(s);
1040 return (pa != 0);
1041 }
1042
1043 /*
1044 * Lower the protection on the specified range of this pmap.
1045 *
1046 * There are only two cases: either the protection is going to 0,
1047 * or it is going to read-only.
1048 */
1049 void
1050 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1051 {
1052 volatile u_int *ptp;
1053 int s;
1054
1055 if (prot & VM_PROT_READ) {
1056 s = splvm();
1057 while (sva < eva) {
1058 if ((ptp = pte_find(pm, sva)) != NULL) {
1059 *ptp &= ~TTE_WR;
1060 ppc4xx_tlb_flush(sva, pm->pm_ctx);
1061 }
1062 sva += PAGE_SIZE;
1063 }
1064 splx(s);
1065 return;
1066 }
1067 pmap_remove(pm, sva, eva);
1068 }
1069
1070 boolean_t
1071 check_attr(struct vm_page *pg, u_int mask, int clear)
1072 {
1073 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1074 int s;
1075 char *attr;
1076 int rv;
1077
1078 /*
1079 * First modify bits in cache.
1080 */
1081 s = splvm();
1082 attr = pa_to_attr(pa);
1083 if (attr == NULL)
1084 return FALSE;
1085
1086 rv = ((*attr & mask) != 0);
1087 if (clear) {
1088 *attr &= ~mask;
1089 pmap_page_protect(pg, (mask == PTE_HI_CHG) ? VM_PROT_READ : 0);
1090 }
1091 splx(s);
1092 return rv;
1093 }
1094
1095
1096 /*
1097 * Lower the protection on the specified physical page.
1098 *
1099 * There are only two cases: either the protection is going to 0,
1100 * or it is going to read-only.
1101 */
1102 void
1103 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1104 {
1105 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1106 vaddr_t va;
1107 struct pv_entry *pvh, *pv, *npv;
1108 struct pmap *pm;
1109
1110 pvh = pa_to_pv(pa);
1111 if (pvh == NULL)
1112 return;
1113
1114 /* Handle extra pvs which may be deleted in the operation */
1115 for (pv = pvh->pv_next; pv; pv = npv) {
1116 npv = pv->pv_next;
1117
1118 pm = pv->pv_pm;
1119 va = pv->pv_va;
1120 pmap_protect(pm, va, va+PAGE_SIZE, prot);
1121 }
1122 /* Now check the head pv */
1123 if (pvh->pv_pm) {
1124 pv = pvh;
1125 pm = pv->pv_pm;
1126 va = pv->pv_va;
1127 pmap_protect(pm, va, va+PAGE_SIZE, prot);
1128 }
1129 }
1130
1131 /*
1132 * Activate the address space for the specified process. If the process
1133 * is the current process, load the new MMU context.
1134 */
1135 void
1136 pmap_activate(struct lwp *l)
1137 {
1138 #if 0
1139 struct pcb *pcb = &l->l_proc->p_addr->u_pcb;
1140 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1141
1142 /*
1143 * XXX Normally performed in cpu_fork().
1144 */
1145 printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1146 if (pcb->pcb_pm != pmap) {
1147 pcb->pcb_pm = pmap;
1148 (void) pmap_extract(pmap_kernel(), (vaddr_t)pcb->pcb_pm,
1149 (paddr_t *)&pcb->pcb_pmreal);
1150 }
1151
1152 if (l == curlwp) {
1153 /* Store pointer to new current pmap. */
1154 curpm = pcb->pcb_pmreal;
1155 }
1156 #endif
1157 }
1158
1159 /*
1160 * Deactivate the specified process's address space.
1161 */
1162 void
1163 pmap_deactivate(struct lwp *l)
1164 {
1165 }
1166
1167 /*
1168 * Synchronize caches corresponding to [addr, addr+len) in p.
1169 */
1170 void
1171 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1172 {
1173 struct pmap *pm = p->p_vmspace->vm_map.pmap;
1174 int msr, ctx, opid, step;
1175
1176
1177 step = CACHELINESIZE;
1178
1179 /*
1180 * Need to turn off IMMU and switch to user context.
1181 * (icbi uses DMMU).
