pmap.c revision 1.29 1 /* $NetBSD: pmap.c,v 1.29 2004/07/31 13:28:53 simonb Exp $ */
2
3 /*
4 * Copyright 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.29 2004/07/31 13:28:53 simonb Exp $");
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/user.h>
76 #include <sys/queue.h>
77 #include <sys/systm.h>
78 #include <sys/pool.h>
79 #include <sys/device.h>
80
81 #include <uvm/uvm.h>
82
83 #include <machine/cpu.h>
84 #include <machine/pcb.h>
85 #include <machine/powerpc.h>
86
87 #include <powerpc/spr.h>
88 #include <machine/tlb.h>
89
90 /*
91 * kernmap is an array of PTEs large enough to map in
92 * 4GB. At 16KB/page it is 256K entries or 2MB.
93 */
94 #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1)
95 caddr_t kernmap;
96
97 #define MINCTX 2
98 #define NUMCTX 256
99 volatile struct pmap *ctxbusy[NUMCTX];
100
101 #define TLBF_USED 0x1
102 #define TLBF_REF 0x2
103 #define TLBF_LOCKED 0x4
104 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
105 typedef struct tlb_info_s {
106 char ti_flags;
107 char ti_ctx; /* TLB_PID assiciated with the entry */
108 u_int ti_va;
109 } tlb_info_t;
110
111 volatile tlb_info_t tlb_info[NTLB];
112 /* We'll use a modified FIFO replacement policy cause it's cheap */
113 volatile int tlbnext = TLB_NRESERVED;
114
115 u_long dtlb_miss_count = 0;
116 u_long itlb_miss_count = 0;
117 u_long ktlb_miss_count = 0;
118 u_long utlb_miss_count = 0;
119
120 /* Event counters */
121 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
122 NULL, "cpu", "tlbmiss");
123 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
124 NULL, "cpu", "tlbhit");
125 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
126 NULL, "cpu", "tlbflush");
127 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
128 NULL, "cpu", "tlbenter");
129
130 struct pmap kernel_pmap_;
131
132 int physmem;
133 static int npgs;
134 static u_int nextavail;
135 #ifndef MSGBUFADDR
136 extern paddr_t msgbuf_paddr;
137 #endif
138
139 static struct mem_region *mem, *avail;
140
141 /*
142 * This is a cache of referenced/modified bits.
143 * Bits herein are shifted by ATTRSHFT.
144 */
145 static char *pmap_attrib;
146
147 #define PV_WIRED 0x1
148 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
149 #define PV_CMPVA(va,pv) (!(((pv)->pv_va^(va))&(~PV_WIRED)))
150
151 struct pv_entry {
152 struct pv_entry *pv_next; /* Linked list of mappings */
153 vaddr_t pv_va; /* virtual address of mapping */
154 struct pmap *pv_pm;
155 };
156
157 struct pv_entry *pv_table;
158 static struct pool pv_pool;
159
160 static int pmap_initialized;
161
162 static int ctx_flush(int);
163
164 inline struct pv_entry *pa_to_pv(paddr_t);
165 static inline char *pa_to_attr(paddr_t);
166
167 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
168 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
169
170 static void pmap_pinit(pmap_t);
171 static void pmap_release(pmap_t);
172 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t);
173 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
174
175
176 inline struct pv_entry *
177 pa_to_pv(paddr_t pa)
178 {
179 int bank, pg;
180
181 bank = vm_physseg_find(atop(pa), &pg);
182 if (bank == -1)
183 return NULL;
184 return &vm_physmem[bank].pmseg.pvent[pg];
185 }
186
187 static inline char *
188 pa_to_attr(paddr_t pa)
189 {
190 int bank, pg;
191
192 bank = vm_physseg_find(atop(pa), &pg);
193 if (bank == -1)
194 return NULL;
195 return &vm_physmem[bank].pmseg.attrs[pg];
196 }
197
198 /*
199 * Insert PTE into page table.
200 */
201 int
202 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
203 {
204 int seg = STIDX(va);
205 int ptn = PTIDX(va);
206 u_int oldpte;
207
208 if (!pm->pm_ptbl[seg]) {
209 /* Don't allocate a page to clear a non-existent mapping. */
210 if (!pte) return (0);
211 /* Allocate a page XXXX this will sleep! */
212 pm->pm_ptbl[seg] =
213 (uint *)uvm_km_zalloc(kernel_map, PAGE_SIZE);
214 }
215 oldpte = pm->pm_ptbl[seg][ptn];
216 pm->pm_ptbl[seg][ptn] = pte;
217
218 /* Flush entry. */
219 ppc4xx_tlb_flush(va, pm->pm_ctx);
220 if (oldpte != pte) {
221 if (pte == 0)
222 pm->pm_stats.resident_count--;
223 else
224 pm->pm_stats.resident_count++;
225 }
226 return (1);
227 }
228
229 /*
230 * Get a pointer to a PTE in a page table.
231 */
232 volatile u_int *
233 pte_find(struct pmap *pm, vaddr_t va)
234 {
235 int seg = STIDX(va);
236 int ptn = PTIDX(va);
237
238 if (pm->pm_ptbl[seg])
239 return (&pm->pm_ptbl[seg][ptn]);
240
241 return (NULL);
242 }
243
244 /*
245 * This is called during initppc, before the system is really initialized.
246 */
247 void
248 pmap_bootstrap(u_int kernelstart, u_int kernelend)
249 {
250 struct mem_region *mp, *mp1;
251 int cnt, i;
252 u_int s, e, sz;
253
254 /*
255 * Allocate the kernel page table at the end of
256 * kernel space so it's in the locked TTE.
257 */
258 kernmap = (caddr_t)kernelend;
259
260 /*
261 * Initialize kernel page table.
262 */
263 for (i = 0; i < STSZ; i++) {
264 pmap_kernel()->pm_ptbl[i] = 0;
265 }
266 ctxbusy[0] = ctxbusy[1] = pmap_kernel();
267
268 /*
269 * Announce page-size to the VM-system
270 */
271 uvmexp.pagesize = NBPG;
272 uvm_setpagesize();
273
274 /*
275 * Get memory.
276 */
277 mem_regions(&mem, &avail);
278 for (mp = mem; mp->size; mp++) {
279 physmem += btoc(mp->size);
280 printf("+%lx,",mp->size);
281 }
282 printf("\n");
283 ppc4xx_tlb_init();
284 /*
285 * Count the number of available entries.
