pmap.c revision 1.39.8.2 1 /* $NetBSD: pmap.c,v 1.39.8.2 2006/09/03 15:23:27 yamt Exp $ */
2
3 /*
4 * Copyright 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.39.8.2 2006/09/03 15:23:27 yamt Exp $");
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/user.h>
76 #include <sys/queue.h>
77 #include <sys/systm.h>
78 #include <sys/pool.h>
79 #include <sys/device.h>
80
81 #include <uvm/uvm.h>
82
83 #include <machine/cpu.h>
84 #include <machine/pcb.h>
85 #include <machine/powerpc.h>
86
87 #include <powerpc/spr.h>
88 #include <machine/tlb.h>
89
90 /*
91 * kernmap is an array of PTEs large enough to map in
92 * 4GB. At 16KB/page it is 256K entries or 2MB.
93 */
94 #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1)
95 caddr_t kernmap;
96
97 #define MINCTX 2
98 #define NUMCTX 256
99
100 volatile struct pmap *ctxbusy[NUMCTX];
101
102 #define TLBF_USED 0x1
103 #define TLBF_REF 0x2
104 #define TLBF_LOCKED 0x4
105 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
106
107 typedef struct tlb_info_s {
108 char ti_flags;
109 char ti_ctx; /* TLB_PID assiciated with the entry */
110 u_int ti_va;
111 } tlb_info_t;
112
113 volatile tlb_info_t tlb_info[NTLB];
114 /* We'll use a modified FIFO replacement policy cause it's cheap */
115 volatile int tlbnext;
116
117 static int tlb_nreserved = 0;
118 static int pmap_bootstrap_done = 0;
119
120 /* Event counters */
121 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
122 NULL, "cpu", "tlbmiss");
123 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
124 NULL, "cpu", "tlbhit");
125 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
126 NULL, "cpu", "tlbflush");
127 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
128 NULL, "cpu", "tlbenter");
129
130 struct pmap kernel_pmap_;
131
132 int physmem;
133 static int npgs;
134 static u_int nextavail;
135 #ifndef MSGBUFADDR
136 extern paddr_t msgbuf_paddr;
137 #endif
138
139 static struct mem_region *mem, *avail;
140
141 /*
142 * This is a cache of referenced/modified bits.
143 * Bits herein are shifted by ATTRSHFT.
144 */
145 static char *pmap_attrib;
146
147 #define PV_WIRED 0x1
148 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
149 #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED)
150 #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED)
151 #define PV_CMPVA(va,pv) (!(((pv)->pv_va ^ (va)) & (~PV_WIRED)))
152
153 struct pv_entry {
154 struct pv_entry *pv_next; /* Linked list of mappings */
155 vaddr_t pv_va; /* virtual address of mapping */
156 struct pmap *pv_pm;
157 };
158
159 /* Each index corresponds to TLB_SIZE_* value. */
160 static size_t tlbsize[] = {
161 1024, /* TLB_SIZE_1K */
162 4096, /* TLB_SIZE_4K */
163 16384, /* TLB_SIZE_16K */
164 65536, /* TLB_SIZE_64K */
165 262144, /* TLB_SIZE_256K */
166 1048576, /* TLB_SIZE_1M */
167 4194304, /* TLB_SIZE_4M */
168 16777216, /* TLB_SIZE_16M */
169 };
170
171 struct pv_entry *pv_table;
172 static struct pool pv_pool;
173
174 static int pmap_initialized;
175
176 static int ctx_flush(int);
177
178 inline struct pv_entry *pa_to_pv(paddr_t);
179 static inline char *pa_to_attr(paddr_t);
180
181 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
182 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
183
184 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, boolean_t);
185 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
186
187 static int ppc4xx_tlb_size_mask(size_t, int *, int *);
188
189
190 inline struct pv_entry *
191 pa_to_pv(paddr_t pa)
192 {
193 int bank, pg;
194
195 bank = vm_physseg_find(atop(pa), &pg);
196 if (bank == -1)
197 return NULL;
198 return &vm_physmem[bank].pmseg.pvent[pg];
199 }
200
201 static inline char *
202 pa_to_attr(paddr_t pa)
203 {
204 int bank, pg;
205
206 bank = vm_physseg_find(atop(pa), &pg);
207 if (bank == -1)
208 return NULL;
209 return &vm_physmem[bank].pmseg.attrs[pg];
210 }
211
212 /*
213 * Insert PTE into page table.
214 */
215 int
216 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
217 {
218 int seg = STIDX(va);
219 int ptn = PTIDX(va);
220 u_int oldpte;
221
222 if (!pm->pm_ptbl[seg]) {
223 /* Don't allocate a page to clear a non-existent mapping. */
224 if (!pte)
225 return (0);
226 /* Allocate a page XXXX this will sleep! */
227 pm->pm_ptbl[seg] =
228 (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
229 UVM_KMF_WIRED | UVM_KMF_ZERO);
230 }
231 oldpte = pm->pm_ptbl[seg][ptn];
232 pm->pm_ptbl[seg][ptn] = pte;
233
234 /* Flush entry. */
235 ppc4xx_tlb_flush(va, pm->pm_ctx);
236 if (oldpte != pte) {
237 if (pte == 0)
238 pm->pm_stats.resident_count--;
239 else
240 pm->pm_stats.resident_count++;
241 }
242 return (1);
243 }
244
245 /*
246 * Get a pointer to a PTE in a page table.
247 */
248 volatile u_int *
249 pte_find(struct pmap *pm, vaddr_t va)
250 {
251 int seg = STIDX(va);
252 int ptn = PTIDX(va);
253
254 if (pm->pm_ptbl[seg])
255 return (&pm->pm_ptbl[seg][ptn]);
256
257 return (NULL);
258 }
259
260 /*
261 * This is called during initppc, before the system is really initialized.
262 */
263 void
264 pmap_bootstrap(u_int kernelstart, u_int kernelend)
265 {
266 struct mem_region *mp, *mp1;
267 int cnt, i;
268 u_int s, e, sz;
269
270 /* XXXfreza: compat, we used to statically reserve 4 entries. */
271 if (tlb_nreserved == 0)
272 tlb_nreserved = TLB_NRESERVED;
273
274 tlbnext = tlb_nreserved;
275
276 /*
277 * Allocate the kernel page table at the end of
278 * kernel space so it's in the locked TTE.
279 */
280 kernmap = (caddr_t)kernelend;
281
282 /*
283 * Initialize kernel page table.
284 */
285 for (i = 0; i < STSZ; i++) {
286 pmap_kernel()->pm_ptbl[i] = 0;
287 }
288 ctxbusy[0] = ctxbusy[1] = pmap_kernel();
289
290 /*
291 * Announce page-size to the VM-system
292 */
293 uvmexp.pagesize = NBPG;
294 uvm_setpagesize();
295
296 /*
297 * Get memory.
