Home | History | Annotate | Line # | Download | only in ibm4xx
pmap.c revision 1.4
      1 /*	$NetBSD: pmap.c,v 1.4 2001/09/10 21:19:38 chris Exp $	*/
      2 
      3 /*
      4  * Copyright 2001 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40  * Copyright (C) 1995, 1996 TooLs GmbH.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by TooLs GmbH.
     54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55  *    derived from this software without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 #undef NOCACHE
     70 
     71 #include <sys/param.h>
     72 #include <sys/malloc.h>
     73 #include <sys/proc.h>
     74 #include <sys/user.h>
     75 #include <sys/queue.h>
     76 #include <sys/systm.h>
     77 #include <sys/pool.h>
     78 #include <sys/device.h>
     79 
     80 #include <uvm/uvm.h>
     81 
     82 #include <machine/pcb.h>
     83 #include <machine/powerpc.h>
     84 
     85 #include <powerpc/spr.h>
     86 #include <powerpc/ibm4xx/tlb.h>
     87 
     88 
     89 #define	CACHE_LINE	32
     90 
     91 /*
     92  * kernmap is an array of PTEs large enough to map in
     93  * 4GB.  At 16KB/page it is 256K entries or 2MB.
     94  */
     95 #define KERNMAP_SIZE	((0xffffffffU/NBPG)+1)
     96 caddr_t kernmap;
     97 
     98 #define MINCTX		2
     99 #define NUMCTX		256
    100 volatile struct pmap *ctxbusy[NUMCTX];
    101 
    102 #define TLBF_USED	0x1
    103 #define	TLBF_REF	0x2
    104 #define	TLBF_LOCKED	0x4
    105 #define	TLB_LOCKED(i)	(tlb_info[(i)].ti_flags & TLBF_LOCKED)
    106 typedef struct tlb_info_s {
    107 	char	ti_flags;
    108 	char	ti_ctx;		/* TLB_PID assiciated with the entry */
    109 	u_int	ti_va;
    110 } tlb_info_t;
    111 
    112 volatile tlb_info_t tlb_info[NTLB];
    113 /* We'll use a modified FIFO replacement policy cause it's cheap */
    114 volatile int tlbnext = TLB_NRESERVED;
    115 
    116 u_long dtlb_miss_count = 0;
    117 u_long itlb_miss_count = 0;
    118 u_long ktlb_miss_count = 0;
    119 u_long utlb_miss_count = 0;
    120 
    121 /* Event counters -- XXX type `INTR' so we can see them with vmstat -i */
    122 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_INTR,
    123 	NULL, "cpu", "tlbmiss");
    124 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_INTR,
    125 	NULL, "cpu", "tlbhit");
    126 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_INTR,
    127 	NULL, "cpu", "tlbflush");
    128 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_INTR,
    129 	NULL, "cpu", "tlbenter");
    130 
    131 struct pmap kernel_pmap_;
    132 
    133 int physmem;
    134 static int npgs;
    135 static u_int nextavail;
    136 #ifndef MSGBUFADDR
    137 extern paddr_t msgbuf_paddr;
    138 #endif
    139 
    140 static struct mem_region *mem, *avail;
    141 
    142 /*
    143  * This is a cache of referenced/modified bits.
    144  * Bits herein are shifted by ATTRSHFT.
    145  */
    146 static char *pmap_attrib;
    147 
    148 #define PV_WIRED	0x1
    149 #define PV_WIRE(pv)	((pv)->pv_va |= PV_WIRED)
    150 #define	PV_CMPVA(va,pv)	(!(((pv)->pv_va^(va))&(~PV_WIRED)))
    151 
    152 struct pv_entry {
    153 	struct pv_entry *pv_next;	/* Linked list of mappings */
    154 	vaddr_t pv_va;			/* virtual address of mapping */
    155 	struct pmap *pv_pm;
    156 };
    157 
    158 struct pv_entry *pv_table;
    159 static struct pool pv_pool;
    160 
    161 static int pmap_initialized;
    162 
    163 static int ctx_flush(int);
    164 
    165 static inline void dcache_flush_page(vaddr_t);
    166 static inline void icache_flush_page(vaddr_t);
    167 static inline void dcache_flush(vaddr_t, vsize_t);
    168 static inline void icache_flush(vaddr_t, vsize_t);
    169 
    170 inline struct pv_entry *pa_to_pv(paddr_t);
    171 static inline char *pa_to_attr(paddr_t);
    172 
    173 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
    174 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
    175 
    176 static void pmap_pinit(pmap_t);
    177 static void pmap_release(pmap_t);
    178 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t);
    179 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
    180 
    181 /*
    182  * These small routines may have to be replaced,
    183  * if/when we support processors other that the 604.
    184  */
    185 
    186 static inline void
    187 dcache_flush_page(vaddr_t va)
    188 {
    189 	int i;
    190 
    191 	for (i = 0; i < NBPG; i += CACHE_LINE)
    192 		asm volatile("dcbf %0,%1" : : "r" (va), "r" (i));
    193 	asm volatile("sync;isync" : : );
    194 }
    195 
    196 static inline void
    197 icache_flush_page(vaddr_t va)
    198 {
    199 	int i;
    200 
    201 	for (i = 0; i < NBPG; i += CACHE_LINE)
    202 		asm volatile("icbi %0,%1" : : "r" (va), "r" (i));
    203 	asm volatile("sync;isync" : : );
    204 }
    205 
    206 static inline void
    207 dcache_flush(vaddr_t va, vsize_t len)
    208 {
    209 	int i;
    210 
    211 	if (len == 0)
    212 		return;
    213 
    214 	/* Make sure we flush all cache lines */
    215 	len += va & (CACHE_LINE-1);
    216 	for (i = 0; i < len; i += CACHE_LINE)
    217 		asm volatile("dcbf %0,%1" : : "r" (va), "r" (i));
    218 	asm volatile("sync;isync" : : );
    219 }
    220 
    221 static inline void
    222 icache_flush(vaddr_t va, vsize_t len)
    223 {
    224 	int i;
    225 
    226 	if (len == 0)
    227 		return;
    228 
    229 	/* Make sure we flush all cache lines */
    230 	len += va & (CACHE_LINE-1);
    231 	for (i = 0; i < len; i += CACHE_LINE)
    232 		asm volatile("icbi %0,%1" : : "r" (va), "r" (i));
    233 	asm volatile("sync;isync" : : );
    234 }
    235 
    236 inline struct pv_entry *
    237 pa_to_pv(paddr_t pa)
    238 {
    239 	int bank, pg;
    240 
    241 	bank = vm_physseg_find(atop(pa), &pg);
    242 	if (bank == -1)
    243 		return NULL;
    244 	return &vm_physmem[bank].pmseg.pvent[pg];
    245 }
    246 
    247 static inline char *
    248 pa_to_attr(paddr_t pa)
    249 {
    250 	int bank, pg;
    251 
    252 	bank = vm_physseg_find(atop(pa), &pg);
    253 	if (bank == -1)
    254 		return NULL;
    255 	return &vm_physmem[bank].pmseg.attrs[pg];
    256 }
    257 
    258 /*
    259  * Insert PTE into page table.