286 */
287 for (cnt = 0, mp = avail; mp->size; mp++)
288 cnt++;
289
290 /*
291 * Page align all regions.
292 * Non-page aligned memory isn't very interesting to us.
293 * Also, sort the entries for ascending addresses.
294 */
295 kernelstart &= ~PGOFSET;
296 kernelend = (kernelend + PGOFSET) & ~PGOFSET;
297 for (mp = avail; mp->size; mp++) {
298 s = mp->start;
299 e = mp->start + mp->size;
300 printf("%08x-%08x -> ",s,e);
301 /*
302 * Check whether this region holds all of the kernel.
303 */
304 if (s < kernelstart && e > kernelend) {
305 avail[cnt].start = kernelend;
306 avail[cnt++].size = e - kernelend;
307 e = kernelstart;
308 }
309 /*
310 * Look whether this regions starts within the kernel.
311 */
312 if (s >= kernelstart && s < kernelend) {
313 if (e <= kernelend)
314 goto empty;
315 s = kernelend;
316 }
317 /*
318 * Now look whether this region ends within the kernel.
319 */
320 if (e > kernelstart && e <= kernelend) {
321 if (s >= kernelstart)
322 goto empty;
323 e = kernelstart;
324 }
325 /*
326 * Now page align the start and size of the region.
327 */
328 s = round_page(s);
329 e = trunc_page(e);
330 if (e < s)
331 e = s;
332 sz = e - s;
333 printf("%08x-%08x = %x\n",s,e,sz);
334 /*
335 * Check whether some memory is left here.
336 */
337 if (sz == 0) {
338 empty:
339 memmove(mp, mp + 1,
340 (cnt - (mp - avail)) * sizeof *mp);
341 cnt--;
342 mp--;
343 continue;
344 }
345 /*
346 * Do an insertion sort.
347 */
348 npgs += btoc(sz);
349 for (mp1 = avail; mp1 < mp; mp1++)
350 if (s < mp1->start)
351 break;
352 if (mp1 < mp) {
353 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
354 mp1->start = s;
355 mp1->size = sz;
356 } else {
357 mp->start = s;
358 mp->size = sz;
359 }
360 }
361
362 /*
363 * We cannot do pmap_steal_memory here,
364 * since we don't run with translation enabled yet.
365 */
366 #ifndef MSGBUFADDR
367 /*
368 * allow for msgbuf
369 */
370 sz = round_page(MSGBUFSIZE);
371 mp = NULL;
372 for (mp1 = avail; mp1->size; mp1++)
373 if (mp1->size >= sz)
374 mp = mp1;
375 if (mp == NULL)
376 panic("not enough memory?");
377
378 npgs -= btoc(sz);
379 msgbuf_paddr = mp->start + mp->size - sz;
380 mp->size -= sz;
381 if (mp->size <= 0)
382 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
383 #endif
384
385 for (mp = avail; mp->size; mp++)
386 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
387 atop(mp->start), atop(mp->start + mp->size),
388 VM_FREELIST_DEFAULT);
389
390 /*
391 * Initialize kernel pmap and hardware.
392 */
393 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
394 pmap_kernel()->pm_ctx = KERNEL_PID;
395 nextavail = avail->start;
396
397
398 evcnt_attach_static(&tlbmiss_ev);
399 evcnt_attach_static(&tlbhit_ev);
400 evcnt_attach_static(&tlbflush_ev);
401 evcnt_attach_static(&tlbenter_ev);
402 }
403
404 /*
405 * Restrict given range to physical memory
406 *
407 * (Used by /dev/mem)
408 */
409 void
410 pmap_real_memory(paddr_t *start, psize_t *size)
411 {
412 struct mem_region *mp;
413
414 for (mp = mem; mp->size; mp++) {
415 if (*start + *size > mp->start &&
416 *start < mp->start + mp->size) {
417 if (*start < mp->start) {
418 *size -= mp->start - *start;
419 *start = mp->start;
420 }
421 if (*start + *size > mp->start + mp->size)
422 *size = mp->start + mp->size - *start;
423 return;
424 }
425 }
426 *size = 0;
427 }
428
429 /*
430 * Initialize anything else for pmap handling.
431 * Called during vm_init().
432 */
433 void
434 pmap_init(void)
435 {
436 struct pv_entry *pv;
437 vsize_t sz;
438 vaddr_t addr;
439 int i, s;
440 int bank;
441 char *attr;
442
443 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
444 sz = round_page(sz);
445 addr = uvm_km_zalloc(kernel_map, sz);
446 s = splvm();
447 pv = pv_table = (struct pv_entry *)addr;
448 for (i = npgs; --i >= 0;)
449 pv++->pv_pm = NULL;
450 pmap_attrib = (char *)pv;
451 memset(pv, 0, npgs);
452
453 pv = pv_table;
454 attr = pmap_attrib;
455 for (bank = 0; bank < vm_nphysseg; bank++) {
456 sz = vm_physmem[bank].end - vm_physmem[bank].start;
457 vm_physmem[bank].pmseg.pvent = pv;
458 vm_physmem[bank].pmseg.attrs = attr;
459 pv += sz;
460 attr += sz;
461 }
462
463 pmap_initialized = 1;
464 splx(s);
465
466 /* Setup a pool for additional pvlist structures */
467 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL);
468 }
469
470 /*
471 * How much virtual space is available to the kernel?
472 */
473 void
474 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
475 {
476
477 #if 0
478 /*
479 * Reserve one segment for kernel virtual memory
480 */
481 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
482 *end = *start + SEGMENT_LENGTH;
483 #else
484 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
485 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
486 #endif
487 }
488
489 #ifdef PMAP_GROWKERNEL
490 /*
491 * Preallocate kernel page tables to a specified VA.
492 * This simply loops through the first TTE for each
493 * page table from the beginning of the kernel pmap,
494 * reads the entry, and if the result is
495 * zero (either invalid entry or no page table) it stores
496 * a zero there, populating page tables in the process.
497 * This is not the most efficient technique but i don't
498 * expect it to be called that often.