1182 */
1183 if (!(ctx = pm->pm_ctx)) {
1184 /* No context -- assign it one */
1185 ctx_alloc(pm);
1186 ctx = pm->pm_ctx;
1187 }
1188 __asm __volatile("mfmsr %0;"
1189 "li %1, 0x20;"
1190 "andc %1,%0,%1;"
1191 "mtmsr %1;"
1192 "sync;isync;"
1193 "mfpid %1;"
1194 "mtpid %2;"
1195 "sync; isync;"
1196 "1:"
1197 "dcbf 0,%3;"
1198 "icbi 0,%3;"
1199 "add %3,%3,%5;"
1200 "addc. %4,%4,%6;"
1201 "bge 1b;"
1202 "mtpid %1;"
1203 "mtmsr %0;"
1204 "sync; isync"
1205 : "=&r" (msr), "=&r" (opid)
1206 : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step));
1207 }
1208
1209
1210 /* This has to be done in real mode !!! */
1211 void
1212 ppc4xx_tlb_flush(vaddr_t va, int pid)
1213 {
1214 u_long i, found;
1215 u_long msr;
1216
1217 /* If there's no context then it can't be mapped. */
1218 if (!pid) return;
1219
1220 asm("mfpid %1;" /* Save PID */
1221 "mfmsr %2;" /* Save MSR */
1222 "li %0,0;" /* Now clear MSR */
1223 "mtmsr %0;"
1224 "mtpid %4;" /* Set PID */
1225 "sync;"
1226 "tlbsx. %0,0,%3;" /* Search TLB */
1227 "sync;"
1228 "mtpid %1;" /* Restore PID */
1229 "mtmsr %2;" /* Restore MSR */
1230 "sync;isync;"
1231 "li %1,1;"
1232 "beq 1f;"
1233 "li %1,0;"
1234 "1:"
1235 : "=&r" (i), "=&r" (found), "=&r" (msr)
1236 : "r" (va), "r" (pid));
1237 if (found && !TLB_LOCKED(i)) {
1238
1239 /* Now flush translation */
1240 asm volatile(
1241 "tlbwe %0,%1,0;"
1242 "sync;isync;"
1243 : : "r" (0), "r" (i));
1244
1245 tlb_info[i].ti_ctx = 0;
1246 tlb_info[i].ti_flags = 0;
1247 tlbnext = i;
1248 /* Successful flushes */
1249 tlbflush_ev.ev_count++;
1250 }
1251 }
1252
1253 void
1254 ppc4xx_tlb_flush_all(void)
1255 {
1256 u_long i;
1257
1258 for (i = 0; i < NTLB; i++)
1259 if (!TLB_LOCKED(i)) {
1260 asm volatile(
1261 "tlbwe %0,%1,0;"
1262 "sync;isync;"
1263 : : "r" (0), "r" (i));
1264 tlb_info[i].ti_ctx = 0;
1265 tlb_info[i].ti_flags = 0;
1266 }
1267
1268 asm volatile("sync;isync");
1269 }
1270
1271 /* Find a TLB entry to evict. */
1272 static int
1273 ppc4xx_tlb_find_victim(void)
1274 {
1275 int flags;
1276
1277 for (;;) {
1278 if (++tlbnext >= NTLB)
1279 tlbnext = TLB_NRESERVED;
1280 flags = tlb_info[tlbnext].ti_flags;
1281 if (!(flags & TLBF_USED) ||
1282 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1283 u_long va, stack = (u_long)&va;
1284
1285 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1286 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1287 (flags & TLBF_USED)) {
1288 /* Kernel stack page */
1289 flags |= TLBF_USED;
1290 tlb_info[tlbnext].ti_flags = flags;
1291 } else {
1292 /* Found it! */
1293 return (tlbnext);
1294 }
1295 } else {
1296 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1297 }
1298 }
1299 }
1300
1301 void
1302 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1303 {
1304 u_long th, tl, idx;
1305 tlbpid_t pid;
1306 u_short msr;
1307 paddr_t pa;
1308 int s, sz;
1309
1310 tlbenter_ev.ev_count++;
1311
1312 sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1313 pa = (pte & TTE_RPN_MASK(sz));