298 */
299 mem_regions(&mem, &avail);
300 for (mp = mem; mp->size; mp++) {
301 physmem += btoc(mp->size);
302 printf("+%lx,",mp->size);
303 }
304 printf("\n");
305 ppc4xx_tlb_init();
306 /*
307 * Count the number of available entries.
308 */
309 for (cnt = 0, mp = avail; mp->size; mp++)
310 cnt++;
311
312 /*
313 * Page align all regions.
314 * Non-page aligned memory isn't very interesting to us.
315 * Also, sort the entries for ascending addresses.
316 */
317 kernelstart &= ~PGOFSET;
318 kernelend = (kernelend + PGOFSET) & ~PGOFSET;
319 for (mp = avail; mp->size; mp++) {
320 s = mp->start;
321 e = mp->start + mp->size;
322 printf("%08x-%08x -> ",s,e);
323 /*
324 * Check whether this region holds all of the kernel.
325 */
326 if (s < kernelstart && e > kernelend) {
327 avail[cnt].start = kernelend;
328 avail[cnt++].size = e - kernelend;
329 e = kernelstart;
330 }
331 /*
332 * Look whether this regions starts within the kernel.
333 */
334 if (s >= kernelstart && s < kernelend) {
335 if (e <= kernelend)
336 goto empty;
337 s = kernelend;
338 }
339 /*
340 * Now look whether this region ends within the kernel.
341 */
342 if (e > kernelstart && e <= kernelend) {
343 if (s >= kernelstart)
344 goto empty;
345 e = kernelstart;
346 }
347 /*
348 * Now page align the start and size of the region.
349 */
350 s = round_page(s);
351 e = trunc_page(e);
352 if (e < s)
353 e = s;
354 sz = e - s;
355 printf("%08x-%08x = %x\n",s,e,sz);
356 /*
357 * Check whether some memory is left here.
358 */
359 if (sz == 0) {
360 empty:
361 memmove(mp, mp + 1,
362 (cnt - (mp - avail)) * sizeof *mp);
363 cnt--;
364 mp--;
365 continue;
366 }
367 /*
368 * Do an insertion sort.
369 */
370 npgs += btoc(sz);
371 for (mp1 = avail; mp1 < mp; mp1++)
372 if (s < mp1->start)
373 break;
374 if (mp1 < mp) {
375 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
376 mp1->start = s;
377 mp1->size = sz;
378 } else {
379 mp->start = s;
380 mp->size = sz;
381 }
382 }
383
384 /*
385 * We cannot do pmap_steal_memory here,
386 * since we don't run with translation enabled yet.
387 */
388 #ifndef MSGBUFADDR
389 /*
390 * allow for msgbuf
391 */
392 sz = round_page(MSGBUFSIZE);
393 mp = NULL;
394 for (mp1 = avail; mp1->size; mp1++)
395 if (mp1->size >= sz)
396 mp = mp1;
397 if (mp == NULL)
398 panic("not enough memory?");
399
400 npgs -= btoc(sz);
401 msgbuf_paddr = mp->start + mp->size - sz;
402 mp->size -= sz;
403 if (mp->size <= 0)
404 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
405 #endif
406
407 for (mp = avail; mp->size; mp++)
408 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
409 atop(mp->start), atop(mp->start + mp->size),
410 VM_FREELIST_DEFAULT);
411
412 /*
413 * Initialize kernel pmap and hardware.
414 */
415 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
416 pmap_kernel()->pm_ctx = KERNEL_PID;
417 nextavail = avail->start;
418
419 evcnt_attach_static(&tlbmiss_ev);
420 evcnt_attach_static(&tlbhit_ev);
421 evcnt_attach_static(&tlbflush_ev);
422 evcnt_attach_static(&tlbenter_ev);
423
424 pmap_bootstrap_done = 1;
425 }
426
427 /*
428 * Restrict given range to physical memory
429 *
430 * (Used by /dev/mem)
431 */
432 void
433 pmap_real_memory(paddr_t *start, psize_t *size)
434 {
435 struct mem_region *mp;
436
437 for (mp = mem; mp->size; mp++) {
438 if (*start + *size > mp->start &&
439 *start < mp->start + mp->size) {
440 if (*start < mp->start) {
441 *size -= mp->start - *start;
442 *start = mp->start;
443 }
444 if (*start + *size > mp->start + mp->size)
445 *size = mp->start + mp->size - *start;
446 return;
447 }
448 }
449 *size = 0;
450 }
451
452 /*
453 * Initialize anything else for pmap handling.
454 * Called during vm_init().
455 */
456 void
457 pmap_init(void)
458 {
459 struct pv_entry *pv;
460 vsize_t sz;
461 vaddr_t addr;
462 int i, s;
463 int bank;
464 char *attr;
465
466 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
467 sz = round_page(sz);
468 addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
469 s = splvm();
470 pv = pv_table = (struct pv_entry *)addr;
471 for (i = npgs; --i >= 0;)
472 pv++->pv_pm = NULL;
473 pmap_attrib = (char *)pv;
474 memset(pv, 0, npgs);
475
476 pv = pv_table;
477 attr = pmap_attrib;
478 for (bank = 0; bank < vm_nphysseg; bank++) {
479 sz = vm_physmem[bank].end - vm_physmem[bank].start;
480 vm_physmem[bank].pmseg.pvent = pv;
481 vm_physmem[bank].pmseg.attrs = attr;
482 pv += sz;
483 attr += sz;
484 }
485
486 pmap_initialized = 1;
487 splx(s);
488
489 /* Setup a pool for additional pvlist structures */
490 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL);
491 }
492
493 /*
494 * How much virtual space is available to the kernel?
495 */
496 void
497 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
498 {
499
500 #if 0
501 /*
502 * Reserve one segment for kernel virtual memory
503 */
504 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
505 *end = *start + SEGMENT_LENGTH;
506 #else
507 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
508 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
509 #endif
510 }
511
512 #ifdef PMAP_GROWKERNEL
513 /*
514 * Preallocate kernel page tables to a specified VA.
515 * This simply loops through the first TTE for each
516 * page table from the beginning of the kernel pmap,
517 * reads the entry, and if the result is
518 * zero (either invalid entry or no page table) it stores
519 * a zero there, populating page tables in the process.
520 * This is not the most efficient technique but i don't
521 * expect it to be called that often.