499 */
500 extern struct vm_page *vm_page_alloc1 __P((void));
501 extern void vm_page_free1 __P((struct vm_page *));
502
503 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
504
505 vaddr_t
506 pmap_growkernel(maxkvaddr)
507 vaddr_t maxkvaddr;
508 {
509 int s;
510 int seg;
511 paddr_t pg;
512 struct pmap *pm = pmap_kernel();
513
514 s = splvm();
515
516 /* Align with the start of a page table */
517 for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
518 kbreak += PTMAP) {
519 seg = STIDX(kbreak);
520
521 if (pte_find(pm, kbreak)) continue;
522
523 if (uvm.page_init_done) {
524 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
525 } else {
526 if (!uvm_page_physget(&pg))
527 panic("pmap_growkernel: no memory");
528 }
529 if (!pg) panic("pmap_growkernel: no pages");
530 pmap_zero_page((paddr_t)pg);
531
532 /* XXX This is based on all phymem being addressable */
533 pm->pm_ptbl[seg] = (u_int *)pg;
534 }
535 splx(s);
536 return (kbreak);
537 }
538
539 /*
540 * vm_page_alloc1:
541 *
542 * Allocate and return a memory cell with no associated object.
543 */
544 struct vm_page *
545 vm_page_alloc1()
546 {
547 struct vm_page *pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
548 if (pg) {
549 pg->wire_count = 1; /* no mappings yet */
550 pg->flags &= ~PG_BUSY; /* never busy */
551 }
552 return pg;
553 }
554
555 /*
556 * vm_page_free1:
557 *
558 * Returns the given page to the free list,
559 * disassociating it with any VM object.
560 *
561 * Object and page must be locked prior to entry.
562 */
563 void
564 vm_page_free1(mem)
565 struct vm_page *mem;
566 {
567 #ifdef DIAGNOSTIC
568 if (mem->flags != (PG_CLEAN|PG_FAKE)) {
569 printf("Freeing invalid page %p\n", mem);
570 printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(mem));
571 #ifdef DDB
572 Debugger();
573 #endif
574 return;
575 }
576 #endif
577 mem->flags |= PG_BUSY;
578 mem->wire_count = 0;
579 uvm_pagefree(mem);
580 }
581 #endif
582
583 /*
584 * Create and return a physical map.
585 */
586 struct pmap *
587 pmap_create(void)
588 {
589 struct pmap *pm;
590
591 pm = (struct pmap *)malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
592 memset((caddr_t)pm, 0, sizeof *pm);
593 pmap_pinit(pm);
594 return pm;
595 }
596
597 /*
598 * Initialize a preallocated and zeroed pmap structure.
599 */
600 void
601 pmap_pinit(struct pmap *pm)
602 {
603 int i;
604
605 /*
606 * Allocate some segment registers for this pmap.
607 */
608 pm->pm_refs = 1;
609 for (i = 0; i < STSZ; i++)
610 pm->pm_ptbl[i] = NULL;
611 }
612
613 /*
614 * Add a reference to the given pmap.
615 */
616 void
617 pmap_reference(struct pmap *pm)
618 {
619
620 pm->pm_refs++;
621 }
622
623 /*
624 * Retire the given pmap from service.
625 * Should only be called if the map contains no valid mappings.
626 */
627 void
628 pmap_destroy(struct pmap *pm)
629 {
630
631 if (--pm->pm_refs == 0) {
632 pmap_release(pm);
633 free((caddr_t)pm, M_VMPMAP);
634 }
635 }
636
637 /*
638 * Release any resources held by the given physical map.
639 * Called when a pmap initialized by pmap_pinit is being released.
640 */
641 static void
642 pmap_release(struct pmap *pm)
643 {
644 int i;
645
646 for (i = 0; i < STSZ; i++)
647 if (pm->pm_ptbl[i]) {
648 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
649 PAGE_SIZE);
650 pm->pm_ptbl[i] = NULL;
651 }
652 if (pm->pm_ctx) ctx_free(pm);
653 }
654
655 /*
656 * Copy the range specified by src_addr/len
657 * from the source map to the range dst_addr/len
658 * in the destination map.
659 *
660 * This routine is only advisory and need not do anything.
661 */
662 void
663 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
664 vsize_t len, vaddr_t src_addr)
665 {
666 }
667
668 /*
669 * Require that all active physical maps contain no
670 * incorrect entries NOW.
671 */
672 void
673 pmap_update(struct pmap *pmap)
674 {
675 }
676
677 /*
678 * Garbage collects the physical map system for
679 * pages which are no longer used.
680 * Success need not be guaranteed -- that is, there
681 * may well be pages which are not referenced, but
682 * others may be collected.
683 * Called by the pageout daemon when pages are scarce.
684 */
685 void
686 pmap_collect(struct pmap *pm)
687 {
688 }
689
690 /*
691 * Fill the given physical page with zeroes.
692 */
693 void
694 pmap_zero_page(paddr_t pa)
695 {
696
697 #ifdef PPC_4XX_NOCACHE
698 memset((caddr_t)pa, 0, PAGE_SIZE);
699 #else
700 int i;
701
702 for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
703 __asm __volatile ("dcbz 0,%0" :: "r"(pa));
704 pa += CACHELINESIZE;
705 }
706 #endif
707 }
708
709 /*
710 * Copy the given physical source page to its destination.
711 */
712 void
713 pmap_copy_page(paddr_t src, paddr_t dst)
714 {
715
716 memcpy((caddr_t)dst, (caddr_t)src, PAGE_SIZE);
717 dcache_flush_page(dst);
718 }
719
720 /*
721 * This returns whether this is the first mapping of a page.
722 */
723 static inline int
724 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
725 {
726 struct pv_entry *pv, *npv = NULL;
727 int s;
728
729 if (!pmap_initialized)
730 return 0;
731
732 s = splvm();
733
734 pv = pa_to_pv(pa);
735 for (npv = pv; npv; npv = npv->pv_next)
736 if (npv->pv_va == va && npv->pv_pm == pm) {
737 printf("Duplicate pv: va %lx pm %p\n", va, pm);
738 #ifdef DDB
739 Debugger();
740 #endif
741 return (1);
742 }
743
744 if (!pv->pv_pm) {
745 /*
746 * No entries yet, use header as the first entry.
747 */
748 pv->pv_va = va;
749 pv->pv_pm = pm;
750 pv->pv_next = NULL;
751 } else {
752 /*
753 * There is at least one other VA mapping this page.
754 * Place this entry after the header.