    260  */
    261 int
    262 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
    263 {
    264 	int seg = STIDX(va);
    265 	int ptn = PTIDX(va);
    266 	paddr_t pa;
    267 
    268 	if (!pm->pm_ptbl[seg]) {
    269 		/* Don't allocate a page to clear a non-existent mapping. */
    270 		if (!pte) return (1);
    271 		/* Allocate a page XXXX this will sleep! */
    272 		pa = 0;
    273 		pm->pm_ptbl[seg] = (uint *)uvm_km_alloc1(kernel_map, NBPG, 1);
    274 	}
    275 	pm->pm_ptbl[seg][ptn] = pte;
    276 
    277 	/* Flush entry. */
    278 	ppc4xx_tlb_flush(va, pm->pm_ctx);
    279 	return (1);
    280 }
    281 
    282 /*
    283  * Get a pointer to a PTE in a page table.
    284  */
    285 volatile u_int *
    286 pte_find(struct pmap *pm, vaddr_t va)
    287 {
    288 	int seg = STIDX(va);
    289 	int ptn = PTIDX(va);
    290 
    291 	if (pm->pm_ptbl[seg])
    292 		return (&pm->pm_ptbl[seg][ptn]);
    293 
    294 	return (NULL);
    295 }
    296 
    297 /*
    298  * This is called during initppc, before the system is really initialized.
    299  */
    300 void
    301 pmap_bootstrap(u_int kernelstart, u_int kernelend)
    302 {
    303 	struct mem_region *mp, *mp1;
    304 	int cnt, i;
    305 	u_int s, e, sz;
    306 
    307 	/*
    308 	 * Allocate the kernel page table at the end of
    309 	 * kernel space so it's in the locked TTE.
    310 	 */
    311 	kernmap = (caddr_t)kernelend;
    312 	kernelend += KERNMAP_SIZE*sizeof(struct pte);
    313 
    314 	/*
    315 	 * Initialize kernel page table.
    316 	 */
    317 	memset(kernmap, 0, KERNMAP_SIZE*sizeof(struct pte));
    318 	for (i = 0; i < STSZ; i++) {
    319 		pmap_kernel()->pm_ptbl[i] = (u_int *)(kernmap + i*NBPG);
    320 	}
    321 	ctxbusy[0] = ctxbusy[1] = pmap_kernel();
    322 
    323 	/*
    324 	 * Announce page-size to the VM-system
    325 	 */
    326 	uvmexp.pagesize = NBPG;
    327 	uvm_setpagesize();
    328 
    329 	/*
    330 	 * Get memory.
    331 	 */
    332 	mem_regions(&mem, &avail);
    333 	for (mp = mem; mp->size; mp++) {
    334 		physmem += btoc(mp->size);
    335 		printf("+%lx,",mp->size);
    336 	}
    337 	printf("\n");
    338 	ppc4xx_tlb_init();
    339 	/*
    340 	 * Count the number of available entries.
    341 	 */
    342 	for (cnt = 0, mp = avail; mp->size; mp++)
    343 		cnt++;
    344 
    345 	/*
    346 	 * Page align all regions.
    347 	 * Non-page aligned memory isn't very interesting to us.
    348 	 * Also, sort the entries for ascending addresses.
    349 	 */
    350 	kernelstart &= ~PGOFSET;
    351 	kernelend = (kernelend + PGOFSET) & ~PGOFSET;
    352 	for (mp = avail; mp->size; mp++) {
    353 		s = mp->start;
    354 		e = mp->start + mp->size;
    355 		printf("%08x-%08x -> ",s,e);
    356 		/*
    357 		 * Check whether this region holds all of the kernel.
    358 		 */
    359 		if (s < kernelstart && e > kernelend) {
    360 			avail[cnt].start = kernelend;
    361 			avail[cnt++].size = e - kernelend;
    362 			e = kernelstart;
    363 		}
    364 		/*
    365 		 * Look whether this regions starts within the kernel.
    366 		 */
    367 		if (s >= kernelstart && s < kernelend) {
    368 			if (e <= kernelend)
    369 				goto empty;
    370 			s = kernelend;
    371 		}
    372 		/*
    373 		 * Now look whether this region ends within the kernel.
    374 		 */
    375 		if (e > kernelstart && e <= kernelend) {
    376 			if (s >= kernelstart)
    377 				goto empty;
    378 			e = kernelstart;
    379 		}
    380 		/*
    381 		 * Now page align the start and size of the region.
    382 		 */
    383 		s = round_page(s);
    384 		e = trunc_page(e);
    385 		if (e < s)
    386 			e = s;
    387 		sz = e - s;
    388 		printf("%08x-%08x = %x\n",s,e,sz);
    389 		/*
    390 		 * Check whether some memory is left here.
    391 		 */
    392 		if (sz == 0) {
    393 		empty:
    394 			memmove(mp, mp + 1,
    395 				(cnt - (mp - avail)) * sizeof *mp);
    396 			cnt--;
    397 			mp--;
    398 			continue;
    399 		}
    400 		/*
    401 		 * Do an insertion sort.
    402 		 */
    403 		npgs += btoc(sz);
    404 		for (mp1 = avail; mp1 < mp; mp1++)
    405 			if (s < mp1->start)
    406 				break;
    407 		if (mp1 < mp) {
    408 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
    409 			mp1->start = s;
    410 			mp1->size = sz;
    411 		} else {
    412 			mp->start = s;
    413 			mp->size = sz;
    414 		}
    415 	}
    416 
    417 	/*
    418 	 * We cannot do pmap_steal_memory here,
    419 	 * since we don't run with translation enabled yet.
    420 	 */
    421 #ifndef MSGBUFADDR
    422 	/*
    423 	 * allow for msgbuf
    424 	 */
    425 	sz = round_page(MSGBUFSIZE);
    426 	mp = NULL;
    427 	for (mp1 = avail; mp1->size; mp1++)
    428 		if (mp1->size >= sz)
    429 			mp = mp1;
    430 	if (mp == NULL)
    431 		panic("not enough memory?");
    432 
    433 	npgs -= btoc(sz);
    434 	msgbuf_paddr = mp->start + mp->size - sz;
    435 	mp->size -= sz;
    436 	if (mp->size <= 0)
    437 		memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
    438 #endif
    439 
    440 	printf("Loading pages\n");
    441 	for (mp = avail; mp->size; mp++)
    442 		uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
    443 			atop(mp->start), atop(mp->start + mp->size),
    444 			VM_FREELIST_DEFAULT);
    445 
    446 	/*
    447 	 * Initialize kernel pmap and hardware.
    448 	 */
    449 	/* Setup TLB pid allocator so it knows we alreadu using PID 1 */
    450 	pmap_kernel()->pm_ctx = KERNEL_PID;
    451 	nextavail = avail->start;
    452 
    453 
    454 	evcnt_attach_static(&tlbhit_ev);
    455 	evcnt_attach_static(&tlbmiss_ev);
    456 	evcnt_attach_static(&tlbflush_ev);
    457 	evcnt_attach_static(&tlbenter_ev);
    458 	printf("Done\n");
    459 }
    460 
    461 /*
    462  * Restrict given range to physical memory
    463  *
    464  * (Used by /dev/mem)
    465  */
    466 void
    467 pmap_real_memory(paddr_t *start, psize_t *size)
    468 {
    469 	struct mem_region *mp;
    470 
    471 	for (mp = mem; mp->size; mp++) {
    472 		if (*start + *size > mp->start &&
    473 		    *start < mp->start + mp->size) {
    474 			if (*start < mp->start) {
    475 				*size -= mp->start - *start;
    476 				*start = mp->start;
    477 			}
    478 			if (*start + *size > mp->start + mp->size)
    479 				*size = mp->start + mp->size - *start;
    480 			return;
    481 		}
    482 	}
    483 	*size = 0;
    484 }
    485 
    486 /*
    487  * Initialize anything else for pmap handling.
