pmap.c revision 1.45 1 /* $NetBSD: pmap.c,v 1.45 2007/02/21 22:59:49 thorpej Exp $ */
2
3 /*
4 * Copyright 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
40 * Copyright (C) 1995, 1996 TooLs GmbH.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by TooLs GmbH.
54 * 4. The name of TooLs GmbH may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
61 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
62 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
63 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
64 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
65 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
66 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.45 2007/02/21 22:59:49 thorpej Exp $");
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/user.h>
76 #include <sys/queue.h>
77 #include <sys/systm.h>
78 #include <sys/pool.h>
79 #include <sys/device.h>
80
81 #include <uvm/uvm.h>
82
83 #include <machine/cpu.h>
84 #include <machine/pcb.h>
85 #include <machine/powerpc.h>
86
87 #include <powerpc/spr.h>
88 #include <machine/tlb.h>
89
90 /*
91 * kernmap is an array of PTEs large enough to map in
92 * 4GB. At 16KB/page it is 256K entries or 2MB.
93 */
94 #define KERNMAP_SIZE ((0xffffffffU/PAGE_SIZE)+1)
95 caddr_t kernmap;
96
97 #define MINCTX 2
98 #define NUMCTX 256
99
100 volatile struct pmap *ctxbusy[NUMCTX];
101
102 #define TLBF_USED 0x1
103 #define TLBF_REF 0x2
104 #define TLBF_LOCKED 0x4
105 #define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
106
107 typedef struct tlb_info_s {
108 char ti_flags;
109 char ti_ctx; /* TLB_PID assiciated with the entry */
110 u_int ti_va;
111 } tlb_info_t;
112
113 volatile tlb_info_t tlb_info[NTLB];
114 /* We'll use a modified FIFO replacement policy cause it's cheap */
115 volatile int tlbnext;
116
117 static int tlb_nreserved = 0;
118 static int pmap_bootstrap_done = 0;
119
120 /* Event counters */
121 struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
122 NULL, "cpu", "tlbmiss");
123 struct evcnt tlbhit_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
124 NULL, "cpu", "tlbhit");
125 struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
126 NULL, "cpu", "tlbflush");
127 struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
128 NULL, "cpu", "tlbenter");
129
130 struct pmap kernel_pmap_;
131
132 int physmem;
133 static int npgs;
134 static u_int nextavail;
135 #ifndef MSGBUFADDR
136 extern paddr_t msgbuf_paddr;
137 #endif
138
139 static struct mem_region *mem, *avail;
140
141 /*
142 * This is a cache of referenced/modified bits.
143 * Bits herein are shifted by ATTRSHFT.
144 */
145 static char *pmap_attrib;
146
147 #define PV_WIRED 0x1
148 #define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
149 #define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED)
150 #define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED)
151 #define PV_CMPVA(va,pv) (!(((pv)->pv_va ^ (va)) & (~PV_WIRED)))
152
153 struct pv_entry {
154 struct pv_entry *pv_next; /* Linked list of mappings */
155 vaddr_t pv_va; /* virtual address of mapping */
156 struct pmap *pv_pm;
157 };
158
159 /* Each index corresponds to TLB_SIZE_* value. */
160 static size_t tlbsize[] = {
161 1024, /* TLB_SIZE_1K */
162 4096, /* TLB_SIZE_4K */
163 16384, /* TLB_SIZE_16K */
164 65536, /* TLB_SIZE_64K */
165 262144, /* TLB_SIZE_256K */
166 1048576, /* TLB_SIZE_1M */
167 4194304, /* TLB_SIZE_4M */
168 16777216, /* TLB_SIZE_16M */
169 };
170
171 struct pv_entry *pv_table;
172 static struct pool pv_pool;
173
174 static int pmap_initialized;
175
176 static int ctx_flush(int);
177
178 inline struct pv_entry *pa_to_pv(paddr_t);
179 static inline char *pa_to_attr(paddr_t);
180
181 static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
182 static inline int pte_enter(struct pmap *, vaddr_t, u_int);
183
184 static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, bool);
185 static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
186
187 static int ppc4xx_tlb_size_mask(size_t, int *, int *);
188
189
190 inline struct pv_entry *
191 pa_to_pv(paddr_t pa)
192 {
193 int bank, pg;
194
195 bank = vm_physseg_find(atop(pa), &pg);
196 if (bank == -1)
197 return NULL;
198 return &vm_physmem[bank].pmseg.pvent[pg];
199 }
200
201 static inline char *
202 pa_to_attr(paddr_t pa)
203 {
204 int bank, pg;
205
206 bank = vm_physseg_find(atop(pa), &pg);
207 if (bank == -1)
208 return NULL;
209 return &vm_physmem[bank].pmseg.attrs[pg];
210 }
211
212 /*
213 * Insert PTE into page table.
214 */
215 int
216 pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
217 {
218 int seg = STIDX(va);
219 int ptn = PTIDX(va);
220 u_int oldpte;
221
222 if (!pm->pm_ptbl[seg]) {
223 /* Don't allocate a page to clear a non-existent mapping. */
224 if (!pte)
225 return (0);
226 /* Allocate a page XXXX this will sleep! */
227 pm->pm_ptbl[seg] =
228 (uint *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
229 UVM_KMF_WIRED | UVM_KMF_ZERO);
230 }
231 oldpte = pm->pm_ptbl[seg][ptn];
232 pm->pm_ptbl[seg][ptn] = pte;
233
234 /* Flush entry. */
235 ppc4xx_tlb_flush(va, pm->pm_ctx);
236 if (oldpte != pte) {
237 if (pte == 0)
238 pm->pm_stats.resident_count--;
239 else
240 pm->pm_stats.resident_count++;
241 }
242 return (1);
243 }
244
245 /*
246 * Get a pointer to a PTE in a page table.
247 */
248 volatile u_int *
249 pte_find(struct pmap *pm, vaddr_t va)
250 {
251 int seg = STIDX(va);
252 int ptn = PTIDX(va);
253
254 if (pm->pm_ptbl[seg])
255 return (&pm->pm_ptbl[seg][ptn]);
256
257 return (NULL);
258 }
259
260 /*
261 * This is called during initppc, before the system is really initialized.
262 */
263 void
264 pmap_bootstrap(u_int kernelstart, u_int kernelend)
265 {
266 struct mem_region *mp, *mp1;
267 int cnt, i;
268 u_int s, e, sz;
269
270 tlbnext = tlb_nreserved;
271
272 /*
273 * Allocate the kernel page table at the end of
274 * kernel space so it's in the locked TTE.
275 */
276 kernmap = (caddr_t)kernelend;
277
278 /*
279 * Initialize kernel page table.
280 */
281 for (i = 0; i < STSZ; i++) {
282 pmap_kernel()->pm_ptbl[i] = 0;
283 }
284 ctxbusy[0] = ctxbusy[1] = pmap_kernel();
285
286 /*
287 * Announce page-size to the VM-system
288 */
289 uvmexp.pagesize = NBPG;
290 uvm_setpagesize();
291
292 /*
293 * Get memory.