755 */
756 npv = pool_get(&pv_pool, PR_WAITOK);
757 if (!npv) return (0);
758 npv->pv_va = va;
759 npv->pv_pm = pm;
760 npv->pv_next = pv->pv_next;
761 pv->pv_next = npv;
762 }
763 splx(s);
764 return (1);
765 }
766
767 static void
768 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
769 {
770 struct pv_entry *pv, *npv;
771
772 /*
773 * Remove from the PV table.
774 */
775 pv = pa_to_pv(pa);
776 if (!pv) return;
777
778 /*
779 * If it is the first entry on the list, it is actually
780 * in the header and we must copy the following entry up
781 * to the header. Otherwise we must search the list for
782 * the entry. In either case we free the now unused entry.
783 */
784 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
785 if ((npv = pv->pv_next)) {
786 *pv = *npv;
787 pool_put(&pv_pool, npv);
788 } else
789 pv->pv_pm = NULL;
790 } else {
791 for (; (npv = pv->pv_next) != NULL; pv = npv)
792 if (pm == npv->pv_pm && PV_CMPVA(va, npv))
793 break;
794 if (npv) {
795 pv->pv_next = npv->pv_next;
796 pool_put(&pv_pool, npv);
797 }
798 }
799 }
800
801 /*
802 * Insert physical page at pa into the given pmap at virtual address va.
803 */
804 int
805 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
806 {
807 int s;
808 u_int tte;
809 int managed;
810
811 /*
812 * Have to remove any existing mapping first.
813 */
814 pmap_remove(pm, va, va + PAGE_SIZE);
815
816 if (flags & PMAP_WIRED) flags |= prot;
817
818 /* If it has no protections don't bother w/the rest */
819 if (!(flags & VM_PROT_ALL))
820 return (0);
821
822 managed = 0;
823 if (vm_physseg_find(atop(pa), NULL) != -1)
824 managed = 1;
825
826 /*
827 * Generate TTE.
828 */
829 tte = TTE_PA(pa);
830 /* XXXX -- need to support multiple page sizes. */
831 tte |= TTE_SZ_16K;
832 #ifdef DIAGNOSTIC
833 if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
834 (PME_NOCACHE | PME_WRITETHROUG))
835 panic("pmap_enter: uncached & writethrough");
836 #endif
837 if (flags & PME_NOCACHE)
838 /* Must be I/O mapping */
839 tte |= TTE_I | TTE_G;
840 #ifdef PPC_4XX_NOCACHE
841 tte |= TTE_I;
842 #else
843 else if (flags & PME_WRITETHROUG)
844 /* Uncached and writethrough are not compatible */
845 tte |= TTE_W;
846 #endif
847 if (pm == pmap_kernel())
848 tte |= TTE_ZONE(ZONE_PRIV);
849 else
850 tte |= TTE_ZONE(ZONE_USER);
851
852 if (flags & VM_PROT_WRITE)
853 tte |= TTE_WR;
854
855 if (flags & VM_PROT_EXECUTE)
856 tte |= TTE_EX;
857
858 /*
859 * Now record mapping for later back-translation.
860 */
861 if (pmap_initialized && managed) {
862 char *attr;
863
864 if (!pmap_enter_pv(pm, va, pa)) {
865 /* Could not enter pv on a managed page */
866 return 1;
867 }
868
869 /* Now set attributes. */
870 attr = pa_to_attr(pa);
871 #ifdef DIAGNOSTIC
872 if (!attr)
873 panic("managed but no attr");
874 #endif
875 if (flags & VM_PROT_ALL)
876 *attr |= PTE_HI_REF;
877 if (flags & VM_PROT_WRITE)
878 *attr |= PTE_HI_CHG;
879 }
880
881 s = splvm();
882
883 /* Insert page into page table. */
884 pte_enter(pm, va, tte);
885
886 /* If this is a real fault, enter it in the tlb */
887 if (tte && ((flags & PMAP_WIRED) == 0)) {
888 ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
889 }
890 splx(s);
891
892 /* Flush the real memory from the instruction cache. */
893 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
894 __syncicache((void *)pa, PAGE_SIZE);
895
896 return 0;
897 }
898
899 void
900 pmap_unwire(struct pmap *pm, vaddr_t va)
901 {
902 struct pv_entry *pv, *npv;
903 paddr_t pa;
904 int s = splvm();
905
906 if (pm == NULL) {
907 return;
908 }
909
910 if (!pmap_extract(pm, va, &pa)) {
911 return;
912 }
913
914 va |= PV_WIRED;
915
916 pv = pa_to_pv(pa);
917 if (!pv) return;
918
919 /*
920 * If it is the first entry on the list, it is actually
921 * in the header and we must copy the following entry up
922 * to the header. Otherwise we must search the list for
923 * the entry. In either case we free the now unused entry.
924 */
925 for (npv = pv; (npv = pv->pv_next) != NULL; pv = npv) {
926 if (pm == npv->pv_pm && PV_CMPVA(va, npv)) {
927 npv->pv_va &= ~PV_WIRED;
928 break;
929 }
930 }
931 splx(s);
932 }
933
934 void
935 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
936 {
937 int s;
938 u_int tte;
939 struct pmap *pm = pmap_kernel();
940
941 /*
942 * Have to remove any existing mapping first.
943 */
944
945 /*
946 * Generate TTE.
947 *
948 * XXXX
949 *
950 * Since the kernel does not handle execution privileges properly,
951 * we will handle read and execute permissions together.
952 */
953 tte = 0;
954 if (prot & VM_PROT_ALL) {
955
956 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
957 /* XXXX -- need to support multiple page sizes. */
958 tte |= TTE_SZ_16K;
959 #ifdef DIAGNOSTIC
960 if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
961 (PME_NOCACHE | PME_WRITETHROUG))
962 panic("pmap_kenter_pa: uncached & writethrough");
963 #endif
964 if (prot & PME_NOCACHE)
965 /* Must be I/O mapping */
966 tte |= TTE_I | TTE_G;
967 #ifdef PPC_4XX_NOCACHE
968 tte |= TTE_I;
969 #else
970 else if (prot & PME_WRITETHROUG)
971 /* Uncached and writethrough are not compatible */
972 tte |= TTE_W;
973 #endif
974 if (prot & VM_PROT_WRITE)
975 tte |= TTE_WR;
976 }
977
978 s = splvm();
979
980 /* Insert page into page table. */
981 pte_enter(pm, va, tte);
982 splx(s);
983 }
984
985 void
986 pmap_kremove(vaddr_t va, vsize_t len)
987 {
988
989 while (len > 0) {
990 pte_enter(pmap_kernel(), va, 0);
991 va += PAGE_SIZE;
992 len -= PAGE_SIZE;
993 }
994 }
995
996 /*
997 * Remove the given range of mapping entries.