    488  * Called during vm_init().
    489  */
    490 void
    491 pmap_init(void)
    492 {
    493 	struct pv_entry *pv;
    494 	vsize_t sz;
    495 	vaddr_t addr;
    496 	int i, s;
    497 	int bank;
    498 	char *attr;
    499 
    500 	sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
    501 	sz = round_page(sz);
    502 	addr = uvm_km_zalloc(kernel_map, sz);
    503 	s = splvm();
    504 	pv = pv_table = (struct pv_entry *)addr;
    505 	for (i = npgs; --i >= 0;)
    506 		pv++->pv_pm = NULL;
    507 	pmap_attrib = (char *)pv;
    508 	memset(pv, 0, npgs);
    509 
    510 	pv = pv_table;
    511 	attr = pmap_attrib;
    512 	for (bank = 0; bank < vm_nphysseg; bank++) {
    513 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
    514 		vm_physmem[bank].pmseg.pvent = pv;
    515 		vm_physmem[bank].pmseg.attrs = attr;
    516 		pv += sz;
    517 		attr += sz;
    518 	}
    519 
    520 	pmap_initialized = 1;
    521 	splx(s);
    522 
    523 	/* Setup a pool for additional pvlist structures */
    524 	pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", 0,
    525 		  NULL, NULL, 0);
    526 }
    527 
    528 /*
    529  * How much virtual space is available to the kernel?
    530  */
    531 void
    532 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
    533 {
    534 
    535 #if 0
    536 	/*
    537 	 * Reserve one segment for kernel virtual memory
    538 	 */
    539 	*start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
    540 	*end = *start + SEGMENT_LENGTH;
    541 #else
    542 	*start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
    543 	*end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
    544 #endif
    545 }
    546 
    547 /*
    548  * Create and return a physical map.
    549  */
    550 struct pmap *
    551 pmap_create(void)
    552 {
    553 	struct pmap *pm;
    554 
    555 	pm = (struct pmap *)malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
    556 	memset((caddr_t)pm, 0, sizeof *pm);
    557 	pmap_pinit(pm);
    558 	return pm;
    559 }
    560 
    561 /*
    562  * Initialize a preallocated and zeroed pmap structure.
    563  */
    564 void
    565 pmap_pinit(struct pmap *pm)
    566 {
    567 	int i;
    568 
    569 	/*
    570 	 * Allocate some segment registers for this pmap.
    571 	 */
    572 	pm->pm_refs = 1;
    573 	for (i = 0; i < STSZ; i++)
    574 		pm->pm_ptbl[i] = NULL;
    575 }
    576 
    577 /*
    578  * Add a reference to the given pmap.
    579  */
    580 void
    581 pmap_reference(struct pmap *pm)
    582 {
    583 
    584 	pm->pm_refs++;
    585 }
    586 
    587 /*
    588  * Retire the given pmap from service.
    589  * Should only be called if the map contains no valid mappings.
    590  */
    591 void
    592 pmap_destroy(struct pmap *pm)
    593 {
    594 
    595 	if (--pm->pm_refs == 0) {
    596 		pmap_release(pm);
    597 		free((caddr_t)pm, M_VMPMAP);
    598 	}
    599 }
    600 
    601 /*
    602  * Release any resources held by the given physical map.
    603  * Called when a pmap initialized by pmap_pinit is being released.
    604  */
    605 static void
    606 pmap_release(struct pmap *pm)
    607 {
    608 	int i;
    609 
    610 	for (i = 0; i < STSZ; i++)
    611 		if (pm->pm_ptbl[i]) {
    612 			uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i], NBPG);
    613 			pm->pm_ptbl[i] = NULL;
    614 		}
    615 	if (pm->pm_ctx) ctx_free(pm);
    616 }
    617 
    618 /*
    619  * Copy the range specified by src_addr/len
    620  * from the source map to the range dst_addr/len
    621  * in the destination map.
    622  *
    623  * This routine is only advisory and need not do anything.
    624  */
    625 void
    626 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
    627 	  vsize_t len, vaddr_t src_addr)
    628 {
    629 }
    630 
    631 /*
    632  * Require that all active physical maps contain no
    633  * incorrect entries NOW.
    634  */
    635 void
    636 pmap_update(struct pmap *pmap)
    637 {
    638 }
    639 
    640 /*
    641  * Garbage collects the physical map system for
    642  * pages which are no longer used.
    643  * Success need not be guaranteed -- that is, there
    644  * may well be pages which are not referenced, but
    645  * others may be collected.
    646  * Called by the pageout daemon when pages are scarce.
    647  */
    648 void
    649 pmap_collect(struct pmap *pm)
    650 {
    651 }
    652 
    653 /*
    654  * Fill the given physical page with zeroes.
    655  */
    656 void
    657 pmap_zero_page(paddr_t pa)
    658 {
    659 
    660 #ifdef NOCACHE
    661 	memset((caddr_t)pa, 0, NBPG);
    662 #else
    663 	int i;
    664 
    665 	for (i = NBPG/CACHELINESIZE; i > 0; i--) {
    666 		__asm __volatile ("dcbz 0,%0" :: "r"(pa));
    667 		pa += CACHELINESIZE;
    668 	}
    669 #endif
    670 }
    671 
    672 /*
    673  * Copy the given physical source page to its destination.
    674  */
    675 void
    676 pmap_copy_page(paddr_t src, paddr_t dst)
    677 {
    678 
    679 	memcpy((caddr_t)dst, (caddr_t)src, NBPG);
    680 	dcache_flush_page(dst);
    681 }
    682 
    683 /*
    684  * This returns whether this is the first mapping of a page.
    685  */
    686 static inline int
    687 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
    688 {
    689 	struct pv_entry *pv, *npv = NULL;
    690 	int s;
    691 
    692 	if (!pmap_initialized)
    693 		return 0;
    694 
    695 	s = splvm();
    696 
    697 	pv = pa_to_pv(pa);
    698 	if (!pv->pv_pm) {
    699 		/*
    700 		 * No entries yet, use header as the first entry.
    701 		 */
    702 		pv->pv_va = va;
    703 		pv->pv_pm = pm;
    704 		pv->pv_next = NULL;
    705 	} else {
    706 		/*
    707 		 * There is at least one other VA mapping this page.
    708 		 * Place this entry after the header.
    709 		 */
    710 		npv = pool_get(&pv_pool, PR_WAITOK);
    711 		if (!npv) return (0);
    712 		npv->pv_va = va;
    713 		npv->pv_pm = pm;
    714 		npv->pv_next = pv->pv_next;
    715 		pv->pv_next = npv;
    716 	}
    717 	splx(s);
    718 	return (1);
    719 }
    720 
    721 static void
    722 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
    723 {
    724 	struct pv_entry *pv, *npv;
    725 
    726 	/*
    727 	 * Remove from the PV table.
