pmap.c revision 1.30 1 /* $NetBSD: pmap.c,v 1.30 2005/01/16 21:35:58 chs Exp $ */
2
3 /*
4 * Copyright 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.30 2005/01/16 21:35:58 chs Exp $");
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/user.h>
76 #include <sys/queue.h>
77 #include <sys/systm.h>
78 #include <sys/pool.h>
79 #include <sys/device.h>
80
81 #include <uvm/uvm.h>
82
83 #include <machine/cpu.h>
84 #include <machine/pcb.h>
85 #include <machine/powerpc.h>
86
87 #include <powerpc/spr.h>
88 #include <machine/tlb.h>
89
90 /*
91 * kernmap is an array of PTEs large enough to map in
92 * 4GB. At 16KB/page it is 256K entries or 2MB.
93 */
94 #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1)
95 caddr_t kernmap;
96
97 #define MINCTX 2
98 #define NUMCTX 256
99 volatile struct pmap *ctxbusy[NUMCTX];
100
101 #define TLBF_USED 0x1
102 #define TLBF_REF 0x2
103 #define TLBF_LOCKED 0x4
104 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
105 typedef struct tlb_info_s {
106 char ti_flags;
107 char ti_ctx; /* TLB_PID assiciated with the entry */
108 u_int ti_va;
109 } tlb_info_t;
110
111 volatile tlb_info_t tlb_info[NTLB];
112 /* We'll use a modified FIFO replacement policy cause it's cheap */
113 volatile int tlbnext = TLB_NRESERVED;
114
115 u_long dtlb_miss_count = 0;
116 u_long itlb_miss_count = 0;
117 u_long ktlb_miss_count = 0;
118 u_long utlb_miss_count = 0;
119
120 /* Event counters */
121 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
122 NULL, "cpu", "tlbmiss");
123 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
124 NULL, "cpu", "tlbhit");
125 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
126 NULL, "cpu", "tlbflush");
127 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
128 NULL, "cpu", "tlbenter");
129
130 struct pmap kernel_pmap_;
131
132 int physmem;
133 static int npgs;
134 static u_int nextavail;
135 #ifndef MSGBUFADDR
136 extern paddr_t msgbuf_paddr;
137 #endif
138
139 static struct mem_region *mem, *avail;
140
141 /*
142 * This is a cache of referenced/modified bits.
143 * Bits herein are shifted by ATTRSHFT.
144 */
145 static char *pmap_attrib;
146
147 #define PV_WIRED 0x1
148 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
149 #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED)
150 #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED)
151 #define PV_CMPVA(va,pv) (!(((pv)->pv_va ^ (va)) & (~PV_WIRED)))
152
153 struct pv_entry {
154 struct pv_entry *pv_next; /* Linked list of mappings */
155 vaddr_t pv_va; /* virtual address of mapping */
156 struct pmap *pv_pm;
157 };
158
159 struct pv_entry *pv_table;
160 static struct pool pv_pool;
161
162 static int pmap_initialized;
163
164 static int ctx_flush(int);
165
166 inline struct pv_entry *pa_to_pv(paddr_t);
167 static inline char *pa_to_attr(paddr_t);
168
169 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
170 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
171
172 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, boolean_t);
173 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
174
175
176 inline struct pv_entry *
177 pa_to_pv(paddr_t pa)
178 {
179 int bank, pg;
180
181 bank = vm_physseg_find(atop(pa), &pg);
182 if (bank == -1)
183 return NULL;
184 return &vm_physmem[bank].pmseg.pvent[pg];
185 }
186
187 static inline char *
188 pa_to_attr(paddr_t pa)
189 {
190 int bank, pg;
191
192 bank = vm_physseg_find(atop(pa), &pg);
193 if (bank == -1)
194 return NULL;
195 return &vm_physmem[bank].pmseg.attrs[pg];
196 }
197
198 /*
199 * Insert PTE into page table.
200 */
201 int
202 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
203 {
204 int seg = STIDX(va);
205 int ptn = PTIDX(va);
206 u_int oldpte;
207
208 if (!pm->pm_ptbl[seg]) {
209 /* Don't allocate a page to clear a non-existent mapping. */
210 if (!pte)
211 return (0);
212 /* Allocate a page XXXX this will sleep! */
213 pm->pm_ptbl[seg] =
214 (uint *)uvm_km_zalloc(kernel_map, PAGE_SIZE);
215 }
216 oldpte = pm->pm_ptbl[seg][ptn];
217 pm->pm_ptbl[seg][ptn] = pte;
218
219 /* Flush entry. */
220 ppc4xx_tlb_flush(va, pm->pm_ctx);
221 if (oldpte != pte) {
222 if (pte == 0)
223 pm->pm_stats.resident_count--;
224 else
225 pm->pm_stats.resident_count++;
226 }
227 return (1);
228 }
229
230 /*
231 * Get a pointer to a PTE in a page table.
232 */
233 volatile u_int *
234 pte_find(struct pmap *pm, vaddr_t va)
235 {
236 int seg = STIDX(va);
237 int ptn = PTIDX(va);
238
239 if (pm->pm_ptbl[seg])
240 return (&pm->pm_ptbl[seg][ptn]);
241
242 return (NULL);
243 }
244
245 /*
246 * This is called during initppc, before the system is really initialized.
247 */
248 void
249 pmap_bootstrap(u_int kernelstart, u_int kernelend)
250 {
251 struct mem_region *mp, *mp1;
252 int cnt, i;
253 u_int s, e, sz;
254
255 /*
256 * Allocate the kernel page table at the end of
257 * kernel space so it's in the locked TTE.
258 */
259 kernmap = (caddr_t)kernelend;
260
261 /*
262 * Initialize kernel page table.
263 */
264 for (i = 0; i < STSZ; i++) {
265 pmap_kernel()->pm_ptbl[i] = 0;
266 }
267 ctxbusy[0] = ctxbusy[1] = pmap_kernel();
268
269 /*
270 * Announce page-size to the VM-system
271 */
272 uvmexp.pagesize = NBPG;
273 uvm_setpagesize();
274
275 /*
276 * Get memory.
277 */
278 mem_regions(&mem, &avail);
279 for (mp = mem; mp->size; mp++) {
280 physmem += btoc(mp->size);
281 printf("+%lx,",mp->size);
282 }
283 printf("\n");
284 ppc4xx_tlb_init();
285 /*
286 * Count the number of available entries.