522 */
523 extern struct vm_page *vm_page_alloc1 __P((void));
524 extern void vm_page_free1 __P((struct vm_page *));
525
526 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
527
528 vaddr_t
529 pmap_growkernel(vaddr_t maxkvaddr)
530 {
531 int s;
532 int seg;
533 paddr_t pg;
534 struct pmap *pm = pmap_kernel();
535
536 s = splvm();
537
538 /* Align with the start of a page table */
539 for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
540 kbreak += PTMAP) {
541 seg = STIDX(kbreak);
542
543 if (pte_find(pm, kbreak))
544 continue;
545
546 if (uvm.page_init_done) {
547 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
548 } else {
549 if (!uvm_page_physget(&pg))
550 panic("pmap_growkernel: no memory");
551 }
552 if (!pg)
553 panic("pmap_growkernel: no pages");
554 pmap_zero_page((paddr_t)pg);
555
556 /* XXX This is based on all phymem being addressable */
557 pm->pm_ptbl[seg] = (u_int *)pg;
558 }
559 splx(s);
560 return (kbreak);
561 }
562
563 /*
564 * vm_page_alloc1:
565 *
566 * Allocate and return a memory cell with no associated object.
567 */
568 struct vm_page *
569 vm_page_alloc1(void)
570 {
571 struct vm_page *pg;
572
573 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
574 if (pg) {
575 pg->wire_count = 1; /* no mappings yet */
576 pg->flags &= ~PG_BUSY; /* never busy */
577 }
578 return pg;
579 }
580
581 /*
582 * vm_page_free1:
583 *
584 * Returns the given page to the free list,
585 * disassociating it with any VM object.
586 *
587 * Object and page must be locked prior to entry.
588 */
589 void
590 vm_page_free1(struct vm_page *pg)
591 {
592 #ifdef DIAGNOSTIC
593 if (pg->flags != (PG_CLEAN|PG_FAKE)) {
594 printf("Freeing invalid page %p\n", pg);
595 printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg));
596 #ifdef DDB
597 Debugger();
598 #endif
599 return;
600 }
601 #endif
602 pg->flags |= PG_BUSY;
603 pg->wire_count = 0;
604 uvm_pagefree(pg);
605 }
606 #endif
607
608 /*
609 * Create and return a physical map.
610 */
611 struct pmap *
612 pmap_create(void)
613 {
614 struct pmap *pm;
615
616 pm = malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
617 memset(pm, 0, sizeof *pm);
618 pm->pm_refs = 1;
619 return pm;
620 }
621
622 /*
623 * Add a reference to the given pmap.
624 */
625 void
626 pmap_reference(struct pmap *pm)
627 {
628
629 pm->pm_refs++;
630 }
631
632 /*
633 * Retire the given pmap from service.
634 * Should only be called if the map contains no valid mappings.
635 */
636 void
637 pmap_destroy(struct pmap *pm)
638 {
639 int i;
640
641 if (--pm->pm_refs > 0) {
642 return;
643 }
644 KASSERT(pm->pm_stats.resident_count == 0);
645 KASSERT(pm->pm_stats.wired_count == 0);
646 for (i = 0; i < STSZ; i++)
647 if (pm->pm_ptbl[i]) {
648 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
649 PAGE_SIZE, UVM_KMF_WIRED);
650 pm->pm_ptbl[i] = NULL;
651 }
652 if (pm->pm_ctx)
653 ctx_free(pm);
654 free(pm, M_VMPMAP);
655 }
656
657 /*
658 * Copy the range specified by src_addr/len
659 * from the source map to the range dst_addr/len
660 * in the destination map.
661 *
662 * This routine is only advisory and need not do anything.
663 */
664 void
665 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
666 vsize_t len, vaddr_t src_addr)
667 {
668 }
669
670 /*
671 * Require that all active physical maps contain no
672 * incorrect entries NOW.
673 */
674 void
675 pmap_update(struct pmap *pmap)
676 {
677 }
678
679 /*
680 * Garbage collects the physical map system for
681 * pages which are no longer used.
682 * Success need not be guaranteed -- that is, there
683 * may well be pages which are not referenced, but
684 * others may be collected.
685 * Called by the pageout daemon when pages are scarce.
686 */
687 void
688 pmap_collect(struct pmap *pm)
689 {
690 }
691
692 /*
693 * Fill the given physical page with zeroes.
694 */
695 void
696 pmap_zero_page(paddr_t pa)
697 {
698
699 #ifdef PPC_4XX_NOCACHE
700 memset((caddr_t)pa, 0, PAGE_SIZE);
701 #else
702 int i;
703
704 for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
705 __asm volatile ("dcbz 0,%0" :: "r"(pa));
706 pa += CACHELINESIZE;
707 }
708 #endif
709 }
710
711 /*
712 * Copy the given physical source page to its destination.
713 */
714 void
715 pmap_copy_page(paddr_t src, paddr_t dst)
716 {
717
718 memcpy((caddr_t)dst, (caddr_t)src, PAGE_SIZE);
719 dcache_flush_page(dst);
720 }
721
722 /*
723 * This returns whether this is the first mapping of a page.
724 */
725 static inline int
726 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, boolean_t wired)
727 {
728 struct pv_entry *pv, *npv = NULL;
729 int s;
730
731 if (!pmap_initialized)
732 return 0;
733
734 s = splvm();
735 pv = pa_to_pv(pa);
736 if (!pv->pv_pm) {
737 /*
738 * No entries yet, use header as the first entry.
739 */
740 pv->pv_va = va;
741 pv->pv_pm = pm;
742 pv->pv_next = NULL;
743 } else {
744 /*
745 * There is at least one other VA mapping this page.
746 * Place this entry after the header.
747 */
748 npv = pool_get(&pv_pool, PR_WAITOK);
749 npv->pv_va = va;
750 npv->pv_pm = pm;
751 npv->pv_next = pv->pv_next;
752 pv->pv_next = npv;
753 pv = npv;
754 }
755 if (wired) {
756 PV_WIRE(pv);
757 pm->pm_stats.wired_count++;
758 }
759 splx(s);
760 return (1);
761 }
762
763 static void
764 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
765 {
766 struct pv_entry *pv, *npv;
767
768 /*
769 * Remove from the PV table.
770 */
771 pv = pa_to_pv(pa);
772 if (!pv)
773 return;
774
775 /*
776 * If it is the first entry on the list, it is actually
777 * in the header and we must copy the following entry up
778 * to the header. Otherwise we must search the list for
779 * the entry. In either case we free the now unused entry.
780 */
781 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
782 if (PV_ISWIRED(pv)) {
783 pm->pm_stats.wired_count--;
784 }
785 if ((npv = pv->pv_next)) {
786 *pv = *npv;
787 pool_put(&pv_pool, npv);
788 } else
789 pv->pv_pm = NULL;
790 } else {
791 for (; (npv = pv->pv_next) != NULL; pv = npv)
792 if (pm == npv->pv_pm && PV_CMPVA(va, npv))
793 break;
794 if (npv) {
795 pv->pv_next = npv->pv_next;
796 if (PV_ISWIRED(npv)) {
797 pm->pm_stats.wired_count--;
798 }
799 pool_put(&pv_pool, npv);
800 }
801 }
802 }
803
804 /*
805 * Insert physical page at pa into the given pmap at virtual address va.