    728 	 */
    729 	pv = pa_to_pv(pa);
    730 	if (!pv) return;
    731 
    732 	/*
    733 	 * If it is the first entry on the list, it is actually
    734 	 * in the header and we must copy the following entry up
    735 	 * to the header.  Otherwise we must search the list for
    736 	 * the entry.  In either case we free the now unused entry.
    737 	 */
    738 	if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
    739 		if ((npv = pv->pv_next)) {
    740 			*pv = *npv;
    741 			pool_put(&pv_pool, npv);
    742 		} else
    743 			pv->pv_pm = NULL;
    744 	} else {
    745 		for (; (npv = pv->pv_next) != NULL; pv = npv)
    746 			if (pm == npv->pv_pm && PV_CMPVA(va, npv))
    747 				break;
    748 		if (npv) {
    749 			pv->pv_next = npv->pv_next;
    750 			pool_put(&pv_pool, npv);
    751 		}
    752 	}
    753 }
    754 
    755 /*
    756  * Insert physical page at pa into the given pmap at virtual address va.
    757  */
    758 int
    759 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
    760 {
    761 	int s;
    762 	u_int tte;
    763 	int managed;
    764 
    765 	/*
    766 	 * Have to remove any existing mapping first.
    767 	 */
    768 	pmap_remove(pm, va, va + NBPG);
    769 
    770 	if (flags & PMAP_WIRED) flags |= prot;
    771 
    772 	/* If it has no protections don't bother w/the rest */
    773 	if (!(flags & VM_PROT_ALL))
    774 		return (0);
    775 
    776 	managed = 0;
    777 	if (vm_physseg_find(atop(pa), NULL) != -1)
    778 		managed = 1;
    779 
    780 	/*
    781 	 * Generate TTE.
    782 	 *
    783 	 * XXXX
    784 	 *
    785 	 * Since the kernel does not handle execution privileges properly,
    786 	 * we will handle read and execute permissions together.
    787 	 */
    788 	tte = TTE_PA(pa) | TTE_EX;
    789 	/* XXXX -- need to support multiple page sizes. */
    790 	tte |= TTE_SZ_16K;
    791 #ifdef	DIAGNOSTIC
    792 	if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
    793 		(PME_NOCACHE | PME_WRITETHROUG))
    794 		panic("pmap_enter: uncached & writethrough\n");
    795 #endif
    796 	if (flags & PME_NOCACHE)
    797 		/* Must be I/O mapping */
    798 		tte |= TTE_I | TTE_G;
    799 #ifdef NOCACHE
    800 	tte |= TTE_I;
    801 #else
    802 	else if (flags & PME_WRITETHROUG)
    803 		/* Uncached and writethrough are not compatible */
    804 		tte |= TTE_W;
    805 #endif
    806 	if (pm == pmap_kernel())
    807 		tte |= TTE_ZONE(ZONE_PRIV);
    808 	else
    809 		tte |= TTE_ZONE(ZONE_USER);
    810 
    811 	if (flags & VM_PROT_WRITE)
    812 		tte |= TTE_WR;
    813 
    814 	/*
    815 	 * Now record mapping for later back-translation.
    816 	 */
    817 	if (pmap_initialized && managed) {
    818 		char *attr;
    819 
    820 		if (!pmap_enter_pv(pm, va, pa)) {
    821 			/* Could not enter pv on a managed page */
    822 			return 1;
    823 		}
    824 
    825 		/* Now set attributes. */
    826 		attr = pa_to_attr(pa);
    827 #ifdef DIAGNOSTIC
    828 		if (!attr)
    829 			panic("managed but no attr\n");
    830 #endif
    831 		if (flags & VM_PROT_ALL)
    832 			*attr |= PTE_HI_REF;
    833 		if (flags & VM_PROT_WRITE)
    834 			*attr |= PTE_HI_CHG;
    835 	}
    836 
    837 	s = splvm();
    838 	pm->pm_stats.resident_count++;
    839 
    840 	/* Insert page into page table. */
    841 	pte_enter(pm, va, tte);
    842 
    843 	/* If this is a real fault, enter it in the tlb */
    844 	if (tte && ((flags & PMAP_WIRED) == 0)) {
    845 		ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
    846 	}
    847 	splx(s);
    848 	return 0;
    849 }
    850 
    851 void
    852 pmap_unwire(struct pmap *pm, vaddr_t va)
    853 {
    854 	struct pv_entry *pv, *npv;
    855 	paddr_t pa;
    856 	int s = splvm();
    857 
    858         if (pm == NULL) {
    859                 return;
    860         }
    861 
    862 	if (!pmap_extract(pm, va, &pa)) {
    863 		return;
    864 	}
    865 
    866 	va |= PV_WIRED;
    867 
    868 	pv = pa_to_pv(pa);
    869 	if (!pv) return;
    870 
    871 	/*
    872 	 * If it is the first entry on the list, it is actually
    873 	 * in the header and we must copy the following entry up
    874 	 * to the header.  Otherwise we must search the list for
    875 	 * the entry.  In either case we free the now unused entry.
    876 	 */
    877 	for (npv = pv; (npv = pv->pv_next) != NULL; pv = npv) {
    878 		if (pm == npv->pv_pm && PV_CMPVA(va, npv)) {
    879 			npv->pv_va &= ~PV_WIRED;
    880 			break;
    881 		}
    882 	}
    883 	splx(s);
    884 }
    885 
    886 void
    887 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
    888 {
    889 	int s;
    890 	u_int tte;
    891 	struct pmap *pm = pmap_kernel();
    892 
    893 	/*
    894 	 * Have to remove any existing mapping first.
    895 	 */
    896 
    897 	/*
    898 	 * Generate TTE.
    899 	 *
    900 	 * XXXX
    901 	 *
    902 	 * Since the kernel does not handle execution privileges properly,
    903 	 * we will handle read and execute permissions together.
    904 	 */
    905 	tte = 0;
    906 	if (prot & VM_PROT_ALL) {
    907 
    908 		tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
    909 		/* XXXX -- need to support multiple page sizes. */
    910 		tte |= TTE_SZ_16K;
    911 #ifdef DIAGNOSTIC
    912 		if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
    913 			(PME_NOCACHE | PME_WRITETHROUG))
    914 			panic("pmap_kenter_pa: uncached & writethrough\n");
    915 #endif
    916 		if (prot & PME_NOCACHE)
    917 			/* Must be I/O mapping */
    918 			tte |= TTE_I | TTE_G;
    919 #ifdef NOCACHE
    920 		tte |= TTE_I;
    921 #else
    922 		else if (prot & PME_WRITETHROUG)
    923 			/* Uncached and writethrough are not compatible */
    924 			tte |= TTE_W;
    925 #endif
    926 		if (prot & VM_PROT_WRITE)
    927 			tte |= TTE_WR;
    928 	}
    929 
    930 	s = splvm();
    931 	pm->pm_stats.resident_count++;
    932 
    933 	/* Insert page into page table. */
    934 	pte_enter(pm, va, tte);
    935 	splx(s);
    936 }
    937 
    938 void
    939 pmap_kremove(vaddr_t va, vsize_t len)
    940 {
    941 
    942 	while (len > 0) {
    943 		pte_enter(pmap_kernel(), va, 0);
    944 		va += PAGE_SIZE;
    945 		len -= PAGE_SIZE;
    946 	}
    947 }
    948 
    949 /*
    950  * Remove the given range of mapping entries.