1314 th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1315 tl = (pte & ~TLB_RPN_MASK) | pa;
1316 tl |= ppc4xx_tlbflags(va, pa);
1317
1318 s = splhigh();
1319 idx = ppc4xx_tlb_find_victim();
1320
1321 #ifdef DIAGNOSTIC
1322 if ((idx < TLB_NRESERVED) || (idx >= NTLB)) {
1323 panic("ppc4xx_tlb_enter: repacing entry %ld", idx);
1324 }
1325 #endif
1326
1327 tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1328 tlb_info[idx].ti_ctx = ctx;
1329 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1330
1331 asm volatile(
1332 "mfmsr %0;" /* Save MSR */
1333 "li %1,0;"
1334 "tlbwe %1,%3,0;" /* Invalidate old entry. */
1335 "mtmsr %1;" /* Clear MSR */
1336 "mfpid %1;" /* Save old PID */
1337 "mtpid %2;" /* Load translation ctx */
1338 "sync; isync;"
1339 #ifdef DEBUG
1340 "andi. %3,%3,63;"
1341 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */
1342 #endif
1343 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1344 "sync; isync;"
1345 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1346 "sync; isync;"
1347 : "=&r" (msr), "=&r" (pid)
1348 : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1349 splx(s);
1350 }
1351
1352 void
1353 ppc4xx_tlb_unpin(int i)
1354 {
1355
1356 if (i == -1)
1357 for (i = 0; i < TLB_NRESERVED; i++)
1358 tlb_info[i].ti_flags &= ~TLBF_LOCKED;
1359 else
1360 tlb_info[i].ti_flags &= ~TLBF_LOCKED;
1361 }
1362
1363 void
1364 ppc4xx_tlb_init(void)
1365 {
1366 int i;
1367
1368 /* Mark reserved TLB entries */
1369 for (i = 0; i < TLB_NRESERVED; i++) {
1370 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1371 tlb_info[i].ti_ctx = KERNEL_PID;
1372 }
1373
1374 /* Setup security zones */
1375 /* Z0 - accessible by kernel only if TLB entry permissions allow
1376 * Z1,Z2 - access is controlled by TLB entry permissions
1377 * Z3 - full access regardless of TLB entry permissions
1378 */
1379
1380 asm volatile(
1381 "mtspr %0,%1;"
1382 "sync;"
1383 :: "K"(SPR_ZPR), "r" (0x1b000000));
1384 }
1385
1386
1387 /*
1388 * We should pass the ctx in from trap code.
1389 */
1390 int
1391 pmap_tlbmiss(vaddr_t va, int ctx)
1392 {
1393 volatile u_int *pte;
1394 u_long tte;
1395
1396 tlbmiss_ev.ev_count++;
1397
1398 /*
1399 * XXXX We will reserve 0-0x80000000 for va==pa mappings.
1400 */
1401 if (ctx != KERNEL_PID || (va & 0x80000000)) {
1402 pte = pte_find((struct pmap *)ctxbusy[ctx], va);
1403 if (pte == NULL) {
1404 /* Map unmanaged addresses directly for kernel access */
1405 return 1;
1406 }
1407 tte = *pte;
1408 if (tte == 0) {
1409 return 1;
1410 }
1411 } else {
1412 /* Create a 16MB writable mapping. */
1413 #ifdef PPC_4XX_NOCACHE
1414 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I | TTE_WR;
1415 #else
1416 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1417 #endif
1418 }
1419 tlbhit_ev.ev_count++;
1420 ppc4xx_tlb_enter(ctx, va, tte);
1421
1422 return 0;
1423 }
1424
1425 /*
1426 * Flush all the entries matching a context from the TLB.