294 */
295 mem_regions(&mem, &avail);
296 for (mp = mem; mp->size; mp++) {
297 physmem += btoc(mp->size);
298 printf("+%lx,",mp->size);
299 }
300 printf("\n");
301 ppc4xx_tlb_init();
302 /*
303 * Count the number of available entries.
304 */
305 for (cnt = 0, mp = avail; mp->size; mp++)
306 cnt++;
307
308 /*
309 * Page align all regions.
310 * Non-page aligned memory isn't very interesting to us.
311 * Also, sort the entries for ascending addresses.
312 */
313 kernelstart &= ~PGOFSET;
314 kernelend = (kernelend + PGOFSET) & ~PGOFSET;
315 for (mp = avail; mp->size; mp++) {
316 s = mp->start;
317 e = mp->start + mp->size;
318 printf("%08x-%08x -> ",s,e);
319 /*
320 * Check whether this region holds all of the kernel.
321 */
322 if (s < kernelstart && e > kernelend) {
323 avail[cnt].start = kernelend;
324 avail[cnt++].size = e - kernelend;
325 e = kernelstart;
326 }
327 /*
328 * Look whether this regions starts within the kernel.
329 */
330 if (s >= kernelstart && s < kernelend) {
331 if (e <= kernelend)
332 goto empty;
333 s = kernelend;
334 }
335 /*
336 * Now look whether this region ends within the kernel.
337 */
338 if (e > kernelstart && e <= kernelend) {
339 if (s >= kernelstart)
340 goto empty;
341 e = kernelstart;
342 }
343 /*
344 * Now page align the start and size of the region.
345 */
346 s = round_page(s);
347 e = trunc_page(e);
348 if (e < s)
349 e = s;
350 sz = e - s;
351 printf("%08x-%08x = %x\n",s,e,sz);
352 /*
353 * Check whether some memory is left here.
354 */
355 if (sz == 0) {
356 empty:
357 memmove(mp, mp + 1,
358 (cnt - (mp - avail)) * sizeof *mp);
359 cnt--;
360 mp--;
361 continue;
362 }
363 /*
364 * Do an insertion sort.
365 */
366 npgs += btoc(sz);
367 for (mp1 = avail; mp1 < mp; mp1++)
368 if (s < mp1->start)
369 break;
370 if (mp1 < mp) {
371 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
372 mp1->start = s;
373 mp1->size = sz;
374 } else {
375 mp->start = s;
376 mp->size = sz;
377 }
378 }
379
380 /*
381 * We cannot do pmap_steal_memory here,
382 * since we don't run with translation enabled yet.
383 */
384 #ifndef MSGBUFADDR
385 /*
386 * allow for msgbuf
387 */
388 sz = round_page(MSGBUFSIZE);
389 mp = NULL;
390 for (mp1 = avail; mp1->size; mp1++)
391 if (mp1->size >= sz)
392 mp = mp1;
393 if (mp == NULL)
394 panic("not enough memory?");
395
396 npgs -= btoc(sz);
397 msgbuf_paddr = mp->start + mp->size - sz;
398 mp->size -= sz;
399 if (mp->size <= 0)
400 memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp);
401 #endif
402
403 for (mp = avail; mp->size; mp++)
404 uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
405 atop(mp->start), atop(mp->start + mp->size),
406 VM_FREELIST_DEFAULT);
407
408 /*
409 * Initialize kernel pmap and hardware.
410 */
411 /* Setup TLB pid allocator so it knows we alreadu using PID 1 */
412 pmap_kernel()->pm_ctx = KERNEL_PID;
413 nextavail = avail->start;
414
415 evcnt_attach_static(&tlbmiss_ev);
416 evcnt_attach_static(&tlbhit_ev);
417 evcnt_attach_static(&tlbflush_ev);
418 evcnt_attach_static(&tlbenter_ev);
419
420 pmap_bootstrap_done = 1;
421 }
422
423 /*
424 * Restrict given range to physical memory
425 *
426 * (Used by /dev/mem)
427 */
428 void
429 pmap_real_memory(paddr_t *start, psize_t *size)
430 {
431 struct mem_region *mp;
432
433 for (mp = mem; mp->size; mp++) {
434 if (*start + *size > mp->start &&
435 *start < mp->start + mp->size) {
436 if (*start < mp->start) {
437 *size -= mp->start - *start;
438 *start = mp->start;
439 }
440 if (*start + *size > mp->start + mp->size)
441 *size = mp->start + mp->size - *start;
442 return;
443 }
444 }
445 *size = 0;
446 }
447
448 /*
449 * Initialize anything else for pmap handling.
450 * Called during vm_init().
451 */
452 void
453 pmap_init(void)
454 {
455 struct pv_entry *pv;
456 vsize_t sz;
457 vaddr_t addr;
458 int i, s;
459 int bank;
460 char *attr;
461
462 sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
463 sz = round_page(sz);
464 addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
465 s = splvm();
466 pv = pv_table = (struct pv_entry *)addr;
467 for (i = npgs; --i >= 0;)
468 pv++->pv_pm = NULL;
469 pmap_attrib = (char *)pv;
470 memset(pv, 0, npgs);
471
472 pv = pv_table;
473 attr = pmap_attrib;
474 for (bank = 0; bank < vm_nphysseg; bank++) {
475 sz = vm_physmem[bank].end - vm_physmem[bank].start;
476 vm_physmem[bank].pmseg.pvent = pv;
477 vm_physmem[bank].pmseg.attrs = attr;
478 pv += sz;
479 attr += sz;
480 }
481
482 pmap_initialized = 1;
483 splx(s);
484
485 /* Setup a pool for additional pvlist structures */
486 pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry", NULL);
487 }
488
489 /*
490 * How much virtual space is available to the kernel?
491 */
492 void
493 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
494 {
495
496 #if 0
497 /*
498 * Reserve one segment for kernel virtual memory
499 */
500 *start = (vaddr_t)(KERNEL_SR << ADDR_SR_SHFT);
501 *end = *start + SEGMENT_LENGTH;
502 #else
503 *start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
504 *end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
505 #endif
506 }
507
508 #ifdef PMAP_GROWKERNEL
509 /*
510 * Preallocate kernel page tables to a specified VA.
511 * This simply loops through the first TTE for each
512 * page table from the beginning of the kernel pmap,
513 * reads the entry, and if the result is
514 * zero (either invalid entry or no page table) it stores
515 * a zero there, populating page tables in the process.
516 * This is not the most efficient technique but i don't
517 * expect it to be called that often.