998 */
999 void
1000 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
1001 {
1002 int s;
1003 paddr_t pa;
1004 volatile u_int *ptp;
1005
1006 s = splvm();
1007 while (va < endva) {
1008
1009 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
1010 pa = TTE_PA(pa);
1011 pmap_remove_pv(pm, va, pa);
1012 *ptp = 0;
1013 ppc4xx_tlb_flush(va, pm->pm_ctx);
1014 pm->pm_stats.resident_count--;
1015 }
1016 va += PAGE_SIZE;
1017 }
1018
1019 splx(s);
1020 }
1021
1022 /*
1023 * Get the physical page address for the given pmap/virtual address.
1024 */
1025 boolean_t
1026 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1027 {
1028 int seg = STIDX(va);
1029 int ptn = PTIDX(va);
1030 u_int pa = 0;
1031 int s = splvm();
1032
1033 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
1034 *pap = TTE_PA(pa) | (va & PGOFSET);
1035 }
1036 splx(s);
1037 return (pa != 0);
1038 }
1039
1040 /*
1041 * Lower the protection on the specified range of this pmap.
1042 *
1043 * There are only two cases: either the protection is going to 0,
1044 * or it is going to read-only.
1045 */
1046 void
1047 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1048 {
1049 volatile u_int *ptp;
1050 int s, bic;
1051
1052 if ((prot & VM_PROT_READ) == 0) {
1053 pmap_remove(pm, sva, eva);
1054 return;
1055 }
1056 bic = 0;
1057 if ((prot & VM_PROT_WRITE) == 0) {
1058 bic |= TTE_WR;
1059 }
1060 if ((prot & VM_PROT_EXECUTE) == 0) {
1061 bic |= TTE_EX;
1062 }
1063 if (bic == 0) {
1064 return;
1065 }
1066 s = splvm();
1067 while (sva < eva) {
1068 if ((ptp = pte_find(pm, sva)) != NULL) {
1069 *ptp &= ~bic;
1070 ppc4xx_tlb_flush(sva, pm->pm_ctx);
1071 }
1072 sva += PAGE_SIZE;
1073 }
1074 splx(s);
1075 }
1076
1077 boolean_t
1078 check_attr(struct vm_page *pg, u_int mask, int clear)
1079 {
1080 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1081 int s;
1082 char *attr;
1083 int rv;
1084
1085 /*
1086 * First modify bits in cache.
1087 */
1088 s = splvm();
1089 attr = pa_to_attr(pa);
1090 if (attr == NULL)
1091 return FALSE;
1092
1093 rv = ((*attr & mask) != 0);
1094 if (clear) {
1095 *attr &= ~mask;
1096 pmap_page_protect(pg, (mask == PTE_HI_CHG) ? VM_PROT_READ : 0);
1097 }
1098 splx(s);
1099 return rv;
1100 }
1101
1102
1103 /*
1104 * Lower the protection on the specified physical page.
1105 *
1106 * There are only two cases: either the protection is going to 0,
1107 * or it is going to read-only.
1108 */
1109 void
1110 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1111 {
1112 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1113 vaddr_t va;
1114 struct pv_entry *pvh, *pv, *npv;
1115 struct pmap *pm;
1116
1117 pvh = pa_to_pv(pa);
1118 if (pvh == NULL)
1119 return;
1120
1121 /* Handle extra pvs which may be deleted in the operation */
1122 for (pv = pvh->pv_next; pv; pv = npv) {
1123 npv = pv->pv_next;
1124
1125 pm = pv->pv_pm;
1126 va = pv->pv_va;
1127 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1128 }
1129 /* Now check the head pv */
1130 if (pvh->pv_pm) {
1131 pv = pvh;
1132 pm = pv->pv_pm;
1133 va = pv->pv_va;
1134 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1135 }
1136 }
1137
1138 /*
1139 * Activate the address space for the specified process. If the process
1140 * is the current process, load the new MMU context.
1141 */
1142 void
1143 pmap_activate(struct lwp *l)
1144 {
1145 #if 0
1146 struct pcb *pcb = &l->l_proc->p_addr->u_pcb;
1147 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1148
1149 /*
1150 * XXX Normally performed in cpu_fork().
1151 */
1152 printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1153 pcb->pcb_pm = pmap;
1154 #endif
1155 }
1156
1157 /*
1158 * Deactivate the specified process's address space.
1159 */
1160 void
1161 pmap_deactivate(struct lwp *l)
1162 {
1163 }
1164
1165 /*
1166 * Synchronize caches corresponding to [addr, addr+len) in p.
1167 */
1168 void
1169 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1170 {
1171 struct pmap *pm = p->p_vmspace->vm_map.pmap;
1172 int msr, ctx, opid, step;
1173
1174 step = CACHELINESIZE;
1175
1176 /*
1177 * Need to turn off IMMU and switch to user context.
1178 * (icbi uses DMMU).