1427 */
1428 static int
1429 ctx_flush(int cnum)
1430 {
1431 int i;
1432
1433 /* We gotta steal this context */
1434 for (i = TLB_NRESERVED; i < NTLB; i++) {
1435 if (tlb_info[i].ti_ctx == cnum) {
1436 /* Can't steal ctx if it has a locked entry. */
1437 if (TLB_LOCKED(i)) {
1438 #ifdef DIAGNOSTIC
1439 printf("ctx_flush: can't invalidate "
1440 "locked mapping %d "
1441 "for context %d\n", i, cnum);
1442 #ifdef DDB
1443 Debugger();
1444 #endif
1445 #endif
1446 return (1);
1447 }
1448 #ifdef DIAGNOSTIC
1449 if (i < TLB_NRESERVED)
1450 panic("TLB entry %d not locked", i);
1451 #endif
1452 /* Invalidate particular TLB entry regardless of locked status */
1453 asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1454 tlb_info[i].ti_flags = 0;
1455 }
1456 }
1457 return (0);
1458 }
1459
1460 /*
1461 * Allocate a context. If necessary, steal one from someone else.
1462 *
1463 * The new context is flushed from the TLB before returning.
1464 */
1465 int
1466 ctx_alloc(struct pmap *pm)
1467 {
1468 int s, cnum;
1469 static int next = MINCTX;
1470
1471 if (pm == pmap_kernel()) {
1472 #ifdef DIAGNOSTIC
1473 printf("ctx_alloc: kernel pmap!\n");
1474 #endif
1475 return (0);
1476 }
1477 s = splvm();
1478
1479 /* Find a likely context. */
1480 cnum = next;
1481 do {
1482 if ((++cnum) > NUMCTX)
1483 cnum = MINCTX;
1484 } while (ctxbusy[cnum] != NULL && cnum != next);
1485
1486 /* Now clean it out */
1487 oops:
1488 if (cnum < MINCTX)
1489 cnum = MINCTX; /* Never steal ctx 0 or 1 */
1490 if (ctx_flush(cnum)) {
1491 /* oops -- something's wired. */
1492 if ((++cnum) > NUMCTX)
1493 cnum = MINCTX;
1494 goto oops;
1495 }
1496
1497 if (ctxbusy[cnum]) {
1498 #ifdef DEBUG
1499 /* We should identify this pmap and clear it */
1500 printf("Warning: stealing context %d\n", cnum);
1501 #endif
1502 ctxbusy[cnum]->pm_ctx = 0;
1503 }
1504 ctxbusy[cnum] = pm;
1505 next = cnum;
1506 splx(s);
1507 pm->pm_ctx = cnum;
1508
1509 return cnum;
1510 }
1511
1512 /*
1513 * Give away a context.
1514 */
1515 void
1516 ctx_free(struct pmap *pm)
1517 {
1518 int oldctx;
1519
1520 oldctx = pm->pm_ctx;
1521
1522 if (oldctx == 0)
1523 panic("ctx_free: freeing kernel context");
1524 #ifdef DIAGNOSTIC
1525 if (ctxbusy[oldctx] == 0)
1526 printf("ctx_free: freeing free context %d\n", oldctx);
1527 if (ctxbusy[oldctx] != pm) {
1528 printf("ctx_free: freeing someone esle's context\n "
1529 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1530 oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1531 #ifdef DDB
1532 Debugger();
1533 #endif
1534 }
1535 #endif
1536 /* We should verify it has not been stolen and reallocated... */
1537 ctxbusy[oldctx] = NULL;
1538 ctx_flush(oldctx);
1539 }
1540
1541
1542 #ifdef DEBUG
1543 /*
1544 * Test ref/modify handling.