287 */
288 for (cnt = 0, mp = avail; mp->size; mp++)
289 cnt++;
290
291 /*
292 * Page align all regions.
293 * Non-page aligned memory isn't very interesting to us.
294 * Also, sort the entries for ascending addresses.
295 */
296 kernelstart &= ~PGOFSET;
297 kernelend = (kernelend + PGOFSET) & ~PGOFSET;
298 for (mp = avail; mp->size; mp++) {
299 s = mp->start;
300 e = mp->start + mp->size;
301 printf("%08x-%08x -> ",s,e);
302 /*
303 * Check whether this region holds all of the kernel.
304 */
305 if (s < kernelstart && e > kernelend) {
306 avail[cnt].start = kernelend;
307 avail[cnt++].size = e - kernelend;
308 e = kernelstart;
309 }
310 /*
311 * Look whether this regions starts within the kernel.
312 */
313 if (s >= kernelstart && s < kernelend) {
314 if (e <= kernelend)
315 goto empty;
316 s = kernelend;
317 }
318 /*
319 * Now look whether this region ends within the kernel.
320 */
321 if (e > kernelstart && e <= kernelend) {
322 if (s >= kernelstart)
323 goto empty;
324 e = kernelstart;
325 }
326 /*
327 * Now page align the start and size of the region.
328 */
329 s = round_page(s);
330 e = trunc_page(e);
331 if (e < s)
332 e = s;
333 sz = e - s;
334 printf("%08x-%08x = %x\n",s,e,sz);
335 /*
336 * Check whether some memory is left here.
337 */
338 if (sz == 0) {
339 empty:
340 memmove(mp, mp + 1,
341 (cnt - (mp - avail)) * sizeof *mp);
342 cnt--;
343 mp--;
344 continue;
345 }
346 /*
347 * Do an insertion sort.
348 */
349 npgs += btoc(sz);
350 for (mp1 = avail; mp1 < mp; mp1++)
351 if (s < mp1->start)
352 break;
353 if (mp1 < mp) {
354 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
355 mp1->start = s;
356 mp1->size = sz;
357 } else {
358 mp->start = s;
359 mp->size = sz;
360 }
361 }
362
363 /*
364 * We cannot do pmap_steal_memory here,
365 * since we don't run with translation enabled yet.
366 */
367 #ifndef MSGBUFADDR
368 /*
369 * allow for msgbuf
370 */
371 sz = round_page(MSGBUFSIZE);
372 mp = NULL;
373 for (mp1 = avail; mp1->size; mp1++)
374 if (mp1->size >= sz)
375 mp = mp1;
376 if (mp == NULL)
377 panic("not enough memory?");
378
379 npgs -= btoc(sz);
380 msgbuf_paddr = mp->start + mp->size - sz;
381 mp->size -= sz;
382 if (mp->size <= 0)
383 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
384 #endif
385
386 for (mp = avail; mp->size; mp++)
387 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
388 atop(mp->start), atop(mp->start + mp->size),
389 VM_FREELIST_DEFAULT);
390
391 /*
392 * Initialize kernel pmap and hardware.
393 */
394 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
395 pmap_kernel()->pm_ctx = KERNEL_PID;
396 nextavail = avail->start;
397
398
399 evcnt_attach_static(&tlbmiss_ev);
400 evcnt_attach_static(&tlbhit_ev);
401 evcnt_attach_static(&tlbflush_ev);
402 evcnt_attach_static(&tlbenter_ev);
403 }
404
405 /*
406 * Restrict given range to physical memory
407 *
408 * (Used by /dev/mem)
409 */
410 void
411 pmap_real_memory(paddr_t *start, psize_t *size)
412 {
413 struct mem_region *mp;
414
415 for (mp = mem; mp->size; mp++) {
416 if (*start + *size > mp->start &&
417 *start < mp->start + mp->size) {
418 if (*start < mp->start) {
419 *size -= mp->start - *start;
420 *start = mp->start;
421 }
422 if (*start + *size > mp->start + mp->size)
423 *size = mp->start + mp->size - *start;
424 return;
425 }
426 }
427 *size = 0;
428 }
429
430 /*
431 * Initialize anything else for pmap handling.
432 * Called during vm_init().
433 */
434 void
435 pmap_init(void)
436 {
437 struct pv_entry *pv;
438 vsize_t sz;
439 vaddr_t addr;
440 int i, s;
441 int bank;
442 char *attr;
443
444 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
445 sz = round_page(sz);
446 addr = uvm_km_zalloc(kernel_map, sz);
447 s = splvm();
448 pv = pv_table = (struct pv_entry *)addr;
449 for (i = npgs; --i >= 0;)
450 pv++->pv_pm = NULL;
451 pmap_attrib = (char *)pv;
452 memset(pv, 0, npgs);
453
454 pv = pv_table;
455 attr = pmap_attrib;
456 for (bank = 0; bank < vm_nphysseg; bank++) {
457 sz = vm_physmem[bank].end - vm_physmem[bank].start;
458 vm_physmem[bank].pmseg.pvent = pv;
459 vm_physmem[bank].pmseg.attrs = attr;
460 pv += sz;
461 attr += sz;
462 }
463
464 pmap_initialized = 1;
465 splx(s);
466
467 /* Setup a pool for additional pvlist structures */
468 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL);
469 }
470
471 /*
472 * How much virtual space is available to the kernel?
473 */
474 void
475 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
476 {
477
478 #if 0
479 /*
480 * Reserve one segment for kernel virtual memory
481 */
482 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
483 *end = *start + SEGMENT_LENGTH;
484 #else
485 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
486 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
487 #endif
488 }
489
490 #ifdef PMAP_GROWKERNEL
491 /*
492 * Preallocate kernel page tables to a specified VA.
493 * This simply loops through the first TTE for each
494 * page table from the beginning of the kernel pmap,
495 * reads the entry, and if the result is
496 * zero (either invalid entry or no page table) it stores
497 * a zero there, populating page tables in the process.
498 * This is not the most efficient technique but i don't
499 * expect it to be called that often.