806 */
807 int
808 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
809 {
810 int s;
811 u_int tte;
812 int managed;
813
814 /*
815 * Have to remove any existing mapping first.
816 */
817 pmap_remove(pm, va, va + PAGE_SIZE);
818
819 if (flags & PMAP_WIRED)
820 flags |= prot;
821
822 managed = 0;
823 if (vm_physseg_find(atop(pa), NULL) != -1)
824 managed = 1;
825
826 /*
827 * Generate TTE.
828 */
829 tte = TTE_PA(pa);
830 /* XXXX -- need to support multiple page sizes. */
831 tte |= TTE_SZ_16K;
832 #ifdef DIAGNOSTIC
833 if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
834 (PME_NOCACHE | PME_WRITETHROUG))
835 panic("pmap_enter: uncached & writethrough");
836 #endif
837 if (flags & PME_NOCACHE)
838 /* Must be I/O mapping */
839 tte |= TTE_I | TTE_G;
840 #ifdef PPC_4XX_NOCACHE
841 tte |= TTE_I;
842 #else
843 else if (flags & PME_WRITETHROUG)
844 /* Uncached and writethrough are not compatible */
845 tte |= TTE_W;
846 #endif
847 if (pm == pmap_kernel())
848 tte |= TTE_ZONE(ZONE_PRIV);
849 else
850 tte |= TTE_ZONE(ZONE_USER);
851
852 if (flags & VM_PROT_WRITE)
853 tte |= TTE_WR;
854
855 if (flags & VM_PROT_EXECUTE)
856 tte |= TTE_EX;
857
858 /*
859 * Now record mapping for later back-translation.
860 */
861 if (pmap_initialized && managed) {
862 char *attr;
863
864 if (!pmap_enter_pv(pm, va, pa, flags & PMAP_WIRED)) {
865 /* Could not enter pv on a managed page */
866 return 1;
867 }
868
869 /* Now set attributes. */
870 attr = pa_to_attr(pa);
871 #ifdef DIAGNOSTIC
872 if (!attr)
873 panic("managed but no attr");
874 #endif
875 if (flags & VM_PROT_ALL)
876 *attr |= PMAP_ATTR_REF;
877 if (flags & VM_PROT_WRITE)
878 *attr |= PMAP_ATTR_CHG;
879 }
880
881 s = splvm();
882
883 /* Insert page into page table. */
884 pte_enter(pm, va, tte);
885
886 /* If this is a real fault, enter it in the tlb */
887 if (tte && ((flags & PMAP_WIRED) == 0)) {
888 ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
889 }
890 splx(s);
891
892 /* Flush the real memory from the instruction cache. */
893 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
894 __syncicache((void *)pa, PAGE_SIZE);
895
896 return 0;
897 }
898
899 void
900 pmap_unwire(struct pmap *pm, vaddr_t va)
901 {
902 struct pv_entry *pv;
903 paddr_t pa;
904 int s;
905
906 if (!pmap_extract(pm, va, &pa)) {
907 return;
908 }
909
910 pv = pa_to_pv(pa);
911 if (!pv)
912 return;
913
914 s = splvm();
915 while (pv != NULL) {
916 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
917 if (PV_ISWIRED(pv)) {
918 PV_UNWIRE(pv);
919 pm->pm_stats.wired_count--;
920 }
921 break;
922 }
923 pv = pv->pv_next;
924 }
925 splx(s);
926 }
927
928 void
929 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
930 {
931 int s;
932 u_int tte;
933 struct pmap *pm = pmap_kernel();
934
935 /*
936 * Have to remove any existing mapping first.
937 */
938
939 /*
940 * Generate TTE.
941 *
942 * XXXX
943 *
944 * Since the kernel does not handle execution privileges properly,
945 * we will handle read and execute permissions together.
946 */
947 tte = 0;
948 if (prot & VM_PROT_ALL) {
949
950 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
951 /* XXXX -- need to support multiple page sizes. */
952 tte |= TTE_SZ_16K;
953 #ifdef DIAGNOSTIC
954 if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
955 (PME_NOCACHE | PME_WRITETHROUG))
956 panic("pmap_kenter_pa: uncached & writethrough");
957 #endif
958 if (prot & PME_NOCACHE)
959 /* Must be I/O mapping */
960 tte |= TTE_I | TTE_G;
961 #ifdef PPC_4XX_NOCACHE
962 tte |= TTE_I;
963 #else
964 else if (prot & PME_WRITETHROUG)
965 /* Uncached and writethrough are not compatible */
966 tte |= TTE_W;
967 #endif
968 if (prot & VM_PROT_WRITE)
969 tte |= TTE_WR;
970 }
971
972 s = splvm();
973
974 /* Insert page into page table. */
975 pte_enter(pm, va, tte);
976 splx(s);
977 }
978
979 void
980 pmap_kremove(vaddr_t va, vsize_t len)
981 {
982
983 while (len > 0) {
984 pte_enter(pmap_kernel(), va, 0);
985 va += PAGE_SIZE;
986 len -= PAGE_SIZE;
987 }
988 }
989
990 /*
991 * Remove the given range of mapping entries.
992 */
993 void
994 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
995 {
996 int s;
997 paddr_t pa;
998 volatile u_int *ptp;
999
1000 s = splvm();
1001 while (va < endva) {
1002
1003 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
1004 pa = TTE_PA(pa);
1005 pmap_remove_pv(pm, va, pa);
1006 *ptp = 0;
1007 ppc4xx_tlb_flush(va, pm->pm_ctx);
1008 pm->pm_stats.resident_count--;
1009 }
1010 va += PAGE_SIZE;
1011 }
1012
1013 splx(s);
1014 }
1015
1016 /*
1017 * Get the physical page address for the given pmap/virtual address.
1018 */
1019 boolean_t
1020 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1021 {
1022 int seg = STIDX(va);
1023 int ptn = PTIDX(va);
1024 u_int pa = 0;
1025 int s;
1026
1027 s = splvm();
1028 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
1029 *pap = TTE_PA(pa) | (va & PGOFSET);
1030 }
1031 splx(s);
1032 return (pa != 0);
1033 }
1034
1035 /*
1036 * Lower the protection on the specified range of this pmap.
1037 *
1038 * There are only two cases: either the protection is going to 0,
1039 * or it is going to read-only.