518 */
519 extern struct vm_page *vm_page_alloc1 __P((void));
520 extern void vm_page_free1 __P((struct vm_page *));
521
522 vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
523
524 vaddr_t
525 pmap_growkernel(vaddr_t maxkvaddr)
526 {
527 int s;
528 int seg;
529 paddr_t pg;
530 struct pmap *pm = pmap_kernel();
531
532 s = splvm();
533
534 /* Align with the start of a page table */
535 for (kbreak &= ~(PTMAP-1); kbreak < maxkvaddr;
536 kbreak += PTMAP) {
537 seg = STIDX(kbreak);
538
539 if (pte_find(pm, kbreak))
540 continue;
541
542 if (uvm.page_init_done) {
543 pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
544 } else {
545 if (!uvm_page_physget(&pg))
546 panic("pmap_growkernel: no memory");
547 }
548 if (!pg)
549 panic("pmap_growkernel: no pages");
550 pmap_zero_page((paddr_t)pg);
551
552 /* XXX This is based on all phymem being addressable */
553 pm->pm_ptbl[seg] = (u_int *)pg;
554 }
555 splx(s);
556 return (kbreak);
557 }
558
559 /*
560 * vm_page_alloc1:
561 *
562 * Allocate and return a memory cell with no associated object.
563 */
564 struct vm_page *
565 vm_page_alloc1(void)
566 {
567 struct vm_page *pg;
568
569 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
570 if (pg) {
571 pg->wire_count = 1; /* no mappings yet */
572 pg->flags &= ~PG_BUSY; /* never busy */
573 }
574 return pg;
575 }
576
577 /*
578 * vm_page_free1:
579 *
580 * Returns the given page to the free list,
581 * disassociating it with any VM object.
582 *
583 * Object and page must be locked prior to entry.
584 */
585 void
586 vm_page_free1(struct vm_page *pg)
587 {
588 #ifdef DIAGNOSTIC
589 if (pg->flags != (PG_CLEAN|PG_FAKE)) {
590 printf("Freeing invalid page %p\n", pg);
591 printf("pa = %llx\n", (unsigned long long)VM_PAGE_TO_PHYS(pg));
592 #ifdef DDB
593 Debugger();
594 #endif
595 return;
596 }
597 #endif
598 pg->flags |= PG_BUSY;
599 pg->wire_count = 0;
600 uvm_pagefree(pg);
601 }
602 #endif
603
604 /*
605 * Create and return a physical map.
606 */
607 struct pmap *
608 pmap_create(void)
609 {
610 struct pmap *pm;
611
612 pm = malloc(sizeof *pm, M_VMPMAP, M_WAITOK);
613 memset(pm, 0, sizeof *pm);
614 pm->pm_refs = 1;
615 return pm;
616 }
617
618 /*
619 * Add a reference to the given pmap.
620 */
621 void
622 pmap_reference(struct pmap *pm)
623 {
624
625 pm->pm_refs++;
626 }
627
628 /*
629 * Retire the given pmap from service.
630 * Should only be called if the map contains no valid mappings.
631 */
632 void
633 pmap_destroy(struct pmap *pm)
634 {
635 int i;
636
637 if (--pm->pm_refs > 0) {
638 return;
639 }
640 KASSERT(pm->pm_stats.resident_count == 0);
641 KASSERT(pm->pm_stats.wired_count == 0);
642 for (i = 0; i < STSZ; i++)
643 if (pm->pm_ptbl[i]) {
644 uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
645 PAGE_SIZE, UVM_KMF_WIRED);
646 pm->pm_ptbl[i] = NULL;
647 }
648 if (pm->pm_ctx)
649 ctx_free(pm);
650 free(pm, M_VMPMAP);
651 }
652
653 /*
654 * Copy the range specified by src_addr/len
655 * from the source map to the range dst_addr/len
656 * in the destination map.
657 *
658 * This routine is only advisory and need not do anything.
659 */
660 void
661 pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
662 vsize_t len, vaddr_t src_addr)
663 {
664 }
665
666 /*
667 * Require that all active physical maps contain no
668 * incorrect entries NOW.
669 */
670 void
671 pmap_update(struct pmap *pmap)
672 {
673 }
674
675 /*
676 * Garbage collects the physical map system for
677 * pages which are no longer used.
678 * Success need not be guaranteed -- that is, there
679 * may well be pages which are not referenced, but
680 * others may be collected.
681 * Called by the pageout daemon when pages are scarce.
682 */
683 void
684 pmap_collect(struct pmap *pm)
685 {
686 }
687
688 /*
689 * Fill the given physical page with zeroes.
690 */
691 void
692 pmap_zero_page(paddr_t pa)
693 {
694
695 #ifdef PPC_4XX_NOCACHE
696 memset((caddr_t)pa, 0, PAGE_SIZE);
697 #else
698 int i;
699
700 for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
701 __asm volatile ("dcbz 0,%0" :: "r"(pa));
702 pa += CACHELINESIZE;
703 }
704 #endif
705 }
706
707 /*
708 * Copy the given physical source page to its destination.
709 */
710 void
711 pmap_copy_page(paddr_t src, paddr_t dst)
712 {
713
714 memcpy((caddr_t)dst, (caddr_t)src, PAGE_SIZE);
715 dcache_flush_page(dst);
716 }
717
718 /*
719 * This returns whether this is the first mapping of a page.
720 */
721 static inline int
722 pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, bool wired)
723 {
724 struct pv_entry *pv, *npv = NULL;
725 int s;
726
727 if (!pmap_initialized)
728 return 0;
729
730 s = splvm();
731 pv = pa_to_pv(pa);
732 if (!pv->pv_pm) {
733 /*
734 * No entries yet, use header as the first entry.
735 */
736 pv->pv_va = va;
737 pv->pv_pm = pm;
738 pv->pv_next = NULL;
739 } else {
740 /*
741 * There is at least one other VA mapping this page.
742 * Place this entry after the header.
743 */
744 npv = pool_get(&pv_pool, PR_WAITOK);
745 npv->pv_va = va;
746 npv->pv_pm = pm;
747 npv->pv_next = pv->pv_next;
748 pv->pv_next = npv;
749 pv = npv;
750 }
751 if (wired) {
752 PV_WIRE(pv);
753 pm->pm_stats.wired_count++;
754 }
755 splx(s);
756 return (1);
757 }
758
759 static void
760 pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
761 {
762 struct pv_entry *pv, *npv;
763
764 /*
765 * Remove from the PV table.
766 */
767 pv = pa_to_pv(pa);
768 if (!pv)
769 return;
770
771 /*
772 * If it is the first entry on the list, it is actually
773 * in the header and we must copy the following entry up
774 * to the header. Otherwise we must search the list for
775 * the entry. In either case we free the now unused entry.
776 */
777 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
778 if (PV_ISWIRED(pv)) {
779 pm->pm_stats.wired_count--;
780 }
781 if ((npv = pv->pv_next)) {
782 *pv = *npv;
783 pool_put(&pv_pool, npv);
784 } else
785 pv->pv_pm = NULL;
786 } else {
787 for (; (npv = pv->pv_next) != NULL; pv = npv)
788 if (pm == npv->pv_pm && PV_CMPVA(va, npv))
789 break;
790 if (npv) {
791 pv->pv_next = npv->pv_next;
792 if (PV_ISWIRED(npv)) {
793 pm->pm_stats.wired_count--;
794 }
795 pool_put(&pv_pool, npv);
796 }
797 }
798 }
799
800 /*
801 * Insert physical page at pa into the given pmap at virtual address va.