500 */
501 extern struct vm_page *vm_page_alloc1 __P((void));
502 extern void vm_page_free1 __P((struct vm_page *));
503
504 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
505
506 vaddr_t
507 pmap_growkernel(vaddr_t maxkvaddr)
508 {
509 int s;
510 int seg;
511 paddr_t pg;
512 struct pmap *pm = pmap_kernel();
513
514 s = splvm();
515
516 /* Align with the start of a page table */
517 for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
518 kbreak += PTMAP) {
519 seg = STIDX(kbreak);
520
521 if (pte_find(pm, kbreak))
522 continue;
523
524 if (uvm.page_init_done) {
525 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
526 } else {
527 if (!uvm_page_physget(&pg))
528 panic("pmap_growkernel: no memory");
529 }
530 if (!pg) panic("pmap_growkernel: no pages");
531 pmap_zero_page((paddr_t)pg);
532
533 /* XXX This is based on all phymem being addressable */
534 pm->pm_ptbl[seg] = (u_int *)pg;
535 }
536 splx(s);
537 return (kbreak);
538 }
539
540 /*
541 * vm_page_alloc1:
542 *
543 * Allocate and return a memory cell with no associated object.
544 */
545 struct vm_page *
546 vm_page_alloc1(void)
547 {
548 struct vm_page *pg;
549
550 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
551 if (pg) {
552 pg->wire_count = 1; /* no mappings yet */
553 pg->flags &= ~PG_BUSY; /* never busy */
554 }
555 return pg;
556 }
557
558 /*
559 * vm_page_free1:
560 *
561 * Returns the given page to the free list,
562 * disassociating it with any VM object.
563 *
564 * Object and page must be locked prior to entry.
565 */
566 void
567 vm_page_free1(struct vm_page *mem)
568 {
569 #ifdef DIAGNOSTIC
570 if (mem->flags != (PG_CLEAN|PG_FAKE)) {
571 printf("Freeing invalid page %p\n", mem);
572 printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(mem));
573 #ifdef DDB
574 Debugger();
575 #endif
576 return;
577 }
578 #endif
579 mem->flags |= PG_BUSY;
580 mem->wire_count = 0;
581 uvm_pagefree(mem);
582 }
583 #endif
584
585 /*
586 * Create and return a physical map.
587 */
588 struct pmap *
589 pmap_create(void)
590 {
591 struct pmap *pm;
592
593 pm = malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
594 memset(pm, 0, sizeof *pm);
595 pm->pm_refs = 1;
596 return pm;
597 }
598
599 /*
600 * Add a reference to the given pmap.
601 */
602 void
603 pmap_reference(struct pmap *pm)
604 {
605
606 pm->pm_refs++;
607 }
608
609 /*
610 * Retire the given pmap from service.
611 * Should only be called if the map contains no valid mappings.
612 */
613 void
614 pmap_destroy(struct pmap *pm)
615 {
616 int i;
617
618 if (--pm->pm_refs > 0) {
619 return;
620 }
621 KASSERT(pm->pm_stats.resident_count == 0);
622 KASSERT(pm->pm_stats.wired_count == 0);
623 for (i = 0; i < STSZ; i++)
624 if (pm->pm_ptbl[i]) {
625 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
626 PAGE_SIZE);
627 pm->pm_ptbl[i] = NULL;
628 }
629 if (pm->pm_ctx)
630 ctx_free(pm);
631 free(pm, M_VMPMAP);
632 }
633
634 /*
635 * Copy the range specified by src_addr/len
636 * from the source map to the range dst_addr/len
637 * in the destination map.
638 *
639 * This routine is only advisory and need not do anything.
640 */
641 void
642 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
643 vsize_t len, vaddr_t src_addr)
644 {
645 }
646
647 /*
648 * Require that all active physical maps contain no
649 * incorrect entries NOW.
650 */
651 void
652 pmap_update(struct pmap *pmap)
653 {
654 }
655
656 /*
657 * Garbage collects the physical map system for
658 * pages which are no longer used.
659 * Success need not be guaranteed -- that is, there
660 * may well be pages which are not referenced, but
661 * others may be collected.
662 * Called by the pageout daemon when pages are scarce.
663 */
664 void
665 pmap_collect(struct pmap *pm)
666 {
667 }
668
669 /*
670 * Fill the given physical page with zeroes.
671 */
672 void
673 pmap_zero_page(paddr_t pa)
674 {
675
676 #ifdef PPC_4XX_NOCACHE
677 memset((caddr_t)pa, 0, PAGE_SIZE);
678 #else
679 int i;
680
681 for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
682 __asm __volatile ("dcbz 0,%0" :: "r"(pa));
683 pa += CACHELINESIZE;
684 }
685 #endif
686 }
687
688 /*
689 * Copy the given physical source page to its destination.
690 */
691 void
692 pmap_copy_page(paddr_t src, paddr_t dst)
693 {
694
695 memcpy((caddr_t)dst, (caddr_t)src, PAGE_SIZE);
696 dcache_flush_page(dst);
697 }
698
699 /*
700 * This returns whether this is the first mapping of a page.
701 */
702 static inline int
703 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, boolean_t wired)
704 {
705 struct pv_entry *pv, *npv = NULL;
706 int s;
707
708 if (!pmap_initialized)
709 return 0;
710
711 s = splvm();
712 pv = pa_to_pv(pa);
713 if (!pv->pv_pm) {
714 /*
715 * No entries yet, use header as the first entry.
716 */
717 pv->pv_va = va;
718 pv->pv_pm = pm;
719 pv->pv_next = NULL;
720 } else {
721 /*
722 * There is at least one other VA mapping this page.
723 * Place this entry after the header.
724 */
725 npv = pool_get(&pv_pool, PR_WAITOK);
726 npv->pv_va = va;
727 npv->pv_pm = pm;
728 npv->pv_next = pv->pv_next;
729 pv->pv_next = npv;
730 }
731 if (wired) {
732 PV_WIRE(pv);
733 }
734 splx(s);
735 return (1);
736 }
737
738 static void
739 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
740 {
741 struct pv_entry *pv, *npv;
742
743 /*
744 * Remove from the PV table.
745 */
746 pv = pa_to_pv(pa);
747 if (!pv)
748 return;
749
750 /*
751 * If it is the first entry on the list, it is actually
752 * in the header and we must copy the following entry up
753 * to the header. Otherwise we must search the list for
754 * the entry. In either case we free the now unused entry.