1179 */
1180 if (!(ctx = pm->pm_ctx)) {
1181 /* No context -- assign it one */
1182 ctx_alloc(pm);
1183 ctx = pm->pm_ctx;
1184 }
1185 __asm __volatile("mfmsr %0;"
1186 "li %1, %7;"
1187 "andc %1,%0,%1;"
1188 "mtmsr %1;"
1189 "sync;isync;"
1190 "mfpid %1;"
1191 "mtpid %2;"
1192 "sync; isync;"
1193 "1:"
1194 "dcbf 0,%3;"
1195 "icbi 0,%3;"
1196 "add %3,%3,%5;"
1197 "addc. %4,%4,%6;"
1198 "bge 1b;"
1199 "mtpid %1;"
1200 "mtmsr %0;"
1201 "sync; isync"
1202 : "=&r" (msr), "=&r" (opid)
1203 : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
1204 "K" (PSL_IR | PSL_DR));
1205 }
1206
1207
1208 /* This has to be done in real mode !!! */
1209 void
1210 ppc4xx_tlb_flush(vaddr_t va, int pid)
1211 {
1212 u_long i, found;
1213 u_long msr;
1214
1215 /* If there's no context then it can't be mapped. */
1216 if (!pid)
1217 return;
1218
1219 asm("mfpid %1;" /* Save PID */
1220 "mfmsr %2;" /* Save MSR */
1221 "li %0,0;" /* Now clear MSR */
1222 "mtmsr %0;"
1223 "mtpid %4;" /* Set PID */
1224 "sync;"
1225 "tlbsx. %0,0,%3;" /* Search TLB */
1226 "sync;"
1227 "mtpid %1;" /* Restore PID */
1228 "mtmsr %2;" /* Restore MSR */
1229 "sync;isync;"
1230 "li %1,1;"
1231 "beq 1f;"
1232 "li %1,0;"
1233 "1:"
1234 : "=&r" (i), "=&r" (found), "=&r" (msr)
1235 : "r" (va), "r" (pid));
1236 if (found && !TLB_LOCKED(i)) {
1237
1238 /* Now flush translation */
1239 asm volatile(
1240 "tlbwe %0,%1,0;"
1241 "sync;isync;"
1242 : : "r" (0), "r" (i));
1243
1244 tlb_info[i].ti_ctx = 0;
1245 tlb_info[i].ti_flags = 0;
1246 tlbnext = i;
1247 /* Successful flushes */
1248 tlbflush_ev.ev_count++;
1249 }
1250 }
1251
1252 void
1253 ppc4xx_tlb_flush_all(void)
1254 {
1255 u_long i;
1256
1257 for (i = 0; i < NTLB; i++)
1258 if (!TLB_LOCKED(i)) {
1259 asm volatile(
1260 "tlbwe %0,%1,0;"
1261 "sync;isync;"
1262 : : "r" (0), "r" (i));
1263 tlb_info[i].ti_ctx = 0;
1264 tlb_info[i].ti_flags = 0;
1265 }
1266
1267 asm volatile("sync;isync");
1268 }
1269
1270 /* Find a TLB entry to evict. */
1271 static int
1272 ppc4xx_tlb_find_victim(void)
1273 {
1274 int flags;
1275
1276 for (;;) {
1277 if (++tlbnext >= NTLB)
1278 tlbnext = TLB_NRESERVED;
1279 flags = tlb_info[tlbnext].ti_flags;
1280 if (!(flags & TLBF_USED) ||
1281 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1282 u_long va, stack = (u_long)&va;
1283
1284 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1285 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1286 (flags & TLBF_USED)) {
1287 /* Kernel stack page */
1288 flags |= TLBF_USED;
1289 tlb_info[tlbnext].ti_flags = flags;
1290 } else {
1291 /* Found it! */
1292 return (tlbnext);
1293 }
1294 } else {
1295 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1296 }
1297 }
1298 }
1299
1300 void
1301 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1302 {
1303 u_long th, tl, idx;
1304 tlbpid_t pid;
1305 u_short msr;
1306 paddr_t pa;
1307 int s, sz;
1308
1309 tlbenter_ev.ev_count++;
1310
1311 sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1312 pa = (pte & TTE_RPN_MASK(sz));
1313 th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1314 tl = (pte & ~TLB_RPN_MASK) | pa;
1315 tl |= ppc4xx_tlbflags(va, pa);
1316
1317 s = splhigh();
1318 idx = ppc4xx_tlb_find_victim();
1319
1320 #ifdef DIAGNOSTIC
1321 if ((idx < TLB_NRESERVED) || (idx >= NTLB)) {
1322 panic("ppc4xx_tlb_enter: repacing entry %ld", idx);
1323 }
1324 #endif
1325
1326 tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1327 tlb_info[idx].ti_ctx = ctx;
1328 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1329
1330 asm volatile(
1331 "mfmsr %0;" /* Save MSR */
1332 "li %1,0;"
1333 "tlbwe %1,%3,0;" /* Invalidate old entry. */
1334 "mtmsr %1;" /* Clear MSR */
1335 "mfpid %1;" /* Save old PID */
1336 "mtpid %2;" /* Load translation ctx */
1337 "sync; isync;"
1338 #ifdef DEBUG
1339 "andi. %3,%3,63;"
1340 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */
1341 #endif
1342 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1343 "sync; isync;"
1344 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1345 "sync; isync;"
1346 : "=&r" (msr), "=&r" (pid)
1347 : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1348 splx(s);
1349 }
1350
1351 void
1352 ppc4xx_tlb_unpin(int i)
1353 {
1354
1355 if (i == -1)
1356 for (i = 0; i < TLB_NRESERVED; i++)
1357 tlb_info[i].ti_flags &= ~TLBF_LOCKED;
1358 else
1359 tlb_info[i].ti_flags &= ~TLBF_LOCKED;
1360 }
1361
1362 void
1363 ppc4xx_tlb_init(void)
1364 {
1365 int i;
1366
1367 /* Mark reserved TLB entries */
1368 for (i = 0; i < TLB_NRESERVED; i++) {
1369 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1370 tlb_info[i].ti_ctx = KERNEL_PID;
1371 }
1372
1373 /* Setup security zones */
1374 /* Z0 - accessible by kernel only if TLB entry permissions allow
1375 * Z1,Z2 - access is controlled by TLB entry permissions
1376 * Z3 - full access regardless of TLB entry permissions
1377 */
1378
1379 asm volatile(
1380 "mtspr %0,%1;"
1381 "sync;"
1382 :: "K"(SPR_ZPR), "r" (0x1b000000));
1383 }
1384
1385
1386 /*
1387 * We should pass the ctx in from trap code.
1388 */
1389 int
1390 pmap_tlbmiss(vaddr_t va, int ctx)
1391 {
1392 volatile u_int *pte;
1393 u_long tte;
1394
1395 tlbmiss_ev.ev_count++;
1396
1397 /*
1398 * XXXX We will reserve 0-0x80000000 for va==pa mappings.
1399 */
1400 if (ctx != KERNEL_PID || (va & 0x80000000)) {
1401 pte = pte_find((struct pmap *)ctxbusy[ctx], va);
1402 if (pte == NULL) {
1403 /* Map unmanaged addresses directly for kernel access */
1404 return 1;
1405 }
1406 tte = *pte;
1407 if (tte == 0) {
1408 return 1;
1409 }
1410 } else {
1411 /* Create a 16MB writable mapping. */
1412 #ifdef PPC_4XX_NOCACHE
1413 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I | TTE_WR;
1414 #else
1415 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1416 #endif
1417 }
1418 tlbhit_ev.ev_count++;
1419 ppc4xx_tlb_enter(ctx, va, tte);
1420
1421 return 0;
1422 }
1423
1424 /*
1425 * Flush all the entries matching a context from the TLB.