802 */
803 int
804 pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
805 {
806 int s;
807 u_int tte;
808 int managed;
809
810 /*
811 * Have to remove any existing mapping first.
812 */
813 pmap_remove(pm, va, va + PAGE_SIZE);
814
815 if (flags & PMAP_WIRED)
816 flags |= prot;
817
818 managed = 0;
819 if (vm_physseg_find(atop(pa), NULL) != -1)
820 managed = 1;
821
822 /*
823 * Generate TTE.
824 */
825 tte = TTE_PA(pa);
826 /* XXXX -- need to support multiple page sizes. */
827 tte |= TTE_SZ_16K;
828 #ifdef DIAGNOSTIC
829 if ((flags & (PME_NOCACHE | PME_WRITETHROUG)) ==
830 (PME_NOCACHE | PME_WRITETHROUG))
831 panic("pmap_enter: uncached & writethrough");
832 #endif
833 if (flags & PME_NOCACHE)
834 /* Must be I/O mapping */
835 tte |= TTE_I | TTE_G;
836 #ifdef PPC_4XX_NOCACHE
837 tte |= TTE_I;
838 #else
839 else if (flags & PME_WRITETHROUG)
840 /* Uncached and writethrough are not compatible */
841 tte |= TTE_W;
842 #endif
843 if (pm == pmap_kernel())
844 tte |= TTE_ZONE(ZONE_PRIV);
845 else
846 tte |= TTE_ZONE(ZONE_USER);
847
848 if (flags & VM_PROT_WRITE)
849 tte |= TTE_WR;
850
851 if (flags & VM_PROT_EXECUTE)
852 tte |= TTE_EX;
853
854 /*
855 * Now record mapping for later back-translation.
856 */
857 if (pmap_initialized && managed) {
858 char *attr;
859
860 if (!pmap_enter_pv(pm, va, pa, flags & PMAP_WIRED)) {
861 /* Could not enter pv on a managed page */
862 return 1;
863 }
864
865 /* Now set attributes. */
866 attr = pa_to_attr(pa);
867 #ifdef DIAGNOSTIC
868 if (!attr)
869 panic("managed but no attr");
870 #endif
871 if (flags & VM_PROT_ALL)
872 *attr |= PMAP_ATTR_REF;
873 if (flags & VM_PROT_WRITE)
874 *attr |= PMAP_ATTR_CHG;
875 }
876
877 s = splvm();
878
879 /* Insert page into page table. */
880 pte_enter(pm, va, tte);
881
882 /* If this is a real fault, enter it in the tlb */
883 if (tte && ((flags & PMAP_WIRED) == 0)) {
884 ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
885 }
886 splx(s);
887
888 /* Flush the real memory from the instruction cache. */
889 if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
890 __syncicache((void *)pa, PAGE_SIZE);
891
892 return 0;
893 }
894
895 void
896 pmap_unwire(struct pmap *pm, vaddr_t va)
897 {
898 struct pv_entry *pv;
899 paddr_t pa;
900 int s;
901
902 if (!pmap_extract(pm, va, &pa)) {
903 return;
904 }
905
906 pv = pa_to_pv(pa);
907 if (!pv)
908 return;
909
910 s = splvm();
911 while (pv != NULL) {
912 if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
913 if (PV_ISWIRED(pv)) {
914 PV_UNWIRE(pv);
915 pm->pm_stats.wired_count--;
916 }
917 break;
918 }
919 pv = pv->pv_next;
920 }
921 splx(s);
922 }
923
924 void
925 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
926 {
927 int s;
928 u_int tte;
929 struct pmap *pm = pmap_kernel();
930
931 /*
932 * Have to remove any existing mapping first.
933 */
934
935 /*
936 * Generate TTE.
937 *
938 * XXXX
939 *
940 * Since the kernel does not handle execution privileges properly,
941 * we will handle read and execute permissions together.
942 */
943 tte = 0;
944 if (prot & VM_PROT_ALL) {
945
946 tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
947 /* XXXX -- need to support multiple page sizes. */
948 tte |= TTE_SZ_16K;
949 #ifdef DIAGNOSTIC
950 if ((prot & (PME_NOCACHE | PME_WRITETHROUG)) ==
951 (PME_NOCACHE | PME_WRITETHROUG))
952 panic("pmap_kenter_pa: uncached & writethrough");
953 #endif
954 if (prot & PME_NOCACHE)
955 /* Must be I/O mapping */
956 tte |= TTE_I | TTE_G;
957 #ifdef PPC_4XX_NOCACHE
958 tte |= TTE_I;
959 #else
960 else if (prot & PME_WRITETHROUG)
961 /* Uncached and writethrough are not compatible */
962 tte |= TTE_W;
963 #endif
964 if (prot & VM_PROT_WRITE)
965 tte |= TTE_WR;
966 }
967
968 s = splvm();
969
970 /* Insert page into page table. */
971 pte_enter(pm, va, tte);
972 splx(s);
973 }
974
975 void
976 pmap_kremove(vaddr_t va, vsize_t len)
977 {
978
979 while (len > 0) {
980 pte_enter(pmap_kernel(), va, 0);
981 va += PAGE_SIZE;
982 len -= PAGE_SIZE;
983 }
984 }
985
986 /*
987 * Remove the given range of mapping entries.
988 */
989 void
990 pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
991 {
992 int s;
993 paddr_t pa;
994 volatile u_int *ptp;
995
996 s = splvm();
997 while (va < endva) {
998
999 if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
1000 pa = TTE_PA(pa);
1001 pmap_remove_pv(pm, va, pa);
1002 *ptp = 0;
1003 ppc4xx_tlb_flush(va, pm->pm_ctx);
1004 pm->pm_stats.resident_count--;
1005 }
1006 va += PAGE_SIZE;
1007 }
1008
1009 splx(s);
1010 }
1011
1012 /*
1013 * Get the physical page address for the given pmap/virtual address.
1014 */
1015 bool
1016 pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
1017 {
1018 int seg = STIDX(va);
1019 int ptn = PTIDX(va);
1020 u_int pa = 0;
1021 int s;
1022
1023 s = splvm();
1024 if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn])) {
1025 *pap = TTE_PA(pa) | (va & PGOFSET);
1026 }
1027 splx(s);
1028 return (pa != 0);
1029 }
1030
1031 /*
1032 * Lower the protection on the specified range of this pmap.
1033 *
1034 * There are only two cases: either the protection is going to 0,
1035 * or it is going to read-only.