755 */
756 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
757 if (PV_ISWIRED(pv)) {
758 pm->pm_stats.wired_count--;
759 }
760 if ((npv = pv->pv_next)) {
761 *pv = *npv;
762 pool_put(&pv_pool, npv);
763 } else
764 pv->pv_pm = NULL;
765 } else {
766 for (; (npv = pv->pv_next) != NULL; pv = npv)
767 if (pm == npv->pv_pm && PV_CMPVA(va, npv))
768 break;
769 if (npv) {
770 pv->pv_next = npv->pv_next;
771 if (PV_ISWIRED(npv)) {
772 pm->pm_stats.wired_count--;
773 }
774 pool_put(&pv_pool, npv);
775 }
776 }
777 }
778
779 /*
780 * Insert physical page at pa into the given pmap at virtual address va.
781 */
782 int
783 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
784 {
785 int s;
786 u_int tte;
787 int managed;
788
789 /*
790 * Have to remove any existing mapping first.
791 */
792 pmap_remove(pm, va, va + PAGE_SIZE);
793
794 if (flags & PMAP_WIRED)
795 flags |= prot;
796
797 managed = 0;
798 if (vm_physseg_find(atop(pa), NULL) != -1)
799 managed = 1;
800
801 /*
802 * Generate TTE.
803 */
804 tte = TTE_PA(pa);
805 /* XXXX -- need to support multiple page sizes. */
806 tte |= TTE_SZ_16K;
807 #ifdef DIAGNOSTIC
808 if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
809 (PME_NOCACHE | PME_WRITETHROUG))
810 panic("pmap_enter: uncached & writethrough");
811 #endif
812 if (flags & PME_NOCACHE)
813 /* Must be I/O mapping */
814 tte |= TTE_I | TTE_G;
815 #ifdef PPC_4XX_NOCACHE
816 tte |= TTE_I;
817 #else
818 else if (flags & PME_WRITETHROUG)
819 /* Uncached and writethrough are not compatible */
820 tte |= TTE_W;
821 #endif
822 if (pm == pmap_kernel())
823 tte |= TTE_ZONE(ZONE_PRIV);
824 else
825 tte |= TTE_ZONE(ZONE_USER);
826
827 if (flags & VM_PROT_WRITE)
828 tte |= TTE_WR;
829
830 if (flags & VM_PROT_EXECUTE)
831 tte |= TTE_EX;
832
833 /*
834 * Now record mapping for later back-translation.
835 */
836 if (pmap_initialized && managed) {
837 char *attr;
838
839 if (!pmap_enter_pv(pm, va, pa, flags & PMAP_WIRED)) {
840 /* Could not enter pv on a managed page */
841 return 1;
842 }
843
844 /* Now set attributes. */
845 attr = pa_to_attr(pa);
846 #ifdef DIAGNOSTIC
847 if (!attr)
848 panic("managed but no attr");
849 #endif
850 if (flags & VM_PROT_ALL)
851 *attr |= PMAP_ATTR_REF;
852 if (flags & VM_PROT_WRITE)
853 *attr |= PMAP_ATTR_CHG;
854 }
855
856 s = splvm();
857
858 /* Insert page into page table. */
859 pte_enter(pm, va, tte);
860
861 /* If this is a real fault, enter it in the tlb */
862 if (tte && ((flags & PMAP_WIRED) == 0)) {
863 ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
864 }
865 splx(s);
866
867 /* Flush the real memory from the instruction cache. */
868 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
869 __syncicache((void *)pa, PAGE_SIZE);
870
871 if (flags & PMAP_WIRED)
872 pm->pm_stats.wired_count++;
873
874 return 0;
875 }
876
877 void
878 pmap_unwire(struct pmap *pm, vaddr_t va)
879 {
880 struct pv_entry *pv, *npv;
881 paddr_t pa;
882 int s;
883
884 if (!pmap_extract(pm, va, &pa)) {
885 return;
886 }
887
888 pv = pa_to_pv(pa);
889 if (!pv)
890 return;
891
892 /*
893 * If it is the first entry on the list, it is actually
894 * in the header and we must copy the following entry up
895 * to the header. Otherwise we must search the list for
896 * the entry. In either case we free the now unused entry.
897 */
898 s = splvm();
899 for (npv = pv; (npv = pv->pv_next) != NULL; pv = npv) {
900 if (pm == npv->pv_pm && PV_CMPVA(va, npv)) {
901 if (PV_ISWIRED(npv)) {
902 PV_UNWIRE(npv);
903 pm->pm_stats.wired_count--;
904 }
905 break;
906 }
907 }
908 splx(s);
909 }
910
911 void
912 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
913 {
914 int s;
915 u_int tte;
916 struct pmap *pm = pmap_kernel();
917
918 /*
919 * Have to remove any existing mapping first.
920 */
921
922 /*
923 * Generate TTE.
924 *
925 * XXXX
926 *
927 * Since the kernel does not handle execution privileges properly,
928 * we will handle read and execute permissions together.
929 */
930 tte = 0;
931 if (prot & VM_PROT_ALL) {
932
933 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
934 /* XXXX -- need to support multiple page sizes. */
935 tte |= TTE_SZ_16K;
936 #ifdef DIAGNOSTIC
937 if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
938 (PME_NOCACHE | PME_WRITETHROUG))
939 panic("pmap_kenter_pa: uncached & writethrough");
940 #endif
941 if (prot & PME_NOCACHE)
942 /* Must be I/O mapping */
943 tte |= TTE_I | TTE_G;
944 #ifdef PPC_4XX_NOCACHE
945 tte |= TTE_I;
946 #else
947 else if (prot & PME_WRITETHROUG)
948 /* Uncached and writethrough are not compatible */
949 tte |= TTE_W;
950 #endif
951 if (prot & VM_PROT_WRITE)
952 tte |= TTE_WR;
953 }
954
955 s = splvm();
956
957 /* Insert page into page table. */
958 pte_enter(pm, va, tte);
959 splx(s);
960 }
961
962 void
963 pmap_kremove(vaddr_t va, vsize_t len)
964 {
965
966 while (len > 0) {
967 pte_enter(pmap_kernel(), va, 0);
968 va += PAGE_SIZE;
969 len -= PAGE_SIZE;
970 }
971 }
972
973 /*
974 * Remove the given range of mapping entries.