1040 */
1041 void
1042 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1043 {
1044 volatile u_int *ptp;
1045 int s, bic;
1046
1047 if ((prot & VM_PROT_READ) == 0) {
1048 pmap_remove(pm, sva, eva);
1049 return;
1050 }
1051 bic = 0;
1052 if ((prot & VM_PROT_WRITE) == 0) {
1053 bic |= TTE_WR;
1054 }
1055 if ((prot & VM_PROT_EXECUTE) == 0) {
1056 bic |= TTE_EX;
1057 }
1058 if (bic == 0) {
1059 return;
1060 }
1061 s = splvm();
1062 while (sva < eva) {
1063 if ((ptp = pte_find(pm, sva)) != NULL) {
1064 *ptp &= ~bic;
1065 ppc4xx_tlb_flush(sva, pm->pm_ctx);
1066 }
1067 sva += PAGE_SIZE;
1068 }
1069 splx(s);
1070 }
1071
1072 boolean_t
1073 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
1074 {
1075 paddr_t pa;
1076 char *attr;
1077 int s, rv;
1078
1079 /*
1080 * First modify bits in cache.
1081 */
1082 pa = VM_PAGE_TO_PHYS(pg);
1083 attr = pa_to_attr(pa);
1084 if (attr == NULL)
1085 return FALSE;
1086
1087 s = splvm();
1088 rv = ((*attr & mask) != 0);
1089 if (clear) {
1090 *attr &= ~mask;
1091 pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
1092 }
1093 splx(s);
1094 return rv;
1095 }
1096
1097
1098 /*
1099 * Lower the protection on the specified physical page.
1100 *
1101 * There are only two cases: either the protection is going to 0,
1102 * or it is going to read-only.
1103 */
1104 void
1105 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1106 {
1107 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1108 vaddr_t va;
1109 struct pv_entry *pvh, *pv, *npv;
1110 struct pmap *pm;
1111
1112 pvh = pa_to_pv(pa);
1113 if (pvh == NULL)
1114 return;
1115
1116 /* Handle extra pvs which may be deleted in the operation */
1117 for (pv = pvh->pv_next; pv; pv = npv) {
1118 npv = pv->pv_next;
1119
1120 pm = pv->pv_pm;
1121 va = pv->pv_va;
1122 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1123 }
1124 /* Now check the head pv */
1125 if (pvh->pv_pm) {
1126 pv = pvh;
1127 pm = pv->pv_pm;
1128 va = pv->pv_va;
1129 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1130 }
1131 }
1132
1133 /*
1134 * Activate the address space for the specified process. If the process
1135 * is the current process, load the new MMU context.
1136 */
1137 void
1138 pmap_activate(struct lwp *l)
1139 {
1140 #if 0
1141 struct pcb *pcb = &l->l_proc->p_addr->u_pcb;
1142 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1143
1144 /*
1145 * XXX Normally performed in cpu_fork().
1146 */
1147 printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1148 pcb->pcb_pm = pmap;
1149 #endif
1150 }
1151
1152 /*
1153 * Deactivate the specified process's address space.
1154 */
1155 void
1156 pmap_deactivate(struct lwp *l)
1157 {
1158 }
1159
1160 /*
1161 * Synchronize caches corresponding to [addr, addr+len) in p.
1162 */
1163 void
1164 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1165 {
1166 struct pmap *pm = p->p_vmspace->vm_map.pmap;
1167 int msr, ctx, opid, step;
1168
1169 step = CACHELINESIZE;
1170
1171 /*
1172 * Need to turn off IMMU and switch to user context.
1173 * (icbi uses DMMU).
1174 */
1175 if (!(ctx = pm->pm_ctx)) {
1176 /* No context -- assign it one */
1177 ctx_alloc(pm);
1178 ctx = pm->pm_ctx;
1179 }
1180 __asm volatile("mfmsr %0;"
1181 "li %1, %7;"
1182 "andc %1,%0,%1;"
1183 "mtmsr %1;"
1184 "sync;isync;"
1185 "mfpid %1;"
1186 "mtpid %2;"
1187 "sync; isync;"
1188 "1:"
1189 "dcbf 0,%3;"
1190 "icbi 0,%3;"
1191 "add %3,%3,%5;"
1192 "addc. %4,%4,%6;"
1193 "bge 1b;"
1194 "mtpid %1;"
1195 "mtmsr %0;"
1196 "sync; isync"
1197 : "=&r" (msr), "=&r" (opid)
1198 : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
1199 "K" (PSL_IR | PSL_DR));
1200 }
1201
1202
1203 /* This has to be done in real mode !!! */
1204 void
1205 ppc4xx_tlb_flush(vaddr_t va, int pid)
1206 {
1207 u_long i, found;
1208 u_long msr;
1209
1210 /* If there's no context then it can't be mapped. */
1211 if (!pid)
1212 return;
1213
1214 __asm( "mfpid %1;" /* Save PID */
1215 "mfmsr %2;" /* Save MSR */
1216 "li %0,0;" /* Now clear MSR */
1217 "mtmsr %0;"
1218 "mtpid %4;" /* Set PID */
1219 "sync;"
1220 "tlbsx. %0,0,%3;" /* Search TLB */
1221 "sync;"
1222 "mtpid %1;" /* Restore PID */
1223 "mtmsr %2;" /* Restore MSR */
1224 "sync;isync;"
1225 "li %1,1;"
1226 "beq 1f;"
1227 "li %1,0;"
1228 "1:"
1229 : "=&r" (i), "=&r" (found), "=&r" (msr)
1230 : "r" (va), "r" (pid));
1231 if (found && !TLB_LOCKED(i)) {
1232
1233 /* Now flush translation */
1234 __asm volatile(
1235 "tlbwe %0,%1,0;"
1236 "sync;isync;"
1237 : : "r" (0), "r" (i));
1238
1239 tlb_info[i].ti_ctx = 0;
1240 tlb_info[i].ti_flags = 0;
1241 tlbnext = i;
1242 /* Successful flushes */
1243 tlbflush_ev.ev_count++;
1244 }
1245 }
1246
1247 void
1248 ppc4xx_tlb_flush_all(void)
1249 {
1250 u_long i;
1251
1252 for (i = 0; i < NTLB; i++)
1253 if (!TLB_LOCKED(i)) {
1254 __asm volatile(
1255 "tlbwe %0,%1,0;"
1256 "sync;isync;"
1257 : : "r" (0), "r" (i));
1258 tlb_info[i].ti_ctx = 0;
1259 tlb_info[i].ti_flags = 0;
1260 }
1261
1262 __asm volatile("sync;isync");
1263 }
1264
1265 /* Find a TLB entry to evict. */
1266 static int
1267 ppc4xx_tlb_find_victim(void)
1268 {
1269 int flags;
1270
1271 for (;;) {
1272 if (++tlbnext >= NTLB)
1273 tlbnext = tlb_nreserved;
1274 flags = tlb_info[tlbnext].ti_flags;
1275 if (!(flags & TLBF_USED) ||
1276 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1277 u_long va, stack = (u_long)&va;
1278
1279 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1280 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1281 (flags & TLBF_USED)) {