    951  */
    952 void
    953 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
    954 {
    955 	int s;
    956 	paddr_t pa;
    957 	volatile u_int *ptp;
    958 
    959 	s = splvm();
    960 	while (va < endva) {
    961 
    962 		if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
    963 			pa = TTE_PA(pa);
    964 			pmap_remove_pv(pm, va, pa);
    965 			*ptp = 0;
    966 			ppc4xx_tlb_flush(va, pm->pm_ctx);
    967 			pm->pm_stats.resident_count--;
    968 		}
    969 		va += NBPG;
    970 	}
    971 
    972 	splx(s);
    973 }
    974 
    975 /*
    976  * Get the physical page address for the given pmap/virtual address.
    977  */
    978 boolean_t
    979 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
    980 {
    981 	int seg = STIDX(va);
    982 	int ptn = PTIDX(va);
    983 	u_int pa = 0;
    984 	int s = splvm();
    985 
    986 	if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
    987 		*pap = TTE_PA(pa) | (va & PGOFSET);
    988 	}
    989 	splx(s);
    990 	return (pa != 0);
    991 }
    992 
    993 /*
    994  * Lower the protection on the specified range of this pmap.
    995  *
    996  * There are only two cases: either the protection is going to 0,
    997  * or it is going to read-only.
    998  */
    999 void
   1000 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   1001 {
   1002 	volatile u_int *ptp;
   1003 	int s;
   1004 
   1005 	if (prot & VM_PROT_READ) {
   1006 		s = splvm();
   1007 		while (sva < eva) {
   1008 			if ((ptp = pte_find(pm, sva)) != NULL) {
   1009 				*ptp &= ~TTE_WR;
   1010 				ppc4xx_tlb_flush(sva, pm->pm_ctx);
   1011 			}
   1012 			sva += NBPG;
   1013 		}
   1014 		splx(s);
   1015 		return;
   1016 	}
   1017 	pmap_remove(pm, sva, eva);
   1018 }
   1019 
   1020 boolean_t
   1021 check_attr(struct vm_page *pg, u_int mask, int clear)
   1022 {
   1023 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   1024 	int s;
   1025 	char *attr;
   1026 	int rv;
   1027 
   1028 	/*
   1029 	 * First modify bits in cache.
   1030 	 */
   1031 	s = splvm();
   1032 	attr = pa_to_attr(pa);
   1033 	if (attr == NULL)
   1034 		return FALSE;
   1035 
   1036 	rv = ((*attr & mask) != 0);
   1037 	if (clear)
   1038 		*attr &= ~mask;
   1039 
   1040 	splx(s);
   1041 	return rv;
   1042 }
   1043 
   1044 
   1045 /*
   1046  * Lower the protection on the specified physical page.
   1047  *
   1048  * There are only two cases: either the protection is going to 0,
   1049  * or it is going to read-only.
   1050  */
   1051 void
   1052 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   1053 {
   1054 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
   1055 	vaddr_t va;
   1056 	struct pv_entry *pvh, *pv, *npv;
   1057 	struct pmap *pm;
   1058 
   1059 	pvh = pa_to_pv(pa);
   1060 	if (pvh == NULL)
   1061 		return;
   1062 
   1063 	/* Handle extra pvs which may be deleted in the operation */
   1064 	for (pv = pvh->pv_next; pv; pv = npv) {
   1065 		npv = pv->pv_next;
   1066 
   1067 		pm = pv->pv_pm;
   1068 		va = pv->pv_va;
   1069 		pmap_protect(pm, va, va+NBPG, prot);
   1070 	}
   1071 	/* Now check the head pv */
   1072 	if (pvh->pv_pm) {
   1073 		pv = pvh;
   1074 		pm = pv->pv_pm;
   1075 		va = pv->pv_va;
   1076 		pmap_protect(pm, va, va+NBPG, prot);
   1077 	}
   1078 }
   1079 
   1080 /*
   1081  * Activate the address space for the specified process.  If the process
   1082  * is the current process, load the new MMU context.
   1083  */
   1084 void
   1085 pmap_activate(struct proc *p)
   1086 {
   1087 #if 0
   1088 	struct pcb *pcb = &p->p_addr->u_pcb;
   1089 	pmap_t pmap = p->p_vmspace->vm_map.pmap;
   1090 
   1091 	/*
   1092 	 * XXX Normally performed in cpu_fork().
   1093 	 */
   1094 	printf("pmap_activate(%p), pmap=%p\n",p,pmap);
   1095 	if (pcb->pcb_pm != pmap) {
   1096 		pcb->pcb_pm = pmap;
   1097 		(void) pmap_extract(pmap_kernel(), (vaddr_t)pcb->pcb_pm,
   1098 		    (paddr_t *)&pcb->pcb_pmreal);
   1099 	}
   1100 
   1101 	if (p == curproc) {
   1102 		/* Store pointer to new current pmap. */
   1103 		curpm = pcb->pcb_pmreal;
   1104 	}
   1105 #endif
   1106 }
   1107 
   1108 /*
   1109  * Deactivate the specified process's address space.
   1110  */
   1111 void
   1112 pmap_deactivate(struct proc *p)
   1113 {
   1114 }
   1115 
   1116 /*
   1117  * Synchronize caches corresponding to [addr, addr+len) in p.
   1118  */
   1119 void
   1120 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   1121 {
   1122 	struct pmap *pm = p->p_vmspace->vm_map.pmap;
   1123 	int msr, ctx, opid;
   1124 
   1125 
   1126 	/*
   1127 	 * Need to turn off IMMU and switch to user context.
   1128 	 * (icbi uses DMMU).