975 */
976 void
977 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
978 {
979 int s;
980 paddr_t pa;
981 volatile u_int *ptp;
982
983 s = splvm();
984 while (va < endva) {
985
986 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
987 pa = TTE_PA(pa);
988 pmap_remove_pv(pm, va, pa);
989 *ptp = 0;
990 ppc4xx_tlb_flush(va, pm->pm_ctx);
991 pm->pm_stats.resident_count--;
992 }
993 va += PAGE_SIZE;
994 }
995
996 splx(s);
997 }
998
999 /*
1000 * Get the physical page address for the given pmap/virtual address.
1001 */
1002 boolean_t
1003 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1004 {
1005 int seg = STIDX(va);
1006 int ptn = PTIDX(va);
1007 u_int pa = 0;
1008 int s;
1009
1010 s = splvm();
1011 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
1012 *pap = TTE_PA(pa) | (va & PGOFSET);
1013 }
1014 splx(s);
1015 return (pa != 0);
1016 }
1017
1018 /*
1019 * Lower the protection on the specified range of this pmap.
1020 *
1021 * There are only two cases: either the protection is going to 0,
1022 * or it is going to read-only.
1023 */
1024 void
1025 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1026 {
1027 volatile u_int *ptp;
1028 int s, bic;
1029
1030 if ((prot & VM_PROT_READ) == 0) {
1031 pmap_remove(pm, sva, eva);
1032 return;
1033 }
1034 bic = 0;
1035 if ((prot & VM_PROT_WRITE) == 0) {
1036 bic |= TTE_WR;
1037 }
1038 if ((prot & VM_PROT_EXECUTE) == 0) {
1039 bic |= TTE_EX;
1040 }
1041 if (bic == 0) {
1042 return;
1043 }
1044 s = splvm();
1045 while (sva < eva) {
1046 if ((ptp = pte_find(pm, sva)) != NULL) {
1047 *ptp &= ~bic;
1048 ppc4xx_tlb_flush(sva, pm->pm_ctx);
1049 }
1050 sva += PAGE_SIZE;
1051 }
1052 splx(s);
1053 }
1054
1055 boolean_t
1056 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
1057 {
1058 paddr_t pa;
1059 char *attr;
1060 int s, rv;
1061
1062 /*
1063 * First modify bits in cache.
1064 */
1065 pa = VM_PAGE_TO_PHYS(pg);
1066 attr = pa_to_attr(pa);
1067 if (attr == NULL)
1068 return FALSE;
1069
1070 s = splvm();
1071 rv = ((*attr & mask) != 0);
1072 if (clear) {
1073 *attr &= ~mask;
1074 pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
1075 }
1076 splx(s);
1077 return rv;
1078 }
1079
1080
1081 /*
1082 * Lower the protection on the specified physical page.
1083 *
1084 * There are only two cases: either the protection is going to 0,
1085 * or it is going to read-only.
1086 */
1087 void
1088 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1089 {
1090 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1091 vaddr_t va;
1092 struct pv_entry *pvh, *pv, *npv;
1093 struct pmap *pm;
1094
1095 pvh = pa_to_pv(pa);
1096 if (pvh == NULL)
1097 return;
1098
1099 /* Handle extra pvs which may be deleted in the operation */
1100 for (pv = pvh->pv_next; pv; pv = npv) {
1101 npv = pv->pv_next;
1102
1103 pm = pv->pv_pm;
1104 va = pv->pv_va;
1105 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1106 }
1107 /* Now check the head pv */
1108 if (pvh->pv_pm) {
1109 pv = pvh;
1110 pm = pv->pv_pm;
1111 va = pv->pv_va;
1112 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1113 }
1114 }
1115
1116 /*
1117 * Activate the address space for the specified process. If the process
1118 * is the current process, load the new MMU context.
1119 */
1120 void
1121 pmap_activate(struct lwp *l)
1122 {
1123 #if 0
1124 struct pcb *pcb = &l->l_proc->p_addr->u_pcb;
1125 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1126
1127 /*
1128 * XXX Normally performed in cpu_fork().
1129 */
1130 printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1131 pcb->pcb_pm = pmap;
1132 #endif
1133 }
1134
1135 /*
1136 * Deactivate the specified process's address space.
1137 */
1138 void
1139 pmap_deactivate(struct lwp *l)
1140 {
1141 }
1142
1143 /*
1144 * Synchronize caches corresponding to [addr, addr+len) in p.
1145 */
1146 void
1147 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1148 {
1149 struct pmap *pm = p->p_vmspace->vm_map.pmap;
1150 int msr, ctx, opid, step;
1151
1152 step = CACHELINESIZE;
1153
1154 /*
1155 * Need to turn off IMMU and switch to user context.
1156 * (icbi uses DMMU).