1282 /* Kernel stack page */
1283 flags |= TLBF_USED;
1284 tlb_info[tlbnext].ti_flags = flags;
1285 } else {
1286 /* Found it! */
1287 return (tlbnext);
1288 }
1289 } else {
1290 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1291 }
1292 }
1293 }
1294
1295 void
1296 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1297 {
1298 u_long th, tl, idx;
1299 tlbpid_t pid;
1300 u_short msr;
1301 paddr_t pa;
1302 int s, sz;
1303
1304 tlbenter_ev.ev_count++;
1305
1306 sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1307 pa = (pte & TTE_RPN_MASK(sz));
1308 th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1309 tl = (pte & ~TLB_RPN_MASK) | pa;
1310 tl |= ppc4xx_tlbflags(va, pa);
1311
1312 s = splhigh();
1313 idx = ppc4xx_tlb_find_victim();
1314
1315 #ifdef DIAGNOSTIC
1316 if ((idx < tlb_nreserved) || (idx >= NTLB)) {
1317 panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
1318 }
1319 #endif
1320
1321 tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1322 tlb_info[idx].ti_ctx = ctx;
1323 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1324
1325 __asm volatile(
1326 "mfmsr %0;" /* Save MSR */
1327 "li %1,0;"
1328 "tlbwe %1,%3,0;" /* Invalidate old entry. */
1329 "mtmsr %1;" /* Clear MSR */
1330 "mfpid %1;" /* Save old PID */
1331 "mtpid %2;" /* Load translation ctx */
1332 "sync; isync;"
1333 #ifdef DEBUG
1334 "andi. %3,%3,63;"
1335 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */
1336 #endif
1337 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1338 "sync; isync;"
1339 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1340 "sync; isync;"
1341 : "=&r" (msr), "=&r" (pid)
1342 : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1343 splx(s);
1344 }
1345
1346 void
1347 ppc4xx_tlb_init(void)
1348 {
1349 int i;
1350
1351 /* Mark reserved TLB entries */
1352 for (i = 0; i < tlb_nreserved; i++) {
1353 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1354 tlb_info[i].ti_ctx = KERNEL_PID;
1355 }
1356
1357 /* Setup security zones */
1358 /* Z0 - accessible by kernel only if TLB entry permissions allow
1359 * Z1,Z2 - access is controlled by TLB entry permissions
1360 * Z3 - full access regardless of TLB entry permissions
1361 */
1362
1363 __asm volatile(
1364 "mtspr %0,%1;"
1365 "sync;"
1366 :: "K"(SPR_ZPR), "r" (0x1b000000));
1367 }
1368
1369 /*
1370 * ppc4xx_tlb_size_mask:
1371 *
1372 * Roundup size to supported page size, return TLBHI mask and real size.
1373 */
1374 static int
1375 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
1376 {
1377 int i;
1378
1379 for (i = 0; i < __arraycount(tlbsize); i++)
1380 if (size <= tlbsize[i]) {
1381 *mask = (i << TLB_SIZE_SHFT);
1382 *rsiz = tlbsize[i];
1383 return (0);
1384 }
1385 return (EINVAL);
1386 }
1387
1388 /*
1389 * ppc4xx_tlb_mapiodev:
1390 *
1391 * Lookup virtual address of mapping previously entered via
1392 * ppc4xx_tlb_reserve. Search TLB directly so that we don't
1393 * need to waste extra storage for reserved mappings. Note
1394 * that reading TLBHI also sets PID, but all reserved mappings
1395 * use KERNEL_PID, so the side effect is nil.
1396 */
1397 void *
1398 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
1399 {
1400 paddr_t pa;
1401 vaddr_t va;
1402 u_int lo, hi, sz;
1403 int i;
1404
1405 /* tlb_nreserved is only allowed to grow, so this is safe. */
1406 for (i = 0; i < tlb_nreserved; i++) {
1407 __asm volatile (
1408 " tlbre %0,%2,1 \n" /* TLBLO */
1409 " tlbre %1,%2,0 \n" /* TLBHI */
1410 : "=&r" (lo), "=&r" (hi)
1411 : "r" (i));
1412
1413 KASSERT(hi & TLB_VALID);
1414 KASSERT(mfspr(SPR_PID) == KERNEL_PID);
1415
1416 pa = (lo & TLB_RPN_MASK);
1417 if (base < pa)
1418 continue;
1419
1420 sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
1421 if ((base + len) > (pa + sz))
1422 continue;
1423
1424 va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); /* sz = 2^n */
1425 return (void *)(va);
1426 }
1427
1428 return (NULL);
1429 }
1430
1431 /*
1432 * ppc4xx_tlb_reserve:
1433 *
1434 * Map physical range to kernel virtual chunk via reserved TLB entry.
1435 */
1436 void
1437 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
1438 {
1439 u_int lo, hi;
1440 int szmask, rsize;
1441
1442 /* Called before pmap_bootstrap(), va outside kernel space. */
1443 KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
1444 KASSERT(! pmap_bootstrap_done);
1445 KASSERT(tlb_nreserved < NTLB);
1446
1447 /* Resolve size. */
1448 if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
1449 panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
1450 size, tlb_nreserved);
1451
1452 /* Real size will be power of two >= 1024, so this is OK. */
1453 pa &= ~(rsize - 1); /* RPN */
1454 va &= ~(rsize - 1); /* EPN */
1455
1456 lo = pa | TLB_WR | flags;
1457 hi = va | TLB_VALID | szmask | KERNEL_PID;
1458
1459 #ifdef PPC_4XX_NOCACHE
1460 lo |= TLB_I;
1461 #endif
1462
1463 __asm volatile(
1464 " tlbwe %1,%0,1 \n" /* write TLBLO */
1465 " tlbwe %2,%0,0 \n" /* write TLBHI */
1466 " sync \n"
1467 " isync \n"
1468 : : "r" (tlb_nreserved), "r" (lo), "r" (hi));
1469
1470 tlb_nreserved++;
1471 }
1472
1473 /*
1474 * We should pass the ctx in from trap code.
1475 */
1476 int
1477 pmap_tlbmiss(vaddr_t va, int ctx)
1478 {
1479 volatile u_int *pte;
1480 u_long tte;
1481
1482 tlbmiss_ev.ev_count++;
1483
1484 /*
1485 * XXXX We will reserve 0-0x80000000 for va==pa mappings.