   1129 	 */
   1130 	if (!(ctx = pm->pm_ctx)) {
   1131 		/* No context -- assign it one */
   1132 		ctx_alloc(pm);
   1133 		ctx = pm->pm_ctx;
   1134 	}
   1135 	__asm __volatile("mfmsr %0;"
   1136 		"li %1, 0x20;"
   1137 		"andc %1,%0,%1;"
   1138 		"mtmsr %1;"
   1139 		"sync;isync;"
   1140 		"mfpid %1;"
   1141 		"mtpid %2;"
   1142 		"sync; isync;"
   1143 		"1:"
   1144 		"dcbf 0,%3;"
   1145 		"icbi 0,%3;"
   1146 		"addi %3,%3,32;"
   1147 		"addic. %4,%4,-32;"
   1148 		"bge 1b;"
   1149 		"mtpid %1;"
   1150 		"mtmsr %0;"
   1151 		"sync; isync"
   1152 		: "=&r" (msr), "=&r" (opid)
   1153 		: "r" (ctx), "r" (va), "r" (len));
   1154 }
   1155 
   1156 
   1157 /* This has to be done in real mode !!! */
   1158 void
   1159 ppc4xx_tlb_flush(vaddr_t va, int pid)
   1160 {
   1161 	u_long i, found;
   1162 	u_long msr;
   1163 
   1164 	/* If there's no context then it can't be mapped. */
   1165 	if (!pid) return;
   1166 
   1167 	asm("mfpid %1;"			/* Save PID */
   1168 		"mfmsr %2;"		/* Save MSR */
   1169 		"li %0,0;"		/* Now clear MSR */
   1170 		"mtmsr %0;"
   1171 		"mtpid %4;"		/* Set PID */
   1172 		"sync;"
   1173 		"tlbsx. %0,0,%3;"	/* Search TLB */
   1174 		"sync;"
   1175 		"mtpid %1;"		/* Restore PID */
   1176 		"mtmsr %2;"		/* Restore MSR */
   1177 		"sync;isync;"
   1178 		"li %1,1;"
   1179 		"beq 1f;"
   1180 		"li %1,0;"
   1181 		"1:"
   1182 		: "=&r" (i), "=&r" (found), "=&r" (msr)
   1183 		: "r" (va), "r" (pid));
   1184 	if (found && !TLB_LOCKED(i)) {
   1185 
   1186 		/* Now flush translation */
   1187 		asm volatile(
   1188 			"tlbwe %0,%1,0;"
   1189 			"sync;isync;"
   1190 			: : "r" (0), "r" (i));
   1191 
   1192 		tlb_info[i].ti_ctx = 0;
   1193 		tlb_info[i].ti_flags = 0;
   1194 		tlbnext = i;
   1195 		/* Successful flushes */
   1196 		tlbflush_ev.ev_count++;
   1197 	}
   1198 }
   1199 
   1200 void
   1201 ppc4xx_tlb_flush_all(void)
   1202 {
   1203 	u_long i;
   1204 
   1205 	for (i = 0; i < NTLB; i++)
   1206 		if (!TLB_LOCKED(i)) {
   1207 			asm volatile(
   1208 				"tlbwe %0,%1,0;"
   1209 				"sync;isync;"
   1210 				: : "r" (0), "r" (i));
   1211 			tlb_info[i].ti_ctx = 0;
   1212 			tlb_info[i].ti_flags = 0;
   1213 		}
   1214 
   1215 	asm volatile("sync;isync");
   1216 }
   1217 
   1218 /* Find a TLB entry to evict. */
   1219 static int
   1220 ppc4xx_tlb_find_victim(void)
   1221 {
   1222 	int flags;
   1223 
   1224 	for (;;) {
   1225 		if (++tlbnext >= NTLB)
   1226 			tlbnext = TLB_NRESERVED;
   1227 		flags = tlb_info[tlbnext].ti_flags;
   1228 		if (!(flags & TLBF_USED) ||
   1229 			(flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
   1230 			u_long va, stack = (u_long)&va;
   1231 
   1232 			if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
   1233 			    (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
   1234 			     (flags & TLBF_USED)) {
   1235 				/* Kernel stack page */
   1236 				flags |= TLBF_USED;
   1237 				tlb_info[tlbnext].ti_flags = flags;
   1238 			} else {
   1239 				/* Found it! */
   1240 				return (tlbnext);
   1241 			}
   1242 		} else {
   1243 			tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
   1244 		}
   1245 	}
   1246 }
   1247 
   1248 void
   1249 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
   1250 {
   1251 	u_long th, tl, idx;
   1252 	tlbpid_t pid;
   1253 	u_short msr;
   1254 	int s;
   1255 
   1256 	tlbenter_ev.ev_count++;
   1257 
   1258 	th = (va & TLB_EPN_MASK) |
   1259 		(((pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT) << TLB_SIZE_SHFT) |
   1260 		TLB_VALID;
   1261 	tl = pte;
   1262 
   1263 	s = splhigh();
   1264 	idx = ppc4xx_tlb_find_victim();
   1265 
   1266 #ifdef DIAGNOSTIC
   1267 	if ((idx < TLB_NRESERVED) || (idx >= NTLB)) {
   1268 		panic("ppc4xx_tlb_enter: repacing entry %ld\n", idx);
   1269 	}
   1270 #endif
   1271 
   1272 	tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
   1273 	tlb_info[idx].ti_ctx = ctx;
   1274 	tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
   1275 
   1276 	asm volatile(
   1277 		"mfmsr %0;"			/* Save MSR */
   1278 		"li %1,0;"
   1279 		"tlbwe %1,%3,0;"		/* Invalidate old entry. */
   1280 		"mtmsr %1;"			/* Clear MSR */
   1281 		"mfpid %1;"			/* Save old PID */
   1282 		"mtpid %2;"			/* Load translation ctx */
   1283 		"sync; isync;"
   1284 #ifdef DEBUG
   1285 		"andi. %3,%3,63;"
   1286 		"tweqi %3,0;" 			/* XXXXX DEBUG trap on index 0 */
   1287 #endif
   1288 		"tlbwe %4,%3,1; tlbwe %5,%3,0;"	/* Set TLB */
   1289 		"sync; isync;"
   1290 		"mtpid %1; mtmsr %0;"		/* Restore PID and MSR */
   1291 		"sync; isync;"
   1292 	: "=&r" (msr), "=&r" (pid)
   1293 	: "r" (ctx), "r" (idx), "r" (tl), "r" (th));
   1294 	splx(s);
   1295 }
   1296 
   1297 void
   1298 ppc4xx_tlb_unpin(int i)
   1299 {
   1300 
   1301 	if (i == -1)
   1302 		for (i = 0; i < TLB_NRESERVED; i++)
   1303 			tlb_info[i].ti_flags &= ~TLBF_LOCKED;
   1304 	else
   1305 		tlb_info[i].ti_flags &= ~TLBF_LOCKED;
   1306 }
   1307 
   1308 void
   1309 ppc4xx_tlb_init(void)
   1310 {
   1311 	int i;
   1312 
   1313 	/* Mark reserved TLB entries */
   1314 	for (i = 0; i < TLB_NRESERVED; i++) {
   1315 		tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
   1316 		tlb_info[i].ti_ctx = KERNEL_PID;
   1317 	}
   1318 
   1319 	/* Setup security zones */
   1320 	/* Z0 - accessible by kernel only if TLB entry permissions allow
   1321 	 * Z1,Z2 - access is controlled by TLB entry permissions
   1322 	 * Z3 - full access regardless of TLB entry permissions
   1323 	 */
   1324 
   1325 	asm volatile(
   1326 		"mtspr %0,%1;"
   1327 		"sync;"
   1328 		::  "K"(SPR_ZPR), "r" (0x1b000000));
   1329 }
   1330 
   1331 
   1332 /*
   1333  * We should pass the ctx in from trap code.
   1334  */
   1335 int
   1336 pmap_tlbmiss(vaddr_t va, int ctx)
   1337 {
   1338 	volatile u_int *pte;
   1339 	u_long tte;
   1340 
   1341 	tlbmiss_ev.ev_count++;
   1342 
   1343 	/*
   1344 	 * XXXX We will reserve 0-0x80000000 for va==pa mappings.
   1345 	 */
   1346 	if (ctx != KERNEL_PID || (va & 0x80000000)) {
   1347 		pte = pte_find((struct pmap *)ctxbusy[ctx], va);
   1348 		if (pte == NULL) {
   1349 			/* Map unmanaged addresses directly for kernel access */
   1350 			return 1;
   1351 		}
   1352 		tte = *pte;
   1353 		if (tte == 0) {
   1354 			return 1;
   1355 		}
   1356 	} else {
   1357 		/* Create a 16MB writeable mapping. */
   1358 #ifdef NOCACHE
   1359 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I | TTE_WR;
   1360 #else
   1361 		tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
   1362 #endif
   1363 	}
   1364 	tlbhit_ev.ev_count++;
   1365 	ppc4xx_tlb_enter(ctx, va, tte);
   1366 
   1367 	return 0;
   1368 }
   1369 
   1370 /*
   1371  * Flush all the entries matching a context from the TLB.