1157 */
1158 if (!(ctx = pm->pm_ctx)) {
1159 /* No context -- assign it one */
1160 ctx_alloc(pm);
1161 ctx = pm->pm_ctx;
1162 }
1163 __asm __volatile("mfmsr %0;"
1164 "li %1, %7;"
1165 "andc %1,%0,%1;"
1166 "mtmsr %1;"
1167 "sync;isync;"
1168 "mfpid %1;"
1169 "mtpid %2;"
1170 "sync; isync;"
1171 "1:"
1172 "dcbf 0,%3;"
1173 "icbi 0,%3;"
1174 "add %3,%3,%5;"
1175 "addc. %4,%4,%6;"
1176 "bge 1b;"
1177 "mtpid %1;"
1178 "mtmsr %0;"
1179 "sync; isync"
1180 : "=&r" (msr), "=&r" (opid)
1181 : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
1182 "K" (PSL_IR | PSL_DR));
1183 }
1184
1185
1186 /* This has to be done in real mode !!! */
1187 void
1188 ppc4xx_tlb_flush(vaddr_t va, int pid)
1189 {
1190 u_long i, found;
1191 u_long msr;
1192
1193 /* If there's no context then it can't be mapped. */
1194 if (!pid)
1195 return;
1196
1197 asm("mfpid %1;" /* Save PID */
1198 "mfmsr %2;" /* Save MSR */
1199 "li %0,0;" /* Now clear MSR */
1200 "mtmsr %0;"
1201 "mtpid %4;" /* Set PID */
1202 "sync;"
1203 "tlbsx. %0,0,%3;" /* Search TLB */
1204 "sync;"
1205 "mtpid %1;" /* Restore PID */
1206 "mtmsr %2;" /* Restore MSR */
1207 "sync;isync;"
1208 "li %1,1;"
1209 "beq 1f;"
1210 "li %1,0;"
1211 "1:"
1212 : "=&r" (i), "=&r" (found), "=&r" (msr)
1213 : "r" (va), "r" (pid));
1214 if (found && !TLB_LOCKED(i)) {
1215
1216 /* Now flush translation */
1217 asm volatile(
1218 "tlbwe %0,%1,0;"
1219 "sync;isync;"
1220 : : "r" (0), "r" (i));
1221
1222 tlb_info[i].ti_ctx = 0;
1223 tlb_info[i].ti_flags = 0;
1224 tlbnext = i;
1225 /* Successful flushes */
1226 tlbflush_ev.ev_count++;
1227 }
1228 }
1229
1230 void
1231 ppc4xx_tlb_flush_all(void)
1232 {
1233 u_long i;
1234
1235 for (i = 0; i < NTLB; i++)
1236 if (!TLB_LOCKED(i)) {
1237 asm volatile(
1238 "tlbwe %0,%1,0;"
1239 "sync;isync;"
1240 : : "r" (0), "r" (i));
1241 tlb_info[i].ti_ctx = 0;
1242 tlb_info[i].ti_flags = 0;
1243 }
1244
1245 asm volatile("sync;isync");
1246 }
1247
1248 /* Find a TLB entry to evict. */
1249 static int
1250 ppc4xx_tlb_find_victim(void)
1251 {
1252 int flags;
1253
1254 for (;;) {
1255 if (++tlbnext >= NTLB)
1256 tlbnext = TLB_NRESERVED;
1257 flags = tlb_info[tlbnext].ti_flags;
1258 if (!(flags & TLBF_USED) ||
1259 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1260 u_long va, stack = (u_long)&va;
1261
1262 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1263 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1264 (flags & TLBF_USED)) {
1265 /* Kernel stack page */
1266 flags |= TLBF_USED;
1267 tlb_info[tlbnext].ti_flags = flags;
1268 } else {
1269 /* Found it! */
1270 return (tlbnext);
1271 }
1272 } else {
1273 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1274 }
1275 }
1276 }
1277
1278 void
1279 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1280 {
1281 u_long th, tl, idx;
1282 tlbpid_t pid;
1283 u_short msr;
1284 paddr_t pa;
1285 int s, sz;
1286
1287 tlbenter_ev.ev_count++;
1288
1289 sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1290 pa = (pte & TTE_RPN_MASK(sz));
1291 th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1292 tl = (pte & ~TLB_RPN_MASK) | pa;
1293 tl |= ppc4xx_tlbflags(va, pa);
1294
1295 s = splhigh();
1296 idx = ppc4xx_tlb_find_victim();
1297
1298 #ifdef DIAGNOSTIC
1299 if ((idx < TLB_NRESERVED) || (idx >= NTLB)) {
1300 panic("ppc4xx_tlb_enter: repacing entry %ld", idx);
1301 }
1302 #endif
1303
1304 tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1305 tlb_info[idx].ti_ctx = ctx;
1306 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1307
1308 asm volatile(
1309 "mfmsr %0;" /* Save MSR */
1310 "li %1,0;"
1311 "tlbwe %1,%3,0;" /* Invalidate old entry. */
1312 "mtmsr %1;" /* Clear MSR */
1313 "mfpid %1;" /* Save old PID */
1314 "mtpid %2;" /* Load translation ctx */
1315 "sync; isync;"
1316 #ifdef DEBUG
1317 "andi. %3,%3,63;"
1318 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */
1319 #endif
1320 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1321 "sync; isync;"
1322 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1323 "sync; isync;"
1324 : "=&r" (msr), "=&r" (pid)
1325 : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1326 splx(s);
1327 }
1328
1329 void
1330 ppc4xx_tlb_unpin(int i)
1331 {
1332
1333 if (i == -1)
1334 for (i = 0; i < TLB_NRESERVED; i++)
1335 tlb_info[i].ti_flags &= ~TLBF_LOCKED;
1336 else
1337 tlb_info[i].ti_flags &= ~TLBF_LOCKED;
1338 }
1339
1340 void
1341 ppc4xx_tlb_init(void)
1342 {
1343 int i;
1344
1345 /* Mark reserved TLB entries */
1346 for (i = 0; i < TLB_NRESERVED; i++) {
1347 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1348 tlb_info[i].ti_ctx = KERNEL_PID;
1349 }
1350
1351 /* Setup security zones */
1352 /* Z0 - accessible by kernel only if TLB entry permissions allow
1353 * Z1,Z2 - access is controlled by TLB entry permissions
1354 * Z3 - full access regardless of TLB entry permissions
1355 */
1356
1357 asm volatile(
1358 "mtspr %0,%1;"
1359 "sync;"
1360 :: "K"(SPR_ZPR), "r" (0x1b000000));
1361 }
1362
1363
1364 /*
1365 * We should pass the ctx in from trap code.
1366 */
1367 int
1368 pmap_tlbmiss(vaddr_t va, int ctx)
1369 {
1370 volatile u_int *pte;
1371 u_long tte;
1372
1373 tlbmiss_ev.ev_count++;
1374
1375 /*
1376 * XXXX We will reserve 0-0x80000000 for va==pa mappings.
1377 */
1378 if (ctx != KERNEL_PID || (va & 0x80000000)) {
1379 pte = pte_find((struct pmap *)ctxbusy[ctx], va);
1380 if (pte == NULL) {
1381 /* Map unmanaged addresses directly for kernel access */
1382 return 1;
1383 }
1384 tte = *pte;
1385 if (tte == 0) {
1386 return 1;
1387 }
1388 } else {
1389 /* Create a 16MB writable mapping. */
1390 #ifdef PPC_4XX_NOCACHE
1391 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I | TTE_WR;
1392 #else
1393 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1394 #endif
1395 }
1396 tlbhit_ev.ev_count++;
1397 ppc4xx_tlb_enter(ctx, va, tte);
1398
1399 return 0;
1400 }
1401
1402 /*
1403 * Flush all the entries matching a context from the TLB.