1036 */
1037 void
1038 pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1039 {
1040 volatile u_int *ptp;
1041 int s, bic;
1042
1043 if ((prot & VM_PROT_READ) == 0) {
1044 pmap_remove(pm, sva, eva);
1045 return;
1046 }
1047 bic = 0;
1048 if ((prot & VM_PROT_WRITE) == 0) {
1049 bic |= TTE_WR;
1050 }
1051 if ((prot & VM_PROT_EXECUTE) == 0) {
1052 bic |= TTE_EX;
1053 }
1054 if (bic == 0) {
1055 return;
1056 }
1057 s = splvm();
1058 while (sva < eva) {
1059 if ((ptp = pte_find(pm, sva)) != NULL) {
1060 *ptp &= ~bic;
1061 ppc4xx_tlb_flush(sva, pm->pm_ctx);
1062 }
1063 sva += PAGE_SIZE;
1064 }
1065 splx(s);
1066 }
1067
1068 bool
1069 pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
1070 {
1071 paddr_t pa;
1072 char *attr;
1073 int s, rv;
1074
1075 /*
1076 * First modify bits in cache.
1077 */
1078 pa = VM_PAGE_TO_PHYS(pg);
1079 attr = pa_to_attr(pa);
1080 if (attr == NULL)
1081 return FALSE;
1082
1083 s = splvm();
1084 rv = ((*attr & mask) != 0);
1085 if (clear) {
1086 *attr &= ~mask;
1087 pmap_page_protect(pg, mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
1088 }
1089 splx(s);
1090 return rv;
1091 }
1092
1093
1094 /*
1095 * Lower the protection on the specified physical page.
1096 *
1097 * There are only two cases: either the protection is going to 0,
1098 * or it is going to read-only.
1099 */
1100 void
1101 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1102 {
1103 paddr_t pa = VM_PAGE_TO_PHYS(pg);
1104 vaddr_t va;
1105 struct pv_entry *pvh, *pv, *npv;
1106 struct pmap *pm;
1107
1108 pvh = pa_to_pv(pa);
1109 if (pvh == NULL)
1110 return;
1111
1112 /* Handle extra pvs which may be deleted in the operation */
1113 for (pv = pvh->pv_next; pv; pv = npv) {
1114 npv = pv->pv_next;
1115
1116 pm = pv->pv_pm;
1117 va = pv->pv_va;
1118 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1119 }
1120 /* Now check the head pv */
1121 if (pvh->pv_pm) {
1122 pv = pvh;
1123 pm = pv->pv_pm;
1124 va = pv->pv_va;
1125 pmap_protect(pm, va, va + PAGE_SIZE, prot);
1126 }
1127 }
1128
1129 /*
1130 * Activate the address space for the specified process. If the process
1131 * is the current process, load the new MMU context.
1132 */
1133 void
1134 pmap_activate(struct lwp *l)
1135 {
1136 #if 0
1137 struct pcb *pcb = &l->l_proc->p_addr->u_pcb;
1138 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
1139
1140 /*
1141 * XXX Normally performed in cpu_fork().
1142 */
1143 printf("pmap_activate(%p), pmap=%p\n",l,pmap);
1144 pcb->pcb_pm = pmap;
1145 #endif
1146 }
1147
1148 /*
1149 * Deactivate the specified process's address space.
1150 */
1151 void
1152 pmap_deactivate(struct lwp *l)
1153 {
1154 }
1155
1156 /*
1157 * Synchronize caches corresponding to [addr, addr+len) in p.
1158 */
1159 void
1160 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
1161 {
1162 struct pmap *pm = p->p_vmspace->vm_map.pmap;
1163 int msr, ctx, opid, step;
1164
1165 step = CACHELINESIZE;
1166
1167 /*
1168 * Need to turn off IMMU and switch to user context.
1169 * (icbi uses DMMU).
1170 */
1171 if (!(ctx = pm->pm_ctx)) {
1172 /* No context -- assign it one */
1173 ctx_alloc(pm);
1174 ctx = pm->pm_ctx;
1175 }
1176 __asm volatile("mfmsr %0;"
1177 "li %1, %7;"
1178 "andc %1,%0,%1;"
1179 "mtmsr %1;"
1180 "sync;isync;"
1181 "mfpid %1;"
1182 "mtpid %2;"
1183 "sync; isync;"
1184 "1:"
1185 "dcbf 0,%3;"
1186 "icbi 0,%3;"
1187 "add %3,%3,%5;"
1188 "addc. %4,%4,%6;"
1189 "bge 1b;"
1190 "mtpid %1;"
1191 "mtmsr %0;"
1192 "sync; isync"
1193 : "=&r" (msr), "=&r" (opid)
1194 : "r" (ctx), "r" (va), "r" (len), "r" (step), "r" (-step),
1195 "K" (PSL_IR | PSL_DR));
1196 }
1197
1198
1199 /* This has to be done in real mode !!! */
1200 void
1201 ppc4xx_tlb_flush(vaddr_t va, int pid)
1202 {
1203 u_long i, found;
1204 u_long msr;
1205
1206 /* If there's no context then it can't be mapped. */
1207 if (!pid)
1208 return;
1209
1210 __asm( "mfpid %1;" /* Save PID */
1211 "mfmsr %2;" /* Save MSR */
1212 "li %0,0;" /* Now clear MSR */
1213 "mtmsr %0;"
1214 "mtpid %4;" /* Set PID */
1215 "sync;"
1216 "tlbsx. %0,0,%3;" /* Search TLB */
1217 "sync;"
1218 "mtpid %1;" /* Restore PID */
1219 "mtmsr %2;" /* Restore MSR */
1220 "sync;isync;"
1221 "li %1,1;"
1222 "beq 1f;"
1223 "li %1,0;"
1224 "1:"
1225 : "=&r" (i), "=&r" (found), "=&r" (msr)
1226 : "r" (va), "r" (pid));
1227 if (found && !TLB_LOCKED(i)) {
1228
1229 /* Now flush translation */
1230 __asm volatile(
1231 "tlbwe %0,%1,0;"
1232 "sync;isync;"
1233 : : "r" (0), "r" (i));
1234
1235 tlb_info[i].ti_ctx = 0;
1236 tlb_info[i].ti_flags = 0;
1237 tlbnext = i;
1238 /* Successful flushes */
1239 tlbflush_ev.ev_count++;
1240 }
1241 }
1242
1243 void
1244 ppc4xx_tlb_flush_all(void)
1245 {
1246 u_long i;
1247
1248 for (i = 0; i < NTLB; i++)
1249 if (!TLB_LOCKED(i)) {
1250 __asm volatile(
1251 "tlbwe %0,%1,0;"
1252 "sync;isync;"
1253 : : "r" (0), "r" (i));
1254 tlb_info[i].ti_ctx = 0;
1255 tlb_info[i].ti_flags = 0;
1256 }
1257
1258 __asm volatile("sync;isync");
1259 }
1260
1261 /* Find a TLB entry to evict. */
1262 static int
1263 ppc4xx_tlb_find_victim(void)
1264 {
1265 int flags;
1266
1267 for (;;) {
1268 if (++tlbnext >= NTLB)
1269 tlbnext = tlb_nreserved;
1270 flags = tlb_info[tlbnext].ti_flags;
1271 if (!(flags & TLBF_USED) ||
1272 (flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
1273 u_long va, stack = (u_long)&va;
1274
1275 if (!((tlb_info[tlbnext].ti_va ^ stack) & (~PGOFSET)) &&
1276 (tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
1277 (flags & TLBF_USED)) {