1486 */
1487 if (ctx != KERNEL_PID || (va & 0x80000000)) {
1488 pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
1489 if (pte == NULL) {
1490 /* Map unmanaged addresses directly for kernel access */
1491 return 1;
1492 }
1493 tte = *pte;
1494 if (tte == 0) {
1495 return 1;
1496 }
1497 } else {
1498 /* Create a 16MB writable mapping. */
1499 #ifdef PPC_4XX_NOCACHE
1500 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I | TTE_WR;
1501 #else
1502 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1503 #endif
1504 }
1505 tlbhit_ev.ev_count++;
1506 ppc4xx_tlb_enter(ctx, va, tte);
1507
1508 return 0;
1509 }
1510
1511 /*
1512 * Flush all the entries matching a context from the TLB.
1513 */
1514 static int
1515 ctx_flush(int cnum)
1516 {
1517 int i;
1518
1519 /* We gotta steal this context */
1520 for (i = tlb_nreserved; i < NTLB; i++) {
1521 if (tlb_info[i].ti_ctx == cnum) {
1522 /* Can't steal ctx if it has a locked entry. */
1523 if (TLB_LOCKED(i)) {
1524 #ifdef DIAGNOSTIC
1525 printf("ctx_flush: can't invalidate "
1526 "locked mapping %d "
1527 "for context %d\n", i, cnum);
1528 #ifdef DDB
1529 Debugger();
1530 #endif
1531 #endif
1532 return (1);
1533 }
1534 #ifdef DIAGNOSTIC
1535 if (i < tlb_nreserved)
1536 panic("TLB entry %d not locked", i);
1537 #endif
1538 /* Invalidate particular TLB entry regardless of locked status */
1539 __asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1540 tlb_info[i].ti_flags = 0;
1541 }
1542 }
1543 return (0);
1544 }
1545
1546 /*
1547 * Allocate a context. If necessary, steal one from someone else.
1548 *
1549 * The new context is flushed from the TLB before returning.
1550 */
1551 int
1552 ctx_alloc(struct pmap *pm)
1553 {
1554 int s, cnum;
1555 static int next = MINCTX;
1556
1557 if (pm == pmap_kernel()) {
1558 #ifdef DIAGNOSTIC
1559 printf("ctx_alloc: kernel pmap!\n");
1560 #endif
1561 return (0);
1562 }
1563 s = splvm();
1564
1565 /* Find a likely context. */
1566 cnum = next;
1567 do {
1568 if ((++cnum) > NUMCTX)
1569 cnum = MINCTX;
1570 } while (ctxbusy[cnum] != NULL && cnum != next);
1571
1572 /* Now clean it out */
1573 oops:
1574 if (cnum < MINCTX)
1575 cnum = MINCTX; /* Never steal ctx 0 or 1 */
1576 if (ctx_flush(cnum)) {
1577 /* oops -- something's wired. */
1578 if ((++cnum) > NUMCTX)
1579 cnum = MINCTX;
1580 goto oops;
1581 }
1582
1583 if (ctxbusy[cnum]) {
1584 #ifdef DEBUG
1585 /* We should identify this pmap and clear it */
1586 printf("Warning: stealing context %d\n", cnum);
1587 #endif
1588 ctxbusy[cnum]->pm_ctx = 0;
1589 }
1590 ctxbusy[cnum] = pm;
1591 next = cnum;
1592 splx(s);
1593 pm->pm_ctx = cnum;
1594
1595 return cnum;
1596 }
1597
1598 /*
1599 * Give away a context.
1600 */
1601 void
1602 ctx_free(struct pmap *pm)
1603 {
1604 int oldctx;
1605
1606 oldctx = pm->pm_ctx;
1607
1608 if (oldctx == 0)
1609 panic("ctx_free: freeing kernel context");
1610 #ifdef DIAGNOSTIC
1611 if (ctxbusy[oldctx] == 0)
1612 printf("ctx_free: freeing free context %d\n", oldctx);
1613 if (ctxbusy[oldctx] != pm) {
1614 printf("ctx_free: freeing someone esle's context\n "
1615 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1616 oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1617 #ifdef DDB
1618 Debugger();
1619 #endif
1620 }
1621 #endif
1622 /* We should verify it has not been stolen and reallocated... */
1623 ctxbusy[oldctx] = NULL;
1624 ctx_flush(oldctx);
1625 }
1626
1627
1628 #ifdef DEBUG
1629 /*
1630 * Test ref/modify handling.
1631 */
1632 void pmap_testout __P((void));
1633 void
1634 pmap_testout()
1635 {
1636 vaddr_t va;
1637 volatile int *loc;
1638 int val = 0;
1639 paddr_t pa;
1640 struct vm_page *pg;
1641 int ref, mod;
1642
1643 /* Allocate a page */
1644 va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1645 UVM_KMF_WIRED | UVM_KMF_ZERO);
1646 loc = (int*)va;
1647
1648 pmap_extract(pmap_kernel(), va, &pa);
1649 pg = PHYS_TO_VM_PAGE(pa);
1650 pmap_unwire(pmap_kernel(), va);
1651
1652 pmap_kremove(va, PAGE_SIZE);
1653 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1654 pmap_update(pmap_kernel());
1655
1656 /* Now clear reference and modify */
1657 ref = pmap_clear_reference(pg);
1658 mod = pmap_clear_modify(pg);
1659 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1660 (void *)(u_long)va, (long)pa,
1661 ref, mod);
1662
1663 /* Check it's properly cleared */
1664 ref = pmap_is_referenced(pg);
1665 mod = pmap_is_modified(pg);
1666 printf("Checking cleared page: ref %d, mod %d\n",
1667 ref, mod);
1668
1669 /* Reference page */
1670 val = *loc;
1671
1672 ref = pmap_is_referenced(pg);
1673 mod = pmap_is_modified(pg);
1674 printf("Referenced page: ref %d, mod %d val %x\n",
1675 ref, mod, val);
1676
1677 /* Now clear reference and modify */
1678 ref = pmap_clear_reference(pg);
1679 mod = pmap_clear_modify(pg);
1680 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1681 (void *)(u_long)va, (long)pa,
1682 ref, mod);
1683
1684 /* Modify page */
1685 *loc = 1;
1686
1687 ref = pmap_is_referenced(pg);
1688 mod = pmap_is_modified(pg);
1689 printf("Modified page: ref %d, mod %d\n",
1690 ref, mod);
1691
1692 /* Now clear reference and modify */
1693 ref = pmap_clear_reference(pg);
1694 mod = pmap_clear_modify(pg);
1695 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1696 (void *)(u_long)va, (long)pa,
1697 ref, mod);
1698
1699 /* Check it's properly cleared */
1700 ref = pmap_is_referenced(pg);
1701 mod = pmap_is_modified(pg);
1702 printf("Checking cleared page: ref %d, mod %d\n",
1703 ref, mod);
1704
1705 /* Modify page */
1706 *loc = 1;
1707
1708 ref = pmap_is_referenced(pg);
1709 mod = pmap_is_modified(pg);
1710 printf("Modified page: ref %d, mod %d\n",