1426 */
1427 static int
1428 ctx_flush(int cnum)
1429 {
1430 int i;
1431
1432 /* We gotta steal this context */
1433 for (i = TLB_NRESERVED; i < NTLB; i++) {
1434 if (tlb_info[i].ti_ctx == cnum) {
1435 /* Can't steal ctx if it has a locked entry. */
1436 if (TLB_LOCKED(i)) {
1437 #ifdef DIAGNOSTIC
1438 printf("ctx_flush: can't invalidate "
1439 "locked mapping %d "
1440 "for context %d\n", i, cnum);
1441 #ifdef DDB
1442 Debugger();
1443 #endif
1444 #endif
1445 return (1);
1446 }
1447 #ifdef DIAGNOSTIC
1448 if (i < TLB_NRESERVED)
1449 panic("TLB entry %d not locked", i);
1450 #endif
1451 /* Invalidate particular TLB entry regardless of locked status */
1452 asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1453 tlb_info[i].ti_flags = 0;
1454 }
1455 }
1456 return (0);
1457 }
1458
1459 /*
1460 * Allocate a context. If necessary, steal one from someone else.
1461 *
1462 * The new context is flushed from the TLB before returning.
1463 */
1464 int
1465 ctx_alloc(struct pmap *pm)
1466 {
1467 int s, cnum;
1468 static int next = MINCTX;
1469
1470 if (pm == pmap_kernel()) {
1471 #ifdef DIAGNOSTIC
1472 printf("ctx_alloc: kernel pmap!\n");
1473 #endif
1474 return (0);
1475 }
1476 s = splvm();
1477
1478 /* Find a likely context. */
1479 cnum = next;
1480 do {
1481 if ((++cnum) > NUMCTX)
1482 cnum = MINCTX;
1483 } while (ctxbusy[cnum] != NULL && cnum != next);
1484
1485 /* Now clean it out */
1486 oops:
1487 if (cnum < MINCTX)
1488 cnum = MINCTX; /* Never steal ctx 0 or 1 */
1489 if (ctx_flush(cnum)) {
1490 /* oops -- something's wired. */
1491 if ((++cnum) > NUMCTX)
1492 cnum = MINCTX;
1493 goto oops;
1494 }
1495
1496 if (ctxbusy[cnum]) {
1497 #ifdef DEBUG
1498 /* We should identify this pmap and clear it */
1499 printf("Warning: stealing context %d\n", cnum);
1500 #endif
1501 ctxbusy[cnum]->pm_ctx = 0;
1502 }
1503 ctxbusy[cnum] = pm;
1504 next = cnum;
1505 splx(s);
1506 pm->pm_ctx = cnum;
1507
1508 return cnum;
1509 }
1510
1511 /*
1512 * Give away a context.
1513 */
1514 void
1515 ctx_free(struct pmap *pm)
1516 {
1517 int oldctx;
1518
1519 oldctx = pm->pm_ctx;
1520
1521 if (oldctx == 0)
1522 panic("ctx_free: freeing kernel context");
1523 #ifdef DIAGNOSTIC
1524 if (ctxbusy[oldctx] == 0)
1525 printf("ctx_free: freeing free context %d\n", oldctx);
1526 if (ctxbusy[oldctx] != pm) {
1527 printf("ctx_free: freeing someone esle's context\n "
1528 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1529 oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1530 #ifdef DDB
1531 Debugger();
1532 #endif
1533 }
1534 #endif
1535 /* We should verify it has not been stolen and reallocated... */
1536 ctxbusy[oldctx] = NULL;
1537 ctx_flush(oldctx);
1538 }
1539
1540
1541 #ifdef DEBUG
1542 /*
1543 * Test ref/modify handling.
1544 */
1545 void pmap_testout __P((void));
1546 void
1547 pmap_testout()
1548 {
1549 vaddr_t va;
1550 volatile int *loc;
1551 int val = 0;
1552 paddr_t pa;
1553 struct vm_page *pg;
1554 int ref, mod;
1555
1556 /* Allocate a page */
1557 va = (vaddr_t)uvm_km_zalloc(kernel_map, PAGE_SIZE);
1558 loc = (int*)va;
1559
1560 pmap_extract(pmap_kernel(), va, &pa);
1561 pg = PHYS_TO_VM_PAGE(pa);
1562 pmap_unwire(pmap_kernel(), va);
1563
1564 pmap_remove(pmap_kernel(), va, va+1);
1565 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1566 pmap_update(pmap_kernel());
1567
1568 /* Now clear reference and modify */
1569 ref = pmap_clear_reference(pg);
1570 mod = pmap_clear_modify(pg);
1571 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1572 (void *)(u_long)va, (long)pa,
1573 ref, mod);
1574
1575 /* Check it's properly cleared */
1576 ref = pmap_is_referenced(pg);
1577 mod = pmap_is_modified(pg);
1578 printf("Checking cleared page: ref %d, mod %d\n",
1579 ref, mod);
1580
1581 /* Reference page */
1582 val = *loc;
1583
1584 ref = pmap_is_referenced(pg);
1585 mod = pmap_is_modified(pg);
1586 printf("Referenced page: ref %d, mod %d val %x\n",
1587 ref, mod, val);
1588
1589 /* Now clear reference and modify */
1590 ref = pmap_clear_reference(pg);
1591 mod = pmap_clear_modify(pg);
1592 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1593 (void *)(u_long)va, (long)pa,
1594 ref, mod);
1595
1596 /* Modify page */
1597 *loc = 1;
1598
1599 ref = pmap_is_referenced(pg);
1600 mod = pmap_is_modified(pg);
1601 printf("Modified page: ref %d, mod %d\n",
1602 ref, mod);
1603
1604 /* Now clear reference and modify */
1605 ref = pmap_clear_reference(pg);
1606 mod = pmap_clear_modify(pg);
1607 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1608 (void *)(u_long)va, (long)pa,
1609 ref, mod);
1610
1611 /* Check it's properly cleared */
1612 ref = pmap_is_referenced(pg);
1613 mod = pmap_is_modified(pg);
1614 printf("Checking cleared page: ref %d, mod %d\n",
1615 ref, mod);
1616
1617 /* Modify page */
1618 *loc = 1;
1619
1620 ref = pmap_is_referenced(pg);
1621 mod = pmap_is_modified(pg);
1622 printf("Modified page: ref %d, mod %d\n",
1623 ref, mod);
1624
1625 /* Check pmap_protect() */
1626 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1627 pmap_update(pmap_kernel());
1628 ref = pmap_is_referenced(pg);
1629 mod = pmap_is_modified(pg);
1630 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1631 ref, mod);
1632
1633 /* Now clear reference and modify */