   1372  */
   1373 static int
   1374 ctx_flush(int cnum)
   1375 {
   1376 	int i;
   1377 
   1378 	/* We gotta steal this context */
   1379 	for (i = TLB_NRESERVED; i < NTLB; i++) {
   1380 		if (tlb_info[i].ti_ctx == cnum) {
   1381 			/* Can't steal ctx if it has a locked entry. */
   1382 			if (TLB_LOCKED(i)) {
   1383 #ifdef DIAGNOSTIC
   1384 				printf("ctx_flush: can't invalidate "
   1385 					"locked mapping %d "
   1386 					"for context %d\n", i, cnum);
   1387 				Debugger();
   1388 #endif
   1389 				return (1);
   1390 			}
   1391 #ifdef DIAGNOSTIC
   1392 			if (i < TLB_NRESERVED)
   1393 				panic("TLB entry %d not locked\n", i);
   1394 #endif
   1395 			/* Invalidate particular TLB entry regardless of locked status */
   1396 			asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
   1397 			tlb_info[i].ti_flags = 0;
   1398 		}
   1399 	}
   1400 	return (0);
   1401 }
   1402 
   1403 /*
   1404  * Allocate a context.  If necessary, steal one from someone else.
   1405  *
   1406  * The new context is flushed from the TLB before returning.
   1407  */
   1408 int
   1409 ctx_alloc(struct pmap *pm)
   1410 {
   1411 	int s, cnum;
   1412 	static int next = MINCTX;
   1413 
   1414 	if (pm == pmap_kernel()) {
   1415 #ifdef DIAGNOSTIC
   1416 		printf("ctx_alloc: kernel pmap!\n");
   1417 #endif
   1418 		return (0);
   1419 	}
   1420 	s = splvm();
   1421 
   1422 	/* Find a likely context. */
   1423 	cnum = next;
   1424 	do {
   1425 		if ((++cnum) > NUMCTX)
   1426 			cnum = MINCTX;
   1427 	} while (ctxbusy[cnum] != NULL && cnum != next);
   1428 
   1429 	/* Now clean it out */
   1430 oops:
   1431 	if (cnum < MINCTX)
   1432 		cnum = MINCTX; /* Never steal ctx 0 or 1 */
   1433 	if (ctx_flush(cnum)) {
   1434 		/* oops -- something's wired. */
   1435 		if ((++cnum) > NUMCTX)
   1436 			cnum = MINCTX;
   1437 		goto oops;
   1438 	}
   1439 
   1440 	if (ctxbusy[cnum]) {
   1441 #ifdef DEBUG
   1442 		/* We should identify this pmap and clear it */
   1443 		printf("Warning: stealing context %d\n", cnum);
   1444 #endif
   1445 		ctxbusy[cnum]->pm_ctx = 0;
   1446 	}
   1447 	ctxbusy[cnum] = pm;
   1448 	next = cnum;
   1449 	splx(s);
   1450 	pm->pm_ctx = cnum;
   1451 
   1452 	return cnum;
   1453 }
   1454 
   1455 /*
   1456  * Give away a context.
   1457  */
   1458 void
   1459 ctx_free(struct pmap *pm)
   1460 {
   1461 	int oldctx;
   1462 
   1463 	oldctx = pm->pm_ctx;
   1464 
   1465 	if (oldctx == 0)
   1466 		panic("ctx_free: freeing kernel context");
   1467 #ifdef DIAGNOSTIC
   1468 	if (ctxbusy[oldctx] == 0)
   1469 		printf("ctx_free: freeing free context %d\n", oldctx);
   1470 	if (ctxbusy[oldctx] != pm) {
   1471 		printf("ctx_free: freeing someone esle's context\n "
   1472 		       "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
   1473 		       oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
   1474 		Debugger();
   1475 	}
   1476 #endif
   1477 	/* We should verify it has not been stolen and reallocated... */
   1478 	ctxbusy[oldctx] = NULL;
   1479 	ctx_flush(oldctx);
   1480 }
   1481 
   1482 #ifdef DEBUG
   1483 /*
   1484  * Test ref/modify handling.
   1485  */
   1486 void pmap_testout __P((void));
   1487 void
   1488 pmap_testout()
   1489 {
   1490 	vaddr_t va;
   1491 	volatile int *loc;
   1492 	int val = 0;
   1493 	paddr_t pa;
   1494 	struct vm_page *pg;
   1495 	int ref, mod;
   1496 
   1497 	/* Allocate a page */
   1498 	va = (vaddr_t)uvm_km_alloc1(kernel_map, NBPG, 1);
   1499 	loc = (int*)va;
   1500 
   1501 	pmap_extract(pmap_kernel(), va, &pa);
   1502 	pg = PHYS_TO_VM_PAGE(pa);
   1503 	pmap_unwire(pmap_kernel(), va);
   1504 
   1505 	pmap_remove(pmap_kernel(), va, va+1);
   1506 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1507 	pmap_update(pmap_kernel());
   1508 
   1509 	/* Now clear reference and modify */
   1510 	ref = pmap_clear_reference(pg);
   1511 	mod = pmap_clear_modify(pg);
   1512 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1513 	       (void *)(u_long)va, (long)pa,
   1514 	       ref, mod);
   1515 
   1516 	/* Check it's properly cleared */
   1517 	ref = pmap_is_referenced(pg);
   1518 	mod = pmap_is_modified(pg);
   1519 	printf("Checking cleared page: ref %d, mod %d\n",
   1520 	       ref, mod);
   1521 
   1522 	/* Reference page */
   1523 	val = *loc;
   1524 
   1525 	ref = pmap_is_referenced(pg);
   1526 	mod = pmap_is_modified(pg);
   1527 	printf("Referenced page: ref %d, mod %d val %x\n",
   1528 	       ref, mod, val);
   1529 
   1530 	/* Now clear reference and modify */
   1531 	ref = pmap_clear_reference(pg);
   1532 	mod = pmap_clear_modify(pg);
   1533 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1534 	       (void *)(u_long)va, (long)pa,
   1535 	       ref, mod);
   1536 
   1537 	/* Modify page */
   1538 	*loc = 1;
   1539 
   1540 	ref = pmap_is_referenced(pg);
   1541 	mod = pmap_is_modified(pg);
   1542 	printf("Modified page: ref %d, mod %d\n",
   1543 	       ref, mod);
   1544 
   1545 	/* Now clear reference and modify */
   1546 	ref = pmap_clear_reference(pg);
   1547 	mod = pmap_clear_modify(pg);
   1548 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1549 	       (void *)(u_long)va, (long)pa,
   1550 	       ref, mod);
   1551 
   1552 	/* Check it's properly cleared */
   1553 	ref = pmap_is_referenced(pg);
   1554 	mod = pmap_is_modified(pg);
   1555 	printf("Checking cleared page: ref %d, mod %d\n",
   1556 	       ref, mod);
   1557 
   1558 	/* Modify page */
   1559 	*loc = 1;
   1560 
   1561 	ref = pmap_is_referenced(pg);
   1562 	mod = pmap_is_modified(pg);
   1563 	printf("Modified page: ref %d, mod %d\n",
   1564 	       ref, mod);
   1565 
   1566 	/* Check pmap_protect() */
   1567 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
   1568 	pmap_update(pmap_kernel());
   1569 	ref = pmap_is_referenced(pg);
   1570 	mod = pmap_is_modified(pg);
   1571 	printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
   1572 	       ref, mod);
   1573 
   1574 	/* Now clear reference and modify */