1711 ref, mod);
1712
1713 /* Check pmap_protect() */
1714 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1715 pmap_update(pmap_kernel());
1716 ref = pmap_is_referenced(pg);
1717 mod = pmap_is_modified(pg);
1718 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1719 ref, mod);
1720
1721 /* Now clear reference and modify */
1722 ref = pmap_clear_reference(pg);
1723 mod = pmap_clear_modify(pg);
1724 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1725 (void *)(u_long)va, (long)pa,
1726 ref, mod);
1727
1728 /* Reference page */
1729 val = *loc;
1730
1731 ref = pmap_is_referenced(pg);
1732 mod = pmap_is_modified(pg);
1733 printf("Referenced page: ref %d, mod %d val %x\n",
1734 ref, mod, val);
1735
1736 /* Now clear reference and modify */
1737 ref = pmap_clear_reference(pg);
1738 mod = pmap_clear_modify(pg);
1739 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1740 (void *)(u_long)va, (long)pa,
1741 ref, mod);
1742
1743 /* Modify page */
1744 #if 0
1745 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1746 pmap_update(pmap_kernel());
1747 #endif
1748 *loc = 1;
1749
1750 ref = pmap_is_referenced(pg);
1751 mod = pmap_is_modified(pg);
1752 printf("Modified page: ref %d, mod %d\n",
1753 ref, mod);
1754
1755 /* Check pmap_protect() */
1756 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1757 pmap_update(pmap_kernel());
1758 ref = pmap_is_referenced(pg);
1759 mod = pmap_is_modified(pg);
1760 printf("pmap_protect(): ref %d, mod %d\n",
1761 ref, mod);
1762
1763 /* Now clear reference and modify */
1764 ref = pmap_clear_reference(pg);
1765 mod = pmap_clear_modify(pg);
1766 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1767 (void *)(u_long)va, (long)pa,
1768 ref, mod);
1769
1770 /* Reference page */
1771 val = *loc;
1772
1773 ref = pmap_is_referenced(pg);
1774 mod = pmap_is_modified(pg);
1775 printf("Referenced page: ref %d, mod %d val %x\n",
1776 ref, mod, val);
1777
1778 /* Now clear reference and modify */
1779 ref = pmap_clear_reference(pg);
1780 mod = pmap_clear_modify(pg);
1781 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1782 (void *)(u_long)va, (long)pa,
1783 ref, mod);
1784
1785 /* Modify page */
1786 #if 0
1787 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1788 pmap_update(pmap_kernel());
1789 #endif
1790 *loc = 1;
1791
1792 ref = pmap_is_referenced(pg);
1793 mod = pmap_is_modified(pg);
1794 printf("Modified page: ref %d, mod %d\n",
1795 ref, mod);
1796
1797 /* Check pmap_pag_protect() */
1798 pmap_page_protect(pg, VM_PROT_READ);
1799 ref = pmap_is_referenced(pg);
1800 mod = pmap_is_modified(pg);
1801 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1802 ref, mod);
1803
1804 /* Now clear reference and modify */
1805 ref = pmap_clear_reference(pg);
1806 mod = pmap_clear_modify(pg);
1807 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1808 (void *)(u_long)va, (long)pa,
1809 ref, mod);
1810
1811 /* Reference page */
1812 val = *loc;
1813
1814 ref = pmap_is_referenced(pg);
1815 mod = pmap_is_modified(pg);
1816 printf("Referenced page: ref %d, mod %d val %x\n",
1817 ref, mod, val);
1818
1819 /* Now clear reference and modify */
1820 ref = pmap_clear_reference(pg);
1821 mod = pmap_clear_modify(pg);
1822 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1823 (void *)(u_long)va, (long)pa,
1824 ref, mod);
1825
1826 /* Modify page */
1827 #if 0
1828 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1829 pmap_update(pmap_kernel());
1830 #endif
1831 *loc = 1;
1832
1833 ref = pmap_is_referenced(pg);
1834 mod = pmap_is_modified(pg);
1835 printf("Modified page: ref %d, mod %d\n",
1836 ref, mod);
1837
1838 /* Check pmap_pag_protect() */
1839 pmap_page_protect(pg, VM_PROT_NONE);
1840 ref = pmap_is_referenced(pg);
1841 mod = pmap_is_modified(pg);
1842 printf("pmap_page_protect(): ref %d, mod %d\n",
1843 ref, mod);
1844
1845 /* Now clear reference and modify */
1846 ref = pmap_clear_reference(pg);
1847 mod = pmap_clear_modify(pg);
1848 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1849 (void *)(u_long)va, (long)pa,
1850 ref, mod);
1851
1852
1853 /* Reference page */
1854 val = *loc;
1855
1856 ref = pmap_is_referenced(pg);
1857 mod = pmap_is_modified(pg);
1858 printf("Referenced page: ref %d, mod %d val %x\n",
1859 ref, mod, val);
1860
1861 /* Now clear reference and modify */
1862 ref = pmap_clear_reference(pg);
1863 mod = pmap_clear_modify(pg);
1864 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1865 (void *)(u_long)va, (long)pa,
1866 ref, mod);
1867
1868 /* Modify page */
1869 #if 0
1870 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1871 pmap_update(pmap_kernel());
1872 #endif
1873 *loc = 1;
1874
1875 ref = pmap_is_referenced(pg);
1876 mod = pmap_is_modified(pg);
1877 printf("Modified page: ref %d, mod %d\n",
1878 ref, mod);
1879
1880 /* Unmap page */
1881 pmap_remove(pmap_kernel(), va, va+1);
1882 pmap_update(pmap_kernel());
1883 ref = pmap_is_referenced(pg);
1884 mod = pmap_is_modified(pg);
1885 printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1886
1887 /* Now clear reference and modify */
1888 ref = pmap_clear_reference(pg);
1889 mod = pmap_clear_modify(pg);
1890 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1891 (void *)(u_long)va, (long)pa, ref, mod);
1892
1893 /* Check it's properly cleared */
1894 ref = pmap_is_referenced(pg);
1895 mod = pmap_is_modified(pg);
1896 printf("Checking cleared page: ref %d, mod %d\n",
1897 ref, mod);
1898
1899 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
1900 pmap_kenter_pa(va, pa, VM_PROT_ALL);
1901 uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
1902 }
1903 #endif
1904