1634 ref = pmap_clear_reference(pg);
1635 mod = pmap_clear_modify(pg);
1636 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1637 (void *)(u_long)va, (long)pa,
1638 ref, mod);
1639
1640 /* Reference page */
1641 val = *loc;
1642
1643 ref = pmap_is_referenced(pg);
1644 mod = pmap_is_modified(pg);
1645 printf("Referenced page: ref %d, mod %d val %x\n",
1646 ref, mod, val);
1647
1648 /* Now clear reference and modify */
1649 ref = pmap_clear_reference(pg);
1650 mod = pmap_clear_modify(pg);
1651 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1652 (void *)(u_long)va, (long)pa,
1653 ref, mod);
1654
1655 /* Modify page */
1656 #if 0
1657 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1658 pmap_update(pmap_kernel());
1659 #endif
1660 *loc = 1;
1661
1662 ref = pmap_is_referenced(pg);
1663 mod = pmap_is_modified(pg);
1664 printf("Modified page: ref %d, mod %d\n",
1665 ref, mod);
1666
1667 /* Check pmap_protect() */
1668 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1669 pmap_update(pmap_kernel());
1670 ref = pmap_is_referenced(pg);
1671 mod = pmap_is_modified(pg);
1672 printf("pmap_protect(): ref %d, mod %d\n",
1673 ref, mod);
1674
1675 /* Now clear reference and modify */
1676 ref = pmap_clear_reference(pg);
1677 mod = pmap_clear_modify(pg);
1678 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1679 (void *)(u_long)va, (long)pa,
1680 ref, mod);
1681
1682 /* Reference page */
1683 val = *loc;
1684
1685 ref = pmap_is_referenced(pg);
1686 mod = pmap_is_modified(pg);
1687 printf("Referenced page: ref %d, mod %d val %x\n",
1688 ref, mod, val);
1689
1690 /* Now clear reference and modify */
1691 ref = pmap_clear_reference(pg);
1692 mod = pmap_clear_modify(pg);
1693 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1694 (void *)(u_long)va, (long)pa,
1695 ref, mod);
1696
1697 /* Modify page */
1698 #if 0
1699 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1700 pmap_update(pmap_kernel());
1701 #endif
1702 *loc = 1;
1703
1704 ref = pmap_is_referenced(pg);
1705 mod = pmap_is_modified(pg);
1706 printf("Modified page: ref %d, mod %d\n",
1707 ref, mod);
1708
1709 /* Check pmap_pag_protect() */
1710 pmap_page_protect(pg, VM_PROT_READ);
1711 ref = pmap_is_referenced(pg);
1712 mod = pmap_is_modified(pg);
1713 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1714 ref, mod);
1715
1716 /* Now clear reference and modify */
1717 ref = pmap_clear_reference(pg);
1718 mod = pmap_clear_modify(pg);
1719 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1720 (void *)(u_long)va, (long)pa,
1721 ref, mod);
1722
1723 /* Reference page */
1724 val = *loc;
1725
1726 ref = pmap_is_referenced(pg);
1727 mod = pmap_is_modified(pg);
1728 printf("Referenced page: ref %d, mod %d val %x\n",
1729 ref, mod, val);
1730
1731 /* Now clear reference and modify */
1732 ref = pmap_clear_reference(pg);
1733 mod = pmap_clear_modify(pg);
1734 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1735 (void *)(u_long)va, (long)pa,
1736 ref, mod);
1737
1738 /* Modify page */
1739 #if 0
1740 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1741 pmap_update(pmap_kernel());
1742 #endif
1743 *loc = 1;
1744
1745 ref = pmap_is_referenced(pg);
1746 mod = pmap_is_modified(pg);
1747 printf("Modified page: ref %d, mod %d\n",
1748 ref, mod);
1749
1750 /* Check pmap_pag_protect() */
1751 pmap_page_protect(pg, VM_PROT_NONE);
1752 ref = pmap_is_referenced(pg);
1753 mod = pmap_is_modified(pg);
1754 printf("pmap_page_protect(): ref %d, mod %d\n",
1755 ref, mod);
1756
1757 /* Now clear reference and modify */
1758 ref = pmap_clear_reference(pg);
1759 mod = pmap_clear_modify(pg);
1760 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1761 (void *)(u_long)va, (long)pa,
1762 ref, mod);
1763
1764
1765 /* Reference page */
1766 val = *loc;
1767
1768 ref = pmap_is_referenced(pg);
1769 mod = pmap_is_modified(pg);
1770 printf("Referenced page: ref %d, mod %d val %x\n",
1771 ref, mod, val);
1772
1773 /* Now clear reference and modify */
1774 ref = pmap_clear_reference(pg);
1775 mod = pmap_clear_modify(pg);
1776 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1777 (void *)(u_long)va, (long)pa,
1778 ref, mod);
1779
1780 /* Modify page */
1781 #if 0
1782 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1783 pmap_update(pmap_kernel());
1784 #endif
1785 *loc = 1;
1786
1787 ref = pmap_is_referenced(pg);
1788 mod = pmap_is_modified(pg);
1789 printf("Modified page: ref %d, mod %d\n",
1790 ref, mod);
1791
1792 /* Unmap page */
1793 pmap_remove(pmap_kernel(), va, va+1);
1794 pmap_update(pmap_kernel());
1795 ref = pmap_is_referenced(pg);
1796 mod = pmap_is_modified(pg);
1797 printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1798
1799 /* Now clear reference and modify */
1800 ref = pmap_clear_reference(pg);
1801 mod = pmap_clear_modify(pg);
1802 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1803 (void *)(u_long)va, (long)pa, ref, mod);
1804
1805 /* Check it's properly cleared */
1806 ref = pmap_is_referenced(pg);
1807 mod = pmap_is_modified(pg);
1808 printf("Checking cleared page: ref %d, mod %d\n",
1809 ref, mod);
1810
1811 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL,
1812 VM_PROT_ALL|PMAP_WIRED);
1813 uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE);
1814 }
1815 #endif
1816