   1575 	ref = pmap_clear_reference(pg);
   1576 	mod = pmap_clear_modify(pg);
   1577 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1578 	       (void *)(u_long)va, (long)pa,
   1579 	       ref, mod);
   1580 
   1581 	/* Reference page */
   1582 	val = *loc;
   1583 
   1584 	ref = pmap_is_referenced(pg);
   1585 	mod = pmap_is_modified(pg);
   1586 	printf("Referenced page: ref %d, mod %d val %x\n",
   1587 	       ref, mod, val);
   1588 
   1589 	/* Now clear reference and modify */
   1590 	ref = pmap_clear_reference(pg);
   1591 	mod = pmap_clear_modify(pg);
   1592 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1593 	       (void *)(u_long)va, (long)pa,
   1594 	       ref, mod);
   1595 
   1596 	/* Modify page */
   1597 #if 0
   1598 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1599 	pmap_update(pmap_kernel());
   1600 #endif
   1601 	*loc = 1;
   1602 
   1603 	ref = pmap_is_referenced(pg);
   1604 	mod = pmap_is_modified(pg);
   1605 	printf("Modified page: ref %d, mod %d\n",
   1606 	       ref, mod);
   1607 
   1608 	/* Check pmap_protect() */
   1609 	pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
   1610 	pmap_update(pmap_kernel());
   1611 	ref = pmap_is_referenced(pg);
   1612 	mod = pmap_is_modified(pg);
   1613 	printf("pmap_protect(): ref %d, mod %d\n",
   1614 	       ref, mod);
   1615 
   1616 	/* Now clear reference and modify */
   1617 	ref = pmap_clear_reference(pg);
   1618 	mod = pmap_clear_modify(pg);
   1619 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1620 	       (void *)(u_long)va, (long)pa,
   1621 	       ref, mod);
   1622 
   1623 	/* Reference page */
   1624 	val = *loc;
   1625 
   1626 	ref = pmap_is_referenced(pg);
   1627 	mod = pmap_is_modified(pg);
   1628 	printf("Referenced page: ref %d, mod %d val %x\n",
   1629 	       ref, mod, val);
   1630 
   1631 	/* Now clear reference and modify */
   1632 	ref = pmap_clear_reference(pg);
   1633 	mod = pmap_clear_modify(pg);
   1634 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1635 	       (void *)(u_long)va, (long)pa,
   1636 	       ref, mod);
   1637 
   1638 	/* Modify page */
   1639 #if 0
   1640 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1641 	pmap_update(pmap_kernel());
   1642 #endif
   1643 	*loc = 1;
   1644 
   1645 	ref = pmap_is_referenced(pg);
   1646 	mod = pmap_is_modified(pg);
   1647 	printf("Modified page: ref %d, mod %d\n",
   1648 	       ref, mod);
   1649 
   1650 	/* Check pmap_pag_protect() */
   1651 	pmap_page_protect(pg, VM_PROT_READ);
   1652 	ref = pmap_is_referenced(pg);
   1653 	mod = pmap_is_modified(pg);
   1654 	printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
   1655 	       ref, mod);
   1656 
   1657 	/* Now clear reference and modify */
   1658 	ref = pmap_clear_reference(pg);
   1659 	mod = pmap_clear_modify(pg);
   1660 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1661 	       (void *)(u_long)va, (long)pa,
   1662 	       ref, mod);
   1663 
   1664 	/* Reference page */
   1665 	val = *loc;
   1666 
   1667 	ref = pmap_is_referenced(pg);
   1668 	mod = pmap_is_modified(pg);
   1669 	printf("Referenced page: ref %d, mod %d val %x\n",
   1670 	       ref, mod, val);
   1671 
   1672 	/* Now clear reference and modify */
   1673 	ref = pmap_clear_reference(pg);
   1674 	mod = pmap_clear_modify(pg);
   1675 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1676 	       (void *)(u_long)va, (long)pa,
   1677 	       ref, mod);
   1678 
   1679 	/* Modify page */
   1680 #if 0
   1681 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1682 	pmap_update(pmap_kernel());
   1683 #endif
   1684 	*loc = 1;
   1685 
   1686 	ref = pmap_is_referenced(pg);
   1687 	mod = pmap_is_modified(pg);
   1688 	printf("Modified page: ref %d, mod %d\n",
   1689 	       ref, mod);
   1690 
   1691 	/* Check pmap_pag_protect() */
   1692 	pmap_page_protect(pg, VM_PROT_NONE);
   1693 	ref = pmap_is_referenced(pg);
   1694 	mod = pmap_is_modified(pg);
   1695 	printf("pmap_page_protect(): ref %d, mod %d\n",
   1696 	       ref, mod);
   1697 
   1698 	/* Now clear reference and modify */
   1699 	ref = pmap_clear_reference(pg);
   1700 	mod = pmap_clear_modify(pg);
   1701 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1702 	       (void *)(u_long)va, (long)pa,
   1703 	       ref, mod);
   1704 
   1705 
   1706 	/* Reference page */
   1707 	val = *loc;
   1708 
   1709 	ref = pmap_is_referenced(pg);
   1710 	mod = pmap_is_modified(pg);
   1711 	printf("Referenced page: ref %d, mod %d val %x\n",
   1712 	       ref, mod, val);
   1713 
   1714 	/* Now clear reference and modify */
   1715 	ref = pmap_clear_reference(pg);
   1716 	mod = pmap_clear_modify(pg);
   1717 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1718 	       (void *)(u_long)va, (long)pa,
   1719 	       ref, mod);
   1720 
   1721 	/* Modify page */
   1722 #if 0
   1723 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
   1724 	pmap_update(pmap_kernel());
   1725 #endif
   1726 	*loc = 1;
   1727 
   1728 	ref = pmap_is_referenced(pg);
   1729 	mod = pmap_is_modified(pg);
   1730 	printf("Modified page: ref %d, mod %d\n",
   1731 	       ref, mod);
   1732 
   1733 	/* Unmap page */
   1734 	pmap_remove(pmap_kernel(), va, va+1);
   1735 	pmap_update(pmap_kernel());
   1736 	ref = pmap_is_referenced(pg);
   1737 	mod = pmap_is_modified(pg);
   1738 	printf("Unmapped page: ref %d, mod %d\n", ref, mod);
   1739 
   1740 	/* Now clear reference and modify */
   1741 	ref = pmap_clear_reference(pg);
   1742 	mod = pmap_clear_modify(pg);
   1743 	printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
   1744 	       (void *)(u_long)va, (long)pa, ref, mod);
   1745 
   1746 	/* Check it's properly cleared */
   1747 	ref = pmap_is_referenced(pg);
   1748 	mod = pmap_is_modified(pg);
   1749 	printf("Checking cleared page: ref %d, mod %d\n",
   1750 	       ref, mod);
   1751 
   1752 	pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL,
   1753 		VM_PROT_ALL|PMAP_WIRED);
   1754 	uvm_km_free(kernel_map, (vaddr_t)va, NBPG);
   1755 }
   1756 #endif
   1757