1278 /* Kernel stack page */
1279 flags |= TLBF_USED;
1280 tlb_info[tlbnext].ti_flags = flags;
1281 } else {
1282 /* Found it! */
1283 return (tlbnext);
1284 }
1285 } else {
1286 tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
1287 }
1288 }
1289 }
1290
1291 void
1292 ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
1293 {
1294 u_long th, tl, idx;
1295 tlbpid_t pid;
1296 u_short msr;
1297 paddr_t pa;
1298 int s, sz;
1299
1300 tlbenter_ev.ev_count++;
1301
1302 sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
1303 pa = (pte & TTE_RPN_MASK(sz));
1304 th = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
1305 tl = (pte & ~TLB_RPN_MASK) | pa;
1306 tl |= ppc4xx_tlbflags(va, pa);
1307
1308 s = splhigh();
1309 idx = ppc4xx_tlb_find_victim();
1310
1311 #ifdef DIAGNOSTIC
1312 if ((idx < tlb_nreserved) || (idx >= NTLB)) {
1313 panic("ppc4xx_tlb_enter: replacing entry %ld", idx);
1314 }
1315 #endif
1316
1317 tlb_info[idx].ti_va = (va & TLB_EPN_MASK);
1318 tlb_info[idx].ti_ctx = ctx;
1319 tlb_info[idx].ti_flags = TLBF_USED | TLBF_REF;
1320
1321 __asm volatile(
1322 "mfmsr %0;" /* Save MSR */
1323 "li %1,0;"
1324 "tlbwe %1,%3,0;" /* Invalidate old entry. */
1325 "mtmsr %1;" /* Clear MSR */
1326 "mfpid %1;" /* Save old PID */
1327 "mtpid %2;" /* Load translation ctx */
1328 "sync; isync;"
1329 #ifdef DEBUG
1330 "andi. %3,%3,63;"
1331 "tweqi %3,0;" /* XXXXX DEBUG trap on index 0 */
1332 #endif
1333 "tlbwe %4,%3,1; tlbwe %5,%3,0;" /* Set TLB */
1334 "sync; isync;"
1335 "mtpid %1; mtmsr %0;" /* Restore PID and MSR */
1336 "sync; isync;"
1337 : "=&r" (msr), "=&r" (pid)
1338 : "r" (ctx), "r" (idx), "r" (tl), "r" (th));
1339 splx(s);
1340 }
1341
1342 void
1343 ppc4xx_tlb_init(void)
1344 {
1345 int i;
1346
1347 /* Mark reserved TLB entries */
1348 for (i = 0; i < tlb_nreserved; i++) {
1349 tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
1350 tlb_info[i].ti_ctx = KERNEL_PID;
1351 }
1352
1353 /* Setup security zones */
1354 /* Z0 - accessible by kernel only if TLB entry permissions allow
1355 * Z1,Z2 - access is controlled by TLB entry permissions
1356 * Z3 - full access regardless of TLB entry permissions
1357 */
1358
1359 __asm volatile(
1360 "mtspr %0,%1;"
1361 "sync;"
1362 :: "K"(SPR_ZPR), "r" (0x1b000000));
1363 }
1364
1365 /*
1366 * ppc4xx_tlb_size_mask:
1367 *
1368 * Roundup size to supported page size, return TLBHI mask and real size.
1369 */
1370 static int
1371 ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
1372 {
1373 int i;
1374
1375 for (i = 0; i < __arraycount(tlbsize); i++)
1376 if (size <= tlbsize[i]) {
1377 *mask = (i << TLB_SIZE_SHFT);
1378 *rsiz = tlbsize[i];
1379 return (0);
1380 }
1381 return (EINVAL);
1382 }
1383
1384 /*
1385 * ppc4xx_tlb_mapiodev:
1386 *
1387 * Lookup virtual address of mapping previously entered via
1388 * ppc4xx_tlb_reserve. Search TLB directly so that we don't
1389 * need to waste extra storage for reserved mappings. Note
1390 * that reading TLBHI also sets PID, but all reserved mappings
1391 * use KERNEL_PID, so the side effect is nil.
1392 */
1393 void *
1394 ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
1395 {
1396 paddr_t pa;
1397 vaddr_t va;
1398 u_int lo, hi, sz;
1399 int i;
1400
1401 /* tlb_nreserved is only allowed to grow, so this is safe. */
1402 for (i = 0; i < tlb_nreserved; i++) {
1403 __asm volatile (
1404 " tlbre %0,%2,1 \n" /* TLBLO */
1405 " tlbre %1,%2,0 \n" /* TLBHI */
1406 : "=&r" (lo), "=&r" (hi)
1407 : "r" (i));
1408
1409 KASSERT(hi & TLB_VALID);
1410 KASSERT(mfspr(SPR_PID) == KERNEL_PID);
1411
1412 pa = (lo & TLB_RPN_MASK);
1413 if (base < pa)
1414 continue;
1415
1416 sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
1417 if ((base + len) > (pa + sz))
1418 continue;
1419
1420 va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); /* sz = 2^n */
1421 return (void *)(va);
1422 }
1423
1424 return (NULL);
1425 }
1426
1427 /*
1428 * ppc4xx_tlb_reserve:
1429 *
1430 * Map physical range to kernel virtual chunk via reserved TLB entry.
1431 */
1432 void
1433 ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
1434 {
1435 u_int lo, hi;
1436 int szmask, rsize;
1437
1438 /* Called before pmap_bootstrap(), va outside kernel space. */
1439 KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
1440 KASSERT(! pmap_bootstrap_done);
1441 KASSERT(tlb_nreserved < NTLB);
1442
1443 /* Resolve size. */
1444 if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
1445 panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
1446 size, tlb_nreserved);
1447
1448 /* Real size will be power of two >= 1024, so this is OK. */
1449 pa &= ~(rsize - 1); /* RPN */
1450 va &= ~(rsize - 1); /* EPN */
1451
1452 lo = pa | TLB_WR | flags;
1453 hi = va | TLB_VALID | szmask;
1454
1455 #ifdef PPC_4XX_NOCACHE
1456 lo |= TLB_I;
1457 #endif
1458
1459 __asm volatile(
1460 " tlbwe %1,%0,1 \n" /* write TLBLO */
1461 " tlbwe %2,%0,0 \n" /* write TLBHI */
1462 " sync \n"
1463 " isync \n"
1464 : : "r" (tlb_nreserved), "r" (lo), "r" (hi));
1465
1466 tlb_nreserved++;
1467 }
1468
1469 /*
1470 * We should pass the ctx in from trap code.
1471 */
1472 int
1473 pmap_tlbmiss(vaddr_t va, int ctx)
1474 {
1475 volatile u_int *pte;
1476 u_long tte;
1477
1478 tlbmiss_ev.ev_count++;
1479
1480 /*
1481 * We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
1482 * Physical RAM is expected to live in this range, care must be taken
1483 * to not clobber 0 upto ${physmem} with device mappings in machdep
1484 * code.