1545 */
1546 void pmap_testout __P((void));
1547 void
1548 pmap_testout()
1549 {
1550 vaddr_t va;
1551 volatile int *loc;
1552 int val = 0;
1553 paddr_t pa;
1554 struct vm_page *pg;
1555 int ref, mod;
1556
1557 /* Allocate a page */
1558 va = (vaddr_t)uvm_km_alloc1(kernel_map, PAGE_SIZE, 1);
1559 loc = (int*)va;
1560
1561 pmap_extract(pmap_kernel(), va, &pa);
1562 pg = PHYS_TO_VM_PAGE(pa);
1563 pmap_unwire(pmap_kernel(), va);
1564
1565 pmap_remove(pmap_kernel(), va, va+1);
1566 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1567 pmap_update(pmap_kernel());
1568
1569 /* Now clear reference and modify */
1570 ref = pmap_clear_reference(pg);
1571 mod = pmap_clear_modify(pg);
1572 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1573 (void *)(u_long)va, (long)pa,
1574 ref, mod);
1575
1576 /* Check it's properly cleared */
1577 ref = pmap_is_referenced(pg);
1578 mod = pmap_is_modified(pg);
1579 printf("Checking cleared page: ref %d, mod %d\n",
1580 ref, mod);
1581
1582 /* Reference page */
1583 val = *loc;
1584
1585 ref = pmap_is_referenced(pg);
1586 mod = pmap_is_modified(pg);
1587 printf("Referenced page: ref %d, mod %d val %x\n",
1588 ref, mod, val);
1589
1590 /* Now clear reference and modify */
1591 ref = pmap_clear_reference(pg);
1592 mod = pmap_clear_modify(pg);
1593 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1594 (void *)(u_long)va, (long)pa,
1595 ref, mod);
1596
1597 /* Modify page */
1598 *loc = 1;
1599
1600 ref = pmap_is_referenced(pg);
1601 mod = pmap_is_modified(pg);
1602 printf("Modified page: ref %d, mod %d\n",
1603 ref, mod);
1604
1605 /* Now clear reference and modify */
1606 ref = pmap_clear_reference(pg);
1607 mod = pmap_clear_modify(pg);
1608 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1609 (void *)(u_long)va, (long)pa,
1610 ref, mod);
1611
1612 /* Check it's properly cleared */
1613 ref = pmap_is_referenced(pg);
1614 mod = pmap_is_modified(pg);
1615 printf("Checking cleared page: ref %d, mod %d\n",
1616 ref, mod);
1617
1618 /* Modify page */
1619 *loc = 1;
1620
1621 ref = pmap_is_referenced(pg);
1622 mod = pmap_is_modified(pg);
1623 printf("Modified page: ref %d, mod %d\n",
1624 ref, mod);
1625
1626 /* Check pmap_protect() */
1627 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1628 pmap_update(pmap_kernel());
1629 ref = pmap_is_referenced(pg);
1630 mod = pmap_is_modified(pg);
1631 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1632 ref, mod);
1633
1634 /* Now clear reference and modify */
1635 ref = pmap_clear_reference(pg);
1636 mod = pmap_clear_modify(pg);
1637 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1638 (void *)(u_long)va, (long)pa,
1639 ref, mod);
1640
1641 /* Reference page */
1642 val = *loc;
1643
1644 ref = pmap_is_referenced(pg);
1645 mod = pmap_is_modified(pg);
1646 printf("Referenced page: ref %d, mod %d val %x\n",
1647 ref, mod, val);
1648
1649 /* Now clear reference and modify */
1650 ref = pmap_clear_reference(pg);
1651 mod = pmap_clear_modify(pg);
1652 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1653 (void *)(u_long)va, (long)pa,
1654 ref, mod);
1655
1656 /* Modify page */
1657 #if 0
1658 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1659 pmap_update(pmap_kernel());
1660 #endif
1661 *loc = 1;
1662
1663 ref = pmap_is_referenced(pg);
1664 mod = pmap_is_modified(pg);
1665 printf("Modified page: ref %d, mod %d\n",
1666 ref, mod);
1667
1668 /* Check pmap_protect() */
1669 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1670 pmap_update(pmap_kernel());
1671 ref = pmap_is_referenced(pg);
1672 mod = pmap_is_modified(pg);
1673 printf("pmap_protect(): ref %d, mod %d\n",
1674 ref, mod);
1675
1676 /* Now clear reference and modify */
1677 ref = pmap_clear_reference(pg);
1678 mod = pmap_clear_modify(pg);
1679 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1680 (void *)(u_long)va, (long)pa,
1681 ref, mod);