1404 */
1405 static int
1406 ctx_flush(int cnum)
1407 {
1408 int i;
1409
1410 /* We gotta steal this context */
1411 for (i = TLB_NRESERVED; i < NTLB; i++) {
1412 if (tlb_info[i].ti_ctx == cnum) {
1413 /* Can't steal ctx if it has a locked entry. */
1414 if (TLB_LOCKED(i)) {
1415 #ifdef DIAGNOSTIC
1416 printf("ctx_flush: can't invalidate "
1417 "locked mapping %d "
1418 "for context %d\n", i, cnum);
1419 #ifdef DDB
1420 Debugger();
1421 #endif
1422 #endif
1423 return (1);
1424 }
1425 #ifdef DIAGNOSTIC
1426 if (i < TLB_NRESERVED)
1427 panic("TLB entry %d not locked", i);
1428 #endif
1429 /* Invalidate particular TLB entry regardless of locked status */
1430 asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1431 tlb_info[i].ti_flags = 0;
1432 }
1433 }
1434 return (0);
1435 }
1436
1437 /*
1438 * Allocate a context. If necessary, steal one from someone else.
1439 *
1440 * The new context is flushed from the TLB before returning.
1441 */
1442 int
1443 ctx_alloc(struct pmap *pm)
1444 {
1445 int s, cnum;
1446 static int next = MINCTX;
1447
1448 if (pm == pmap_kernel()) {
1449 #ifdef DIAGNOSTIC
1450 printf("ctx_alloc: kernel pmap!\n");
1451 #endif
1452 return (0);
1453 }
1454 s = splvm();
1455
1456 /* Find a likely context. */
1457 cnum = next;
1458 do {
1459 if ((++cnum) > NUMCTX)
1460 cnum = MINCTX;
1461 } while (ctxbusy[cnum] != NULL && cnum != next);
1462
1463 /* Now clean it out */
1464 oops:
1465 if (cnum < MINCTX)
1466 cnum = MINCTX; /* Never steal ctx 0 or 1 */
1467 if (ctx_flush(cnum)) {
1468 /* oops -- something's wired. */
1469 if ((++cnum) > NUMCTX)
1470 cnum = MINCTX;
1471 goto oops;
1472 }
1473
1474 if (ctxbusy[cnum]) {
1475 #ifdef DEBUG
1476 /* We should identify this pmap and clear it */
1477 printf("Warning: stealing context %d\n", cnum);
1478 #endif
1479 ctxbusy[cnum]->pm_ctx = 0;
1480 }
1481 ctxbusy[cnum] = pm;
1482 next = cnum;
1483 splx(s);
1484 pm->pm_ctx = cnum;
1485
1486 return cnum;
1487 }
1488
1489 /*
1490 * Give away a context.
1491 */
1492 void
1493 ctx_free(struct pmap *pm)
1494 {
1495 int oldctx;
1496
1497 oldctx = pm->pm_ctx;
1498
1499 if (oldctx == 0)
1500 panic("ctx_free: freeing kernel context");
1501 #ifdef DIAGNOSTIC
1502 if (ctxbusy[oldctx] == 0)
1503 printf("ctx_free: freeing free context %d\n", oldctx);
1504 if (ctxbusy[oldctx] != pm) {
1505 printf("ctx_free: freeing someone esle's context\n "
1506 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1507 oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1508 #ifdef DDB
1509 Debugger();
1510 #endif
1511 }
1512 #endif
1513 /* We should verify it has not been stolen and reallocated... */
1514 ctxbusy[oldctx] = NULL;
1515 ctx_flush(oldctx);
1516 }
1517
1518
1519 #ifdef DEBUG
1520 /*
1521 * Test ref/modify handling.
1522 */
1523 void pmap_testout __P((void));
1524 void
1525 pmap_testout()
1526 {
1527 vaddr_t va;
1528 volatile int *loc;
1529 int val = 0;
1530 paddr_t pa;
1531 struct vm_page *pg;
1532 int ref, mod;
1533
1534 /* Allocate a page */
1535 va = (vaddr_t)uvm_km_zalloc(kernel_map, PAGE_SIZE);
1536 loc = (int*)va;
1537
1538 pmap_extract(pmap_kernel(), va, &pa);
1539 pg = PHYS_TO_VM_PAGE(pa);
1540 pmap_unwire(pmap_kernel(), va);
1541
1542 pmap_remove(pmap_kernel(), va, va+1);
1543 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1544 pmap_update(pmap_kernel());
1545
1546 /* Now clear reference and modify */
1547 ref = pmap_clear_reference(pg);
1548 mod = pmap_clear_modify(pg);
1549 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1550 (void *)(u_long)va, (long)pa,
1551 ref, mod);
1552
1553 /* Check it's properly cleared */
1554 ref = pmap_is_referenced(pg);
1555 mod = pmap_is_modified(pg);
1556 printf("Checking cleared page: ref %d, mod %d\n",
1557 ref, mod);
1558
1559 /* Reference page */
1560 val = *loc;
1561
1562 ref = pmap_is_referenced(pg);
1563 mod = pmap_is_modified(pg);
1564 printf("Referenced page: ref %d, mod %d val %x\n",
1565 ref, mod, val);
1566
1567 /* Now clear reference and modify */
1568 ref = pmap_clear_reference(pg);
1569 mod = pmap_clear_modify(pg);
1570 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1571 (void *)(u_long)va, (long)pa,
1572 ref, mod);
1573
1574 /* Modify page */
1575 *loc = 1;
1576
1577 ref = pmap_is_referenced(pg);
1578 mod = pmap_is_modified(pg);
1579 printf("Modified page: ref %d, mod %d\n",
1580 ref, mod);
1581
1582 /* Now clear reference and modify */
1583 ref = pmap_clear_reference(pg);
1584 mod = pmap_clear_modify(pg);
1585 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1586 (void *)(u_long)va, (long)pa,
1587 ref, mod);
1588
1589 /* Check it's properly cleared */
1590 ref = pmap_is_referenced(pg);
1591 mod = pmap_is_modified(pg);
1592 printf("Checking cleared page: ref %d, mod %d\n",
1593 ref, mod);
1594
1595 /* Modify page */
1596 *loc = 1;
1597
1598 ref = pmap_is_referenced(pg);
1599 mod = pmap_is_modified(pg);
1600 printf("Modified page: ref %d, mod %d\n",
1601 ref, mod);
1602
1603 /* Check pmap_protect() */
1604 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1605 pmap_update(pmap_kernel());
1606 ref = pmap_is_referenced(pg);
1607 mod = pmap_is_modified(pg);
1608 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1609 ref, mod);
1610
1611 /* Now clear reference and modify */