1485 */
1486 if (ctx != KERNEL_PID || va >= VM_MIN_KERNEL_ADDRESS) {
1487 pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
1488 if (pte == NULL) {
1489 /* Map unmanaged addresses directly for kernel access */
1490 return 1;
1491 }
1492 tte = *pte;
1493 if (tte == 0) {
1494 return 1;
1495 }
1496 } else {
1497 /* Create a 16MB writable mapping. */
1498 #ifdef PPC_4XX_NOCACHE
1499 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_I |TTE_WR;
1500 #else
1501 tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
1502 #endif
1503 }
1504 tlbhit_ev.ev_count++;
1505 ppc4xx_tlb_enter(ctx, va, tte);
1506
1507 return 0;
1508 }
1509
1510 /*
1511 * Flush all the entries matching a context from the TLB.
1512 */
1513 static int
1514 ctx_flush(int cnum)
1515 {
1516 int i;
1517
1518 /* We gotta steal this context */
1519 for (i = tlb_nreserved; i < NTLB; i++) {
1520 if (tlb_info[i].ti_ctx == cnum) {
1521 /* Can't steal ctx if it has a locked entry. */
1522 if (TLB_LOCKED(i)) {
1523 #ifdef DIAGNOSTIC
1524 printf("ctx_flush: can't invalidate "
1525 "locked mapping %d "
1526 "for context %d\n", i, cnum);
1527 #ifdef DDB
1528 Debugger();
1529 #endif
1530 #endif
1531 return (1);
1532 }
1533 #ifdef DIAGNOSTIC
1534 if (i < tlb_nreserved)
1535 panic("TLB entry %d not locked", i);
1536 #endif
1537 /* Invalidate particular TLB entry regardless of locked status */
1538 __asm volatile("tlbwe %0,%1,0" : :"r"(0),"r"(i));
1539 tlb_info[i].ti_flags = 0;
1540 }
1541 }
1542 return (0);
1543 }
1544
1545 /*
1546 * Allocate a context. If necessary, steal one from someone else.
1547 *
1548 * The new context is flushed from the TLB before returning.
1549 */
1550 int
1551 ctx_alloc(struct pmap *pm)
1552 {
1553 int s, cnum;
1554 static int next = MINCTX;
1555
1556 if (pm == pmap_kernel()) {
1557 #ifdef DIAGNOSTIC
1558 printf("ctx_alloc: kernel pmap!\n");
1559 #endif
1560 return (0);
1561 }
1562 s = splvm();
1563
1564 /* Find a likely context. */
1565 cnum = next;
1566 do {
1567 if ((++cnum) > NUMCTX)
1568 cnum = MINCTX;
1569 } while (ctxbusy[cnum] != NULL && cnum != next);
1570
1571 /* Now clean it out */
1572 oops:
1573 if (cnum < MINCTX)
1574 cnum = MINCTX; /* Never steal ctx 0 or 1 */
1575 if (ctx_flush(cnum)) {
1576 /* oops -- something's wired. */
1577 if ((++cnum) > NUMCTX)
1578 cnum = MINCTX;
1579 goto oops;
1580 }
1581
1582 if (ctxbusy[cnum]) {
1583 #ifdef DEBUG
1584 /* We should identify this pmap and clear it */
1585 printf("Warning: stealing context %d\n", cnum);
1586 #endif
1587 ctxbusy[cnum]->pm_ctx = 0;
1588 }
1589 ctxbusy[cnum] = pm;
1590 next = cnum;
1591 splx(s);
1592 pm->pm_ctx = cnum;
1593
1594 return cnum;
1595 }
1596
1597 /*
1598 * Give away a context.
1599 */
1600 void
1601 ctx_free(struct pmap *pm)
1602 {
1603 int oldctx;
1604
1605 oldctx = pm->pm_ctx;
1606
1607 if (oldctx == 0)
1608 panic("ctx_free: freeing kernel context");
1609 #ifdef DIAGNOSTIC
1610 if (ctxbusy[oldctx] == 0)
1611 printf("ctx_free: freeing free context %d\n", oldctx);
1612 if (ctxbusy[oldctx] != pm) {
1613 printf("ctx_free: freeing someone esle's context\n "
1614 "ctxbusy[%d] = %p, pm->pm_ctx = %p\n",
1615 oldctx, (void *)(u_long)ctxbusy[oldctx], pm);
1616 #ifdef DDB
1617 Debugger();
1618 #endif
1619 }
1620 #endif
1621 /* We should verify it has not been stolen and reallocated... */
1622 ctxbusy[oldctx] = NULL;
1623 ctx_flush(oldctx);
1624 }
1625
1626
1627 #ifdef DEBUG
1628 /*
1629 * Test ref/modify handling.
1630 */
1631 void pmap_testout __P((void));
1632 void
1633 pmap_testout()
1634 {
1635 vaddr_t va;
1636 volatile int *loc;
1637 int val = 0;
1638 paddr_t pa;
1639 struct vm_page *pg;
1640 int ref, mod;
1641
1642 /* Allocate a page */
1643 va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1644 UVM_KMF_WIRED | UVM_KMF_ZERO);
1645 loc = (int*)va;
1646
1647 pmap_extract(pmap_kernel(), va, &pa);
1648 pg = PHYS_TO_VM_PAGE(pa);
1649 pmap_unwire(pmap_kernel(), va);
1650
1651 pmap_kremove(va, PAGE_SIZE);
1652 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1653 pmap_update(pmap_kernel());
1654
1655 /* Now clear reference and modify */
1656 ref = pmap_clear_reference(pg);
1657 mod = pmap_clear_modify(pg);
1658 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1659 (void *)(u_long)va, (long)pa,
1660 ref, mod);
1661
1662 /* Check it's properly cleared */
1663 ref = pmap_is_referenced(pg);
1664 mod = pmap_is_modified(pg);
1665 printf("Checking cleared page: ref %d, mod %d\n",
1666 ref, mod);
1667
1668 /* Reference page */
1669 val = *loc;
1670
1671 ref = pmap_is_referenced(pg);
1672 mod = pmap_is_modified(pg);
1673 printf("Referenced page: ref %d, mod %d val %x\n",
1674 ref, mod, val);
1675
1676 /* Now clear reference and modify */
1677 ref = pmap_clear_reference(pg);
1678 mod = pmap_clear_modify(pg);
1679 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1680 (void *)(u_long)va, (long)pa,
1681 ref, mod);
1682
1683 /* Modify page */
1684 *loc = 1;
1685
1686 ref = pmap_is_referenced(pg);
1687 mod = pmap_is_modified(pg);
1688 printf("Modified page: ref %d, mod %d\n",
1689 ref, mod);
1690
1691 /* Now clear reference and modify */
1692 ref = pmap_clear_reference(pg);
1693 mod = pmap_clear_modify(pg);
1694 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1695 (void *)(u_long)va, (long)pa,
1696 ref, mod);
1697
1698 /* Check it's properly cleared */
1699 ref = pmap_is_referenced(pg);
1700 mod = pmap_is_modified(pg);
1701 printf("Checking cleared page: ref %d, mod %d\n",
1702 ref, mod);
1703
1704 /* Modify page */
1705 *loc = 1;
1706
1707 ref = pmap_is_referenced(pg);
1708 mod = pmap_is_modified(pg);
1709 printf("Modified page: ref %d, mod %d\n",
1710 ref, mod);