1682
1683 /* Reference page */
1684 val = *loc;
1685
1686 ref = pmap_is_referenced(pg);
1687 mod = pmap_is_modified(pg);
1688 printf("Referenced page: ref %d, mod %d val %x\n",
1689 ref, mod, val);
1690
1691 /* Now clear reference and modify */
1692 ref = pmap_clear_reference(pg);
1693 mod = pmap_clear_modify(pg);
1694 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1695 (void *)(u_long)va, (long)pa,
1696 ref, mod);
1697
1698 /* Modify page */
1699 #if 0
1700 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1701 pmap_update(pmap_kernel());
1702 #endif
1703 *loc = 1;
1704
1705 ref = pmap_is_referenced(pg);
1706 mod = pmap_is_modified(pg);
1707 printf("Modified page: ref %d, mod %d\n",
1708 ref, mod);
1709
1710 /* Check pmap_pag_protect() */
1711 pmap_page_protect(pg, VM_PROT_READ);
1712 ref = pmap_is_referenced(pg);
1713 mod = pmap_is_modified(pg);
1714 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1715 ref, mod);
1716
1717 /* Now clear reference and modify */
1718 ref = pmap_clear_reference(pg);
1719 mod = pmap_clear_modify(pg);
1720 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1721 (void *)(u_long)va, (long)pa,
1722 ref, mod);
1723
1724 /* Reference page */
1725 val = *loc;
1726
1727 ref = pmap_is_referenced(pg);
1728 mod = pmap_is_modified(pg);
1729 printf("Referenced page: ref %d, mod %d val %x\n",
1730 ref, mod, val);
1731
1732 /* Now clear reference and modify */
1733 ref = pmap_clear_reference(pg);
1734 mod = pmap_clear_modify(pg);
1735 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1736 (void *)(u_long)va, (long)pa,
1737 ref, mod);
1738
1739 /* Modify page */
1740 #if 0
1741 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1742 pmap_update(pmap_kernel());
1743 #endif
1744 *loc = 1;
1745
1746 ref = pmap_is_referenced(pg);
1747 mod = pmap_is_modified(pg);
1748 printf("Modified page: ref %d, mod %d\n",
1749 ref, mod);
1750
1751 /* Check pmap_pag_protect() */
1752 pmap_page_protect(pg, VM_PROT_NONE);
1753 ref = pmap_is_referenced(pg);
1754 mod = pmap_is_modified(pg);
1755 printf("pmap_page_protect(): ref %d, mod %d\n",
1756 ref, mod);
1757
1758 /* Now clear reference and modify */
1759 ref = pmap_clear_reference(pg);
1760 mod = pmap_clear_modify(pg);
1761 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1762 (void *)(u_long)va, (long)pa,
1763 ref, mod);
1764
1765
1766 /* Reference page */
1767 val = *loc;
1768
1769 ref = pmap_is_referenced(pg);
1770 mod = pmap_is_modified(pg);
1771 printf("Referenced page: ref %d, mod %d val %x\n",
1772 ref, mod, val);
1773
1774 /* Now clear reference and modify */
1775 ref = pmap_clear_reference(pg);
1776 mod = pmap_clear_modify(pg);
1777 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1778 (void *)(u_long)va, (long)pa,
1779 ref, mod);
1780
1781 /* Modify page */
1782 #if 0
1783 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1784 pmap_update(pmap_kernel());
1785 #endif
1786 *loc = 1;
1787
1788 ref = pmap_is_referenced(pg);
1789 mod = pmap_is_modified(pg);
1790 printf("Modified page: ref %d, mod %d\n",
1791 ref, mod);
1792
1793 /* Unmap page */
1794 pmap_remove(pmap_kernel(), va, va+1);
1795 pmap_update(pmap_kernel());
1796 ref = pmap_is_referenced(pg);
1797 mod = pmap_is_modified(pg);
1798 printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1799
1800 /* Now clear reference and modify */
1801 ref = pmap_clear_reference(pg);
1802 mod = pmap_clear_modify(pg);
1803 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1804 (void *)(u_long)va, (long)pa, ref, mod);
1805
1806 /* Check it's properly cleared */
1807 ref = pmap_is_referenced(pg);
1808 mod = pmap_is_modified(pg);
1809 printf("Checking cleared page: ref %d, mod %d\n",
1810 ref, mod);
1811
1812 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL,
1813 VM_PROT_ALL|PMAP_WIRED);
1814 uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE);
1815 }
1816 #endif
1817