1612 ref = pmap_clear_reference(pg);
1613 mod = pmap_clear_modify(pg);
1614 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1615 (void *)(u_long)va, (long)pa,
1616 ref, mod);
1617
1618 /* Reference page */
1619 val = *loc;
1620
1621 ref = pmap_is_referenced(pg);
1622 mod = pmap_is_modified(pg);
1623 printf("Referenced page: ref %d, mod %d val %x\n",
1624 ref, mod, val);
1625
1626 /* Now clear reference and modify */
1627 ref = pmap_clear_reference(pg);
1628 mod = pmap_clear_modify(pg);
1629 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1630 (void *)(u_long)va, (long)pa,
1631 ref, mod);
1632
1633 /* Modify page */
1634 #if 0
1635 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1636 pmap_update(pmap_kernel());
1637 #endif
1638 *loc = 1;
1639
1640 ref = pmap_is_referenced(pg);
1641 mod = pmap_is_modified(pg);
1642 printf("Modified page: ref %d, mod %d\n",
1643 ref, mod);
1644
1645 /* Check pmap_protect() */
1646 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1647 pmap_update(pmap_kernel());
1648 ref = pmap_is_referenced(pg);
1649 mod = pmap_is_modified(pg);
1650 printf("pmap_protect(): ref %d, mod %d\n",
1651 ref, mod);
1652
1653 /* Now clear reference and modify */
1654 ref = pmap_clear_reference(pg);
1655 mod = pmap_clear_modify(pg);
1656 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1657 (void *)(u_long)va, (long)pa,
1658 ref, mod);
1659
1660 /* Reference page */
1661 val = *loc;
1662
1663 ref = pmap_is_referenced(pg);
1664 mod = pmap_is_modified(pg);
1665 printf("Referenced page: ref %d, mod %d val %x\n",
1666 ref, mod, val);
1667
1668 /* Now clear reference and modify */
1669 ref = pmap_clear_reference(pg);
1670 mod = pmap_clear_modify(pg);
1671 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1672 (void *)(u_long)va, (long)pa,
1673 ref, mod);
1674
1675 /* Modify page */
1676 #if 0
1677 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1678 pmap_update(pmap_kernel());
1679 #endif
1680 *loc = 1;
1681
1682 ref = pmap_is_referenced(pg);
1683 mod = pmap_is_modified(pg);
1684 printf("Modified page: ref %d, mod %d\n",
1685 ref, mod);
1686
1687 /* Check pmap_pag_protect() */
1688 pmap_page_protect(pg, VM_PROT_READ);
1689 ref = pmap_is_referenced(pg);
1690 mod = pmap_is_modified(pg);
1691 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1692 ref, mod);
1693
1694 /* Now clear reference and modify */
1695 ref = pmap_clear_reference(pg);
1696 mod = pmap_clear_modify(pg);
1697 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1698 (void *)(u_long)va, (long)pa,
1699 ref, mod);
1700
1701 /* Reference page */
1702 val = *loc;
1703
1704 ref = pmap_is_referenced(pg);
1705 mod = pmap_is_modified(pg);
1706 printf("Referenced page: ref %d, mod %d val %x\n",
1707 ref, mod, val);
1708
1709 /* Now clear reference and modify */
1710 ref = pmap_clear_reference(pg);
1711 mod = pmap_clear_modify(pg);
1712 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1713 (void *)(u_long)va, (long)pa,
1714 ref, mod);
1715
1716 /* Modify page */
1717 #if 0
1718 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1719 pmap_update(pmap_kernel());
1720 #endif
1721 *loc = 1;
1722
1723 ref = pmap_is_referenced(pg);
1724 mod = pmap_is_modified(pg);
1725 printf("Modified page: ref %d, mod %d\n",
1726 ref, mod);
1727
1728 /* Check pmap_pag_protect() */
1729 pmap_page_protect(pg, VM_PROT_NONE);
1730 ref = pmap_is_referenced(pg);
1731 mod = pmap_is_modified(pg);
1732 printf("pmap_page_protect(): ref %d, mod %d\n",
1733 ref, mod);
1734
1735 /* Now clear reference and modify */
1736 ref = pmap_clear_reference(pg);
1737 mod = pmap_clear_modify(pg);
1738 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1739 (void *)(u_long)va, (long)pa,
1740 ref, mod);
1741
1742
1743 /* Reference page */
1744 val = *loc;
1745
1746 ref = pmap_is_referenced(pg);
1747 mod = pmap_is_modified(pg);
1748 printf("Referenced page: ref %d, mod %d val %x\n",
1749 ref, mod, val);
1750
1751 /* Now clear reference and modify */
1752 ref = pmap_clear_reference(pg);
1753 mod = pmap_clear_modify(pg);
1754 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1755 (void *)(u_long)va, (long)pa,
1756 ref, mod);
1757
1758 /* Modify page */
1759 #if 0
1760 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1761 pmap_update(pmap_kernel());
1762 #endif
1763 *loc = 1;
1764
1765 ref = pmap_is_referenced(pg);
1766 mod = pmap_is_modified(pg);
1767 printf("Modified page: ref %d, mod %d\n",
1768 ref, mod);
1769
1770 /* Unmap page */
1771 pmap_remove(pmap_kernel(), va, va+1);
1772 pmap_update(pmap_kernel());
1773 ref = pmap_is_referenced(pg);
1774 mod = pmap_is_modified(pg);
1775 printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1776
1777 /* Now clear reference and modify */
1778 ref = pmap_clear_reference(pg);
1779 mod = pmap_clear_modify(pg);
1780 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1781 (void *)(u_long)va, (long)pa, ref, mod);
1782
1783 /* Check it's properly cleared */
1784 ref = pmap_is_referenced(pg);
1785 mod = pmap_is_modified(pg);
1786 printf("Checking cleared page: ref %d, mod %d\n",
1787 ref, mod);
1788
1789 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL,
1790 VM_PROT_ALL|PMAP_WIRED);
1791 uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE);
1792 }
1793 #endif
1794