1711
1712 /* Check pmap_protect() */
1713 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_READ);
1714 pmap_update(pmap_kernel());
1715 ref = pmap_is_referenced(pg);
1716 mod = pmap_is_modified(pg);
1717 printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n",
1718 ref, mod);
1719
1720 /* Now clear reference and modify */
1721 ref = pmap_clear_reference(pg);
1722 mod = pmap_clear_modify(pg);
1723 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1724 (void *)(u_long)va, (long)pa,
1725 ref, mod);
1726
1727 /* Reference page */
1728 val = *loc;
1729
1730 ref = pmap_is_referenced(pg);
1731 mod = pmap_is_modified(pg);
1732 printf("Referenced page: ref %d, mod %d val %x\n",
1733 ref, mod, val);
1734
1735 /* Now clear reference and modify */
1736 ref = pmap_clear_reference(pg);
1737 mod = pmap_clear_modify(pg);
1738 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1739 (void *)(u_long)va, (long)pa,
1740 ref, mod);
1741
1742 /* Modify page */
1743 #if 0
1744 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1745 pmap_update(pmap_kernel());
1746 #endif
1747 *loc = 1;
1748
1749 ref = pmap_is_referenced(pg);
1750 mod = pmap_is_modified(pg);
1751 printf("Modified page: ref %d, mod %d\n",
1752 ref, mod);
1753
1754 /* Check pmap_protect() */
1755 pmap_protect(pmap_kernel(), va, va+1, VM_PROT_NONE);
1756 pmap_update(pmap_kernel());
1757 ref = pmap_is_referenced(pg);
1758 mod = pmap_is_modified(pg);
1759 printf("pmap_protect(): ref %d, mod %d\n",
1760 ref, mod);
1761
1762 /* Now clear reference and modify */
1763 ref = pmap_clear_reference(pg);
1764 mod = pmap_clear_modify(pg);
1765 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1766 (void *)(u_long)va, (long)pa,
1767 ref, mod);
1768
1769 /* Reference page */
1770 val = *loc;
1771
1772 ref = pmap_is_referenced(pg);
1773 mod = pmap_is_modified(pg);
1774 printf("Referenced page: ref %d, mod %d val %x\n",
1775 ref, mod, val);
1776
1777 /* Now clear reference and modify */
1778 ref = pmap_clear_reference(pg);
1779 mod = pmap_clear_modify(pg);
1780 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1781 (void *)(u_long)va, (long)pa,
1782 ref, mod);
1783
1784 /* Modify page */
1785 #if 0
1786 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1787 pmap_update(pmap_kernel());
1788 #endif
1789 *loc = 1;
1790
1791 ref = pmap_is_referenced(pg);
1792 mod = pmap_is_modified(pg);
1793 printf("Modified page: ref %d, mod %d\n",
1794 ref, mod);
1795
1796 /* Check pmap_pag_protect() */
1797 pmap_page_protect(pg, VM_PROT_READ);
1798 ref = pmap_is_referenced(pg);
1799 mod = pmap_is_modified(pg);
1800 printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n",
1801 ref, mod);
1802
1803 /* Now clear reference and modify */
1804 ref = pmap_clear_reference(pg);
1805 mod = pmap_clear_modify(pg);
1806 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1807 (void *)(u_long)va, (long)pa,
1808 ref, mod);
1809
1810 /* Reference page */
1811 val = *loc;
1812
1813 ref = pmap_is_referenced(pg);
1814 mod = pmap_is_modified(pg);
1815 printf("Referenced page: ref %d, mod %d val %x\n",
1816 ref, mod, val);
1817
1818 /* Now clear reference and modify */
1819 ref = pmap_clear_reference(pg);
1820 mod = pmap_clear_modify(pg);
1821 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1822 (void *)(u_long)va, (long)pa,
1823 ref, mod);
1824
1825 /* Modify page */
1826 #if 0
1827 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1828 pmap_update(pmap_kernel());
1829 #endif
1830 *loc = 1;
1831
1832 ref = pmap_is_referenced(pg);
1833 mod = pmap_is_modified(pg);
1834 printf("Modified page: ref %d, mod %d\n",
1835 ref, mod);
1836
1837 /* Check pmap_pag_protect() */
1838 pmap_page_protect(pg, VM_PROT_NONE);
1839 ref = pmap_is_referenced(pg);
1840 mod = pmap_is_modified(pg);
1841 printf("pmap_page_protect(): ref %d, mod %d\n",
1842 ref, mod);
1843
1844 /* Now clear reference and modify */
1845 ref = pmap_clear_reference(pg);
1846 mod = pmap_clear_modify(pg);
1847 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1848 (void *)(u_long)va, (long)pa,
1849 ref, mod);
1850
1851
1852 /* Reference page */
1853 val = *loc;
1854
1855 ref = pmap_is_referenced(pg);
1856 mod = pmap_is_modified(pg);
1857 printf("Referenced page: ref %d, mod %d val %x\n",
1858 ref, mod, val);
1859
1860 /* Now clear reference and modify */
1861 ref = pmap_clear_reference(pg);
1862 mod = pmap_clear_modify(pg);
1863 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1864 (void *)(u_long)va, (long)pa,
1865 ref, mod);
1866
1867 /* Modify page */
1868 #if 0
1869 pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
1870 pmap_update(pmap_kernel());
1871 #endif
1872 *loc = 1;
1873
1874 ref = pmap_is_referenced(pg);
1875 mod = pmap_is_modified(pg);
1876 printf("Modified page: ref %d, mod %d\n",
1877 ref, mod);
1878
1879 /* Unmap page */
1880 pmap_remove(pmap_kernel(), va, va+1);
1881 pmap_update(pmap_kernel());
1882 ref = pmap_is_referenced(pg);
1883 mod = pmap_is_modified(pg);
1884 printf("Unmapped page: ref %d, mod %d\n", ref, mod);
1885
1886 /* Now clear reference and modify */
1887 ref = pmap_clear_reference(pg);
1888 mod = pmap_clear_modify(pg);
1889 printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
1890 (void *)(u_long)va, (long)pa, ref, mod);
1891
1892 /* Check it's properly cleared */
1893 ref = pmap_is_referenced(pg);
1894 mod = pmap_is_modified(pg);
1895 printf("Checking cleared page: ref %d, mod %d\n",
1896 ref, mod);
1897
1898 pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
1899 pmap_kenter_pa(va, pa, VM_PROT_ALL);
1900 uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
1901 }
1902 #endif
1903